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Abstract

We o�er a new approach to the well-known bankruptcy problem based on Kaminski's idea. With the

help of hydraulic rationing we give a proof to Aumann and Maschlers theorem i.e. the consistent solution

of a bankruptcy problem is the nucleolus of the corresponding game. We use a system of vessels and

water and the principles of mechanics to show this fact. The proof is not just simple and demonstrative

but also provides an insight how the nucleolus is constructed in such games.

1 Introduction

The bankruptcy problem is one of the oldest in the history of economics. In the simplest

form we have a �rm which goes bankrupt and there are creditors who wish to collect

their claims. The amount they demand exceeds the �rm's liquidation value. The natural

question arises: how to divide this value among the claimants? Depending on our notion

of fairness we can impose many rules for such a division. For an an excellent survey on

this matter see Thomson [11].

One of the oldest concepts can be found in the Talmud [10]. The proposed solution is

puzzling at �rst nevertheless it exhibits many nice properties. It is a mixture of the con-

cepts of constrained equal losses and constrained equal awards. The underlying rationing

1Research for the paper was supported by project No. K 69027 of the Hungarian Scienti�c Research

Fund (OTKA).
2The author thanks the funding of the Hungarian Academy of Sciences under its Momentum Pro-

gramme (LD-004/2010).
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was not clear until Aumann and Maschler solved the riddle in 1985 [2]. They gave an

elementary proof showing that each bankruptcy problem has a so called CG-consistent

solution. Moreover these coincide with the examples in the Talmud. They also showed

that the CG-consistent solution is the nucleolus of the corresponding bankruptcy game.

This is an interesting result that comes with a less elementary proof.

In 2000 Kaminski introduced a fascinating new concept to represent the bankruptcy

game and other similar problems: the hydraulic rationing [8]. A physical device consisting

of vessels and water correspond to the claimants and the �rm's liquidation value.

Here we show an elementary proof of the nucleolus property using Kaminski's idea.

Our proof seems to be more direct than that of Benoit published in 1997 [3].

2 The Model

Here we describe the basic notions of the bankruptcy problem. Readers who are familiar

with these concepts might want to skip this part and jump to the next section. For more

on the models of fair allocation see [12].

Let N = {1, 2, . . . , n} be a set of agents. The bankruptcy problem is de�ned as

a pair (c, E) where E ∈ R+ is the �rm's liquidation value (or estate) and c ∈ Rn
+ is

the collection of claims with
∑n

i ci > E. Let B denote the class of such problems. A

solution of a bankruptcy problem is a vector x ∈ Rn
+ with xi ≤ ci for any i ∈ N which

satis�es the condition that
∑n

i xi = E. For convenience' sake we introduce the notations

x(S) =
∑

i∈S xi and c(S) =
∑

i∈S ci for any S ⊆ N . Hence the above conditions can

be written as x(i) ≤ c(i) for any i ∈ N and x(N) = E. A rule r : B → Rn is a

mapping that assigns a unique solution to each bankruptcy problem. A dual of a rule r

is denoted by r∗. The dual assigns awards in the same way as r assigns losses namely

r∗(c, E) = c− r(c, c(N)− E). A self-dual rule is one with r∗ = r, such rule treats losses

and awards in the same way.

Now we formalize several rules which we will need later on. The reader can �nd several

characterizations of these rules in [6] and [9].

The constrained equal-awards (CEA) rule assigns equal awards to each agent sub-

ject to no one receiving more than his claim. The dual of this rule is the constrained

equal-losses (CEL) rule. In this case losses are distributed as equally as possible subject

to no one receives a negative amount. Formally:

Constrained equal-awards: For all (c, E) ∈ B and i ∈ N , CEAi(c, E) = min(ci, λ)

where λ solves
∑
min(ci, λ) = E.

Constrained equal-losses: For all (c, E) ∈ B and i ∈ N , CELi(c, E) = min(0, ci −
λ) where λ solves

∑
min(0, ci − λ) = E.

Another well-known rule is the random arrival rule. Suppose the claims arrive
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sequentially and they are fully compensated until the money runs out. The random

arrival rule computes awards vectors for every possible ordering of claims and then takes

the average. Hence it produces the same awards vector as the Shapley-value applied to

the corresponding bankruptcy game[10].

The Contested Garment Principle is a division formula which can be derived from

the Talmud. There are two claimants and a divisible good. According the principle each

claimant should give the part of the good that he does not contest to the other claimant.

Then the rest is split up equally.

Figure 1: The Contested Garment Principle

De�nition 1. Let (c, E) be a bankruptcy problem. A solution is called CG-consistent or

simply consistent, if for all i 6= j the division of x(i) + x(j) prescribed by the contested

garment principle for claims ci, cj is (x(i), x(j)).

The CG-consistent rule is the one that assign the CG-consistent solution to each

bankruptcy problem. Sometimes it is also referred as Talmud rule. Formally it can be

written as

Ti(c, E) =

min {ci/2, λ} if E ≤ 1
2
c(N),

max {ci/2, ci − µ} if E > 1
2
c(N),

where λ and µ are chosen so that
∑

i∈N Ti(c, E) = E.

Observe that the Talmud rule is the combination of the constrained equal awards and

the constrained equal losses rules.

3 Hydraulic rationing

Proof techniques that use the principles of mechanics were very common in the ancient

times3. The increasing number of examples in the literature shows that they are no

less useful today. Just to mention some well-known instances: the shortest path in a

3Archimedes wrote to Eratosthenes: "I thought �t to write out for you and explain in detail... a certain

method, by which it will be possible for you... to investigate some of the problems in mathematics by

means of mechanics. This procedure is, I am persuaded, no less useful even for the proof of the theorems

themselves..."
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directed graph can be found using a system of strings and knots, congestion games can be

represented by electric circuits, and - as in our case - rationing problems can be modeled

using hydraulic computers.

To prove Aumann and Maschlers theorem we will employ Kaminski's idea and con-

struct a speci�c hydraulic. In this hydraulic every claim is represented by a vessel while

the �rms liquidation value corresponds to the amount of water we pour into this system.

Our vessels have a peculiar hourglass-shape with the following characteristics:

• Each vessel has an upper and lower tank of a shape of a cylinder.

• The upper and lower tanks have the same volume and they are connected with a

capillary.

• The capillaries have negligible volume.

• The cylinders have a circular base with area of 1.

• The volume of vessel i is equal to the size of agent i's claim.

• Finally each vessel has the same height denoted by h. We may assume h = cmax

where cmax denotes the largest claim.

Note that the last condition implies that the vessel with the largest volume has no

capillary part. We say that a hydraulic is talmudic if it incorporates the above charac-

teristics.

Figure 2: A connected talmudic hydraulic

It is not included in the above list but for a proper representation every vessel has

to have also a capillary on the top tank where the air can leave the vessel. During the

proof we will need two types of vessel systems. In a connected hydraulic vessels are

connected with capillaries at the bottom. In this way if we pour water into any of the

vessels each vessel starts to �ll up. In a disconnected hydraulic di�erent vessels can

have di�erent 'water levels' depending on how much water we pour into them. We did

not de�ne what do we understand under water level yet so let us do it here. The water

level of a talmudic vessel i is denoted by Ii and de�ned the following way
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Ii =


x(i) if x(i) < c(i)/2,

[c(i)/2, h− c(i)/2] if x(i) = c(i)/2,

x(i) + h− c(i) if x(i) > c(i)/2.

Note that Ii is point valued whenever the ith agent receives less or more than one

half of his claim. If he gets exactly half then the actual water level falls somewhere on

the capillary part between the two tanks. Since the volume of the capillary is negligible

we cannot tell the exact water level. Hence Ii is interval valued if x(i) = c(i)/2. In a

connected hydraulic it is meaningful to speak about the common water level. Let z denote

the common water level in a connected vessel system. Then

z ∈
n⋂

i=1

Ii.

Note that in a talmudic hydraulic z is always point valued since the vessel with the

largest volume has no capillary part. We say that a hydraulic H corresponds to a

bankruptcy problem (c,E) if the following conditions hold

• H has n vessels

• the volume of the ith vessel is equal to the size of the claim of agent i

• there is E amount of water distributed among the vessels.

A hydraulic that corresponds to a bankruptcy problem always implicitly de�nes an

allocation rule. The nature of the rule depends on the shape of the vessels.

Here we show the representation of the rules we have already mentioned.

Figure 3: The representation of CEA, CEL and Talmud rules

Now we are ready to make some simple observations. For the next few statements we

will not provide rigorous proofs only sketches.

Observation 1. (Kaminski) Let (c, E) be a two-person bankruptcy problem and let H
be the corresponding connected talmudic hydraulic. The solution x de�ned by the common

water level z in H is consistent.
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Indeed it is not hard to check that the common water level z induces a consistent

solution. For a detailed explanation the reader is referred to [1].

Corollary 1. Each bankruptcy problem has a unique consistent solution.

Consider the bankruptcy problem (c, E) and the corresponding connected talmudic

hydraulic H with a common water level z. A CG-consistent solution means that no mat-

ter how we choose two vessels, the distribution of water between them is consistent. Since

we have a connected hydraulic the water level is the same in every vessel. Furthermore z

remains a common water level even if we disconnect a vessel from the system. Therefore

the existence of a consistent solution follows from the two-vessel case. For the uniqueness

part we proceed by contradiction. Let us assume that x is a consistent solution induced

by z and y 6= x is also consistent. Then there exists a vessel in y where the water level is

below z and another vessel where the water level is above z. This is a contradiction. �

To further illustrate the robustness of Kaminski's method we show an interesting

property of consistent solutions.

Observation 2. A rule is self-consistent if and only if it corresponds to a connected

hydraulic in which a shape of a vessel depends only on the respective claim size.

Self-consistency means that a connected hydraulic will correspond to a rule even after

we disconnect some of its vessels. Some rules like the Random arrival rule are not self-

consistent. This means that a hydraulic which corresponds to the random arrival rule will

not continue to do so after removing a vessel from the system. The shape of the remaining

vessels has to change �rst to adapt to the new situation.

Another remarkable feature of the hydraulic approach is that it makes self-duality very

apparent.

Observation 3. The Talmud rule is a self-dual rule.

Let H be a connected talmudic hydraulic with E amount of water in it. We have to

show that the corresponding rule T is a self-dual rule formally

T ∗(c, E) = c− T (c, c(N)− E).

We can translate this into the language of hydraulics. Let x = (x1, x2, . . . , xn) be the

solution induced by the common water level. Now consider a copy of H which is fully

�lled with water. Let y = (y1, y2, . . . , yn) be the distribution of air when we let out E

amount of water from the fully �lled hydraulic. As the �gure shows the distributions are

the same.
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Figure 4: The hydraulic H with E and c(N)− E amount of water in it.

Actually more is true. Easy to conclude the following fact.

Observation 4. A rule is self-dual if and only if it corresponds to a horizontally sym-

metric connected hydraulic.

4 The Nucleolus of the Bankruptcy Game

Bankruptcy problems can be modeled as coalitional games. Let us remind the reader to

some basic notions of cooperative games. A cooperative game in characteristic function

form is an ordered pair (N, v) consisting of the player set N = {1, 2, . . . , n} and a charac-

teristic function v : 2N → R with v(∅) = 0. Furthermore x ∈ Rn is called an allocation if it

is e�cient i.e. x(N) = v(N). We say that an allocation x is an imputation or individually

rational if x(i) ≥ v(i) for all i ∈ N . The set of imputation is denoted by I(N, v).

I(N, v) = {x ∈ Rn | x(N) = v(N), x(i) ≥ v(i) for all i ∈ N}.

Given an allocation x ∈ Rn, we de�ne the excess of a coalition S as

e(S, x) := x(S)− v(S).

Let θ(x) ∈ R2n be the excess vector that contain the 2n excess values in a non-

decreasing order.

We say that a vector x ∈ Rm is lexicographically less or equal than y ∈ Rm, denoted

by x � y, if either x = y or there exists a number 1 ≤ j ≤ m such that xi = yi if i ≤ j

and xj+1 < yj+1.

De�nition 2. The nucleolus is the set of allocations of a game x ∈ Rn
+ that lexicographi-

cally maximize θ(x) over (N, v). In other words

N(v) = {x ∈ I(N, v) | θ(y) � θ(x) for all y ∈ I(N, v)}
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Now we are ready to introduce the notion of bankruptcy game. Let N = {1, 2, . . . , n}
be a set of agents and (c, E) ∈ B a bankruptcy problem. For any S ∈ 2N the characteristic

function of the related bankruptcy game is

v(c,E)(S) = max (E − c(N \ S), 0)

The characteristic function represent the worth of a coalition. By de�nition it is the value

what is left of the �rm's liquidation value E = v(N) after the claim of each agent of the

complement coalition N \ S has been satis�ed. This is the value the coalition can get

without any e�ort. The excess of a coalition is de�ned by

e(x, S) = x(S)− v(c,E)(S).

If a coalition S has nothing after all other claimants outside the coalition have been paid

o� then its excess will be x(S). Otherwise the gain of S should be decreased by v(c,E)(S)

since S would get v(c,E)(S) anyway.

We need two small observations.

Lemma 1. Let v(c,E) be a bankruptcy game on player set N and x an imputation. The

excess of S ⊆ N can be written as

e(x, S) = min (x(S), c(N \ S)− x(N \ S)). (1)

Proof of Lemma 1

By de�nition the excess of set S is

e(x, S) = x(S)− v(c,E)(S) = x(S)−max (E − c(N \ S), 0).

If v(c,E)(S) = 0 then c(N \ S) ≥ E. Subtracting x(N \ S) from both sides yield

c(N \ S)− x(N \ S) ≥ E − x(N \ S) = x(S) = min (x(S), c(N \ S)− x(N \ S)).

On the other hand if v(c,E)(S) = E − c(N \ S) then c(N \ S) ≤ E. Similarly we can

gather

x(S) = E − x(N \ S) ≥ c(N \ S)− x(N \ S) = min (x(S), c(N \ S)− x(N \ S)).

�

We can translate (1) to the language of hydraulics. This time let H be a disconnected

hydraulic. Now x(S) is the amount of water that is distributed among the vessels that

belong to coalition S. The excess of S is the minimum of the following two amount: the

water contained in S or the air contained in N \ S.
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Lemma 2. Let (c, E) be a two-person bankruptcy problem. The closer an allocation is to

the consistent solution the greater the excess vector is lexicographically. In particular the

consistent solution of (c, E) is the nucleolus of the corresponding bankruptcy game.

Proof of Lemma 2

Using the notions of cooperative games we can represent the contested garment prin-

ciple in the following way.

Figure 5: The doubly contested part is divided equally.

No matter how we divide the estate up we cannot give agent i less that vi or more than

ci. Respectively we cannot give agent j less that vj or more than cj. Since vi and vj are

�xed we can distribute only e(x, i) + e(x, j) amount. Note that this sum of excess values

is a constant. The gain of i is the loss of j and vice verse. By de�nition the consistent

solution is the one where e(x, i) = e(x, j). Using Observation 1 we can conclude that

the common water level corresponds to a solution where the excesses are equal. Pouring

water from vessel j to vessel i means we increase the excess of agent i and decrease the

excess of agent j. �

Now we are ready to prove the theorem of Aumann and Maschler.

Theorem 1. The consistent solution of a bankruptcy problem is the nucleolus of the

corresponding game.

Proof of Theorem 1

Let there be given a bankruptcy problem (c, E) and a corresponding disconnected

talmudic hydraulic H. We proceed by contradiction. Let us assume that imputation x

is the nucleolus of the game and it di�ers from the CG-consistent solution. Let z be the

common water level that could have been obtained if the hydraulic was connected. We

know that
⋂n

i=1 Ii = ∅ otherwise x would coincide with the consistent solution. It follows

that there exists i, j ∈ N such that Ii ∩ Ij = ∅ i.e. they have di�erent water levels. Now

consider this subsystem of vessels i and j. Without loss of generality we can assume that

Ii > z > Ij so the water level is higher in vessel i. We pour water from vessel i to vessel

j until the water level in one of the vessels reaches z. Suppose we obtained allocations

x′(i) and x′(j). Denote x′ the imputation that coincides with x except in the ith and jth

coordinate where it takes the values x′(i) and x′(j). We will show that θ(x) ≺ θ(x′).
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First observe that the excess of those coalitions that contain both i and j has not

changed. Particularly let S be such a coalition. It is evident that S contains the same

amount of water and N \S contains the same amount of air. The same goes for coalitions

that contain neither i nor j. Let denote Sj,i the coalitions that contain j but does not

contain i. After we poured some water from vessel i to vessel j the excesses are strictly

greater for coalitions that belong to Sj,i. Therefore it is enough to prove that

min
S∈Si,j

e(x′, S) ≥ min
S∈Sj,i

e(x′, S). (2)

In this way we ensure that the excess vector has lexicographically increased. The excess

is either the amount of water in S, namely x(S) or the amount of air in the complement

coalition N \ S, namely c(N \ S)− x(N \ S). We are searching for the minimum of these

two amounts. Observe that the smaller the coalition S is the smaller the value x(S)

is. Moreover the bigger the coalition S is the smaller the value c(N \ S) − x(N \ S) is.
Therefore looking at the coalitions of Si,j either {i} or N \ {j} has the minimum excess.

On the other hand looking at coalitions Sj,i either {j}, or N \{i} has the minimum excess.

Therefore (2) immediately follows from

min(x′(i), cj − x′(j)) ≥ min(x′(j), ci − x′(i)).

The left hand side of the inequality is nothing else than the excess of agent i after the

water exchange. Similarly the right hand side is the excess of agent j. We already know

from Lemma 2 that in such cases e(x′, {i}) ≥ e(x′, {j}). Therefore we can conclude that

θ(x) ≺ θ(x′). This contradicts the fact that the imputation x is the nucleolus of the game.

Therefore we have to reject our initial assumption that the nucleolus and the consistent

solution di�er.�

Remarks: Note that the proof works even without introducing hydraulic constructions.

Some statements, like observation 1 and 3 are more transparent this way. However the

real advantage of using hydraulics is that it makes easier to interpret notions like excess

and nucleolus and gives many ideas what statements are true and how to prove them.

5 Algorithmic Aspects

The above proof also gives an algorithm how to reach the nucleolus from any initial im-

putation in at most n − 1 steps. In each step some of the lowest excesses increase while

the loosing coalitions don't loose too much. It follows that there exists a linear time

algorithm which calculates the nucleolus of any given bankruptcy problem. It was known

before that there exists a polynomial time algorithm for computing the nucleolus of any
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convex cooperative game [7]. For more on the subject see [4] and [5]. Still a little bit

surprising that the following simple pseudoalgorithm works:

INPUT: a set of agents N = {1, 2, . . . , n} a claims vector c and estate E.

OUTPUT: an imputation x that is the nucleolus of the corresponding game.

(1) If E ≤ c(N)/2 distribute awards otherwise distribute losses.

(2) For i = 1, 2, . . . , n {
If |N | · ci/2 ≤ E then xi := ci/2; N := N \ {i}; E := E − xi}

(3) If N is non-empty then xi := E/|N | for i ∈ N .

(4) If losses were distributed then xi := ci − xi for i = 1, 2, . . . , n.

Clearly each cycle in the for loop requires constant computation time. Phase 3 and 4

�nish in at most n steps. Therefore the algorithm computes the nucleolus in O(n) time.
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