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A MAG KORLÁTOS SZÁMÚ BLOKKAL IS ELÉRHETÕ 
 
 
 

 Összefoglaló 
 

 
Megmutatjuk, hogy ha egy elosztás elérhetõ egy másik elosztásból, az elju-

táshoz szükséges blokkok száma korlátos. Ez a korlát csak a vizsgált játék-

ban részt vevõ játékosok számától függ. Nemüres magú játékokra alkalmaz-

va ez azt jelenti, hogy a mag elérhetõ egy korlátos hosszúságú blokk-

sorozattal. 
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THE CORE CAN BE ACCESSED WITH A BOUNDED NUMBER
OF BLOCKS

LÁSZLÓ Á. KÓCZY

Abstract. We show the existence of an upper bound for the number of blocks
required to get from one imputation to another provided that accessibility
holds. The bound depends only on the number of players in the TU game
considered. For the class of games with non-empty cores this means that the
core can be reached via a bounded sequence of blocks.
JEL Classification Numbers: C71, C73, C61.

1. Introduction

An international agreement will only be signed if no country or group of countries
can do better without it. However, the mere potential for such an agreement does
not make it signed. If an initial proposal is more favourable to some, then those
countries will not “give in” even if this leads to no agreement; in an election hav-
ing played hard can easily compensate for an unsigned agreement where blaming
other negotiating partners is certainly an easy and hardly refutable explanation.
International organisations, such as the UN can be a catalyst by facilitating nego-
tiations. Such an organisation is seen as a player that gets a positive payoff only if
an agreement is signed. While it cannot make countries accept less than what they
hope to get (under the status quo), it can facilitate the formation of a coalition
that blocks the current proposal and makes another one, (temporarily) weakening
the bargaining position of the problematic countries thereby making them more
inclined to sign an agreement. This way a series of blocks to various proposals can
eventually lead to the desired agreement.

Given the existence of a signable agreement, is it possible to manipulate negoti-
ations so that it is actually signed? If yes, can we set deadlines to the negotiations?
The first question has already been answered affirmatively [10, 5]. The present pa-
per answers the second: we show that one can set deadlines and thereby estimate
the expected costs of the process already before the negotiations begin.

The core collects agreements that, once proposed, are never abandoned. The
question is whether such agreements will ever be proposed. Based on a similar
programme by Stearns [12] and Billera [1] for the bargaining set and the kernel,
Green [4] and Wu [14] present transfer schemes that converge to the core. Perry
and Reny [6] and Serrano and Vohra [11] defines noncooperative bargaining games
that implement core imputations as noncooperative strategy-proof subgame-perfect
equilibria. Glycopantis, Muir and Yannelis [2, 3] study extensive form implemen-
tations of the private core and other solution concepts. Here we take a cooperative
approach and use the very same idea that is used to define the core: blocking.
Suppose an initial non-core imputation is proposed. Then there exists a sequence

This paper was mostly written at the Catholic University of Leuven. Comments by Luc Lauwers
and an anonymous referee have lead to considerable improvements, the remaining errors are of
course all mine. I also thank the Catholic University of Leuven and the Netherlands Organisation
for Scientific Research (NWO) for financial support.
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2 LÁSZLÓ Á. KÓCZY

of proposals and counter-proposals that eventually leads to the core [10]. Sengupta
& Sengupta [10], however, do not discuss the number of steps required.
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Figure 1. A finite, but unbounded sequence of dominance

Let us illustrate the issue in question by the following 3-player coalitional game
where the grand coalition obtains 3, pairs get 2, singletons get 0. The core of
this game consists of a single payoff-vector (1, 1, 1). Now let ak =

(
1
k , 2− 1

k , 1
)

and bk =
(

1
k , 1, 2− 1

k

)
, consider an arbitrary positive m ∈ N, and the following

–unnecessarily lengthy– process:

am → bm−1 → am−2 → bm−3 → · · · → b1 = a1 = (1, 1, 1).

This process terminates in the core in exactly m − 1 steps. As m is arbitrary the
number of steps to reach the core via such a path has no upper bound. The aim of
this paper is to show that the core can be reached in a bounded number of steps,
moreover, our proof points out where do such inefficient processes make unnecessary
detours.

Our result is not specific to the core. We show that if an imputation b can be
reached from another imputation a via a path of imputations, then the length of
the shortest of such paths is bounded. Since a player would never cooperate to get
less than he could by himself, it is realistic to allow only paths via efficient and in-
dividually rational allocations, that is, via imputations. Without these restrictions,
as in [9] the proof is subject to simplifications.

The structure of the paper is as follows: First we introduce our notation and
some terminology. In Section 3 we state our results. The proofs are presented in
the Appendices.

2. Preliminaries

Let (N, v) be a TU-game with player set N , and characteristic function v. Sub-
sets of N are coalitions and v(S) is the payoff for coalition S ⊆ N . For any pair
of vectors x, y ∈ RN and set S ⊆ N let x(S) =

∑
i∈S xi. The restriction of x to

S is denoted by xS ; we write xS ≥ yS if xi ≥ yi for each i ∈ S, we write xS > yS
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if xS ≥ yS , but xS 6= yS . We denote the vector of stand alone values by v∗, thus
v∗(S) =

∑
i∈S v({i}). For each coalition S let S̄ = N \S denote its complementary

coalition. Moreover, for the coalition Q let v̄(Q) = v(N) − v(Q̄) denote its com-
plementary value, that is, the total payoff left over for the players outside Q̄. Note
that the complementary value of coalition S is not the value of the complementary
coalition S̄.1

A payoff-vector x in RN is an imputation if x ≥ v∗ and x(N) = v(N): if it is
individually rational and efficient. Let A(N, v) denote the set of imputations.

Imputation y directly dominates x via coalition S, written y ÂS
D x if yS > xS

and y(S) = v(S). Then we refer to S as the blocking coalition, and the entire action
of obtaining y from x is a block.2 The core collects undominated imputations.

Alternative notions of dominance permit y(S) < v(S). Clearly our results will
hold if we make dominance a denser relation. Our choice is, however due to our
interpretation of dominance. The alternative definition merely compares imputa-
tions and is satisfied with the preference for y against x, but it does not investigate
whether such a transition would actually take place. Our definition is driven by
blocks: If a coalition is wants to and can get a higher payoff, it will –myopically–
collect the maximum it can get.

We say that y indirectly dominates x and we write y ÂI x if there exists a
finite sequence of imputations

{
x0, . . . , xT

}
and a finite collection of coalitions{

S1, . . . , ST
}
, such that x = x0, y = xT , and xt ÂSt

D xt−1 for all 0 < t ≤ T . We
call the sequence π = {(xt, St)}T

t=1 a (dominance) path, and T its length. The index
t is interpreted as time. For convenience we will index paths from 0, and assume
that S0 = N .

In this paper we study such dominance paths and interpret them as processes.
The path starts with an initial imputation x0. If there exists a coalition S1, such
that v(S1) > x0(S1) then the coalition S1 makes a threat of leaving the grand
coalition N , thereby collecting v(S1). Due to cohesiveness the remaining players
(weakly) prefer to renegotiate and accept a new imputation x1, where the demand
of coalition S1 is satisfied and therefore x1(S1) = v(S1), moreover x1 directly
dominates x0 via S1. Now x1 becomes the status quo, and so on, as long as there
exists a coalition who can do better apart than in the current proposal. If no
coalition can do better alone, then the imputation belongs to the core.

The existence of a bound is linked to the existence of primitive recursive algo-
rithms: A primitive recursive algorithm is one that can be programmed with “for”
loops only [13] and the running time of such a program can be set in advance. See
[8] and [7] for more on primitive recursive algorithms.

3. Results

Lemma 3.1. For any given game (N, v) there exists an upper bound M , such that
for all a, b pairs in A(N, v) with b ÂI a there exist a dominance path π from a to b
with length smaller than M .

The proof of Lemma 3.1 is presented in Appendix 4.

1For instance, in cohesive games we have v(S̄) ≤ v̄(S).
2The existence of imputation x and coalition S such that v(S) > x(S) do not not generally

imply the existence of an imputation y such that y ÂS
D x. If v(S) + v∗(S̄) > v(N) such a y would

not be both individually rational and efficient for S. Since cohesiveness, or even superadditivity
are standard assumptions for pure cooperative games, moreover, for our Theorem we consider
games with nonempty cores, such a problem cannot arise.
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Lemma 3.2 (Theorem in [10]). Let (N, v) be a game with a non-empty core
C(N, v). Let a be an imputation outside C(N, v). Then there exists an imputa-
tion c ∈ C(N, v) such that c ÂI a.

Theorem 3.3. Let (N, v) be a game with a non-empty core C(N, v). Then there
exists an integer M such that for all imputations a ∈ A(N, v) there exists an im-
putation c ∈ C(N, v) and a path π from a to c with length smaller than M .

Proof. For imputations a in C(N, v) the path π is trivial. Otherwise the combina-
tion of Lemmata 3.1 and 3.2 gives the desired result. ¤

Lemma 3.4. Let a and b be imputations in A(N, v) with b ÂI a. Then there
exists a primitive recursive algorithm that defines a path π = {(xt, St)}T

t=1 such
that x1 ÂS1

D a, for 1 < t ≤ T we have xt ÂSt

D xt−1, and xT = b.

Finally we have the following theorem:

Theorem 3.5. Let (N, v) be a game with a non-empty core C(N, v). Let a be
an imputation in A(N, v). Then we show that there exists a primitive recursive
algorithm that defines a path π = {(xt, St)}T

t=1 such that x1 ÂS1

D a, for 1 < t ≤ T

we have xt ÂSt

D xt−1, and xT ∈ C(N, v).

The proofs of Lemma 3.4 and Theorem 3.5 are presented in the Appendices B and
C.

4. Discussion

The present paper continues the programme initiated by Green [4] and Wu [14]
by establishing a bound on the number of steps needed to reach the core. There
are, however some questions that are left open. In this paper our emphasis was on
the simplicity of the results rather than on the efficiency of the algorithms. The
existence of a bound is encouraging, but it is very likely that the bound can be
lowered. While boundedness allows us to define primitive recursive algorithms for
the intermediator to design the negotiation process, much lower bounds are required
to make the algorithms practical.
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Appendix A Proof of Lemma 3.1

A.1. Outline. The proof is by contradiction. We assume that for any number M0

there exist imputations a and b such that b ÂI a, but the shortest dominance path
from a to b is π = {(xt, St)}T

t=0 and T > M0. We show that if M0 ≥ M there exist
imputations xT1 and xT2 along the path π that are so similar that the subpath from
xT1 to xT2 is essentially a loop that can be removed.

In case xT1 = xT2 we are done, but in general we have to find a path from xT1

to b. Note that two imputations are not necessarily connected by a dominance
path, but the similarity of xT1 and xT2 and the existence of a dominance path from
xT2 to b makes it possible to adapt it. Let π′3 = {(yt, Qt)}T ′

t=0 denote the adapted
path. We choose Qt = ST2+t and so T ′ = T − T2. Given the blocking coalitions
we must define yt such that (i) they are imputations, that is, individually rational
and efficient, (ii) the resulting path is a dominance path, (iii) π′3 indeed ends at b.
In the following we give an intuition of how we define the imputations yt. A formal
presentation will follow in Section A.5.2.

Knowing that coalition Q blocks x still leaves us some freedom in choosing the
resulting imputation y. We only have the following restrictions:

• Players must have at least their stand-alone value, y ≥ v∗.
• Blocking players must get at least as much as before, yQ > xQ.
• The total payoff must be efficient y(N) = v(N).
• The payoff for the blocking coalition Q must be efficient, y(Q) = v(Q).

The first two conditions define what we call the subsistence payoff : the bare mini-
mum that has to be distributed. Typically the last two conditions mean that there
is more to be distributed. Part of this is distributed within the blocking coalition,
and some among the remaining players, that is, the complementary coalition. In
distributing this extra we consider future blocks: we give no or minimal extra payoff
to those in the the next blocking coalition to further motivate their block. Since
the payoff of the players in the complementary coalition Q̄ is independent of their
previous payoff, they, in essence, lose all they had, including any potential extra
payment they had received. Thus, by giving the extra payments to those who do
not block in the next round we can waste some payoff that could be inhibitive in
later rounds. The problematic cases occur when the entire blocking or complemen-
tary coalition blocks, and becomes a faction or cofaction (see Definitions A.1 and
A.2) of the next blocking coalition. Then there is no way to get rid of the extra
payments. Such cases require special attention. It is comforting though that the
(total) payoffs for (co)factions are the same in the adapted as in the original path.
It is also true that as soon as such a faction (or at least part of it) is not blocking,
the extra payoff can be wasted. Still, most of the definition of similarity is about
ensuring that blocks are preserved even if such factions form.

A.2. Example. We illustrate our proof by a simple example with players and a
symmetric characteristic function where the payoff of a singleton, a pair, a triple and
the grand coalition is 0, 0.4, 0.7 and 1, respectively. The core of this game is non-
empty. We consider the randomly generated path in Table 1 that starts from impu-
tation (0.925, 0.025, 0.025, 0.025) and leads to imputation (0.142, 0.3, 0.274, 0.284)
that belongs to the core.

After this introduction we can move on to the formal definitions.

A.3. Definitions. The proof requires a number of additional definitions. Let a

and b be imputations such that there exists a path π = {(xt, St)}T
t=0 leading from

a to b. As before, xt are the imputations, St are the blocking coalitions. S0 plays
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t xt St Gt

0 (0.925, 0.025, 0.025, 0.025) ∅
1 (0.032, 0.374, 0.026, 0.568) {2, 3} ∅
2 (0.08, 0.3, 0.03, 0.59) {1, 3, 4} ∅
3 (0.28, 0.582, 0.12, 0.018) {1, 3} ∅
4 (0.111, 0.489, 0.341, 0.059) {3, 4} ∅
5 (0.265, 0.373, 0.227, 0.135) {1, 4} ∅
6 (0.141, 0.459, 0.262, 0.138) {3, 4} ∅
7 (0.212, 0.3, 0.316, 0.172) {1, 3, 4} ∅
8 (0.213, 0.184, 0.416, 0.187) {1, 4} ∅
9 (0.215, 0.185, 0.423, 0.177) {1, 2} ∅
10 (0.329, 0.194, 0.3, 0.177) {1, 2, 4} ∅
11 (0.535, 0.218, 0.065, 0.182) {2, 4} ∅
12 (0.3, 0.342, 0.092, 0.266) {2, 3, 4} ∅
13 (0.304, 0.347, 0.096, 0.253) {1, 2} ∅
14 (0.3, 0.348, 0.097, 0.255) {2, 3, 4} ∅
15 (0.303, 0.214, 0.097, 0.386) {1, 3} ∅
16 (0.3, 0.216, 0.097, 0.387) {2, 3, 4} ∅
17 (0.379, 0.224, 0.097, 0.3) {1, 2, 3} ∅
18 (0.04, 0.56, 0.099, 0.301) {3, 4} ∅
19 (0.13, 0.557, 0.27, 0.043) {1, 3} ∅
20 (0.156, 0.444, 0.319, 0.081) {3, 4} ∅
21 (0.171, 0.447, 0.3, 0.082) {1, 2, 4} ∅
22 (0.085, 0.515, 0.303, 0.097) {3, 4} ∅
23 (0.095, 0.282, 0.305, 0.318) {1, 3} ∅
24 (0.098, 0.283, 0.3, 0.319) {1, 3} {1}
25 (0.104, 0.296, 0.392, 0.208) {1, 2, 4} {1, 4}
26 (0.121, 0.357, 0.243, 0.279) {1, 2} {1, 3, 4}
27 (0.142, 0.3, 0.274, 0.284) {1, 3, 4} {1, 2, 3, 4}

Table 1. Example: payoffs, blocking coalitions and gaining play-
ers along a path.

no role, but for completeness we let S0 = N . The length T is finite; we associate t
with time.

Definition A.1 (Faction). If a non-trivial blocking coalition becomes a lasting
blocking alliance we refer to it as a faction. Formally, for a given path π we say
that F is a faction at time τ if F = Sτ0 for some 0 < τ0 < τ and F ⊆ St for all
τ0 < t ≤ τ , or briefly

(A.1) F =
τ⋂

t=τ0

St = Sτ0 .

If a faction contains smaller factions, we consider the largest one.

Definition A.2 (Cofaction). Similarly, if the entire complementary coalition blocks
we call it a cofaction. Formally, for a given path π we say that C is a cofaction at
time τ if C = S̄τ0 for some 0 < τ0 < τ and C ⊆ St for all τ0 < t ≤ τ .

There exists at most one faction, while there may be several cofactions. A
blocking or complementary coalition becomes a (co)faction if the coalition is a
subset of the next and possibly of subsequent blocking coalitions. Instead of a one-
time alliance these players stick together for a longer period and participate in a
row of blocks together. Right before becoming a (co)faction C had a total payoff
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of v(C) (or v̄(C) for cofactions) and in the subsequent blocks this total payoff may
increase, but cannot decrease. Therefore a (co)faction C must have a total payoff
of at least v(C) (or v̄(C) respectively) making a separate treatment necessary. Note
that a faction and/or possible cofactions are defined with reference to a period τ
and typically a set of players will not constitute a (co)faction at τ ′ > τ .

Our example illustrates both very well: At τ = 7, F = {3, 4} is a faction: it
is a blocking coalition at τ = 6 and has been a subset of the blocking coalition
“ever since”. A more complex example were necessary to show how factions can
build up and dissolve. Step τ = 2 illustrates a cofaction. Since S1 = {2, 3} and its
complement blocks in period 2, that is, S2 ⊇ C = S̄1 = {1, 4}, the coalition C is a
cofaction. Note that both the faction and the cofaction preserve the payoffs players
have even if it is more than necessary, for the faction this is simply the coalitional
payoff, for the cofaction it is the complementary value v̄(C) = 1− 0.4 = 0.6.

Definition A.3 (Weakest players). Those players in S ⊆ N are the weakest, de-
noted by W t(S), who are the first not to block, while others in S block. Formally:
If there exists a finite τ > t such that S * Sτ then let τ∗ be the minimal such τ

and W t(S) = S \ Sτ∗ , otherwise (they are always blocking) W t(S) = S.

If S is the blocking coalition, the weakest players are the “weakest link” in it: in
the example at t = 9 and for S = {1, 2} the weakest link is {1} as 1 will block only
until t = 10, while 2 blocks until t = 14.

If S is a complementary coalition the weakest players are those that do not block
in the next step. If such players do not exist, a cofaction is formed, and the weakest
players are those dropping out first. We see this at t = 1 with S = {1, 4} or at
t = 20 with S = {1, 2}. While W 1({1, 4}) = {4}, we have W 20({1, 2}) = {1, 2},
that is, players in S may be equally weak.

Definition A.4 (Subsistence level). Given a dominance path π = {(xt, St)}T
t=0 we

define the subsistence level st ∈ RN for all t > 0 as the vector of minimal payoffs
that allows xt to be individually rational and that makes the block St profitable.
Therefore:

st
i =

{
xt−1

i if i ∈ St

v({i}) otherwise.

Definition A.5 (Surplus vector). For given z ∈ R, S ⊆ N and time t let Dt(S, z) ⊆
RN denote the set of vectors d > 0 with d(N) = d(W t(S)) = z, that is, vectors d
that share z among the weakest players. Surplus vectors are then the elements of
D̃t(S, z) = arg mind∈Dt(S,z) maxi {bi − (st

i + di)} . Let d̃t(S, z) ∈ D̃t(S, z).

The set D̃t(S, z) is well defined, in fact d̃t(S, z) is unique.3 The surplus vector
reduces the “distance” from the final imputation b while making sure that gaining
players (see Definition A.8) never exceed their final payoff. It will be used to allocate
extra gains beyond the subsistence level and hence the name.

Definition A.6 (Concatenation). If π1 = {(xt
1, S

t
1)}T1

t=0 and π2 = {(xt
2, S

t
2)}T2

t=0 are
paths such that x0

2 = xT1
1 , we can define their concatenation as

π1 ∧ π2 =
{

(x0
1, S

0
1), (x1

1, S
1
1), . . . , (xT1

1 , ST1
1 ), (x1

2, S
1
2), . . . , (xT2

2 , ST2
2 )

}
.

3We can construct d̃t(S, z) as follows: Per definition d̃t(S, z)i = 0 if i is not among the weakest
players in S. So we focus on the weakest players in S. Distribute z gradually, always increasing

d̃t(S, z)i, where i maximises bi − (st
i + d̃t(S, z)i). Clearly, this decreases the maximum and bring

us closer to the minimum. When z is consumed we are done.
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A.4. Defining the bound M . We define a classification of imputations. The
number of classes is M , that is to be the upper bound in Lemma 3.1.

Definition A.7 (Similar imputations). Imputations x and y are similar if for all
quadruples of mutually disjoint coalitions QF , QC , QS and QI with QF ∪ QC ∪
QS ∪QI = Q ( N and QI 6= ∅, and all partitions QC of QC we have

v(QF ) +
∑

C∈QC

v̄(C) + v∗(QS) + x(QI) ≥ v(Q) if and only if

v(QF ) +
∑

C∈QC

v̄(C) + v∗(QS) + y(QI) ≥ v(Q).(A.2)

Similar imputations are safe against the same blocks (that is QF = QC = QS =
∅), even after certain modifications, where the initial differences are limited to
a subset of the players. While the particular construction will be understood in
Proposition A.10 the motivation is clear: if coalition QF has its coalitional payoff, all
coalitions C ∈ QC have their complementary value, players in QS their individually
rational value instead of the original payoff, then imputations x and y must still
neither or both be dominated via coalition Q.

In our example x3 and x19 are similar. In order to establish similarity one has
to check all, in this case a total of 47 different conditions. For instance, consider
Q = {1, 2}, such that 1 ∈ QC and 2 ∈ QI . Then the condition becomes v̄({1}) +
x2 ≥ v({1, 2}) if and only if v̄({1}) + y2 ≥ v({1, 2}). This condition states that if
there is a path from x, such that at period τ the coalition {1, 2} blocks, moreover,
player 1 constitutes a cofaction and player 2 has a history of continuous blocking
from the start, then there is a path from y, where coalition {1, 2} also blocks, and
vice versa.

Now consider a path π = {(xt, St)}T
t=0. Let Gt =

⋃T
τ=t+1 Sτ denote the set of

gaining players: players who are sure not to lose, but only to gain in the remaining
τ > t part of the path. Such players require special attention as along the modified
path their payoff can only be increased, but not lowered. Observe that the set
of gaining players monotonically increases, and within one path there are n + 1
possible different sets, with Gt = N only possible when t = T .

Definition A.8. Imputations that are similar and have the same set of gaining
players belong to the same class.

Note that having the a certain set of gaining players is a path dependent prop-
erty, however the number of pigeon-holes needed is the same for all paths. Since
Equation A.2 really creates partitions of N we have a finite number of classes.
Let M denote this number. If the number of imputations in π exceeds M we are
guaranteed to find T1 < T2 such that the imputations xT1 and xT2 are similar.

In practice even relatively short paths, such as our example will already have
similar imputations. As we have already mentioned, in our example x3 and x19 are
similar, moreover they have the same (empty) set of gaining players and therefore
they belong to the same class.

A.5. Creating a shorter path. Let a, b ∈ A(N, v) be such that b ÂD a and
π = {(xt, St)}T

t=0 be a shortest path from a to b. Assume that π has a length
exceeding M . We construct a shorter path by modifying it: we seek two similar
imputations xT1 and xT2 , remove the subpath π2 connecting them, modify the tail
π3 to get π′3 and reattach it to the head π1. The resulting path π′ = π1 ∧ π′3 is
shorter than π, giving the desired contradiction.
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s
x0

-
S1

s
x1

-
S2

s
x2

s
xT1

︸ ︷︷ ︸
π1

s
xT2

︸ ︷︷ ︸
π2

s
xT−1

-
ST

s
xT

︸ ︷︷ ︸
π3

W ²

s
x0

-
S1

s
x1

-
S2

s
x2

s
xT1 = (xT2)′︸ ︷︷ ︸

π1

s
(xT−1)′

-
ST

s
xT

︸ ︷︷ ︸
π′3︸ ︷︷ ︸

π′=π1∧π′3

Figure 2. Schematic picture of the proof.

A.5.1. Trisection of path π. As a first step in defining the new path we look for
similar imputations along π. By the assumption that T > M such imputations
exist. Let us denote them by xT1 and xT2 . The imputations xT1 and xT2 cut π into
3 subpaths π1, π2, and π3 so that π = π1 ∧ π2 ∧ π3.

A.5.2. A similar path: π′3. Our aim is to find the path π′3 from xT1 to b. While two
imputations need not be connected by a dominance path in general, the existence
of a dominance path from xT2 to b and the similarity of xT1 and xT2 makes the
definition possible in this case. We make use of a particular construction that uses
the same sequence of blocks.

In order to avoid cumbersome notation we write Qt instead of (ST2+t)′ = ST2+t

and yt instead of
(
xT2+t

)′ for all 0 ≤ t ≤ T − T2. Therefore the new path is

π′3 = {(yt, Qt)}T ′

t=0, where T ′ = T − T2.

Then we define path π′3 = {(yt, Qt)}T ′

t=0 by

(A.3) Qt = ST2+t and yt =

{
xT1 if t = 0 and
st + δt + εt for 0 < t ≤ T ′,

where st is the subsistence payoff and δt and εt are the surplus vectors

δt = d̃t(St, v(St)− st(St)) and(A.4)

εt = d̃t(S̄t, v̄(S̄t)− st(S̄t)).(A.5)

What remains is to show that π′3 is a dominance path from xT1 to xT .

A.6. An example. Let us first apply our method to our example.
We have already found that imputations x3 and x19 are similar and therefore they

can be used to create a shorter path. This shorter path consists of x0, x1, x2, x3

and a modified versions of x20, . . . , x27 as defined by Equation A.3: we use the
same sequence of blocking coalitions. These determine the weakest players in each
blocking coalition as well as in its complement. Since the future of each of the
players is typically different, the set of weakest players is mostly a set containing
a single element: the surplus vectors assign the surplus to this player and then
finding the next imputation is straightforward. To this only mputations y1, y2 and
y7 are exceptions. In the first two we see players 1 and 2 forming a cofaction for
a single round and then be blocked by 3 and 4. As a result the distribution of
the complementary payoff is actually irrelevant. Imputation y7 is more interesting:
all blocking players age gaining players and so there will be no further chance to
decrease their payoffs. The definition of surplus vectors, however ensures that no
payoff runs over.
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t yt Qt
F Qt

C Qt
S Qt

I

(0.925, 0.25, 0.25, 0.25)
(0.32, 0.374, 0.26, 0.568)
(0.08, 0.3, 0.030, 0.590)

0 (0.280, 0.582, 0.120, 0.018)
1 (0.221, 0.379, 0.382, 0.018) ∅ ∅ ∅ {3, 4}
2 (0.262, 0.42, 0.3, 0.018) ∅ {1, 2} ∅ {4}
3 (0 , 0.6, 0.3) 0.1) ∅ {3} ∅ {4}
4 (0 , 0 , 0.4, 0.6) ∅ {3} {1} ∅
5 (0 , 0 , 0.3, 0.7) ∅ {2, 4} {1} ∅
6 (0 , 0.4, 0.6, 0.) ∅ ∅ {1, 2} ∅
7 (0.129, 0.6, 0 , 0.271) ∅ ∅ {1, 4} ∅
8 (0.142, 0.3, 0.274, 0.284) {1, 4} ∅ {3} ∅
Table 2. The (shorter) path generated by the algorithm. Bold-
face indicates blocking coalitions Qt. The right hand side refers to
Proposition A.10 on page 11.

Our example also illustrates how easy it actually is to generate a similar path
that ‘works’.

A.6.1. The path π′3 is a dominance path. We show that the path π′3 generated in
Subsection A.5.2 is a dominance path from xT1 to xT . To do so we show that

• All elements of π′3 are imputations (Proposition A.9).
• The path is a dominance path, that is, an imputation is directly dominated

by the next imputation (Propositions A.10, A.11, and A.12).
• Finally we need to check that the path is indeed from xT1 to xT . While the

first holds per definition, the second requires an additional result, Proposi-
tion A.13.

All propositions, except the last one will be shown by induction over t.

Proposition A.9. If 0 ≤ t ≤ T ′, the vector yt is an imputation.

The second proposition as about the anatomy of a blocking coalition.

Proposition A.10. If 0 ≤ t < T ′ the blocking coalition Qt+1 partitions into:
QF :: Players belonging to a faction.
QC :: Players belonging to a cofaction.
QS:: Players whose fellow members from their last complementary coalition

have some been non-blocking since then.
QI :: Players who never belonged to the complementary coalition.

Moreover, players i in QS have yt
i = v({i}), players j in QI their original payoff

yt
j = y0

j .

Proposition A.11. If 0 ≤ t ≤ T ′ the block by Qt+1 is profitable: v(Qt+1) >
yt(Qt+1).

Proposition A.12. If 0 < t ≤ T ′ the imputation yt directly dominates yt−1 by
coalition Qt, that is yt ÂQt

D yt−1.

Proposition A.13. The imputations yT ′ and xT = b coincide.

The two less intuitive results are Propositions A.10 and A.13. While the latter
is, as we will see, a result of certain properties of the surplus vector we illustrate
the first by our example.
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A blocking coalition will contain a faction if it contains the previous blocking
coalition (which, itself, is then a faction), as in y8. It will contain a cofaction if
it contains the entire complementary coalition as in y2, y3 or y5. These can also
survive ‘nested’ in a larger faction: in y4 the blocking coalition contains player 3
that constitutes a cofaction since y2. A player belongs to QS if it comes with a
fraction of the complementary coalition, possibly via a cofaction. An example of
the latter is player 2 in y6: it is a fraction of the complementary coalition Q̄4.
Finally, player 4 belongs to QI for a while as it has a winning streak since the
original payoff. Note that if players 3 and 4 would belong to the blocking coalition
after yt, they would belong to QF as they would have a surplus they have to carry.
If, after that, only one of them, say 4 would be blocking then 4 would again belong
to QI , while 3 would never again.

Now we proceed to the proof itself.

Step 1. Trivial case, t = 0.

Proposition A.9. Since xT1 is an imputation y0 is also an imputation. ¤

Proposition A.10. Trivially all i ∈ Q1 satisfy i ∈ QI . ¤

Proposition A.11. Since y0 = xT1 and xT2 are similar, and v(Q1) > xT2(Q1), the
block by Q1 is profitable, that is, v(Q1) > y0(Q1). ¤

Proposition A.12 is an empty statement here.

Step 2. Inductive assumption.
We assume that for each 0 < τ < t the imputation yτ has already been defined,
and we have shown that Propositions A.9, A.10, A.11 and A.12 hold.

Step 3. Inductive step.

Proposition A.9. By Proposition A.9 for yt−1, by the definition of subsistence levels
and since δt > 0, εt > 0 the vector yt is individually rational. By construction
yt(N) = st(N) + δt(N) + εt(N) = v(N) so efficiency is also satisfied. ¤

Proposition A.10. We consider 3 cases4 based on the type of the block Qt+1.
(1) Qt ⊆ Qt+1. Then Qt is a faction and hence QF = Qt. Since Qt+1 6= N ,

Q̄t 6⊂ Qt+1. Then for each i ∈ Q̄t ∩Qt+1 we have st
i = v({i}) and δt

i = εt
i =

0, since i /∈ Qt, and i /∈ W t(Q̄t). Thus yt
i = v({i}) and QS = Qt+1 \Qt.

See also t = 7 in the example: there Q8
F = {1, 4} and Q8

S = {3}.
(2) Q̄t ⊆ Qt+1. Then Q̄t acts as a cofaction and hence Q̄t ⊆ QC . As Qt+1 6= N

and Qt 6⊂ Qt+1 we cannot have Qt as a faction. For each i ∈ Qt+1 \ Q̄t

by definition we have st
i = yt−1

i , moreover δt
i = εt

i = 0 since i /∈ Q̄t and
i /∈ W t(Qt): thus yt

i = yt−1
i .

We apply the inductive assumption for players in Qt.
(a) Players in Qt

S ∩Qt+1 with their initial or individually rational payoffs
belong to Qt+1

S as well.
(b) With the exception of Q̄t, cofactions in Qt+1

C are part of QC .
(c) If there is a faction that survives it becomes set QF .
(d) The interesting players are those that are members of a faction or a co-

faction that just broke up. In either case, by construction, any surplus
gained was given to the weakest players that are not in Qt+1. Hence,
in the latter case players have their stand alone payoff and belong

4The fourth case, Qt ⊆ Qt+1 and Q̄t ⊆ Qt+1 would imply N ⊆ Qt+1 and hence N = Qt+1,
which does not make sense
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to QS . In the former case we get the pre-deviation payoffs of play-
ers participating in an earlier deviation. By the induction hypothesis
Proposition A.11 holds for this coalition as well, and we can repeat
our arguments. As a blocking coalition must, by definition, strictly
contain any possible (co)faction, we gradually assign all players to one
of the sets except potentially a set QI of players that are winning from
the start, but, by construction, these have their initial payoffs.

(3) Finally we consider the case when Qt * Qt+1 and Q̄t * Qt+1. First let
i ∈ Q̄t ∩ Qt+1. By the same argument as in Case 1, we have yt

i = v({i})
and (Qt+1 \Qt) ⊆ QS . Now let j ∈ Qt ∩Qt+1. By the same argument as
in Case 2, yt

j = yt−1
j and since j ∈ Qt, Proposition A.10 for yt−1 implies it

for yt.
¤

Proposition A.11. We use the notation of Proposition A.10.
Let us partition players in Qt+1 according to Proposition A.10. We have

(A.6) yt(Qt+1) = v(QF ) +
∑

C∈QC

v̄(C) + v∗(QS) + y0(QI),

where QC is the collection of cofactions in QC . Note that QC and/or QS may be
empty.

Now consider the corresponding payoffs in path π. The players are involved in
blocks by the same coalitions and hence the same partition of Qt+1 forms. However,
in this “organic” path extra payoffs are distributed in an uncontrolled way so that
the payoffs of not only the weakest players can increase. Therefore players in the
sets QF , QI , QS and QC can collect (but not lose!) additional payoff in addition to
the payoffs characteristic for the group. Since the block by St+T2 = Qt is profitable

(A.7) v(Qt+1) > xt+T2(Qt+1) ≥ v(QF ) +
∑

C∈QC

v̄(C) + v∗(QS) + xT2(QI).

Since xT2 and y0 = xT1 are similar, Equations A.6 and A.7 imply v(Qt+1) >
yt(Qt+1).

Now assume that Qt+1 does not contain players who have their initial payoffs at
t, but possibly a composite player. This modifies Equation A.6 as follows:

(A.8) yt(Qt+1) =
∑

C∈RC

v̄(C) + v∗(RS) + v(RO).

As before, in the other path blocks can lead to gains, hence:

(A.9) v(Qt+1) > xt
3(Q

t+1) ≥
∑

C∈RC

v̄(C) + v∗(RS) + v(RO).

Combining this equation with Equation A.8 we get v(Qt+1) > yt(Qt+1) as required.
¤

Proposition A.12. For i ∈ Qt the subsistence level st
i = yt−1

i already guarantees
the level of pre-block payoffs. By the weaker Proposition A.11 for yt−1 blocks
are profitable and so the equaliser function δt shares a strictly positive amount,
δt(Qt) > 0 among the members of Qt and, per construction, δt

i ≥ 0. Since εt
i = 0,

we conclude yt
Qt = st

Qt + δt
Qt + εt

Qt > yt
Qt . ¤

Proposition A.13. What remains to prove is that the newly constructed path not
only starts, but also arrives at the right imputation.

Due to the particular construction of π′3, the payoff for players who are not
dominating is defined without reference to their previous payoffs. Hence a player
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may accumulate however high payoff, it will also lose it unless it belongs to the
gaining set.

Now we use the fact that xT1 and xT2 were selected in part because they have
the same gaining sets, GT1 = GT2 of players so that xT1

i ≤ xT2
i for all i ∈ GT1 .

The definition of surplus vectors ensures that they are always the weakest players
who get the profit of the deviation, and these are typically not the gaining players.
However, if the gaining players are also the weakest (they are clearly the “strongest”,
but the two may coincide) the payoff equalising vectors ensure that none of the
gaining players is assigned a payoff higher than the respective payoff in b = xT .
Since GT ′−1 = N , by efficiency they must also receive exactly the payoff at b. ¤

Appendix B Proof of Lemma 3.4

Sengupta and Sengupta [10] define a dominance path from any outcome to the
core, but since their algorithm is not primitive recursive their result can be used
here but to the extent of existence. In Section A.5.2 we have constructed a path
of length at most M relying only on the sequence of blocking coalitions. Since the
number of coalitions is finite, so is the number of possible sequences of length at
most M . Then our algorithm can be defined as follows.

(1) Generate all coalition sequences {Qt}T
y=1 of length at most M .

(2) For all such blocking sequences do the following loop:
(a) Attempt to generate {yt}T

y=1 using Equation A.3.
(b) If generation is successful then per construction it is a bounded se-

quential domination path. Exit loop.
(c) Take the next blocking sequence.

(3) Stop.

Since a ÂI b, by Lemma 3.1 there exists a path π′3 =
{

(ỹt, Q̃t)
}T ′

y=1
. The algorithm

goes through all coalition sequences including
{

Q̃t
}T ′

y=1
so it finds it, unless it

finds another suitable sequence and terminates sooner. The algorithm is primitive
recursive by construction.

Appendix C Proof of Theorem 3.5

We begin by the following lemma.

Lemma C.14. Let a ∈ A(N, v), c ∈ C(N, v) and {Qt}T
t=1 a sequence of coalitions.

Then there exists a dominance path {(yt, Qt)}T
t=0 from a to c if and only if

(1) for all i ∈ ⋂T
t=1 Qt we have bi ≥ ci,

(2) v(QT ) = c(QT ), moreover
(3) if ∃ 0 < t < T such that Q̄t ⊆ Qt′ for all t′ > t then c(Qt) = v(Qt).

Proof. The if-part holds by the construction of {yt}T
t=0 as given in Section A.5.2.

For the only-if part we assume that the whole dominance path is generated and yT =
b. For those in the complementary coalition Q̄T the latter is granted per definition
of εT ′ . We focus on the players in the last blocking coalition QT . Property Bt in
the proof of Lemma 3.1 partitioned the members of QT into four sets.

• If i ∈ QS then yT−1
i = v({i}). Since c is an imputation ci ≥ yT−1

i must
hold.

• QF obtained a payoff of v(QF ) when it was blocking and has since then
only increased its payoff. However c(S) ≥ v(S) holds for all coalitions S.
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• For QC we require c(QC) ≥ yT−1(QC) ≥ v̄(Q̄C). On the other hand,
since c is a core imputation c(Q̄C) ≥ v(Q̄C) so c(QC) ≤ v̄(Q̄C). Hence
c(QC) = v̄(Q̄C) or alternatively c(Q̄C) = v(Q̄C). Since QC = Q̄t for some
t such that Q̄t ⊆ Qt′ for all t′ > t, we must have c(Qt) = v(Qt).

• Finally we consider QI that contains players with their initial payoffs y0
i .

Such players have a winning streak from the beginning to the end so their
payoff monotone increases. Hence for all such i the relation ai ≤ ci must
hold.

So we conclude that all conditions of Lemma C.14 are necessary for profitable blocks
along {(yt, Qt)}T

t=0. ¤
Proof of Theorem 3.5. If we knew the core imputation c that is accessible from a
then we could simply use Lemma 3.4 to prove the theorem. But not only that
we do not know such a c, but there are in general a continuum of imputations in
C(N, v) all of which are potential candidates, so checking all of them one-by-one
is not an option. However given a and a sequence {Qt}T

t=1 of blocking coalitions,
Lemma C.14 enables us to define the –possibly empty– accessible subset of core
Ca

(
N, v, {Qt}T

t=1

)
⊆ C(N, v) satisfying the conditions of Lemma C.14. By this

lemma for any c′ ∈ Ca

(
N, v, {Qt}T

t=1

)
we can generate a sequence {yt}T

t=1 of

the required type. By Theorem 3.3 there exists a
{

Q̃t
}T∗

t=1
, such that the set

Ca

(
N, v,

{
Q̃t

}T∗

t=1

)
is not empty, since there exists c∗ ∈ Ca

(
N, v,

{
Q̃t

}T∗

t=1

)
.

Then our algorithm is as follows:
(1) Generate all coalition sequences of length at most M .
(2) For all sequences of blocking coalitions {Qt}T

y=1 do the following loop:

(a) Generate the set Ca = Ca

(
N, v, {Qt}T

t=1

)
.

(b) If Ca is not empty exit loop.
(c) Take the next sequence.

(3) Generate {yt}T
t=1.

(4) Stop.
By Lemmata 3.4 and C.14 the algorithm terminates and produces a path with

the required properties. By construction the algorithm is primitive recursive. ¤
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