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 Összefoglaló 
 

 
 Hogyan lehet részvényadatok alapján becsülni egy strukturális adósság-
kockázati modellt abban az esetben, ha a megfigyeléseink mikrostruktúra 
zajokkal szennyezettek? A probléma megoldásához Duan (1994) transzfor-
mált adatokon alapuló maximum likelihood (ML) módszerét általánosítjuk. 
Zajos megfigyelések esetén a megfigyelt részvényárfolyamokon alapuló 
likelihoodfüggvény kiértékeléséhez valamilyen nemlineáris filter használata 
szükséges. Egy szimuláción alapuló részecske filter algoritmust vezetünk be 
Merton (1974) modelljenek ML becsléséhez. Ezután végrehajtjuk a becslést 
a Dow Jones 30 indexhez tartozó vállalatokon, valamint 100 véletlenszerű-
en kiválasztott cégen. Eredményeink szerint a kereskedési hibák negligálása 
a cég eszközkockázatának jelentős felülbecsléséhez vezethet. Ezek után szi-
mulációkkal vizsgáljuk a becslési eljárás véges mintás tulajdonságait.   
 
Kulcsszavak: Particle filter, maximum likelihood, opcióárazás, adósság-
kockázat, szimuláció 
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Abstract

The transformed-data maximum likelihood estimation (MLE) method for struc-
tural credit risk models developed by Duan (1994) is extended to account for the fact
that observed equity prices may have been contaminated by trading noises. With the
presence of trading noises, the likelihood function based on the observed equity prices
can only be evaluated via some nonlinear filtering scheme. We devise a particle filtering
algorithm that is practical for conducting the MLE estimation of the structural credit
risk model of Merton (1974). We implement the method on the Dow Jones 30 firms
and on 100 randomly selected firms, and find that ignoring trading noises can lead
to significantly over-estimating the firm’s asset volatility. A simulation study is then
conducted to ascertain the performance of the estimation method.
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1 Introduction

Structural credit risk models rely on the notion of claim priority and limited liability, which

allows a firm’s equity and debt be viewed as contingent claims that partition the asset

value of the firm. Black and Scholes (1973) were the first to formally consider equity as a

call option on the firm’s asset value. However, it was the corporate bond pricing model of

Merton (1974) that popularized the structural approach to modeling risky corporate debts.

Although the structural approach is based on a powerful and compelling interpretation of

a firm’s credit risk, implementation is complicated by the fact that the firm’s asset values

cannot be directly observed as argued in, for example, Jarrow and Turnbull (2000). It seems

then that the pertinent parameters of a structural credit risk model cannot be estimated.

In fact, the implementation difficulty motivates an alternative approach known as reduced-

form, which treats corporate default as an event governed by an exogenous shock that is not

based on the firm’s asset value failing to cover its debt obligations.

Contrary to a common belief, non-observability of a firm’s asset values does not actu-

ally impede the implementation of structural credit risk models. Duan (1994) has devised

a transformed-data maximum likelihood estimation (MLE) method for structural credit

risk models that is solely based on a time series of observed equity values. That MLE

method hinges on a recognition that the equity value should result from a one-to-one differ-

entiable transformation of the firm’s unobserved asset value under the given structural credit

risk model even though the transformation depends on some unknown model parameter(s).

Therefore, one can explicitly write out the likelihood function only based on the observed

equity time series.

The transformed-data MLE method of Duan (1994, 2000) has been applied in credit risk

analysis by Ericsson and Reneby (2004a,b), Wong and Choi (2004) and Duan et al. (2003).

It has also been adopted for banking research by Duan and Yu (1994), Laeven (2002),

Duan and Simonato (2002) and Lehar (2004). Interestingly, the KMV method, which is a

popular commercial implementation of the structural credit risk model, is equivalent to the

transformed-data MLE method in a restrictive sense (see Duan et al. (2004)).
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The contribution of this paper is to generalize the transformed-data MLE method of Duan

(1994) to allow for trading noises in the observed equity prices. It has been well documented

in the market microstructure literature that observed equity prices can diverge from their

equilibrium values due to microstructure noises (e.g. illiquidity, asymmetric information,

price discreteness). Some of the examples are Hasbrouck (1993), Harris (1990) and Madhavan

et al. (1997). The presence of noises can also induce equity returns to exhibit the moving

average feature, a phenomenon that has been long recognized in the literature. Recently,

Ait-Sahalia et al. (2005) have, for example, analyzed the effect of trading noise on how

frequently one should sample the equity price. In markets where the trading noise effect is

material, it will be ill-advised to ignore its presence. In the specific context of structural

credit risk models, ignoring trading noise could non-trivially inflate one’s estimate for the

“true” asset volatility. Since the asset volatility plays a key role in the structural credit

risk models, one is then likely to produce misleading estimates for credit spreads, default

probabilities and other corporate contingent claims.

When trading noises are present in equity prices, the transformed-data MLE method of

Duan (1994, 2000) can no longer be applied. The reason is that the previous one-to-one

relationship between the unobserved asset value and the observed equity price when there

was no trading noise is broken. The equity value is influenced by two sources of uncertainty

– the underlying asset value and the trading noise. In short, estimation becomes a nonlinear

filtering problem with the unobserved asset value being the “signal”. The “true” equity

value, as a nonlinear function of the unobserved asset value, is thus contaminated by a

trading noise.

We devise a nonlinear filtering scheme using the auxiliary particle filtering idea of Pitt

and Shephard (1999). The nature of our estimation problem allows us to devise a specific

sampler that is localized relative to the “true” asset value. Since the likelihood function based

on the typical particle filtering algorithm is not continuous due to a required resampling step,

smoothness must be built into the algorithm to make it suitable for parameter estimation.

For this purpose, we adopt the smoothed version of the auxiliary particle filter put forward

by Pitt (2002). In addition, we must address the potential cases of small trading noise. Small
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trading noises can cause the likelihood function to spike in the context of particle filtering.

We thus devise a new way of computing the likelihood function to circumvent the spiking

problem. It turns out that the likelihood function can be easily evaluated with the use of

our localized sampler.

We implement the particle filter-based MLE method on two samples. The first sample

consists of the Dow Jones 30 companies on the belief that they are less susceptible to trading

noises. We also conduct analysis on a sample of 100 randomly selected U.S. listed firms to

represent the general population of the U.S. corporate sector. For either sample, we find

trading noise to be significant for a percentage of firms that cannot be attributed to chance.

The impact of ignoring trading noise is also studied. We find that omission can cause the

asset volatility to be greatly overestimated in many cases.

A Monte Carlo study is conducted to determine whether the asymptotic inference can be

reasonably applied when one uses a time series sample of daily equity values over one-year

time span. Our results indicate that asymptotic inference works well except for the trading

noise parameter. When the magnitude of trading noise is small, the sampling distribution

of the trading noise parameter appears to deviate somewhat from normality implied by the

asymptotic normality, a result due to being close to this parameter’s lower bound. When its

magnitude is large, the asymptotic normality turns out to be a reasonable description of its

sampling distribution. We conduct a likelihood ratio test for the presence of trading noise.

Our test explicitly takes into account that the null hypothesis is a boundary value of the

parameter set. Our simulation study indicates that this likelihood ratio test is unbiased and

has reasonable power.

2 Merton’s model and maximum likelihood estimation

via particle filtering

2.1 Equity value in Merton’s model

Merton (1974) laid the foundation to the literature on the structural approach to credit risk

modeling. The value of the firm at time t, Vt, is assumed to follow a geometric Brownian
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motion with respect to the physical probability law that generates the asset values. The

stochastic process is governed by the drift and volatility rate parameters – µ and σ.

dVt

Vt

= µdt + σdWt (1)

The risk-free rate of interest is assumed to be constant r. Furthermore, the firm has two

classes of claims outstanding – an equity and a zero-coupon debt maturing at time T with

face value F .

Debt has a claim priority over equity and equity holders are protected by limited liability.

When debt matures, equity holders repay the debt and keep the balance, if the value of the

firm is sufficient to cover the debt obligation. Otherwise, the firm defaults and the debt

holders get to keep the remaining firm value. The payout to the debt holders at time T

naturally becomes

DT = min(VT , F ) (2)

The equity holders, on the other hand, receive at time T

ST = max(VT − F, 0) (3)

Merton (1974) derived a pricing formula for the risky debt defined in this framework and

focused on the credit risk issues. Here, we address the flip side, i.e., the equity claim, because

we need to establish the link to the observed equity price in order to develop the estimation

method. In other words, Merton (1974) focused on the theoretical aspect of credit risk

whereas we zero in on the econometric issue so as to make the implementation of Merton’s

model feasible.

The equity claim in equation (3) can be priced at time t < T by the standard Black-

Scholes option pricing model to yield the following solution:

St ≡ S(Vt; σ, F, r, T − t) = VtΦ(dt)− Fe−r(T−t)Φ(dt − σ
√

T − t) (4)

where

dt =
ln(Vt

F
) + (r + σ2

2
)(T − t)

σ
√

T − t
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and Φ(.) is the standard normal distribution function. Observe that the equity pricing

formula is not a function of the drift parameter µ. Also note that the equity pricing function

is invertible with respect to the asset value.

2.2 Estimation is a nonlinear filtering problem

For an exchange listed firm, one can obtain a time series of equity prices denoted by DN =

{Sτi
, i = 0, · · · , N}. For simplicity, we assume that equity prices are sampled at a fixed

frequency; that is, we let τi − τi−1 = h.

If the equity prices are not contaminated by trading noises, the likelihood function based

on DN can be written out and estimated using the transformed-data MLE method devel-

oped in Duan (1994, 2000). If one has a reason to believe that the observed equity prices

contain trading noises, then the estimation becomes much more complex. The market mi-

crostructure literature indeed strongly suggests that noises should be expected. Therefore,

the relationship between the unobserved asset and the observed equity value predicted by

the equity pricing formula is masked by trading noise. We assume a multiplicative error

structure for the trading noise to express the logarithmic equity value as follows:

ln Sτi
= ln S(Vτi

; σ, F, r, T − τi) + δνi (5)

where {νi, i = 1, N} are i.i.d. standard normal random variables and the nonlinear pricing

function S(Vt; σ, F, r, T − t) has been given earlier.

Since the unobserved asset value process follows the geometric Brownian motion, we can

derive its discrete-time form as

ln Vτi+1
= ln Vτi

+ (µ− σ2

2
)h + σ

√
hεi+1 (6)

where {εi, i = 1, N} are i.i.d. standard normal random variables. Equations (5) and (6)

constitute a state-space model with the first being the measurement equation and the second

the transition equation. To estimate this model, we need to develop a practical scheme to

deal with this non-linear filtering problem. If the equity pricing function were linear, one

would of course be able to estimate the model using the standard Kalman filter.
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The state-space model contains three parameters, denoted by Θ = {σ, δ, µ}. The likeli-

hood function of the observed sample of equity prices can in principle be expressed as

f(DN | Θ) = f(SτN
| DN−1, Θ)...f(Sτ1 | D0, Θ). (7)

Note that we can view the conditional density in the above expression in two different ways.

First,

f(Sτi+1
| Di, Θ) =

∫ ∞

0

f(Sτi+1
| Vτi+1

, Θ)f(Vτi+1
| Di, Θ)dVτi+1

(8)

where f(Vτi+1
| Di, Θ) is the density of Vτi+1

conditional on all equity values up to τi, which

is known as the prediction density. Alternatively,

f(Sτi+1
| Di, Θ) =

∫ ∞

0

f(Sτi+1
| Vτi

, Θ)f(Vτi
| Di, Θ)dVτi

(9)

where f(Vτi
| Di, Θ) is the density of Vτi

conditional on all equity values up to τi, which is

known as the filtering density.

Even though f(Sτi+1
| Vτi+1

, Θ) in (8) has a simple analytical form, it turns out that for

a numerical reason, we need to use the expression in (9), which involves f(Sτi+1
| Vτi

, Θ). It

should be clear that f(Sτi+1
| Vτi+1

, Θ) spikes when the trading noise is very small, and as a

result it is almost impossible to accurately evaluate the conditional likelihood as stated in

equation (8). In contrast, the following derivation suggests a way to circumvent the spiking

problem.

f(Sτi+1
| Vτi

, Θ) =

∫ ∞

−∞
f(Sτi+1

| νi+1, Vτi
, Θ)f(νi+1 | Vτi

, Θ)dνi+1

=

∫ ∞

−∞
f(Sτi+1

| νi+1, Vτi
, Θ)f(νi+1 | Θ)dνi+1

=

∫ ∞

−∞

f(Vτi+1
= V ∗

τi+1
(Sτi+1

, νi+1) | Vτi
, Θ)

Φ(d∗τi+1
)eδνi+1

f(νi+1 | Θ)dνi+1 (10)

where V ∗
τi+1

(Sτi+1
, νi+1) = S−1(Sτi+1

e−δνi+1 ; σ, F, r, T −τi+1), an inversion of the equity pricing

equation in (4), and e−δνi+1/Φ(d∗τi+1
) is the Jacobian of the inverse transformation. The

second equality in the above is due to the fact that a future trading noise is independent of

the current asset value. The third equality follows because once the trading noise is known,

the equity value implies a specific asset value.
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Putting (9) and (10) together, we have

f(Sτi+1
| Di, Θ)

=

∫ ∞

0

∫ ∞

−∞

f(Vτi+1
= V ∗

τi+1
(Sτi+1

, νi+1) | Vτi
, Θ)

Φ(d∗τi+1
)eδνi+1

f(νi+1 | Θ)f(Vτi
| Di, Θ)dνi+1dVτi

= E

[
f(Vτi+1

= V ∗
τi+1

(Sτi+1
, νi+1) | Vτi

, Θ)

Φ(d∗τi+1
)eδνi+1

∣∣∣∣∣Di

]
(11)

The above expectation can be evaluated easily within the particle filtering system to be

discussed in the next subsection. Our approach shares the spirit of the stepping-back idea

of Ionides (2004)) in smoothing the likelihood function.

The result in (11) immediately implies that our nonlinear filtering design will simplify to

the transformed-data approach of Duan (1994, 2000) when there are no trading noises, i.e.,

δ = 0. This is true because without trading noise the item inside the expectation operator

has the unit mass on the single point V ∗
τi+1

(Sτi+1
, 0).

2.3 Estimation using a smoothed particle filter

The particle filter is a simulation-based technique to generate consecutive prediction and

filtering distributions for general nonlinear or non-Gaussian state-space models. The tech-

nique relies on different sets of points to represent the distributions of the unobserved state

variable(s) at different stages. Bayes’ rule is repeatedly used to re-weight the particles in ad-

vancing the system. Particle filtering is generally attributed to Gordon et al. (1993). Doucet

et al. (2001) offer a wealth of information on the theory and applications of particle filtering.

For our particular filtering problem, f(Vτi
| Di, Θ) is represented by a set of M particles

{V (m)
τi (Θ); m = 1, · · · ,M} with equal weights. The empirical prediction density can be

expressed as

f̂(Vτi+1
| Di, Θ) ∝ 1

M

M∑
m=1

f(Vτi+1
| V (m)

τi
, Θ) (12)

By Bayes’ rule, f(Vτi+1
| Di+1, Θ) can be approximated by the following empirical filtering

density:

f̂(Vτi+1
| Di+1, Θ) ∝ f(Sτi+1

| Vτi+1
, Θ)f̂(Vτi+1

| Di, Θ) (13)
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Equations (12) and (13) provide the basis for advancing the system to the next set of

particles of equal weights corresponding to the next time point. The simplest algorithm for

advancing the system is the sampling/importance resampling (SIR) method as follows.

• Step 1: Draw M points from f̂(Vτi+1
| Di, Θ). Since {V (m)

τi ; m = 1, · · · ,M} is an

equal-weight sample. One only needs to sample V
(m)
τi+1 from f(Vτi+1

| V
(m)
τi , Θ), which

can be easily done using equation (6).

• Step 2: Assign to V
(m)
τi+1 a filtering weight of

π
(m)
i+1 =

w
(m)
i+1∑M

k=1 w
(m)
i+1

where w
(m)
i+1 = f(Sτi+1

| V (m)
τi+1

, Θ)

• Step 3: Resample from the weighted sample {(V (m)
τi+1 , π

(m)
i+1); m = 1, · · · ,M} to obtain

a new equal-weight sample of size M .

Note that resampling is a step critical to the implementation of particle filtering. Without it,

the variance of importance weights π
(m)
i+1 will grow over time (stochastically) and the quality

of the particle filter is bound to be poor.

The SIR particle filter is not efficient because in drawing V
(m)
τi+1 in step 1, one has not taken

into account the knowledge of Sτi+1
. Naturally, one can contemplate a different convenient

sampler based on some density g(Vτi+1
| Sτi+1

) in place of the sampler in step 1. One must

modify the weight calculation in step 2, however. As a result of using a different sampler,

the importance weight in step 2 should be replaced with

w
(m)
i+1 =

f(Sτi+1
| V (m)

τi+1 , Θ)
∑M

k=1 f(V
(m)
τi+1 | V (k)

τi , Θ)

g(V
(m)
τi+1 | Sτi+1

)

Unfortunately, this adaptive scheme will require of evaluating density functions in the order

of M2 as opposed to M for the standard SIR scheme.

In this paper, we adopt the auxiliary filtering idea of Pitt and Shephard (1999) to design

our particle filter for the structural credit risk model. The basic idea is to enlarge the dimen-

sion of the state variable(s). In our case, we can think of it as sampling a pair (V
(m)
τi , V

(m)
τi+1 )
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instead of a point V
(m)
τi+1 . Enlarging the dimension enables an easy calculation of the impor-

tance weight so that the number of density evaluations of the SIR scheme will remain in the

order of M . After the weights have been determined, we discard the first entry of the pair

and the weighted sample for V
(m)
τi+1 represents the marginal filtering distribution.

The likelihood function evaluated via a particle filter is discontinuous with respect to the

parameter Θ, making it ill-suited for gradient-based optimization and asymptotic statistical

inference. For this reason, resampling will be conducted using the smooth bootstrap pro-

cedure of Pitt (2002). The generic version of the smoothed auxiliary SIR scheme can be

described as follows:

• Step 1: Use an auxiliary sampler g(Vτt , Vτi+1
| Di+1) to generate (V

(m)
τi , V

(m)
τi+1 ).

• Step 2: Compute the importance weight

w
(m)
i+1 =

f(Sτi+1
| V (m)

τi+1 , Θ)f(V
(m)
τi+1 | V (m)

τi , Θ)f̂(V
(m)
τi | Di, Θ)

g(V
(m)
τi , V

(m)
τi+1 | Dτi+1

)
. (14)

and then assign π
(m)
i+1 =

w
(m)
i+1PM

k=1 w
(m)
i+1

to the sample point V
(m)
τi+1 .

• Step 3: Resample from the smoothed empirical distribution constructed from the

weighted sample {(V (m)
τi+1 , π

(m)
i+1); m = 1, · · · , M} to obtain a new equal-weight sample of

size M .

Note that w
(m)
i+1 in (14) is the proper importance weight because its numerator is the filtering

joint density of (V
(m)
τi , V

(m)
τi+1 ) up to a proportional constant. Thus, the marginal filtering

distribution for Vτi+1
can be simply represented by the weighted sample {(V (m)

τi+1 , π
(m)
i+1); m =

1, · · · ,M}.
The exact description of our sampler and the particle filtering scheme for the structural

credit risk model of Merton (1974) is given in Appendix. In a nutshell, we construct a

localized sampler that takes advantage of the knowledge on Sτi+1
. We localize the sampling

of Vτi+1
around the asset value implied by Sτi+1

under no trading noise. We will refer to our

specific scheme as as the smoothed localized SIR (SL-SIR) particle filter.
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The likelihood function value consists of the components that are in the form of the

expression as in (11). The expectation can be computed as follows. Corresponding to V
(m)
τi

in the equal-weight filtering sample, we draw ν
(m)
i+1 and compute the value for the item inside

the expectation operator. Repeat for all m’s and take an average to yield the desired value.

This operation consists of the number of density calculations in the order of M . It turns

out that there is no need to conduct additional sampling because the SL-SIR particle filter

has already generated the item inside the expectation, which happens to coincide with the

importance weight of the SL-SIR particle filter. In short, the SL-SIR particle filter is a

practical order-M scheme.

2.4 Computing credit spread and default probability

The parameter estimates obtained from the MLE method are meant for credit risk appli-

cations. Typically, one is interested in knowing the credit spread of a risky corporate bond

over the corresponding Treasury rate and/or the likelihood of a firm going bankrupt. Here

we show how their estimates can be computed and statistical inference conducted in the

filtering context.

In general, we can generically describe the quantities of interest as a function of the

unobserved asset value at the last time point of the sample, VτN
, and the parameter value,

Θ. Denote them by a generic function H(VτN
; Θ). In the case of credit spread, the model of

Merton (1974) gives rise to

C(VτN
; Θ) = − 1

T − τN

ln

(
VτN

F
Φ (−dτN

) + e−r(T−τN )Φ
(
dτN

− σ
√

T − τN

))
− r (15)

where dt is defined in equation (4). For the default probability, the formula becomes

P (VτN
; Θ) = Φ

(
ln(F/VτN

)− (
µ− 1

2
σ2

)
(T − τN)

σ
√

T − τN

)
(16)

Generically, the filtering estimate evaluated at the maximum likelihood parameter esti-

mates is

h(Θ̂) ≡ E
(
H(VτN

; Θ̂) | DN

)
, (17)
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which can be straightforwardly computed with the SL-SIR particle filter. But one must

recognize that the parameter values are the maximum likelihood estimates subject to an

asymptotic joint normal distribution. Let the asymptotic distribution be denoted by

Θ̂ ∼ N
(
Θ0, A

−1
N

)
, AN = − ∂L(Θ;DN)

∂Θ∂Θ′

∣∣∣∣
Θ=Θ̂

(18)

where Θ0 is the true parameter value vector and L(Θ;DN) is the log-likelihood function. For

a differentiable transformation, h(Θ̂), the standard statistical result implies that

h(Θ̂) ∼ N

(
h(Θ0),

[
∂h(Θ̂)

∂Θ

]′
A−1

N

∂h(Θ̂)

∂Θ

)
(19)

where ∂h(Θ̂)
∂θ

is a column vector of the first partial derivatives of the function with respect to

the elements of Θ being evaluated at Θ̂.

This standard result was, for example, utilized by Duan (1994) in his the transformed-

data MLE analysis. In contrast, the partial derivatives of h(Θ̂) in the current context do

not have analytical solutions. The fact that the SL-SIR particle filter is smooth in relation

to the parameters makes it possible to approximate the partial derivatives using numerical

differences. Alternatively and better, one can take advantage of the fact that ∂H(VτN
; Θ)/∂Θ

typically has an analytical solution so that

∂h(Θ̂)

∂Θ
= E

(
∂H(VτN

; Θ̂)

∂Θ

∣∣∣∣∣DN

)
. (20)

3 Empirical analysis

3.1 Dow Jones 30 firms

We implement the MLE method based on the SL-SIR particle filtering on the 30 companies

that constitute the Dow Jones Industrial Index. Our data sample consists of daily equity

values of these firms over the year 2003. The equity prices and the numbers of shares

outstanding are taken from the CRSP database, and the balance sheet information is from

the annual Compustat files. The Dow Jones 30 companies are big firms with their stocks

12



heavily traded. If trading noises are negligible, one would expect to find supporting evidence

in this data set.

The initial maturity of debt is set to 10 years.1 We take the book value of liabilities of a

company at the year end of 2002 and compound it for 10 years at the risk-free interest rate.

The resulting value is our proxy for the face of the debt for the model of Merton (1974).

We set h = 1/250 to reflect the use of daily equity values. The risk-free interest rate is the

1-year Treasury constant maturity rate obtained from the U.S. Federal Reserve. We run the

estimation using the 5000-particle SL-SIR filter.2

Table 1 reports the results for all Dow Jones firms. Names are given in the first column.

The second, third and fourth columns contain the maximum likelihood estimates along with

their asymptotic standard errors in brackets. The trading noise parameter is multiplied by a

factor of 100. The estimated asset volatilities are stated per annum and consistent with the

range that is expected of their values. The standard errors are very small, implying these

parameters have been fairly accurately estimated. Due to the nature of diffusion models, the

drift parameter is expected to have large sampling errors. Our results simply reconfirm this

well-known phenomenon.

Although the estimates for trading noise are small in magnitude, they should be under-

stood as a noise around a “true” value, not as a return volatility. Take 3M as an example

(δ = 0.004044). The number amounts to 0.4% of the 3M stock price if the trading noise is

1 standard deviation in either direction. In some cases, the trading noise estimate turns out

to be zero; for example, American Express. One should not conclude in haste that there is

no trading noise for that firm. It might be that trading noises are actually autocorrelated

and as a result, get absorbed into returns. In other words, the time series structure of the

trading noise makes it indistinguishable from the asset value signal.

We conduct a likelihood ratio (LR) test on the hypothesis of no trading noise; that is,

δ = 0. Since the parameter value under the null hypothesis locates right at the lower bound

1We have repeated the estimation with an initial maturity of T = 2. The results are qualitatively similar
to the ones reported in the paper.

2Our experience indicates that 1000 particles are large enough for this particular estimation problem. In
the simulation study conducted later, we will use 1000 particles.
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of the parameter set, we must conduct inference in a way that correctly reflects the testing

situation. It turns out that the LR test statistic distributes asymptotically as a mixture of

1/2 point mass at 0 and 1/2 chi-square with 1 degree of freedom. This leads to a simple

correction to the tail probability calculation. One only needs to cut in half the usual p-value

from the chi-square distribution (see, for example, Gourieroux and Monfort (1995), Chapter

21). The results reported in column five of Table 1 and the summary results in Table 2

suggest that there are 6 out of 30 Dow Jones companies facing significant trading noise at

the 5% level.

To examine the effect of trading noise from a practical angle, we ask a what-if question.

Suppose we ignore trading noise and proceed with the estimation using the transformed-data

MLE method of Duan (1994). What magnitude of bias in volatility will the omission cause?

In the sixth column of Table 1, we report the ratio of the estimated asset volatility without

trading noise over the one with. Of course, we expect the omission to increase the volatility

estimate, because trading noises have been erroneously treated as the genuine asset volatility.

In the case of 3M, for example, the omission causes the asset volatility to be overestimated

by 15.9%. All in all, the upward bias is in the order of 6.66% on average (see Table 2) with

the maximum bias at 23.8% and the minimum at 0%. In summary, the omission can have

material impact even for the Dow Jones 30 companies.

3.2 Randomly selected firms from CRSP

It is reasonable to expect that the Dow Jones 30 companies are subject to smaller trading

noises. The results reached in the preceding subsection thus cannot represent the impact

of trading noise for a typical U.S. exchange listed firm. We set out to analyze a randomly

chosen sample of 100 firms from the CRSP database. A randomly selected firm is included

in the sample only if it has the required CRSP and Compustat data for the sample year and

it must not be a firm already in the Dow Jones sample.

For this randomly selected sample, we implement the MLE in the manner identical to

that for the Dow Jones sample. To conserve space, we only report the summary statistics for

this sample in Table 3. As expected, the results are stronger for these firms than those for
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the Dow Jones 30 companies. For 30 out of the 100 firms, the null hypothesis of no trading

noise is rejected at the 5% significance level. The upward bias in the volatility estimate

due to ignoring trading noises can reach as high as 93.78%.3 There are 10% of the firms

experiencing a 44.57% or higher upward bias. In short, it is important to recognize trading

noise in implementing the structure credit risk model.

4 Simulation analysis

To ascertain the finite-sample performance of our MLE method, we run a simulation ex-

periment. We generate sample paths of noisy equity observations by controlling the end-of-

sample pseudo-leverage, i.e., F
V

. This can be achieved rather easily in the context of Merton’s

model because the asset’s continuously compounded returns are independent. In short, we

generate the 250 daily returns and then construct the firm’s asset values backward to yield a

sample of 251 asset values. Corresponding to the simulated asset value sample, we compute

251 equity values using the measurement equation in (5). For estimation, we act as if we did

not know the asset values to mimic the real-life estimation situation. Estimation is performed

for each simulated sample and the corresponding asymptotic inference is conducted.

The parameter values are chosen in a way that is consistent with the real data. For the

baseline case, we use the median values (rounded) obtained from the 100 randomly chosen

firms. The parameter values are σ = 0.3, δ = 0.004 and µ = 0.2. The ending pseudo-leverage

ratio is maintained at 40%. The initial maturity is set to 10 years and gradually declines

to 9 years at the end of the simulated sample. We simulate 500 samples in each case. We

also vary the two key parameters, σ and δ, to investigate their effect on performance. The

parameter values used are σ = 0.7 and δ = 0.016, which are close to the 90 percentile of the

estimates obtained from the 100 randomly chosen firms. We vary one parameter value at a

time and run the 1000-particle SL-SIR filter.

Table 4 presents the simulation results for the base case. Both median and mean values

of all parameter estimates are close to the true values, indicating a pretty good finite-sample

3The minimum ratio is 0.9987 as opposed to 1, a result due to numerical precision.
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behavior of the MLE.

With the exception for δ, the obtained coverage rates suggest that the asymptotic dis-

tribution is adequate in describing the sampling property of the estimates.4 For the trading

noise parameter δ, the coverage probabilities are biased. This may be due to the fact that we

have used a relatively low value of δ. Thus, for a relatively small sample of 250, the behavior

of this estimator bears resemblance to the situation where the true parameter value is on

the boundary of the parameter set. When the parameter value is actually on the boundary,

we of course know that the standard asymptotic theory breaks down.

The preceding conjecture about the trading noise parameter is confirmed by the results

in Table 5. This table contains the simulation results based on a higher value of δ. We have

increased the true parameter value from 0.004 to 0.016 while keeping all other parameters

fixed at their previous values. The bias in the coverage rate for δ disappears. The simulation

results suggest that the asymptotic inference can be reliably applied to all three parameters

using one year worth of daily data when the magnitude of trading noise is large.

Finally, we examine the effect of having a large asset volatility. Table 6 presents the

results when the value of σ is increased from 0.3 to 0.7 while keeping other parameters

identical to those in the baseline case. The coverage rates suggest the same bias exists for

the trading noise parameter δ as in the baseline case, a result that we have argued earlier

can be attributed to a low value of δ. Interestingly, the mean and median trading noise

parameter estimates become much higher than the true parameter value, in contrast with

the earlier results for the baseline case. Overall, we can conclude that a large asset volatility

does not fundamentally alter the quality of the estimation procedure except for the trading

noise parameter.

Finally, we analyze whether the LR test for the presence of trading noise has a right

4The coverage rate is defined as the percentage of the parameter estimates for which the true parameter
value is contained in the α confidence interval implied by the asymptotic distribution. Care is needed in
dealing with the cases where the estimated δ is on the lower boundary, i.e., 0. Since δ is not an interior
solution, the standard Taylor expansion used to obtain the asymptotic distribution ceases to apply. We
thus drop all cases where the δ estimate is zero in computing its coverage rates. For σ and µ, we use the
corresponding entries of the Fisher information matrix to get their variances because they are the interior
solutions in the parameter set of a reduced dimension.
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size. We use the baseline case to generate 500 samples except that δ is set to 0. The

results reported in Table 7 suggest that the empirical size for the 5% test is 6.6%, only

slightly upward biased. The result for the 10% test is similar with an empirical rejection

rate of 11.4%. We then vary the value of δ to examine the power of the LR test. The

results indicate a reasonable power; for example, when δ = 0.01, one can expect to reject

the hypothesis of no trading noise 66.6% of times using the 5% LR test.

5 Conclusion

We have developed a particle filter-based MLE method for the structural credit risk model

of Merton (1974). Our empirical analysis on both the Dow Jones 30 companies and 100

randomly selected firms ascertains the importance of recognizing trading noise. Although

our methodological development is presented specifically for Merton’s model, the method

can be easily adapted to other structural credit risk models. This is in a way similar to the

fact that the transformed-data MLE method of Duan (1994, 2000) can be applied to general

structural credit risk models under no trading noise. In this paper, the trading noise is

assumed to have a log-Gaussian distribution. It is also straightforward to allow for different

distributional assumptions. In conclusion, a practical MLE method has been developed in

this paper to apply structural credit risk models to a market in which trading noises are

likely present.

Appendix: The SL-SIR particle filter for Merton’s model

Our localized sampling scheme starts with V
(m)
τi in the equal-weight filtering sample.

Because the trading noise is independent of the unobserved asset value, we can draw ν
(m)
i+1 ,

which follows the standard normal distribution. We then compute V
(m)
τi+1 = V ∗

τi+1
(Sτi+1

, ν
(m)
i+1 )

where

V ∗
τi+1

(Sτi+1
, νi+1) = S−1(Sτi+1

e−δνi+1 ; σ, F, r, T − τi+1)

defines the implied asset value by the measurement equation in (5). Since V ∗
τi+1

(Sτi+1
, νi+1)

is a function of νi+1, the standard differential transformation theory can be used to obtain
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the density function for it as

f(V ∗
τi+1

(Sτi+1
, ν

(m)
i+1 ) | Sτi+1

) =
Φ(d

∗(m)
τi+1 )eδν

(m)
i+1

δSτi+1
φ(ν

(m)
i+1 )

where Φ(·) and φ(·) are the standard normal distribution and density functions, respectively;

d
∗(m)
τi+1 is the function dt+1 as defined in (4) being evaluated at V ∗

τi+1
(Sτi+1

, ν
(m)
i+1 ).

Thus, this localized sampler leads to the following joint density:

g(V (m)
τi

, V (m)
τi+1

| Dτi+1
) = f(V ∗

τi+1
(Sτi+1

, ν
(m)
i+1 ) | Sτi+1

)f̂(V (m)
τi

| Di, Θ)

=
Φ(d

∗(m)
τi+1 )eδν

(m)
i+1

δSτi+1
φ(ν

(m)
i+1 )

f̂(V (m)
τi

| Di, Θ)

And the corresponding importance weight as defined in (14) becomes

w
(m)
i+1 =

f(Sτi+1
| V (m)

τi+1 , Θ)f(V
(m)
τi+1 | V (m)

τi , Θ)f̂(V
(m)
τi | Di, Θ)

g(V
(m)
τi , V

(m)
τi+1 | Dτi+1

)

=
f(Sτi+1

| V (m)
τi+1 , Θ)δSτi+1

φ(ν
(m)
i+1 )f(V

(m)
τi+1 | V (m)

τi , Θ)

Φ(d
∗(m)
τi+1 )eδν

(m)
i+1

=
f(V

(m)
τi+1 | V (m)

τi , Θ)

Φ(d
∗(m)
τi+1 )eδν

(m)
i+1

The last equality is true because f(Sτi+1
| V (m)

τi+1 , Θ) = 1

δSτi+1φ(ν
(m)
i+1 )

.

We now summarize the three-step SL-SIR scheme for the structural credit risk model

of Merton (1974). The SL-SIR particle filter starts at V
(m)
τ0 = V ∗

τ0
(Sτ0 , 0) for all m’s. The

system is advanced via the following three-step procedure:

• Step 1: Begin with V
(m)
τi in the equal-weight filtering sample. Draw a standard normal

ν
(m)
i+1 and compute V

(m)
τi+1 = V ∗

τi+1
(Sτi+1

, ν
(m)
i+1 ) to obtain the pair (V

(m)
τi , V

(m)
τi+1 ).

• Step 2: Compute the importance weight

w
(m)
i+1 =

f(V
(m)
τi+1 | V (m)

τi , Θ)

Φ(d
∗(m)
τi+1 )eδν

(m)
i+1
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and then assign π
(m)
i+1 =

w
(m)
i+1PM

k=1 w
(m)
i+1

to the sample point V
(m)
τi+1 . Note that by equation (6)

f(V (m)
τi+1

| V (m)
τi

, Θ) =

φ

(
ln(V

(m)
τi+1

/V
(m)
τi

)−(µ−σ2

2
)h

σ
√

h

)

V
(m)
τi σ

√
h

.

• Step 3: Construct a piecewise linear empirical distribution using the weighted sample

{(V (m)
τi+1 , π

(m)
i+1); m = 1, · · · ,M}. Use it to resample a new equal-weight sample of size

M .

It turns out that the importance weight in Step 2 is exactly the item inside the expectation

operator in (11). The conditional likelihood based on the observed equity values from τi to

τi+1 can thus be computed as the average of the importance weights. Specifically,

f(Sτi+1
| Di, Θ) =

1

M

M∑
m=1

w
(m)
i+1 .
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Table 1: Maximum likelihood estimation for Dow Jones 30 companies, firm-by-firm
Estimates with trading noise (s.e.) LR test

Name σ δ × 100 µ p-value σwo

σ

3M 0.1318 ( 0.0089) 0.4044 (0.0919) 0.2798 ( 0.1358) 0.0194 1.1587
Alcoa 0.1589 ( 0.0181) 0.6820 (0.2082) 0.3130 ( 0.1640) 0.0645 1.1640
Altria 0.1783 ( 0.0060) 0.0000 (8.2517) 0.2437 ( 0.1816) 0.4991 1.0000
American Express 0.0726 ( 0.0039) 0.0000 (5.7897) 0.0970 ( 0.0749) 0.4966 1.0000
American Intl 0.0792 ( 0.0039) 0.0000 (7.1344) 0.0424 ( 0.0802) 0.4979 1.0001
Boeing 0.1132 ( 0.0058) 0.0000 (6.7798) 0.1179 ( 0.1132) 0.4976 1.0001
Caterpillar 0.1215 ( 0.0044) 0.0000 (6.2252) 0.2847 ( 0.1235) 0.4990 1.0000
Citigroup 0.0431 ( 0.0026) 0.0000 (5.7291) 0.0713 ( 0.0425) 0.4972 1.0001
E.I. du Pont 0.1306 ( 0.0098) 0.3248 (0.1863) 0.0693 ( 0.1302) 0.2009 1.0601
Exxon 0.1108 ( 0.0078) 0.4159 (0.0818) 0.1383 ( 0.1136) 0.0073 1.1876
General Electric 0.0857 ( 0.0044) 0.0000 (5.8057) 0.0950 ( 0.0860) 0.4969 1.0001
General Motors 0.0183 ( 0.0011) 0.0000 (5.9029) 0.0403 ( 0.0185) 0.5000 1.0003
Hewlett Packard 0.2511 ( 0.0281) 0.6391 (0.3831) 0.2079 ( 0.2887) 0.1416 1.0906
Honeywell 0.1493 ( 0.0130) 0.4025 (0.2303) 0.2012 ( 0.1494) 0.2011 1.0651
IBM 0.1412 ( 0.0110) 0.3696 (0.2020) 0.1119 ( 0.1415) 0.1282 1.0754
Intel 0.3130 ( 0.0278) 0.6103 (0.3089) 0.6686 ( 0.3124) 0.1237 1.0819
J.P. Morgan 0.0275 ( 0.0017) 0.0000 (6.7264) 0.0520 ( 0.0271) 0.4976 1.0002
Johnson & Johnson 0.1521 ( 0.0115) 0.5547 (0.0937) -0.0394 ( 0.1532) 0.0035 1.2380
McDonalds 0.2146 ( 0.0076) 0.0000 (8.0757) 0.3134 ( 0.2216) 0.4997 1.0000
Merck 0.1986 ( 0.0072) 0.0041 (5.4404) -0.0951 ( 0.2064) 0.4937 1.0000
Microsoft 0.2441 ( 0.0197) 0.5675 (0.2138) 0.0576 ( 0.2543) 0.0570 1.1150
Pfizer 0.1950 ( 0.0121) 0.2417 (0.2239) 0.1372 ( 0.1950) 0.3582 1.0293
SBC 0.1981 ( 0.0078) 0.0000 (7.5127) -0.0027 ( 0.1984) 0.4978 1.0000
Coca-Cola 0.1739 ( 0.0112) 0.2502 (0.1830) 0.1457 ( 0.1752) 0.2538 1.0410
Home Depot 0.2703 ( 0.0216) 0.4254 (0.3441) 0.3657 ( 0.3021) 0.2441 1.0478
Procter & Gamble 0.0962 ( 0.0070) 0.2653 (0.0798) 0.1277 ( 0.0967) 0.0473 1.1190
United Technologies 0.1341 ( 0.0105) 0.3625 (0.1665) 0.2804 ( 0.1338) 0.1729 1.0714
Verizon 0.1277 ( 0.0111) 0.3659 (0.2843) -0.0265 ( 0.1299) 0.2860 1.0542
Wal-Mart 0.1538 ( 0.0125) 0.5261 (0.1260) 0.0437 ( 0.1539) 0.0077 1.1866
Walt Disney 0.1601 ( 0.0128) 0.7463 (0.1177) 0.2041 ( 0.1638) 0.0206 1.2123
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Table 2: Summary of the maximum likelihood estimation for Dow Jones 30 companies
Estimates with trading noise

σ δ × 100 µ σwo

σ

Mean 0.1482 0.2719 0.1515 1.0666
Median 0.1453 0.2950 0.1228 1.0510
10 Percentile 0.0578 0.0000 -0.0146 1.0000
90 Percentile 0.2476 0.6247 0.3132 1.1871
Min 0.0183 0.0000 -0.0951 1.0000
Max 0.3130 0.7463 0.6686 1.2380

Number of rejections of H0 : δ = 0 at 5% significance is 6 out of 30

Table 3: Summary of the maximum likelihood estimation for 100 randomly selected compa-
nies

Estimates with trading noise

σ δ × 100 µ σwo

σ

Mean 0.3366 0.6288 0.4263 1.1350
Median 0.2518 0.4266 0.1719 1.0520
10 Percentile 0.0400 0.0000 0.0160 1.0000
90 Percentile 0.7193 1.6252 1.3542 1.4457
Min 0.0038 0.0000 -0.4526 0.9987
Max 1.1759 6.8155 2.5956 1.9378

Number of rejections of H0 : δ = 0 at 5% significance is 30 out of 100
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Table 4: Simulation results with median parameter values
Estimates with noise

σ δ × 100 µ σwo

σ

True Parameters 0.3 0.4 0.2
Mean 0.2925 0.4058 0.2121 1.0585
Median 0.2937 0.4368 0.2035 1.0363
St. Dev. 0.0223 0.3343 0.3099 0.0686
10 percentile 0.2651 0.0001 -0.1661 0.9998
90 percentile 0.3213 0.8496 0.6063 1.1537
Min 0.2105 0.0001 -0.7304 0.9972
Max 0.3456 1.2542 1.1250 1.4074

25 % coverage 0.2680 0.4513 0.2220
50 % coverage 0.5040 0.5769 0.4900
75 % coverage 0.7640 0.7333 0.7220
95 % coverage 0.9460 0.8897 0.9340

Number of δ estimates equal to zero is 110 out of 500

This table presents the results of a Monte-Carlo experiment using 500 independent samples with
each consisting of 251 daily observations. The parameters used to simulate the data are set to the
median values (rounded) of the 100 randomly chosen firms. The ending pseudo-leverage ratio is
maintained at 40%. The 1000-particle SL-SIR filter is used to produce the results. For δ we drop
the cases where δ = 0 and compute the coverage rates using the remaining sample. The coverage
rates for are based on the entire sample of 500. The standard errors for σ and µ are computed

using the corresponding entries of the Fisher information matrix.
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Table 5: Simulation results with high δ
Estimates with noise

σ δ × 100 µ σwo

σ

True Parameters 0.3 1.6 0.2
Mean 0.2975 1.5992 0.2145 1.4750
Median 0.2969 1.6191 0.2104 1.4605
St. Dev. 0.0330 0.2460 0.3122 0.1772
10 percentile 0.2580 1.2855 -0.1670 1.2439
90 percentile 0.3388 1.8805 0.5981 1.7068
Min 0.2123 0.0001 -0.7454 1.0003
Max 0.4261 2.2198 1.0998 2.2317

25 % coverage 0.2460 0.2485 0.2400
50 % coverage 0.4960 0.5050 0.4980
75 % coverage 0.7460 0.7495 0.7360
95 % coverage 0.9320 0.9419 0.9340

Number of δ estimates equal to zero is 1 out of 500

This table presents the results of a Monte-Carlo experiment using 500 independent samples with
each consisting of 251 daily observations. The parameter values for σ and µ used in simulation
are set to the median values (rounded) of the 100 randomly chosen firms. The value for δ is

chosen to be close to the 90 percentile of the 100 randomly chosen firms. The ending
pseudo-leverage ratio is maintained at 40%. The 1000-particle SL-SIR filter is used to produce the
results. For δ we drop the cases where δ = 0 and compute the coverage rates using the remaining
sample. The coverage rates for are based on the entire sample of 500. The standard errors for are

computed using the corresponding entries of the Fisher information matrix.
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Table 6: Simulation results with high σ
Estimates with noise

σ δ × 100 µ σwo

σ

True Parameters 0.7 0.4 0.2
Mean 0.6747 0.6399 0.2181 1.0463
Median 0.6772 0.5459 0.1991 1.0169
St. Dev. 0.0508 0.6102 0.7209 0.0636
10 percentile 0.6140 0.0001 -0.6627 0.9997
90 percentile 0.7403 1.5317 1.1338 1.1358
Min 0.4731 0.0001 -1.9695 0.9948
Max 0.8055 2.3387 2.3599 1.3816

25 % coverage 0.2480 0.3968 0.2260
50 % coverage 0.5020 0.5228 0.4820
75 % coverage 0.7420 0.6702 0.7220
95 % coverage 0.9480 0.8445 0.9320

Number of δ estimates equal to zero is 127 out of 500

This table presents the results of a Monte-Carlo experiment using 500 independent samples with
each consisting of 251 daily observations. The parameter values for δ and µ used in simulation are
set to the median values (rounded) of the 100 randomly chosen firms. The value for σ is chosen to
be close to the 90 percentile of the 100 randomly chosen firms. The ending pseudo-leverage ratio
is maintained at 40%. The 1000-particle SL-SIR filter is used to produce the results. For δ we
drop the cases where δ = 0 and compute the coverage rates using the remaining sample. The

coverage rates for are based on the entire sample of 500. The standard errors for are computed
using the corresponding entries of the Fisher information matrix.

Table 7: Size and power of the LR test
δ × 100 0 0.2 0.4 1 1.6
Rejection rate at the 5% level 0.066 0.072 0.116 0.666 0.980
Rejection rate at the 10% level 0.114 0.134 0.200 0.768 0.992

This table presents the results of a Monte-Carlo experiment on the size and power of the LR test
of δ = 0. The rejection rates (500 samples) for two significance levels are reported. The ending

pseudo-leverage ratio is maintained at 40%. σ = 0.3, µ = 0.2 and the 1000-particle SL-SIR filter is
used.
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