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INDEPENDENCE, HETEROGENEITY AND
UNIQUENESS IN INTERACTION GAMES

BY ROBIN MASON AND ÁKOS VALENTINYI

Abstract

This paper shows that incomplete information and sufficient heterogeneity
of players can ensure uniqueness in interaction games. In contrast to re-
cent work on uniqueness in interaction games, we do not require strategic
complementarity. There are two parts to the argument. First, if a player’s
signal is sufficiently uninformative of the signals of its opponents (in the
sense of the Fisher information of the signal), then the player’s best re-
sponse to any strategy profile of its opponents is non-decreasing in its sig-
nal. Secondly, a contraction mapping argument shows that sufficient het-
erogeneity ensures that equilibrium is unique.
Keywords: Co-ordination, Interaction games, Heterogeneity, Unique

equilibrium
JEL Classification: C72; D82

ROBIN MASON – VALENTINYI ÁKOS

FÜGGETLENSÉG, HETEROGENITÁS ÉS AZ EGYENSÚLY
EGYÉRTELMŰSÉGE INTERAKCIÓS JÁTÉKOKBAN

Összefoglaló

A tanulmány megmutatja, hogy tökéletlen információ és megfelelő hetero-
genitás biztosítja az egyensúly egyértelműségét interakciós játékokban.
Ellentétben az egyensúly egyértelműségére vonatkozó korábbi eredmé-
nyekkel, mi nem tételezzük fel, hogy a játékosok akciói között stratégiai
komplementaritás áll fenn.
Bizonyításunknak két része van. Először megmutatjuk, hogy ha egy játékos
által kapott jelzés kellőképpen kevés információt tartalmaz a többi játékos
által kapott jelzésről, akkor a játékos optimális stratégiája a kapott jelzés
növekvő függvénye függetlenül attól, hogy ellenfelei milyen stratégiát ját-
szanak. Másodszor, megmutatjuk, hogy ha az információ megfelelő, hete-
rogenitása biztosítja az egyensúly egyértelműségét.



1 Introduction

Complete information interaction games (which include co-ordination, random matching

and local interaction games—see Morris (1997)) often have multiple equilibria. In this

paper, we show that when there is incomplete information, independence and sufficient

heterogeneity of players can ensure uniqueness in this class of games. For any bounded

interaction between players, we derive conditions under which a player’s best response to

any strategy profile of its opponents is a non-decreasing strategy or ‘threshold strategy’;1

and under which there is a unique equilibrium in threshold strategies. Both parts require

that

1. each player’s payoff is sufficiently sensitive to its own signal;

2. each player’s payoff is sufficiently insensitive to the actions of other player;

3. each player’s signal is sufficiently uninformative about the signals of other players;

and

4. the conditional probability of any signal is sufficiently small.

In the case of the normal distribution, the condition can be expressed simply in terms

of the correlation ρ and variance σ of the signal distribution: for any sufficiently large σ,

there is a critical ρ∗, strictly between 0 and 1, such that if the degree of correlation is

less than ρ∗, then any equilibrium must be in threshold strategies and there is a unique

threshold strategy equilibrium. The result can be extended to more general distributions.

Then what matters is the Fisher information—a measure of how sensitive the likelihood of

other players’ signals is to the signal of an individual player—and the conditional density.

The sufficient condition for uniqueness is that the Fisher information is bounded (i.e., a

player’s signal tells it little about the signals of other players); and that the conditional

density also is bounded.

Previous work has shown in a variety of situations that heterogeneity can help to

ensure uniqueness of equilibrium. For example, in a canonical two-by-two public good

1A threshold strategy in a binary action game, for example, specifies that one action is taken only for
signals above some cutoff point.
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model in Fudenberg and Tirole (1991, pp. 211–213), there are two pure strategy equilibria

in the common knowledge game. There is only one equilibrium in the incomplete infor-

mation game if the distribution of types satisfies certain conditions. One such condition is

that the maximum value of the density is sufficiently small; following Grandmont (1992),

this can be interpreted as requiring a sufficient degree of heterogeneity between the play-

ers. Herrendorf et al. (2000) show how heterogeneity in the manufacturing productivity

(rather than the information) of agents in the two-sector, increasing returns-to-scale Mat-

suyama (1991) model can remove indeterminacy and multiplicity of equilibrium. Burdzy

et al. (2000) show in a dynamic game that if agents are heterogeneous (in the sense of

being unable to adjust behaviour at identical times), then exogenous shocks can lead to

a unique equilibrium in the Matsuyama setting. Glaeser and Scheinkman (2002) show

that if there is not too much heterogeneity among players, then there can be multiple

equilibria in social interaction games.

The global games literature (see Carlsson and van Damme (1993), Morris and Shin

(1998), and Morris and Shin (2002b)) also provides sufficient conditions for equilibrium

uniqueness. These papers require that the players’ actions are strict strategic comple-

ments i.e., a player’s incentive to choose an action is increasing in the proportion of

other players who choose that action.2 Equilibrium uniqueness in a global game also

requires sufficiently small heterogeneity—the players’ signals must be sufficiently infor-

mative about the true underlying state, and hence highly correlated.

In this paper, we identify clearly the mechanism that is at work to establish uniqueness

when there is a large degree of heterogeneity. We are able to contrast the mechanism with

iterated deletion of dominated strategies based on higher-order beliefs that operates in the

global game models.3 With higher-order beliefs, sufficient (but not perfect) correlation

between signals/types is required. Our mechanism relies on sufficient lack of correlation

between signals. With independence of players’ signals, the best response for any player

2Strictly speaking, Carlsson and van Damme do not require strategic complementarity. But, as Morris
and Shin (2002a) note, when a two player, two action game has multiple Nash equilibria (the interesting
case for Carlsson and van Damme’s analysis), there are automatically strategic complementarities.

3Global games are supermodular, so that payoffs are strictly increasing in the mass of agents taking
the same action. It is this structure that allows iterated deletion of dominated strategies; see Milgrom
and Roberts (1990).
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to any strategy by all other players is a threshold strategy. It is then straightforward to

establish that there is a unique equilibrium in threshold strategies if and only if there

is sufficient heterogeneity of signals. The analysis therefore resolves an open question

concerning how different forms of heterogeneity can ensure uniqueness.

Our results are also of applied relevance. There is an increasing number of applications

of the global game framework. Morris and Shin (1998) use the idea to analyze currency

attacks and Morris and Shin (forthcoming) use it to analyze the pricing of debt. Karp

(1999) applies it to Krugman (1991)’s two-sector model. In all these papers, strategic

complementarity is assumed. But there are many applications in which this assumption

is inappropriate, and where it would (for the usual reasons) be very useful to have a

unique equilibrium. For example, in industrial organization, it is reasonable that positive

network effects might hold in a new market when a small number of firms have entered;

but that the network effects become negative once too many firms enter and the market

becomes crowded. In the Internet, each new web site, or the addition of information to

an existing site, increases the value of the Internet to every existing user. However, as

usage of the Internet grows, so does congestion. Goldstein and Pauzner (2002) study a

model of bank runs based on Diamond and Dybvig (1983). In their model, an agent’s

incentive for early withdrawal of funds from a bank is non-monotonic in the number of

agents withdrawing. The incentive is highest when the number of agents demanding

withdrawal reaches the level at which the bank goes bankrupt; after that point, the

incentive decreases. (Despite this lack of complete strategic complementarity, Goldstein

and Pauzner are able to establish uniqueness of equilibrium.) We do not require global

strategic complementarities, only bounded interactions; hence our results can be used in

a wider range of applications.

The rest of the paper is structured as follows. In section 2, we analyze a simple

model, based on a particular payoff function and the normal distribution, to make the

basic points of the paper. We extend the analysis in section 3 to show how the conclusions

can be generalized to other distributions and payoffs. Section 4 concludes. Longer proofs

are in the appendix.
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2 A Simple Model

Suppose that there is a continuum of players, of measure 1. There are two possible

actions. The payoff to any player from action 0 is zero. The payoff to player i from action

1 is γx̂ + (1 − γ)xi + f(n). xi is player i’s private signal, observed only by player i. It

is drawn from a normal distribution with mean y and variance σ2. Players’ signals are

correlated—the degree of correlation between the signals of player i and j 6= i is ρ ∈ [0, 1)

(note that perfect correlation is ruled out). Hence when player i has a private signal

of xi, its posterior of the signal x−i of any player −i is normally distributed with mean

ρxi + (1 − ρ)y and variance σ2(1 − ρ2). y, σ2 and ρ are common knowledge. x̂ is the

mean signal of all players; unconditionally, it is equal to y. The parameter γ lies in the

interval [0, 1]; if it is equal to 0, the model is one of private values; if it is 1, it is a pure

common value model; for intermediate values of γ, there is a limited degree of common

value. Finally, n ∈ [0, 1] is the proportion of players choosing action 1. f : [0, 1] → R

is the interaction function, describing how a player’s utility is affected by the actions of

other players. We assume that it is continuous and bounded i.e., there exists a finite

κ such that supn∈[0,1] |f(n)| ≤ κ/2. The assumption implies that there are dominance

regions: any rationalizable strategy must involve playing 0 for any valuation less than

¯
x ≡ − sup f , and playing 1 for any valuation greater than x̄ ≡ − inf f .

Consider any strategy profile played by all players other than i. This profile induces

a distribution s(x) : R → [0, 1] that gives the proportion of players choosing action 1 for

a given value of x. The expected utility gain for player i of choosing action 1, conditional

on receiving the signal xi, is then

E[∆u(xi, s)] ≡ γ (ρxi + (1 − ρ)y) + (1 − γ)xi

+
1√

2πσ
√

1 − ρ2

∫ +∞

−∞

f(s(x)) exp



−1

2

(

x − ρxi − (1 − ρ)y

σ
√

1 − ρ2

)2


 dx. (1)

So player i’s expected utility has two components: the expected stand-alone utility (the

first line of the expression), and the expected interaction utility (the second line).

5



2.1 The Independent Private Value Case

Consider first the case of independent signals (ρ = 0) and private values (γ = 0). Clearly

in this case, the expected interaction utility does not depend on player i’s signal. It is then

straightforward that E[∆u(xi, s)] is a strictly increasing function of xi for any s(·). And,

because of the dominance regions, this means that the best response to any distribution

s(·) induced by any strategy profile is a threshold strategy.

Proposition 1 In the independent private value case, γ = ρ = 0, the best response

BR(s) to any distribution s(·) induced by any strategy profile is a threshold strategy i.e.,

takes the form

BR(s) =















0 x < x̃,

1 x ≥ x̃

for some x̃ ∈ (
¯
x, x̄).

Hence, any equilibrium must be in threshold strategies. Given the threshold point x̃ in

a symmetric threshold strategy equilibrium, the expected utility of a player who receives

a signal x̃ is

E[∆u(x̃)] ≡ x̃ +
1√
2πσ

(

∫ x̃

−∞

f(0) exp

[

−1

2

(

x − y

σ

)2
]

dx

+

∫

∞

x̃

f(1) exp

[

−1

2

(

x − y

σ

)2
]

dx

)

. (2)

The equilibrium threshold point satisfies the equation

E[∆u(x̃)] = 0. (3)

MS show in the case of strict strategic complements (i.e., f(·) strictly increasing) that a

necessary and sufficient condition for there to be a unique solution to equation (3) is that

σ is sufficiently large i.e., that there is enough heterogeneity. A similar argument is given

in HVW, who give a sufficient, but not necessary condition based on heterogeneity. The
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next proposition shows that the assumption of strategic complementarity is not needed

for this result.

Proposition 2 For any continuous and bounded interaction function f(·), in the inde-

pendent private value case, there exists a σ∗ ≥ 0 such that if σ > σ∗, then there is a

unique equilibrium .

Proof. There is a unique rationalizable action for (almost) all signals iff dE[∆u(x̃)]/dx̃ >

0 for any x̃ at which E[∆u(x̃)] = 0. Differentiation of equation (2) shows that

dE[∆u(x̃)]

dx̃
= 1 +

(

f(0) − f(1))√
2πσ

)

exp

[

−
(

x̃ − y

σ

)2
]

.

Since |f(0) − f(1)| ≤ κ, a sufficient condition for dE[∆u(x̃)]/dx̃ > 0 is

1 >
κ√
2πσ

which completes the proof. �

2.2 Positive Correlation and Common Values

Now suppose that there is a degree of correlation: ρ ∈ (0, 1), and of common values:

γ ∈ (0, 1]. In this section, we derive joint conditions on heterogeneity σ, correlation

ρ, the common value parameter γ and the interaction function bound κ such that the

best response of player i to any strategy profile played by all other players is a threshold

strategy. Once this fact is established, sufficient heterogeneity again ensures uniqueness

of equilibrium. Hence the basic mechanism that generates uniqueness in the case of

independence extends to positive, but limited correlation, and to common values.

Proposition 3 If

(1 − γ(1 − ρ))

√

1 − ρ2

ρ2
>

κ√
2πσ

, (4)

then the best response to any strategy profile is a threshold strategy.
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(The proposition follows from straightforward and lengthy algebra and so the proof is

relegated to the appendix.)

In order to establish uniqueness of equilibrium in the correlated, common value case,

we now derive a condition for there to be a unique threshold strategy equilibrium, assum-

ing that such an equilibrium exists. This result is stated in proposition 4; as in proposition

2, it basically requires sufficiently large heterogeneity (for any given values of ρ and κ).

We then combine the results of propositions 3 and 4 to give a sufficient condition for

equilibrium uniqueness.

Proposition 4 If

(1 − γ(1 − ρ))

√

1 + ρ

1 − ρ
>

κ√
2πσ

, (5)

and a threshold strategy equilibrium exists, then there is a unique threshold strategy equi-

librium.

Proof. As in the proof of proposition 2, there is a unique threshold strategy action for

(almost) all signals iff dE[∆u(x̃)]/dx̃ > 0 for any x̃ at which E[∆u(x̃)] = 0, where

E[∆u(x̃)] ≡ γ (ρx̃ + (1 − ρ)y) + (1 − γ)x̃

+
1√

2πσ
√

1 − ρ2





∫ x̃

−∞

f(0) exp



−1

2

(

x − ρx̃ − (1 − ρ)y

σ
√

1 − ρ2

)2


 dx

+

∫

∞

x̃

f(1) exp



−1

2

(

x − ρx̃ − (1 − ρ)y

σ
√

1 − ρ2

)2


 dx



 .

Differentiation shows that a sufficient condition for dE[∆u(x̃)]/dx̃ > 0 is

1 − γ(1 − ρ) >
κ√
2πσ

(

1 − ρ
√

1 − ρ2

)

.

This completes the proof. �

8



Proposition 5 If

(1 − γ(1 − ρ)) min

[
√

1 − ρ2

ρ2
,

√

1 + ρ

1 − ρ

]

>
κ√
2πσ

(6)

then there is a unique equilibrium (which is in threshold strategies).

Proof. To have a unique equilibrium in threshold strategies, equations (4) and (5) must

both hold. Also observe that

√

1 − ρ2

ρ2
≥
√

1 + ρ

1 − ρ
for ρ ∈ [0, 1

2
]

√

1 − ρ2

ρ2
≤
√

1 + ρ

1 − ρ
for ρ ∈ [1

2
, 1).

So condition (5) implies (4) for ρ ∈ (0, 1
2
] while the converse holds for ρ ∈ [1

2
, 1). The

result follows. �

Proposition 5 gives a joint condition on the model parameters ρ, σ, γ and κ that is

sufficient for equilibrium uniqueness. The proposition is illustrated in figures 1 and 2,

which give an intuitive interpretation of the result.

Three facts stand out from the figures. First, our sufficient condition for uniqueness

of equilibrium is stricter than that of MS. In figure 1, for example, the MS result gives

a unique equilibrium for all parameter values lying in the area under the upward-sloping

curve. We require in addition that parameter values lie in the area beneath the downward-

sloping line. But, in contrast to MS, we do not require that players’ actions are strategic

complements—proposition 5 holds for any bounded interactions between the players. So,

while our sufficient condition is indeed stricter than MS’s when actions are strategic

complements, it is less strict in the sense that it applies to a larger class of games.

Secondly, the figures demonstrate the statements made in the introduction of the

paper—that there is a unique equilibrium (in threshold strategies) if and only if there

is sufficient heterogeneity of signals. In figure 1, the sufficient condition requires the

correlation between players’ signals to be sufficiently low (and/or the variance of the

9



0 1
0

�

A

1
2

√

3

Figure 1: Proposition 5 for the Pure Private Value Case

prior distribution sufficiently high). (For certain parameter values, there is also a lower

bound on the value of ρ.) In contrast, the MS condition alone generally requires the

degree of correlation to be sufficiently high.

Finally, comparison of the two figures shows that allowing for common values de-

creases the parameter space over which the sufficient condition in proposition 5 holds.

But the qualitative features of the result are unchanged by the presence of a common

value component in players’ payoffs. In this sense, the conclusion from the independent

private value case carries over to the correlated common value case. In all cases, strategic

complementarity is not required. This fact highlights that the mechanism at work here—

the conditions ensure that a threshold strategy is a best response to all other strategies;

and that there is a unique threshold strategy equilibrium—is quite different from the

mechanism analyzed by MS.
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1

2
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3
4

1

√

1 − ρ2

ρ

√

1+ρ

1−ρ

Figure 2: Proposition 5 for the Pure Common Value Case

3 The General Model

The simple model establishes the role that independence, and hence small correlation,

plays in ensuring uniqueness in the interaction game. There is a possibility, however,

that the conclusions depend on the simplifying assumptions of the model. In this section,

we extend the model in a few directions to show that this is not the case. In particular,

we allow for a more general payoff structure and distribution of signals.

3.1 The Private Value, Countable Action Case

Consider a game of incomplete information between a continuum of players of measure

1 where each player observes first observes her own information, and then chooses an

action. Each player observes a signal xi drawn from a common distribution G(x) with

support X. Following Frankel et al. (2003), partition the set of players into a finite set T

of “types” of players. Each type contains either a single player or a continuum of players.

Moreover, each type is of finite measure (normalized so that the total population is of

measure 1). For each player i ∈ [0, 1] let ti ∈ T be the type of i, and T−i the set of types

11



of player i’s opponents.

The action set Ai of each player i is a closed, finite subset of the unit interval that

contains 0 and 1 i.e., {0, 1} ⊆ Ai ⊂ [0, 1]. Player i’s payoff from choosing action ai ∈ Ai

on receiving a signal xi ∈ X and being of type ti ∈ T is ui(ai, xi, ti, α−i) where αt is the

cumulative distribution function (cdf) of actions chosen by type-t players (that is αt(a)

is the proportion of type t players who play action a or less), and α−i = (αt)t∈T−i
is

the vector of cdfs of player i’s opponents. Note that players of the same type may have

different payoff functions and may have different action sets. Note also that the game

is not truly anonymous. Within a type, players are anonymous; but a player’s identity

matters through its type.

Let

∆ui(ai, a
′
i, xi, ti, α−i) ≡ ui(ai, xi, ti, α−i) − ui(a

′
i, xi, ti, α−i).

We make the following assumptions on payoff functions.

U1. Limit Dominance. There exist
¯
xi and x̄i such that

(a) ∆ui(0, a
′
i, xi, ti, α−i) > 0 for all a′

i 6= 0, ti ∈ T , α−i, and xi ≤
¯
xi,

(b) ∆ui(1, a
′
i, xi, ti, α−i) > 0 for all a′

i 6= 1, ti ∈ T , α−i, and xi ≥ x̄i.

Let
¯
x = infi∈[0,1]

¯
xi and x̄ = supi∈[0,1] x̄i.

U2. Uniformly Positive Sensitivity to State. There is a δ ∈ (0,∞) such that for

all ai ≥ a′
i, xi ≥ x′

i, i and ti

∆ui(ai, a
′
i, xi, ti, α−i) − ∆ui(ai, a

′
i, x

′
i, ti, α−i) ≥ δ(ai − a′

i)(xi − x′
i).

U3. Uniformly Bounded Sensitivity to Opponents’ Action. There is a κ ∈ (0,∞)

such that

∆ui(ai, a
′
i, xi, ti, α−i) − ∆ui(ai, a

′
i, xi, ti, α

′
−i) ≤ κ(ai − a′

i)|α−i − α′
−i|

12



where

|α−i − α′
−i| = sup

t∈T−i

sup
a∈At

|αt(a) − α′
t(a)|

and At = ∪j|tj=tAj, for all i and ti.

We make the following assumptions about the players’ signals.

D1. G(x) is atomless and its support X includes [
¯
x, x̄]. The density g(x) is bounded.

The conditional density g(x|xi) is differentiable with respect to xi.

D2. There is a ι ∈ (0,∞) such that ι ≥ maxxi∈X

√

I(xi) where

I(xi) = Var

(

∂ ln g(x|xi)

∂xi

)

is the Fisher information in xi about the signal of the opponents.

D3. For all x, xi ∈ X, there is a η ∈ [0, +∞) such that g(x|xi) ≤ η.

Players use distributional strategies. A distributional strategy for player i is a proba-

bility measure on Ai×X×T such that the marginal distribution on X is g(x); see Milgrom

and Weber (1985). Let µi(xi, ti) be the cumulative distribution function of player i of type

ti who receives a signal xi i.e., µi(a, xi, ti) is the probability that player i plays ai ≤ a if

he receives signal xi and is of type ti. Let µt(a, x) =
∫

j|tj=t
µj(a, x, tj)dj be the cdf played

by type t players, µ−i(a, x) = (µt(a, x))t∈T−i
be the corresponding vector of opponents’

cdfs, and µ(a, x) = (µt(a, x))t∈T be the vector of cdfs of all types. The expected payoff

to player i is given by

E[ui(ai, xi, ti, µ−i)] =

∫

X

ui(ai, xi, ti, µ−i(a, x))g(x|xi)dx.

In the next lemma (the proof of which is in the appendix), we derive a sufficient

condition that ensures that a player’s expected payoff function satisfies the strict single

crossing condition. We then use this property in proposition 6 to argue that all players

use threshold strategies i.e., strategies that are non-decreasing in their signal.

13



Lemma 1 If assumptions U1–U3 and D1–D2 hold and ι < δ/κ, then player i’s expected

payoff satisfies the strict single crossing property in (ai, xi) for any ti ∈ T , and µ−i i.e.,

E[ui(ai, x
′
i, ti, µ−i)] ≥ E[ui(a

′
i, x

′
i, ti, µ−i)] implies E[ui(ai, xi, ti, µ−i)] > E[ui(a

′
i, xi, ti, µ−i)]

for any ai, a
′
i ∈ Ai and for all xi > x′

i.

Proposition 6 If assumptions U1–U3 and D1–D2 hold and ι < δ/κ, then the best re-

sponse of player i to any profile of opponents’ strategies is monotone non-decreasing in

her signal xi.

Proof. The action set Ai is totally ordered because {0, 1} ⊆ Ai ⊂ [0, 1] implying that

E[ui(ai, xi, ti, µ−i)] is quasisupermodular in ai. Moreover, Ai is independent of xi, and

X ∈ R is also totally ordered. Finally, E[ui(ai, xi, ti, µ−i)] satisfies the strict single crossing

property when ι < δ/κ, from lemma 1. Therefore by the Monotone Selection Theorem 4’

of Milgrom and Shannon (1990),

s∗i (xi, ti, µ−i) = arg max
ai∈Ai

E[ui(ai, xi, ti, µ−i)]

is monotone non-decreasing in xi. �

The sufficient condition in proposition 6 that ensures that each agent plays a threshold

strategy is stronger than that found in the simple model of section 2 (see proposition 2).

The Fisher information with the normal distribution is

I(xi) =
ρ2

σ2(1 − ρ2)
;

in contrast, the sufficient condition in proposition 4 bounds

ρ2

2πσ2(1 − ρ2)
.

The factor of 2π that does not appear in the bound in this section means that the

sufficient condition in proposition 6 is more demanding. Nevertheless, it is doing much

the same work as the condition in proposition 4. Both require that a player’s signal tells

14



it sufficiently little about the signals of other players—in the case of proposition 4, by

ensuring that heterogeneity is sufficiently large and/or correlation sufficiently small; in

the case of proposition 6, by bounding the Fisher information.

The second step is to show that there is a unique equilibrium in threshold strategies.

The direct argument for this step used in the simple model of the previous section cannot

be applied in this more general model. MS and Frankel et al. (2003) show that the

extension of this argument to a more general model with (potentially) asymmetric players

requires the assumption of strategic complementarity.4 In order to generalize beyond

strict strategic complementarity, we use an argument that establishes that the mapping

defining the equilibrium distribution is a contraction under a particular metric.

Proposition 7 If assumptions U1–U3 and D1–D3 hold and

ι +
η

λ
≤ δ

κ
(7)

where λ < 1, then there is a unique equilibrium (which is in threshold strategies).

The proof of the proposition, contained in the appendix, is technical and long. But the

end result is simple, requiring only that ι be less than δ/κ − η/λ. Note that compared

to proposition 6, which requires only that ι is less than δ/κ, the sufficient condition in

proposition 7 is stricter.

What is condition (7) ensuring? It does the two things that were illustrated in the

simple model in section 2. First, it ensures that a player’s own signal dominates interaction

effects in payoff terms enough to make any best response a non-decreasing pure strategy.

Roughly speaking, if condition (7) is satisfied, then each player places more weight on its

own signal than on the possible actions of its opponents when choosing its best action.

Secondly, the condition ensures that there is a unique equilibrium in non-decreasing pure

strategies. It does so by showing in the general case the mechanism that was shown for the

4By the results of Milgrom and Roberts (1990) on supermodular games, there exists a largest and a
smallest Nash equilibrium. Suppose that these are distinct equilibria. In a global game in which actions
are strategic complements, players’ payoffs are increasing in the level of the state, all other things equal,
and private signals of the state are sufficiently precise, this leads to a contradiction.
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binary action case. In order for there to be multiple equilibria in non-decreasing strategies,

it must be that there are multiple values of a player’s signal that leaves that player

indifferent between the two actions. The direct effect of a player’s signal is monotonic: the

utility difference between the actions increases with the signal, other things equal. So, in

order for there to be multiple equilibria, the indirect effect, operating through the player’s

assessment of its opponents’ actions, must dominate. Condition (7) ensures that the

direct, own-signal effect is sufficiently strong; or that the interaction effect is sufficiently

weak; or that the player’s signal is sufficiently uninformative about the information (and

hence likely action) of others. It therefore ensures that the direct effect dominates and

multiplicity is not possible.

As a final note, it is worth comparing condition (7) with condition (5) established in

proposition 4. Recall that there, a contraction mapping was found for non-decreasing

pure strategies when

δ

κ
>

1

σ
√

2π

√

1 − ρ

1 + ρ

in the private value case. (In fact, δ = 1 in the simple model; it is written here as a

general parameter for comparability.) Condition (7) requires that

δ

κ
≥ 1

σ

ρ
√

1 − ρ2
+

1

λσ
√

2π
√

1 − ρ2

where the expressions for the Fisher information and the maximum value of the density

of the normal have been used. Condition (7) therefore implies condition (5) if

1

σ

ρ
√

1 − ρ2
+

1

λσ
√

2π
√

1 − ρ2
>

1

σ
√

2π

(
√

1 − ρ

1 + ρ

)

i.e., ρ(1 +
√

2π) > 1− 1/λ, which certainly holds since λ < 1. In summary: the sufficient

condition in proposition 7 is stricter than the sufficient condition in proposition 4.
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3.2 Extensions

The previous section established a sufficient condition for equilibrium uniqueness for the

case of private values and a finite action set for each player. In this section, we show that

extending the result beyond this case is straightforward.

To allow for interdependent values, now suppose the utility of player i of type ti ∈ T

receiving signal xi ∈ X from choosing action a ∈ A is ui(a, xi, ti, θ, α−i) where θ ∈ Xm

is an unobserved statistic of all (other) players’ signals. In order to avoid dealing with

infinite-dimensional integrals, we assume that m is finite. In the private values case, ui

is not a function of θ for all i. Let h(θ|x) denote a player’s probability density function

for the statistic θ conditional on receiving a signal x, with support X. Note that the

conditional density h(·) is symmetric across players.

In line with the previous approach, we make the following additional assumptions:

U4. Bounded variation: For any actions ai, a
′
i ∈ Ai, xi ∈ X, ti ∈ T and vector of oppo-

nents’ cdfs α−i, there exists a ω ∈ (0, +∞) such that Varθ [∆ut(ai, a
′
i, xi, ti, θ, α−i)] ≤

ω2 where the variance is defined in terms of the conditional density h(θ|xi).
5

D4. For all xi ∈ X and θ ∈ Xm, there is a ν ∈ [0, +∞) such that h(θ|xi) ≤ ν.

With these two additional assumptions (and the previous assumptions adapted in an

obvious way), the arguments in the previous section can be applied to give equivalent

results. In particular,

Proposition 8 If assumptions U1–U4 and D1–D4 hold and

ι +
ην

λ
≤ δ

κω
(8)

where λ < 1, then there is a unique equilibrium in the interdependent valuation case.

5That is,

Varθ [∆ui(·)] =

∫

Xm

(

∆ui(·) −
∫

Xm

∆ui(·)h(θ|xi)dθ

)2

h(θ|xi)dθ.
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(The proof of the proposition is very similar to the proof of proposition 7 and so is

omitted.) Proposition 8 shows that allowing for interdependent valuations modifies the

sufficient condition for equilibrium uniqueness in a simple way. In particular, the bounding

parameter δ in the private value case can simply be replaced by the ratio of parameters,

δ/ω, which measures the relative importance of private and interdependent valuation

components.

Consider now the case where each player’s action set is a continuum. The argument

of Athey (2001) (theorem 2) can be used in a direct way to establish the uniqueness of

equilibrium in this case. One more assumption is required:

U5. Payoff Continuity. Each ui(ai, xi, ti, α−i) is continuous in ai and α−i.

Then

Proposition 9 If assumptions U1–U5 and D1–D4 hold and

ι +
ην

λ
≤ δ

κω
(9)

where λ < 1, then there is a unique equilibrium in the interdependent valuation case with

a continuum of actions.

The proposition follows immediately from Athey (2001) and proposition 8 (noting that

any sequence that converges has a unique limit).

4 Conclusions

In this paper, we have provided a sufficient condition for there to be a unique equilibrium

in interaction games. Our framework can be applied to a broad class of games; for

example, we do not require the assumption of global strategic complementarity. We have

therefore been able to clarify the mechanism that is at work when heterogeneity generates

uniqueness. In addition to this theoretical contribution, our approach can be used in a

number of applications in which externalities can be both positive and negative.
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A Proof of Proposition 3

A sufficient condition for player i’s best response to any distribution s(·) induced by

any strategy profile to be a threshold strategy is that the expected utility ∆u(xi, s) (see

equation (1)) is an increasing function of xi. This requires that

1−γ(1−ρ) >
1√

2πσ
√

1 − ρ2

∣

∣

∣

∣

∣

∣

∂

∂xi





∫ +∞

−∞

f(s(x)) exp



−1

2

(

x − ρxi − (1 − ρ)y

σ
√

1 − ρ2

)2


 dx





∣

∣

∣

∣

∣

∣

=
ρ√

2πσ2(1 − ρ2)

∣

∣

∣

∣

∣

∣

∫ +∞

−∞

f(s(x))

(

x − ρxi − (1 − ρ)y

σ
√

1 − ρ2

)

exp



−1

2

(

x − ρxi − (1 − ρ)y

σ
√

1 − ρ2

)2


 dx

∣

∣

∣

∣

∣

∣

.

Since the normal distribution is symmetric around the mean,

1√
2πσ

√

1 − ρ2

∣

∣

∣

∣

∣

∣

∫ +∞

−∞

f(s(x))

(

x − ρxi − (1 − ρ)y

σ
√

1 − ρ2

)

exp



−1

2

(

x − ρxi − (1 − ρ)y

σ
√

1 − ρ2

)2


 dx

∣

∣

∣

∣

∣

∣

≤ κ√
2πσ

√

1 − ρ2

∫ +∞

ρxi+(1−ρ)y

(

x − ρxi − (1 − ρ)y

σ
√

1 − ρ2

)

exp



−1

2

(

x − ρxi − (1 − ρ)y

σ
√

1 − ρ2

)2


 dx.

A change of variables

z ≡ 1

2

(

x − ρxi − (1 − ρ)y

σ
√

1 − ρ2

)2

dx ≡
(

σ2
√

1 − ρ2

x − ρxi − (1 − ρ)y

)

dz

shows that

1√
2πσ

√

1 − ρ2

∫ +∞

ρxi+(1−ρ)y

(

x − ρxi − (1 − ρ)y

σ
√

1 − ρ2

)

exp



−1

2

(

x − ρxi − (1 − ρ)y

σ
√

1 − ρ2

)2


 dx

=
ρ√

2πσ
√

1 − ρ2
.

Hence the sufficient condition is

1 − γ(1 − ρ) >
κρ√

2πσ
√

1 − ρ2
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which proves the claim.

B Proof of Lemma 1

For the strict single crossing property to hold, it is sufficient to show that if ι < δ/κ, then

E[∆ui(ai, a
′
i, xi, ti, µ−i)] > E[∆ui(ai, a

′
i, x

′
i, ti, µ−i)]

for xi > x′
i. So we have to show that the difference between the expected values above is

positive.

E[∆ui(ai, a
′
i, xi, ti, µ−i)] − E[∆ui(ai, a

′
i, x

′
i, ti, µ−i)]

=

∫

X

∆ui(ai, a
′
i, xi, ti, µ−i(x))g(x|xi)dx −

∫

X

∆ui(ai, a
′
i, x

′
i, ti, µ−i(x))g(x|x′

i)dx

=

∫

X

[

∆ui(ai, a
′
i, xi, ti, µ−i(x)) − ∆ui(ai, a

′
i, x

′
i, ti, µ−i(x))

]

g(x|xi)dx

−
∫

X

∆ui(ai, a
′
i, x

′
i, ti, µ−i(x)) [g(x|x′

i) − g(x|xi)] dx

≥ δ|xi − x′
i| −

∫

X

∆ui(ai, a
′
i, x

′
i, ti, µ−i(x)) [g(x|x′

i) − g(x|xi)] dx, (10)

where the last inequality follows from assumption U2 if we also take into account that

ai, a
′
i ∈ [0, 1].

Let x̂i ≡ arg maxxi∈X [∂g(x|xi)]/[∂xi]. Then the last term in equation (10) can be

rearranged as

(xi − x′
i)

∫

X

∆ui(ai, a
′
i, x

′
i, ti, µ−i(x))

g(x|x′
i) − g(x|xi)

xi − x′
i

dx

≤ (xi − x′
i)

∫

X

∆ui(ai, a
′
i, x

′
i, ti, µ−i(x))

∂g(x|xi)

∂xi

∣

∣

∣

∣

xi=x̂i

dx

= (xi − x′
i)

∫

X

∆ui(ai, a
′
i, x

′
i, ti, µ−i(x))

∂ ln g(x|xi)

∂xi

∣

∣

∣

∣

xi=x̂i

g(x|x̂i)dx

= (xi − x′
i)Cov

(

∆ui(ai, a
′
i, x

′
i, ti, µ−i(x)),

∂ ln g(x|xi)

∂xi

∣

∣

∣

∣

xi=x̂i

)

(11)
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where the last equality follows from the fact that

E

[

∂ ln g(x|xi)

∂xi

]

=

∫

X

∂ ln g(x|xi)

∂xi

g(x|xi)dx =

∫

X

∂g(x|xi)

∂xi

dx = 0

since
∫

X
g(x|xi)dx = 1 is independent of xi.

An upper bound on the covariance can be found as follows:

∣

∣

∣

∣

∣

Cov

(

∆ui(ai, a
′
i, x

′
i, ti, µ−i(x)),

∂ ln g(x|xi)

∂xi

∣

∣

∣

∣

xi=x̂i

)∣

∣

∣

∣

∣

≤
√

Var
(

∆ui(ai, a′
i, x

′
i, ti, µ−i(x))

)

√

√

√

√Var

(

∂ ln g(x|xi)

∂xi

∣

∣

∣

∣

xi=x̂i

)

≤ κι (12)

where the last inequality follows from the observation that assumption U3 together with

|ai − a′
i| ≤ 1 and |α−i − α′

−i| ≤ 1 imply that Var
(

∆ui(ai, a
′
i, x

′
i, ti, µ−i(x))

)

is bounded

by κ2, and assumption 2 implies that Var[(∂ ln g(x|xi))/(∂xi)|xi=x̂i
] ≤ ι.

Equations (10), (11) and (12) together yield

E[∆ui(ai, a
′
i, xi, ti, µ−i)] − E[∆ui(ai, a

′
i, x

′
i, ti, µ−i)] ≥ (δ − κι)|xi − x′

i|

which proves the lemma.

C Proof of Proposition 7

The following definition will be useful during the proof.

Definition 1 Let D denote the set of distribution functions defined over X ×A (i.e., the

set of functions that are non-decreasing, left-continuous and have a range of [0, 1]).

Write the action set of player i as Ai = {a0 = 0, ai
1, a

i
2, . . . , a

i
N = 1} where ai

n < ai
n+1.

For any given vector of distributions µ−i, define xi(an; µ−i) by

E[∆ui(an, an−1, xi(an; µ−i), ti, µ−i)] , 0 (13)
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i.e., the signal at which player i is indifferent between actions an and an−1 for n ∈ [1, N ].

Since the function ∆ui is strictly increasing in xi if δ/κ > ι, xi(an; µ−i) is uniquely defined

by equation (13). Player i’s best response to the distribution µ−i can be represented as

a step function with thresholds given by the finite vector (xi(an; µ−i))n=1,...,N ; see Athey

(2001).

Define

χi(a, x; µ−i) =















1 x < xi(a; µ−i)

0 x ≥ xi(a; µ−i).

Then let

φt(a, x; µ−t) ≡
∫

{i|ti=t}

χi(a, x; µ−i)di

where µ−t is the vector of distributions induced by the strategies of all players who are not

of type t, for x ∈ X and a ∈ At ≡ ∪{i|ti=t}Ai. Notice that since φt is the sum of indicator

functions, it is non-decreasing, left-continuous in (a, x) and maps At ×X → [0, 1]. Hence

φt is a distribution function i.e., φt ∈ D.

Let φ(a, x; µ) ≡ (φt)t∈T . φ maps the set Dτ into itself where τ is the number of types

i.e., τ = #T . An equilibrium is defined by µ(a, x) = φ(a, x; µ).

Consider any two vectors of distribution functions µ = (µt)t∈T and µ′ = (µ′
t)t∈T

defined over A × X where A ≡ ∪iAi. Let ‖µ − µ′‖ denote the metric

‖µ − µ′‖ ≡ max
t∈T

max
a∈At

∫

X

|µt(a, x) − µ′
t(a, x)|dx. (14)

(This is a variant of the L1 metric, and so it is easy to show that it is indeed a metric.)

The space (D, ‖‖) is complete: by Helly’s selection theorem (see Kolmogorov and Fomin

(1970), p. 373), a sequence of non-decreasing, uniformly bounded functions on X ⊆ R has

a subsequence that converges to a non-decreasing function. The objective is to establish

that the mapping φ is a contraction under the metric defined in equation (14). Existence

and uniqueness of equilibrium then follow directly from the contraction mapping theorem.
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Consider

‖φt(a, x; µ−t) − φt(a, x; µ′
−t)‖ = max

a∈At

∫

X

∣

∣

∣

∣

∫

{i|ti=t}

(

χi(a, x; µ−i) − χi(a, x; µ′
−i)
)

di

∣

∣

∣

∣

dx

≤ max
a∈At

∫

X

∫

{i|ti=t}

∣

∣χi(a, x; µ−i) − χi(a, x; µ′
−i)
∣

∣ di dx

≤ max
a∈At

∫

{i|ti=t}

∫

X

∣

∣χi(a, x; µ−i) − χi(a, x; µ′
−i)
∣

∣ dx di

= max
a∈At

∫

{i|ti=t}

∣

∣xi(a; µ−i) − xi(x, a; µ′
−i)
∣

∣ di

≤ max
a∈At

sup
{i|ti=t}

∣

∣xi(a; µ−i) − xi(x, a; µ′
−i)
∣

∣

for all t ∈ T . Since

‖φ(a, x; µ) − φ(a, x; µ′)‖ = max
t∈T

‖φt(a, x; µ−t) − φt(a, x; µ′
−t)‖,

a sufficient condition for φ to be a contraction under the metric defined in equation (14)

is therefore that

max
t∈T

max
a∈At

sup
{i|ti=t}

∣

∣xi(a; µ−i) − xi(x, a; µ′
−i)
∣

∣ ≤ λ‖µ − µ′‖ (15)

where λ < 1. Notice that the existence of dominance regions means that the distances

defined by the metric exist and are finite.

Consider any two actions an > an−1 in the action set of player i. Then from equation

(13),

∫

X

(

∆ui(an, an−1, xi(an; µ′
−i), ti, µ

′
−i) − ∆ui(an, an−1, xi(an; µ−i), ti, µ

′
−i)
)

g(x|xi(an; µ′
−i))dx

+

∫

X

∆ui(an, an−1, xi(an; µ−i), ti, µ
′
−i)
(

g(x|xi(an; µ′
−i)) − g(x|xi(an; µ−i))

)

dx

+

∫

X

(

∆ui(an, an−1, xi(an; µ−i), ti, µ
′
−i) − ∆ui(an, an−1, xi(an; µ−i), ti, µ−i)

)

g(x|xi(an; µ−i))dx = 0;
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or η1 + η2 + η3 = 0. Hence |η1| = |η2 + η3| ≤ |η2| + |η3|. From assumptions U2–U4,

|η1| ≥ δ(an − an−1)|xi(an; µ−i)) − xi(an; µ′
−i))|;

|η2| ≤ ικ(an − an−1)|xi(an; µ−i)) − xi(an; µ′
−i))|;

|η3| ≤ κη(an − an−1)

∫

X

|µ−i − µ′
−i|dx

where for any x ∈ X, |µ−i − µ′
−i| = supt∈T−i

supa∈At
|µt(x, a) − µ′

t(x, a)|.

Hence

(δ − ικ)|xi(an; µ−i) − xi(an; µ′
−i)| ≤ κη

∫

X

|µ−i − µ′
−i|dx

for all an ∈ Ai and i ∈ [0, 1]. Therefore

max
t∈T

max
a∈At

sup
{i|ti=t}

∣

∣xi(a; µ−i) − xi(a; µ′
−i)
∣

∣ ≤
(

κη

δ − ικ

)

max
t∈T

max
a∈At

sup
{i|ti=t}

∫

X

|µ−i − µ′
−i|dx

≤
(

κη

δ − ικ

)

‖µ − µ′‖.

Hence the sufficient condition (15) for the contraction is satisfied if there is a number

λ > 1 such that

κη

δ − ικ
≤ λ.

The proposition follows.
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