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Abstract

According to various studies, sovereign bond spreads often deviate from any ”sen-

sible” perception of default risk. It is usually attributed to behavioral effects (overre-

action) or illiquidity. The former explanation imposes some irrationality or bounded

rationality on investors; while the latter usually relies on some informational asymme-

try or thin markets.

The paper presents a different source of liquidity risk: in a Diamond–Dybvig type

model, where agents face a liquidity risk (becoming more risk-averse early consumers),

changes in the speed of public learning about default risk may increase bond spreads.

This effect operates through a link between future volatility and current levels: in-

creased expected future price volatility (a volatility effect) leads to lower prices today

(a level effect). Under reasonable parameter values, accelerated information revelation

may increase spreads by 50%.

I also compare the welfare of the issuer and investors under different speeds of

learning: revealing information may be good or bad for the issuer (issue prices may

increase or decrease), and also for the investors (ex ante utility might be higher or

lower).

∗I am grateful for Daron Acemoglu, Jaume Ventura, András Simonovits and participants at the Summer
Workshop held at the Institute of Economics of the Hungarian Academy of Sciences for their suggestions
and comments. All the remaining errors are mine.
†benczurp@mnb.hu



1 Introduction

What determines the price of a sovereign bond? It should reflect various risks investors

face: default risk (you do not get the payment which was expected), exchange rate risk

(the value of your payment changes because of exchange rate movements), interest rate

risk (the short-term interest rates move thus the discount rate changes) and liquidity risk

(when you sell, prices are low – either for exogenous reasons, or because your sale has

a big price effects; or there might be some pure transaction costs). Looking at foreign

currency denominated sovereign bond spreads, the exchange rate risk and the interest rate

risk should be mostly eliminated: you get the payments in the ”right” currency, and the

payment is appropriately in excess of the benchmark (dollar) interest rate. Then all is left

is default and liquidity risk.

Sovereign bond spreads often deviate too much from what one would think as reasonable

default probability perceptions. Based only on default risk considerations, for example,

crisis times should have much less effect on long-term than on short-term bond spreads –

Broner and Lorenzoni (2000) documents the opposite. The empirical results in Benczur

(2001) also suggest that bond spreads reflect many other factors besides pure default risk,

illiquidity risk being a major extra risk component (in the form of expected future price

volatility). This effect is in some sense also reminiscent of the excess volatility puzzle,

documented first by Leroy and Porter (1981), and Shiller (1981): stock prices move too

much relative to movements in dividends (a volatility effect), while for bonds, changes in

default probability lead to too large movements in spreads (a level and a volatility effect).

One can attribute this to some form of bounded rationality of investors – instead, I want

to maintain full rationality and look for a potential explanation within that framework.

Then the natural candidate for the extra spread increase is the liquidity of the bond, which

may come from many different sources. Maybe all potential buyers are without sufficient

resources to buy the bond, so the price will have to drop a lot to attract a buyer. Or

the market size is small, therefore each transaction will substantially reduce the price. A

nearly mechanical though also canonical form of illiquidity is the presence of transaction

costs (brokerage fees, bid-ask spread differentials). Another traditional source of illiquidity

is asymmetric information: if you have any private information, then your sale might give

a bad signal to the market, thus depress the prices even more than the true increase in
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default risk.

These considerations are not new in the literature. For example, Bradley (1991) studies

price differences among comparable Eurobond issues: after controlling for maturity, coupon

size and default risk (proxied by credit rating, which is not necessarily a perfect measure),

bonds from different issuer groups still have different prices, which can be attributed to

liquidity. The approach, however, lacks a clear identification of a channel through which

liquidity would operate.

Hirtle (1988) finds little aggregate liquidity effect in the junk bond markets: following

certain aggregate shocks to market-specific liquidity, junk bond returns decrease only for a

very short-term. These results are likely to be specific to the particular market and episode

though: they are unlikely to hold after the East Asian and Russian crises; also, Broner

and Lorenzoni (2000) show that the behavior of Latin American sovereign bonds can be

explained by market-specific liquidity shocks.

Amihud and Mendelson (1991) show that T-notes are substantially less liquid that T-

bills, which is attributable to a smaller number of potential buyers, and it also leads to

higher fees and bid-ask spread differentials for T-notes than for T-bills. These differentials

then clearly translate into price differentials, driven by liquidity. Redding (1999) picks up

a related point: that paper analyzes the difference between currently issued thus heavily

traded, and already existing but similar maturity US Treasury Bonds, and finds evidence for

a liquidity premium. In both cases, the source of liquidity is the depth of the market: with

many sellers, it is easier to do transactions, which forces fees to be smaller, and increases

liquidity in general. However, unless one explicitly models systematic fluctuations in this

depth, liquidity will be nearly constant, so spreads should move fully together with changes

in default risk.

Instead of any of these particular explanations, I want to use a more general form

of illiquidity: investors have a chance that they need to sell the bond before they were

initially planning, and for any reason, the price may be particularly low at that time. The

price may be low because the lack of aggregate resources, informational problems, thin

markets or any other explanation – that does not change the overall interpretation that

they are selling the bond at the wrong time. The general feature is that investors care

not only for the terminal payoff (repayment probability, maybe even its variance), but the

way uncertainty is resolved also matters. With many interim steps of the terminal payoff
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lottery, pre-maturity prices will fluctuate a lot, and with a chance of early sale (liquidation),

investors will value such a bond less.

This approach is somewhat similar to Grossman and Miller (1988): in their model,

investors occasionally need to adjust their portfolios. Then they face the choice between

selling immediately but maybe not for the most eager buyer, or searching longer but risking

a price drop. Some intermediate liquidity providers may then take away some of this risk.

It is not fully clear, however, how this framework relates to price volatility: with more

volatility, waiting increases the chance of a price drop, but also of a recovery. Still, liquidity

is also modeled in terms of potential price movements near times when investors may want

to rebalance (or downsize) their portfolios.

In my framework, the reason why investors care for volatile pre-maturity prices is the

following: they usually have uncertain investment horizons, so the probability is less than

one that they can hold on to the particular asset as long as planned, desired or in some

sense optimal. Thus there is also a possibility that they have to liquidate some or all

of the investment at earlier stages, so fluctuating pre-maturity prices impose some risk.

Therefore, I will try to link higher future (expected) volatility to lower current prices: thus

a future volatility effect would lead to a current level effect.

If the source of future price fluctuations is different from a change in the current default

risk, then this effect should be particularly clear: if something happens today that increases

future volatility without increasing the current (expected) default probability, then one

would see a drop in prices without an increase in perceived risk. The effect would also be

present if a change in current default probabilities implies higher future price volatility:

current prices would drop more than implied by the change in default risk.

This naturally leads to the conclusion that learning, or more precisely, changes in the

speed of information revelation can give us the desired effect. Since sovereign bond defaults

are rare, and they are usually driven by the unwillingness, and not just the inability of

the country to pay, there is an inherent uncertainty about default. Investors can, however,

observe the behavior of countries through time – which might change their beliefs about

how bad fundamentals must be to have a default. This also means that investors would get

much more new information about the country around crises – then they do see whether

the country resisted a storm of a given size or had to bend.

Faster learning, the revelation of more precise information will in general lead to more
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volatile prices. This is documented in various empirical papers: for example, Ederington

and Lee (1993), and Harvey and Huang (1991) show that announcements lead to increased

price volatility of US Treasuries and also in foreign exchange futures markets. Jones, Kaul

and Lipson (1994) also find that public information is the major source of short-term

volatility in the stock market. Krebs (1999) provides a theoretical model supporting the

same argument.

Expecting an increase in the speed of learning, thus anticipating more volatile prices

in the near future may cause large expected wealth fluctuations – and if there is a chance

that an investor has to liquidate her portfolio exactly in those volatile weeks, that increases

the risk of the bond. Even for the same levels of volatility and risk further away in the

future, the bond becomes more risky, which then drives the price down, potentially much

more than what the increase or uncertainty about default probabilities would imply. This

effect might dominate for long-term bonds: with any new twist of a crisis, their default risk

changes slightly, leading to higher current and expected price volatility. Increased expected

volatility then amplifies the initial level effect of higher risk, leading to a much larger price

drop.

The aim of the paper is to establish this channel in a model with rational agents who

face a Diamond-Dybvig (1983) type taste shock. Under certain assumptions, I will es-

tablish that getting more information before maturity may decrease issue prices, together

with (or intuitively: driven by) increased pre-maturity price volatility. This effect can be

quite important quantitatively: under reasonable parameter assumptions, the spread may

increase by 50% in response to accelerated learning. In this sense, releasing information

may hurt the issuer of the bond (getting a lower issue price), but it may also hurt investors

(decreasing their welfare). This latter result is similar to Hirshleifer (1971), where a re-

lease of some information eliminates the possibility of self-insurance, thus decreases total

welfare. My result is driven by the following mechanism. Suppose agents are subject to

the same wealth constraints (hence, the same bond price, and they must buy 1 unit per

head) but they can self-insure among themselves. For a common price level p, early infor-

mation revelation is unambiguously good: it enables fully contingent consumption plans.

If, however, the price levels are different for the two learning scenarios, the wealth effect

(through the budget constraints) and this contingency effect might have opposite signs

and the comparison is ambiguous. Moving to the no self-insurance setup, there is a welfare
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loss: the joint budget contraint of early and late consumers might be sub-optimally split

into two separate constraints. Whether this loss is bigger for early revelation than for late

revelation is again ambiguous – so the comparison of no self-insurance welfare levels is

ambiguous, fast learning can increase or decrease investor welfare.

In order to have learning at all, I need to have a positive default probability – otherwise

no interesting information could be ever released. Let me emphasize that learning is com-

pletely mechanical here, it simply refers to the revelation of some information, getting or

not some (perfect) public information – there are neither noisy signals, nor a need to esti-

mate probabilities based on past realizations of events. That kind of a more sophisticated

learning also has very important effects on pricing behavior, as explored and surveyed in

Cassano (1999), among others.

The key ingredient for my results is that early consumers are more risk-averse than late

consumers: if late consumers are risk-neutral while early consumers show any small degree

of risk-aversion, the result applies. For risk-averse late consumers, there must be a sufficient

difference in the risk aversion of the two types of consumers, but for any concave utility

function u of late consumers, it is possible to find a set of appropriate utility functions v

for early consumers in a way that the results hold.

In reality, this entire learning process is obscured by the very important fact that default

is ultimately a deliberate action of the country. This means that countries might try to

strategically alter their behavior in order to decrease the market’s risk perception. And it

is indeed the case that developing countries have mostly refrained from bond defaults ever

since the debt crises. In my simple framework, I will not be able to address this issue – I

assume that there is a reduced form of the country’s behavior, so these strategic elements

are already taken into account.

The paper is organized as follows. The next section describes the model, and derives

the first order conditions of investor maximization. Section 3 contains the results: first the

price and welfare comparison of slow and fast learning, then a more continuous mixture of

these two extremes. Finally, Section 4 concludes.
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2 The model

2.1 Ingredients

I want to model learning as getting a more precise signal about the default realization

before maturity. In one extreme, you do not get any signal, so you do not learn anything

new before maturity –late, or slow learning case; the other extreme is a perfect signal,

or complete information revelation: you learn before maturity whether repayment will be

made – early, or fast learning case.

There is a continuum of agents, who face a potential (unobservable and idiosyncratic)

taste shock: with some probability, they become early consumers, who value consumption

(or in general: asset returns) at an early period. The model thus must have three periods:

an issue period with a fixed (inelastic) supply of the bond (period 0), a pre-maturity period

1, when some investors are hit by idiosyncratic and unobservable taste shocks, plus the

uncertainty is potentially resolved; finally, a maturity period, when repayment is realized,

and all investors get their returns.

In period 0, investors buy the risky bond at p0, and store the rest of their initial wealth

(one to one technology). There is a fixed (inelastic) supply of the bond, which gives 1 in

period 2 with probability �, and 0 with probability 1−�. In period 1, they learn whether

they are early consumers (in which case they cash all their assets and eat only in period 1)

or not (consume only in period 2). In the case of slow learning, they trade after this was

realized. There is a chance � of becoming an early consumer, but there is no aggregate

uncertainty about it (idiosyncratic risk, continuum of agents) – so there will be one price

level.

In the case of early learning, agents also learn whether the bond will be paid back or

not (same probabilities as ex ante: � and 1 − �), and then they can trade based on both

pieces of information – so there will be two price levels: p = 1 if there is repayment, p = 0

if no repayment. Finally, in period 2, repayment is realized, and late consumers consume

all of their wealth.

The utility of consumers is given by E[u1(c1) + u2(c2)]. For late consumers, u1 = 0,

u2 = u; for early consumers (hit by liquidity shock), u1 = v, u2 = 0: I assume that agents

are not risk-lovers (either risk-neutral or risk-averse), and that early consumers are at least

as risk-averse as late consumers. A special case is when late consumers are risk-neutral,
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but early consumers are risk-averse.

2.2 Solving the model – slow learning case

In period 0, all agents are identical, and have a wealth of 2. There is some fixed (positive)

quantity of the risky bond offered by the issuer – it must be less than 2, otherwise there

would not be enough aggregate resources to buy all the bonds. For simplicity, I assume

that the supply of bond is 1. Each agent maximizes her expected utility by buying some

amount b0 of bonds and keeping x0 in cash. There is an equilibrium price p0 at the bond

market.

In period 1, early consumers sell all their bonds at the equilibrium price p1 and eat

all of their wealth, thus c1 = x0 + p1b0. Late consumers buy b1 bonds and keep x1 =

x0 + p1b0 − p1b1 in cash.

In period 2, late consumers eat c2G = x1 + b1 if bond is repaid (probability �), or only

c2B = x1 if no repayment (probability 1− �).

The expected utility at period 0 is:

U = �v(c1) + (1− �) [�u(c2G) + (1− �)u(c2B)]

= �v(x0 + p1b0)

+(1− �) [�u(x0 + p1b0 − p1b1 + b1) + (1− �)u(x0 + p1b0 − p1b1)]

Agents want to maximize this with respect to x0, b0 and b1, subject to the initial budgetx0 + p0b0 = 2 (the period 1 ]3 TDaint is already substituted in). Denote the

Lagrange multiplier of the budget ]3 TDaint by �, then the first order ]3 diti3 T for x0

and b0 are:

@

@x0
:

� = �v′ (x0 + p1b0) + (1− �)�u′(x0 + p1b0 − x1 − p1b1)

+(1− �)(1− �)u′ (x0 + p1b0 − p1b1)
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@

@b0
:

p0� = �p1v
′(x0 + p1b0) + (1− �)�p1u

′(x0 + p1b0 − x1 − p1b1)

+(1− �)(1− �)p1u
′(x0 + p1b0 − p1b1)

Since the marginal utilities are strictly positive, these two first order conditions imply that

in equilibrium, we must have p0 = p1 = p: The intuition and interpretation of this result

is clear: since there is no uncertainty about the period 1 price, it cannot be different from

the period 0 price, because then everyone would want to buy infinite amounts of the bond

or nobody would be ready to buy at all. For this constant price level, individuals are

indifferent between bonds and cash in period 0, since the period 1 returns of the two are

equal. So b0 = 1 can be achieved (market clearing condition for bonds at period 0).

Using this, the objective function can be rewritten as

U = �v(2) + (1− �) [�u(2− pb1 + b1) + (1− �)u(2− pb1)] :

This is an unconstrained maximization, and the first order condition becomes

@

@b1
: �u′(2− pb1 + b1)(1− p) = (1− �) pu′(2− pb1)

In equilibrium, we must have b1 = 1
1−λ , since there are 1 − � agents buying bonds,

and the total holding must be equal to the amount of bonds, which is 1. This gives us an

equation for pslow(�):

�u′
(

2 +
1− p
1− �

)
(1− p) = (1− �)u′

(
2− p

1− �

)
p

�

1− �
1− p
p

=
u′
(

2− p
1−λ

)
u′
(

2 + 1−p
1−λ

) (1)

Compared to the ”no taste shock, no learning” benchmark (� = 0), one can see an

”excess supply” effect in this equation: the price level is determined through market equi-

librium in period 1, when there are only 1−� agents as buyers. If they are risk-averse, the

price must fall in order to make them willing to hold that much of the risky asset.
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2.3 The fast learning case

At period 0, the equilibrium price is p0, and agents choose to hold x0 in cash and b0 in

bonds. In period 1, if the news were good, then p1 = 1 (the bond becomes a perfect

substitute for money, since it is perfectly safe), the wealth of consumers is x0 + b0. Early

consumers thus eat x0 + b0, late consumers then eat x0 + b0 in the second period. In period

1, if the news were bad, then the bond becomes worthless, p1 = 0, early consumers eat x0,

late consumers choose c2 = x0. So the objective function of investors is:

U = �(1− �)u (x0 + b0) + ��v(x0 + b0) + (1− �)(1− �)u (x0) + (1− �)�v(x0):

Using the budget constraint, I can eliminate x0 from the objective function: x0 = 2−p0b0,

thus

U = �(1− �)u (2− p0b0 + b0) + ��v(2− p0b0 + b0)

+(1− �)(1− �)u (2− p0b0) + (1− �)�v(2− p0b0):

First order condition:

�(1− �)(1− p0)u′ (2− p0b0 + b0) + ��(1− p0)v′(2− p0b0 + b0)

= (1− �)(1− �)p0u
′ (2− p0b0) + (1− �)�p0v

′(2− p0b0)

In equilibrium, we must have b0 = 1, which gives us a single equation defining pfast(�):

�(1− �)(1− p)u′ (3− p) + ��(1− p)v′(3− p)

= (1− �)(1− �)pu′ (2− p) + (1− �)�pv′(2− p)

�

1− �
1− p
p

=
(1− �)u′ (2− p) + �v′ (2− p)
(1− �)u′ (3− p) + �v′ (3− p)

(2)

Assume that v(x) = f(u(x)). Later I will specify what assumptions are necessary about this

function f – in general, it should be strictly concave, which makes v more concave than u, so

early consumers are more risk-averse than late consumers. Then v′ (x) = f ′ (u (x))u′ (x) :
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Substituting this into (2):

�

1− �
1− p
p

=
u′ (2− p)
u′ (3− p)

(1− �) + �f ′ (u (2− p))
(1− �) + �f ′(u (3− p))︸ ︷︷ ︸

Adjustment term K

(3)

Here there is no ”excess supply” effect: the argument of the marginal utilities corre-

sponds to period 0, where each agent must end up holding one unit of the bond. There

is, however, the wealth fluctuation term K. This reflects the fact that the uncertainty is

resolved already at period 1, and some of the period 1 investors (the early consumers) are

different from the period 2 investors (late consumers): if f ′ is not constant, i.e., early con-

sumers have a different risk-aversion from late consumers, then period 0 prices will reflect

this difference. With � > 0 and f ′ decreasing, K is greater than one, which decreases the

price, compared to the ”no taste shock, no learning” benchmark (� = 0).

Intuitively, fast learning makes the risky asset riskless before maturity, so its issue price

will determined by equilibrium at the time of issue – when demand is high (all investors

are buyers). However, fast learning also leads to pre-maturity wealth fluctuations, while

slow learning keeps wealth constant. At the time of issue, since all investors have a chance

to get the taste shock, this makes bonds more risky, which works to lower issue prices for

fast learning. Depending on the balance of these two effects, accelerated future learning

may increase or decrease current bond prices.

3 Results

3.1 Comparing slow and fast learning

My object of interest is the price and welfare difference between slow and fast learning. If

it is possible to have pslow > pfast, then an increase in the speed of information revelation

may decrease bond prices, thus increase bond spreads – even without those news being bad

in expectations. Similarly, I am interested in welfare: is more information (faster learning)

always good for investors or for the issuer?

The first result is about the ”no taste shock” benchmark: it is easy to see that the

speed of learning will have no effect on prices or welfare. If agents care only about their

terminal payoffs, it does not matter how uncertainty is resolved; thus the ”no taste shock”
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case is identical to the ”no taste shock, no learning” benchmark.

Proposition 1 If � = 0, then pfast = pslow.

Proof. In this case, the two first order conditions (1) and (3) become identical, so

period 0 prices are the same. In period 1, there are no trades no matter whether new

information is released or not, since everyone is identical. Therefore, the level of utility is

also the same in the two cases.

This means that without the chance of some investors becoming early consumers (”noise

traders”), a bond with earlier information revelation will always sell at the same price than

a bond with late information, and investors are unaffected by way uncertainty is resolved.

The reason is that both effects (”excess supply” and ”wealth fluctuations”) are reduced

to zero: without early consumers, no investor cares for period 1 wealth fluctuations, and

there is no difference between period 0 and period 1 demand for the bond.

In order to establish conditions under which it is possible to have pfast < pslow, I will

use the monotonicity of certain terms form the first order conditions. These properties are

established in the following lemmas.

Lemma 2 For any concave function u; u′(2−px)
u′(2+(1−p)x) is increasing in x:

Proof. If x1 > x2, then 2 − px1 < 2 − px2; so u′ (2− px1) > u′ (2− px2) : Similarly,

u′ (2 + (1− p)x1) < u′ (2 + (1− p)x2) : This means

u′(2− px1)
u′ (2 + (1− p)x1)

>
u′(2− px2)

u′ (2 + (1− p)x2)
:

Lemma 3 For any concave u with nonincreasing coe�cient of absolute risk aversion,
p

1−p
u′(2−p)
u′(3−p) is increasing in p:

Proof. The term p
1−p is increasing in p: when p increases, the numerator goes up and

the denominator goes down. So all I need is that u′(2−p)
u′(3−p) is increasing. Its derivative is

−u′′(2− p)u′(3− p) + u′′(3− p)u′(2− p)
(u′(3− p))2 =

u′(2− p)
u′(3− p)

(
−u′′(2− p)
u′(2− p)

− −u
′′(3− p)

u′(3− p)

)
;
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which is positive if u has nonincreasing coefficient of absolute risk aversion. Note that this

marginal utility ratio term will be decreasing if the coefficient of absolute risk aversion

is increasing – but the p
1−p might be still increasing enough to make the product also

increasing. So the statement is true for a moderately increasing absolute risk aversion case

as well.

Proposition 4 It is possible to have pfast(�) < pslow(�). In particular, if late consumers

are risk-neutral (u(x) = x) and � > 0, then accelerated learning decreases period 0 bond

prices. Moreover, for any concave u, v has to be "su�ciently more concave" than u in order

to have pfast < pslow. Having u = �v (standard Diamond-Dybvig case) is not su�cient to

generate this e�ect.

As the probability of a liquidity shock becomes positive, early information revelation

(fast learning) might cause the period 0 price to drop – the effect of period 1 wealth

fluctuations on early consumers becomes dominant and makes the bond less desirable. In

the risk-neutral late consumer case, the ”excess supply” channel is simply reduced to zero:

with risk-neutral buyers at period 1, demand for the bond is flat.

In general, the wealth fluctuations effect is large if early consumers are sufficiently hurt

by wealth fluctuations, so if v is concave enough. The ”excess supply” effect depends on how

much risky asset each late consumer must end up buying ( 1
λ) and how much premium they

require to compensate for the riskiness of the bond (the concavity of the u). Thus, in order

to have the wealth fluctuations effect dominate the excess supply effect, the adjustment

term K in (3) has to be large, so f ′ must be sufficiently decreasing, which means that v

must be sufficiently more concave than u.

Proof. When u(x) = x, the argument is straightforward: in the late revelation case,

the period 1 price is determined by risk neutral traders, so it is equal to the expected value

�; and period 0 prices must be equal to period 1 prices. In the early revelation case, period

0 trade involves risk-averse traders (the component �v of their utility function), so the bond

must be traded below its expected value. More formally: when u′ is constant, (1) implies
α

1−α = pslow
1−pslow



If u = �v (so f is simply linear), then the adjustment term in (3) is 1. So

�

1− �
=

pslow
1− pslow

u′
(

2− pslow
1−λ

)
u′
(

2− 1−pslow
1−λ

)
�

1− �
=

pfast
1− pfast

u′ (2− pfast)
u′ (3− pfast)

According to Lemma 2, since � > 0;

u′ (2− p)
u′ (3− p)

<
u′
(

2− p
1−λ

)
u′
(

2 + 1−p
1−λ

) ;
so

u′ (2− pslow)
u′ (3− pslow)

pslow
1− pslow

<
u′ (2− pfast)
u′ (3− pfast)

pfast
1− pfast

:

From Lemma 3, g(p) = u′(2−p)
u′(3−p)

p
1−p is increasing, which shows that pfast > pslow holds.

Consider the case when f is concave, then the adjustment term of (3) is greater than

1. The same argument as for u = �v gives us that g(pslow) < g(pfast)K for some K > 1:

If pslow > pfast holds, then we also have g(pslow) > g(pfast); using Lemma 3 again. So the

adjustment term K = (1−λ)+λf ′(u(2−p))
(1−λ)+λf ′(u(3−p)) must be large enough to enable pslow > pfast.

Notice that the variance of period 1 prices is zero in the slow learning case, and it is

positive in the fast learning case – so a bond with the same default probability but higher

interim price volatility will have a lower price than with the same default probability but

smaller interim price volatility. However, this is not always the case – for other parameter

values, the higher volatility bond would have a higher price. Still, this is a potential

explanation of my empirical findings from the first chapter – without any correlation with

the rest of the market, under certain conditions, a bond with more volatile future prices is

less attractive today.

The next example shows that the risk-neutrality of late consumers is not necessary for

the previous result. Moreover, for any u, one can find an appropriate v which leads to

pslow > pfast (by choosing an appropriately decreasing function f ′).

Example 5 For some concave u, it is possible to have pslow > pfast:
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Choose u = 1
σx

σ, v = 1
βx

β. For � = 0:5; � = 0:1; � = 0:9; � = 0:1, solving numerically

the first order conditions (1) and (2), one gets pslow = 0:4858:::, pfast = 0:4811:::, so

pfast < pslow. For � = 0:95; � = −3, � = 0:5, � = 0:95, we have an even bigger difference:

pfast = 0:9180::: < pslow = 0:9426::: In this second example, the spread has increased by

near 3 percentage points in response to faster learning – in other words, it has increased by

nearly 50%, and faster learning is ”responsible” for almost one third of the total spread.

Proposition 6 For any concave u and �̄ > 0; it is possible to have v such that for any

1 > � > �̄, pslow(�) > pfast(�) holds.

Proof. First I show that pslow (�) is decreasing. When � increases, the right hand

side of the first order condition (1) increases (using lemma 2). In order to restore equality,
p

1−p
u′(2− p

1−λ)
u′(2+ 1−p

1−λ) must decrease. A straightforward modification of lemma 3 shows that this

implies a decrease in p; so pslow is really decreasing.

So there is some declining function pslow (�). Now specify an arbitrary but also declining

”target” path for pfast, always being below pslow (with the exception of 0 and 1 – in 0,

the two functions must coincide; in 1, pslow is undefined since nobody is willing to hold

any bonds if there is nobody to buy them in period one). This implies a target path for

the adjustment term K in (3). Since pfast is decreasing, then pfast
1−pfast

u′(2−pfast)
u′(3−pfast)

is also

decreasing, so K must be increasing.

Now I will construct a concave function f (f ′ > 0 but decreasing) that will achieve the

target path of K – so v = f ◦ u will implement the target path of pfast. I need to define

f consistently in the intervals [u(2 − pfast (0)); u (2)] and [u(3 − pfast (0)); u (3)]: for any

�, I have a condition on f ′ at 2− pfast (�) and 3− pfast (�), plus f ′ has to be decreasing.

Choose a value for � = 0, and then a decreasing path in the first interval – from the

monotonicity of pfast, this can be done in an arbitrary fashion. All I need to ensure is

that f ′ ((2)) > f ′ (u (3− pfast (0))) holds. Later I will restrict the choice of f ′ in the first

interval to imply monotonicity in the second interval.

Let f ′ (u (2− p (�))) = g (�) and h (�) = f ′ (u (3− p (�))), as implied by the target path

of K. It is already ensured that f ′ is decreasing in [u(2 − pfast (0)); u (2)], and its value

in 3− pfast (0) is even smaller. So if I show that h (�) is decreasing, then f ′ is decreasing,

14



and the proof is done. Recall the definition of K :

K (�) =
1− �+ �g (�)
1− �+ �h (�)

;

so

h (�) =
(1− �) (1−K (�)) + �g (�)

�K (�)

and its derivative is

A2 [(−1 +K − (1− �)K ′ + g + �g′)�K − ((1− �) (1−K) + �g)
(
K + �K ′

)]
for some constant A. Expanding the bracket term:

h′ (�) = A2 (�2Kg′ −K − �K ′ +K2 + �2K ′ − �2gK ′
)
:

Here �2Kg′ < 0,
(
�2 − �

)
K ′ < 0, so I need to ensure that K2 − K − �2gK ′ is not too

positive. But I can multiply g with any positive constant, which will still maintain the

monotonicity of f ′ in the first interval and the starting point of the second interval. Given

that K2 −K has a maximum in [�̄; 1]; and �2K ′ has a (strictly positive) minimum, I can

choose g in a way that h′ < 0 holds.

So far, I have shown that if agents face a chance of future taste shocks (becoming early

consumers, or ”noise traders”) and they are aware of this possibility, then an increase in the

speed of information revelation decrease the current price of a bond. Its mechanism was

through an increase in period 1 (pre-maturity) wealth fluctuations, which, if agents might

have to consume in that period due to the taste shock, makes the bond less attractive ex

ante. In a more general interpretation, it means that the way uncertainty is resolved will

affect the price of a risky asset.

Notice that the issue price is negatively related to the welfare of the issuer : for the

same expected repayment, the issuer gets smaller funds. So it might be in the interest

of the issuer to try to restrict information about its future repayment behavior. Let me

now turn to the welfare of investors: are they better-off with faster learning? I will show

that the welfare loss from period 1 wealth fluctuations might cause their period 1 expected
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utility level to decrease; but it is not necessarily the case.

Proposition 7 Ulate(�) < Uearly(�) and Ulate(�) > Uearly(�) are both possible. Further,

it is possible to have any combinations of utility and price rankings; but in the risk-neutral

case (u(x) = x), we always have Ulate(�) < Uearly(�).

So fast learning might increase or decrease the welfare of consumers. Further, it is

possible that fast learning increases the price and decreases utility (the issuer is happy to

give the information, but the market would prefer not to listen); it might increase both the

price and utility (everyone is happy with the information); pfast < pslow and uearly > ulate:

in this case, investors would be willing to incur some cost for fast learning, but that would

decrease the price. This means that the issuer of the bond would lose – it gets a smaller

amount for the same expected repayment. In this case, the issuer may even try to limit the

speed of revealing information – a current piece of news describes a similar event, though

the explanation is not necessarily restricted to the effect I am exploring: China restricted

posting news to websites without government approval (Financial Times, November 7 and

8, 2000). Finally, faster learning might decrease the price and the level of utility, making

it undesirable for both parties.

Proof. Again, choose u (x) = 1
σx

σ; v (x) = 1
βx

β, � = 0:5: Table 1 gives four different

combinations of �, � and �, for which the relative ranking of utilities and prices shows all

possible variations.

Table 1: Utility and price comparison

� � � pfast pslow uearly ulate
0:1 0:9 0:1 0:4811:: < 0:4858:: 2:9463:: > 2:9445::
0:1 0:7 0:1 0:4574:: < 0:4583:: 3:1711:: < 3:1774::
0:1 0:4 0:1 0:4238:: > 0:4190:: 4:0650:: < 4:0671::
0:9 −1 −1:01 0:2844:: > 0:0222:: −0:468:: > −0:474::

For the risk-neutral late consumers case, it is clear that pslow = � > pfast: As for the

utility levels,

ulate = �v (2) + (1− �) · 2
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and

uearly = � (1− �) (2− p) + ��v (3− p) + (1− �) (1− �) (2− p) + (1− �)�v (2− p)

= (1− �) · 2 + (1− �) (�− p) + ��v (3− p) + (1− �)�v (2− p) :

The difference of these two expressions is

ulate − uearly = − (1− �) (�− p) + � [v(2)− �v (3− p)− (1− �) v (2− p)] : (4)

The first order condition for pfast is

�

1− �
1− p
p

=
(1− �) + �v′ (2− p)
(1− �) + �v′ (3− p)

=
(1− �) + �c1
(1− �) + �c2

;

which yields

p =
�− ��+ ��c2

1− �+ c1�− c1��+ c2��
: (5)

Note that this is not a ”real” closed form of the solution, since c1 and c2 also depend on p,

but this will be sufficient. Using the notations from Figure 1, v (2) = v (2− p)+−→BC+−→CF =

Figure 1: Utility comparison for the risk-neutral case
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v (2− p)+pc1+−→CG, v (3− p) = v (2− p)+−→BC+−→CD+−→DF = v (2− p)+pc1+−→CD+(1−p)c2,

since the slope of AC is c1, and the slope of DE is c2. Substituting these into (4), one gets

ulate − uearly = −�+ ��+ p− p�+ �
(
pc1 +−→CG− �pc1 − �

−→
CD − �c2 + �pc2

)
= p (�c1 − ��c1 + ��c2 + 1− �) + ��− �− ��c2︸ ︷︷ ︸+�(−→CG− �−→CD):

Plugging in the expression for p from (5), the underbracketed term cancels, so

ulate − uearly = �
(−→
CG− �−→CD

)
= �

(−→
CG− �−→CG− �−→GD

)
= �

(
(1− �)−→CG− �−→GD

)
:

Now I need to use the concavity of u: since G is v(2), so it must be below the tangent from

2 − p. It implies that −→CG < 0: Moreover, G is also below the tangent from 3 − p, which

means −→GD > 0: Putting these two together shows that ulate − uearly < 0:

Let me give some interpretation to this result. Given a certain price level p0, I define a

constrained efficient allocation: it corresponds to the case when agents can write contracts

based on the taste shock, but they are still subject to the same bond prices and the

same uncertainty about terminal repayment. This can be thought as a coalition of agents

investing their total wealth, and agreeing on an allocation rule between late and early

consumers (self-insurance). I am imposing the same investment decision on this coalition

(buying one unit of the bond, at the same price p0) – I want to focus only on the allocation

of consumption within the coalition, without any changes in its total wealth. Let cED be the

level of consumption of early consumers if the bond issuer defaults, cER under repayment;

cLD and cLR are the consumption levels for late consumers. The optimal arrangement for

early information revelation then maximizes

��v(cER) + � (1− �) v(cED) + (1− �) (�u(cLR) + (1− �)u(cLD))

subject to the budget constraints:

�cER + (1− �) cLR = 3− p0

�cED + (1− �) cLD = 2− p0
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Under slow information revelation, we have a similar optimization problem, but with a

potentially different price level p0 and the extra constraint cED = cER, since the repayment

uncertainty is not yet resolved when early consumers need to get their consumption.

Moving from this second best allocation to the one without self-insurance (which is the

market outcome), the investor choice problem in fact means maximizing the same objective

function, subject to separated budget constraints: the total endowment 3− p0 is forced to

be split evenly in the fast learning case (cER = cLR, cED = cLD); and in another fixed way

in the slow learning case (cED = cER = 2, cLR = 3−p0−2λ
1−λ = 2 + 1−p0

1−λ , cLD = 2− p0
1−λ).

When one compares the second best welfare levels of the different information revela-

tion scenarios, we have two effects in general: a ”wealth” effect, coming from a potentially

different p0, and the additional constraint cED = cER (not allowing fully contingent con-

sumption plans). If pfast < pslow, this comparison is unambiguous: with fast learning, you

have higher wealth and less constraints. If pfast > pslow, the two effects work against each

other, so the comparison is ambiguous.

Moving to the market outcomes, one cannot determine which scenario implies a larger

welfare loss relative to second best – so we can have any combinations of price and welfare

comparisons. Note that if pfast < pslow, the second best level is higher for the fast revelation

case, so to have this order reversed in the market outcome, the distortion due to the

lack of self-insurance must be large. With risk-neutral late consumers, we always have

pfast < pslow, so in a second best world, it is always desirable to get new information, and

the distortion can never be large enough to reverse this conclusion. As the examples show,

with risk-averse late consumers, it is possible that fast learning is desirable under the second

best allocation of consumption (pfast < pslow), but without self-insurance, uearly < ulate.

This is also the case when both the issuer and the investors are worse-off.

3.2 Convexification of the speed of learning

In the previous subsection, I have compared two extremes: one case when there was no

new information revealed at period 1, the other when there was full revelation in period 1.

This comparison also gave me a two-point relationship between issue (period 0) prices and

interim (period 1) price volatility. Now I want to do a more convex version of the same

comparison. One potential way would be to assume that even slow learning involves getting

some new information, and fast learning implies much more but not perfect revelation.
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Under this modification, the same two effects would be present as before: the ”excess

supply” channel and the ”wealth fluctuations” channel, yielding similar, though maybe

less clear results (one may need stronger assumptions on parameters, utility functions

etc.).

In some sense, fast learning would be a mean-preserving spread relative to slow learning

– in the risk-neutral late consumer case, it is definitely true for period 1 prices: Slow learning

means that the ex ante binary outcome (repayment or default) is refined into some interim

positions, each with a binary outcome but different probabilities. Period one prices are

then equal to these probabilities. Under fast learning, we get the same refinement as with

slow learning, and some extra: each node is further decomposed into binary nodes. So

at each node, period 1 prices become a lottery with the same expected value as the slow

learning period 1 price at that node, which is a mean-preserving spread.

I will instead mix the fast and the slow learning cases in a probabilistic sense: assume

that there is a chance � that in period 1, investors learn the repayment behavior (fast

learning case), and 1−� that there is no news revelation. This in general defines p0(�) and

V0[p1](�). I will give conditions under which V ′(�) > 0 and p′(�) < 0 – so with a bigger

chance of getting new information, prices actually go down, together with increased future

price volatility.

This can be an explanation for crisis periods giving much bigger movements in long-

term bond prices than any ”sensible” estimates of changes in default probability: in crises,

you expect to learn quite much about the country’s ability and willingness to repay, so this

mechanism would increase near-future price volatility and decrease current prices, even

without any change in � (default risk) or � (”noise trader” risk). We would see, however,

no extra effect on trade volumes – noise traders sell inelastically, so the quantity traded

must remain the same if � remained the same. Once � also fluctuates, one can get quantity

effects as well.

Proposition 8 V ′(0) > 0; so for small values of �, the variance term is increasing. If

u(x) = x, then V ′ > 0 for all �. If u(x) = −1
θe
−θx (CARA), then under some conditions

on �, � and �, V is increasing.

Proof. The period 1 price level is 1 with probability ��, 0 with probability �(1− �),
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and p1 with probability (1− �). So its variance is

V (�) = ��+ (1− �) p2
1 − (��+ (1− �) p1)2

= �
(
�− �2)+

(
�− �2) (�− p1)2 :

In general, p1 is coming from the period-one, slow learning case maximization problem and

market clearing. The objective function is

�u (x1 + b1) + (1− �)u (x1) = �u (3− p0 + b− p1b) + (1− �)u (3− p0 − p1b) ;

and the first order condition is

�u′ (3− p0 + b(1− p1)) (1− p1) = (1− �)p1u
′ (3− p0 − bp1) :

Market clearing implies that b = 1
1−λ , so p1 is the solution of

�u′
(

3− p0 +
1− p1

1− �

)
(1− p1) = (1− �)p1u

′
(

3− p0 −
p1

1− �

)
: (6)

It is clear that p1 in general also depends on �: though � itself does not appear in the

equation, but p0 depends on �. So there is some function p1 (�). Then

V ′ (�) = �− �2 + (1− 2�) (�− p1)2 − 2
(
�− �2) (�− p1) p′1:

For � = 0, this value is �− �2 + (�− p1)2 > 0, so V is increasing for small values of �.

If u (x) = x, then p1 = �, and V (�) = �
(
�− �2

)
> 0: Finally, if u(x) = −1

θe
−θx, then

the solution of the first order condition (6) is p1 =
α

1−α e
− θ

1−λ

1− α
1−α e

− θ
1−λ

. which is a constant. Then

V ′ (�) = �−�2 + (1− 2�) (�− p1)2 is decreasing in �. In order to have V ′ (�) > 0 for all

�, it is enough that V ′(1) > 0 holds. That requires p1 > �−
√
�− �2, which is equivalent

to

1 <

√
1− �
�

+ e−
θ

1−λ +
√

�

1− �
e−

θ
1−λ : (7)

So if �; � and � are such that this condition is satisfied, then V ′(�) > 0:

21



Intuitively, one would expect the variance to be increasing in �: with a higher chance

of fast learning, there is higher chance of a random price next period, which means more

variance. This effect clearly dominates initially. Later, however, as � becomes even larger,

p1 (�) might be significantly different from �, which is the expected price in the fast learning

realization, so the slow learning realization may end up contributing more to the total

variance than the fast learning case. If this is the case, an increase in � might decrease the

variance. With constant absolute risk aversion, p1 (�) is constant – but it still may be too

far from �. Condition (7) ensures that p1 (�) is close enough to �:

Next I turn to the behavior of prices. I will show that prices are always monotonic in

� (the chance of fast learning, or more generally, the speed of learning) – so if p(0) > p(1),

then p(�) is decreasing. For this I first establish a relationship between p0 and p1 (slow-

learning period 1 prices).

Lemma 9 If u has nonincreasing absolute risk aversion and p0 > p̃0, then p1 < p̃1:

Proof. With the slow learning realization, wealth in period 1 is W = x0 + p1b0 =

2 − p0b0 + p1b0 = 2 − p0 + p1: Suppose p̃0 < p0. Then at the same period 1 price level

p1, W < W̃: Given that u has nonincreasing absolute risk aversion, lower wealth implies

lower demand for the risky asset (the bond). So with W̃ , there would be excess demand

for bonds at period 1 (since the market clears with wealth W ), which implies p̃1 > p1:

Proposition 10 The period 0 price is always a monotonic function of �. In particular, if

p(0) = pslow > pfast = p(1), then p(�) is decreasing.

Proof. Consider the period 0 objective function:

U = � [� (�v(x+ b) + (1− �)u (x+ b)) + (1− �) (�v (x) + (1− �)u (x))]︸ ︷︷ ︸
fast learning

+ (1− �) [(1− �) v (x+ p1b) + �max{�u(x2 + b2) + (1− �)u (x2)}]︸ ︷︷ ︸
slow learning

The indirect utility of the slow learning realization depends only on wealth at period 1

(since the price level is fixed at the equilibrium level), so it can be rewritten as g (x+ p1b) =

g (2− pb+ p1b) : It is clear that g′ > 0: For the early learning realization, utility is a function
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of both x and b, but x = 2 − pb, so the utility can be written as h(b): So the first order

condition is

g′ (2− pb+ p1b) (p1 − p) = �
[
g′ (2− pb+ p1b) (p1 − p)− h′ (b)

]
:

From market clearing, b = 1, so p satisfies

g′ (2− p+ p1) (p1 − p) = �
[
g′ (2− p+ p1) (p1 − p)− h′ (b)

]
:

Suppose that �′ > �: If p (�) < p(0), then from lemma 9, p1 (�) > p1 (0) = p (0) : Look

at the first order condition for p = p (�) and �: Since g′ > 0 and p1 > p, the right hand

side must also be positive. So if one replaces � with �′, at the same price levels p and p1,

the first order condition becomes negative. So with �′, at the same p (thus p1), investors

would want to hold less bonds than 1 – so the equilibrium price, p (�′), must be smaller.

Similarly, if p (�) > p (0), then p is increasing at �. So if p is increasing at zero, then it

goes above p (0), and it has to stay above and further increase; it p is decreasing at zero,

then it is decreasing everywhere.

This is quite an intuitive result (though the argument was a bit complicated): as � goes

from zero to one, there is an increasing chance to get the realization with fast information

revelation. Therefore, the importance of the wealth fluctuation effect is increasing, and

the role of the excess supply effect is decreasing. At any point, the infinitesimal change in

p(�) is determined by whether we are ”subtracting more” from the supply effect or ”adding

more” from the fluctuations effect. If the full fluctuation effect is bigger that the full supply

effect (p(0) > p(1)), then this infinitesimal change is negative, and p(�) is decreasing; and

vice versa.

4 Conclusions

The paper presented a Diamond–Dybvig type model in which agents face a liquidity risk

(becoming more risk-averse early consumers), and the speed of learning about default risk

may also change. The two extremes of learning were no information revelation between

issue and maturity, versus full information revelation at some point before maturity. Later

I also considered a more continuous form of the speed of learning: learning is either fast
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or slow, with some probability � and 1− �.

In general, there are two effects at work when one compares price and welfare levels of

the two extremes: one is an ”excess supply”, the other is a ”wealth fluctuation” effect. The

excess supply effect applies to the slow learning case: without new information, period 0

and period 1 prices must be the same, so the issue price will be determined by asset market

equilibrium in period 1, when demand is low and supply is high (only the late consumers

are ready to hold the asset, and all the early consumers want to sell). When compared to

the ”no learning, no taste shock” benchmark, this decreases issue prices: in order to make

risk-averse investors hold more of the risky bond, the price must fall.

The wealth fluctuation channel operates under fast learning: with new information

in period 1, the period 1 price level becomes a random variable. This generates wealth

fluctuations, which hurts early consumers: they consume from their period 1 wealth, and

if they are more risk-averse when hit by the taste shock, these fluctuations make them

worse-off. Incorporating the chance of a taste shock in the period 0 maximization problem

then makes issue prices go down in equilibrium.

So the price comparison of fast and slow learning depends on the relative strength of

these two effects: if wealth fluctuations matter more, then fast learning will lead to lower

issue prices. Under certain conditions (for example, risk-neutral late consumers but risk-

averse early consumers), it is true that the wealth effect dominates the excess supply effect.

This result carries through to the continuous case: under the same conditions, the period

0 price level was decreasing in the probability of the fast learning realization.



way uncertainty is resolved. With many interim steps of the terminal payoff lottery, pre-

maturity prices will fluctuate a lot, and with a chance of early sale (liquidation), investors

value such a bond less.

Faster learning, more precise information will in general lead to more volatile prices.

Expecting such an event in the future may lead to important price changes already today:

if there is a chance that an investor has to liquidate her portfolio exactly in those volatile

weeks, that increases the risk of the bond, driving its price down, potentially much more

than what the increase in or the uncertainty about default probabilities would imply.

Moreover, this effect should be more profound for long-term bonds: their default risk

might change only slightly, but price volatility still increases during a crisis, which leads to

a larger than expected overall drop in prices.
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