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Abstract

We propose a semiparametric measure to estimate systemic interconnectedness

across financial institutions based on tail-driven spill-over effects in a ultra-high

dimensional framework. Methodologically, we employ a variable selection technique

in a time series setting in the context of a single-index model for a generalized

quantile regression framework. We can thus include more financial institutions into

the analysis, to measure their interdependencies in tails and, at the same time, to

take into account non-linear relationships between them. A empirical application

on a set of 200 publicly traded U. S. financial institutions provides useful rankings

of systemic exposure and systemic contribution at various stages of financial crisis.

Network analysis, its behaviour and dynamics, allows us to characterize a role of

each sector in the financial crisis and yields a new perspective of the financial

markets at the U. S. financial market 2007 - 2012.

Keywords : Systemic Risk, Systemic Risk Network, Generalized Quantile, Quantile Single-

Index Regression, Value at Risk, CoVaR, Lasso

JEL: G01,G18,G32,G38, C21, C51, C63.

∗Financial support from the Deutsche Forschungsgemeinschaft (DFG) via SFB 649 “Ökonomisches
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1. Introduction

Systematic risk is often known as risk stemming from the aggregate fluctuations in the

economy. The sources of risk are complex, as both exogenous and endogenous factors

are involved. This usually calls for a study on a financial network which accounts for

interaction between the agents in the financial market. Unlike idiosyncratic risk, the

systemic risk is not diversifiable. Although the notion systemic risk is not novel in

the academic literature (see, e.g, Minsky (1977)), it has been neglected both in the

academia and in the financial risk industry until the outbreak of the financial crisis

in 2007-2009. The magnitude of repercussions caused by the financial crisis in 2007-

2009 and its complexity revealed a significant flaw in financial regulation which has been

focused primarily on stability of a single financial institution and triggered several political

initiatives across the world such as establishment of Financial Stability Board (FSB)

after G-20 London summit in 2009, integration of systemic risk agenda into Basel III in

2010 prior to G-20 meeting in Seoul, enacting the Dodd Frank Wall Street Reform and

Consumer Protection Act (‘Dodd Frank Act’) in U. S. in 2010 which is said to bring the

most radical changes into the U. S. financial system since the Great Depression.

These initiatives created several challenges such as identifying systemically important

financial institutions (SIFIs) whose failure can not only impair the functioning of the

financial system but also have adverse effects on the real sector of the economy, studying

the propagation mechanism of a shock in a system, or in a network formed by financial

institutions, investigating the response of a system to a shock as a whole as well as reveal-

ing certain structural patterns in evolution and behavior of a network and establishing a

theoretical framework for systemic risk as such.

Although systemic risk is a relatively straightforward concept aimed at measuring risk

stemming from interaction between the agents, the variety of risk measures employed at

estimating systemic risk and diversity of possible methods to model interaction effects

leads to a fact that the literature on this topic is highly heterogenous. The relevant litera-

ture in this field can be broadly divided into two groups: economic modelling of systemic

risk and financial intermediation including microeconomic (e.g., Beale et al. (2011) and

macroeconomic approaches (e.g., Gertler and Kiyotaki (2010) with the emphasis on theo-

retical, structural framework, and quantitative modelling with the emphasis on empirical

analysis. The quantitative literature can be further classified by statistical methodol-

ogy into quantile regression based modelling such as linear bivariate model by Adrian

and Brunnermeier (2011), Acharya et al. (2012), Brownlees and Engle (2012), high-

dimensional linear model by Hautsch et al. (2014), partial quantile regression by Giglio

et al. (2012) and partial linear model by Chao et al. (2014). Further approaches include

principal-component-based analysis, e.g., by Bisias et al. (2012), Rodriguez-Moreno and
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Peña (2013) and others; statistical modelling based on default probabilities by Lehar

(2005), Huang et al. (2009), and others; graph theory and network topology, e.g., Boss

et al. (2006), Chan-Lau et al. (2009).

Our paper belongs the quantitative group of the aforementioned literature, namely, mod-

elling the tail event driven network risk based on quantile regressions augmented with

non-linearity and variable selection in ultra-high dimensional time series setting. As a

starting point of our research we take co-Value-at-Risk, or CoVaR, model by Adrian

and Brunnermeier (2011) (AB), where ‘co-’ stands for ‘conditional’, ‘contagion’, ‘co-

movement’. To capture the tail interconnectedness between the financial institutions in

the system AB evaluate bivariate linear quantile regressions for publicly traded financial

companies in the U. S. The CoVaR concept builds upon the concept of VaR with the

difference that CoVaR is not simply VaR of an institution itself but is augmented with

weighted VaR of another financial institution.

Whereas AB focus on bivariate measurement of tail risk we aim at assessing the tail

interconnectedness of a single financial institution with all other financial companies

simultaneously. Thus, the primary challenge is selecting the set of relevant risk drivers for

each financial institution. Statistically we address this issue by employing the a variable

selection method in the context of single-index model for generalized quantile regressions,

i.e. for quantiles and expectiles. We further extend it to a time series variable selection

context in ultra-high dimensions. The semi-parametric framework due to the single-index

model allows us to investigate possible non-linearities in tail interconnectedness. Based

on identified relevant risk drivers we construct a financial network based on spill-over

effects across financial institutions. Further we propose two indices, namely, systemic

contribution index and systemic exposure index where we rank all the companies based

on their degree of their contribution (or exposure) to systemic risk.

The assumption of non-linear relationship between returns of financial companies is moti-

vated by previous work by Chao et al. (2014), who find that the dependency between any

pair of financial assets is often non-linear, especially in periods of economic downturn.

Moreover, non-linearity assumption is more flexible especially in a ultra-high dimensional

setting where the system becomes too complex to support the belief of linear relationships.

The model is evaluated based on daily return data on 200 publicly traded U. S. financial

institutions from January 1, 2006 till September 1, 2012. The financial institutions are

grouped according to their SIC code by industry. The time period from January 1,

2006 to September 1, 2012 covers one recession (2007-2009) and several documented

financial crises (2008, 2011). Dividing companies by sectors and including several market

perturbations allows not only to select the key players for each time period, but also

additionally to highlight the connections between financial industries, which can in turn
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provide additional information on the nature of market dislocations.

The rest of the paper is organized as follows. In Section 2 our approach to systemic

risk modelling is outlined. Section 3 presents the statistical methodology and the related

theorems. Section 4 illustrates the empirical application. Section 5 concludes. Appendix

A contains proofs and Appendix B contains estimation results.

2. Systemic Risk Modelling

Traditional measures assessing riskiness of a financial institution such as VaR, or expected

shortfall (ES) are based either on company characteristics and/or integrate macropru-

dential variables which account for the general state of the economy. Thus, for example,

VaR of a financial institution, a risk measure most commonly used in practice, is defined

as

P(−Xi,t ≥ V aRτ
i,t|Di,t) = P(Xi,t ≤ qτi,t|Di,t) = τ, (1)

where Xi,t is the return of a financial institution, qτi,t is the conditional τ -quantile of Xi,t

at τ = (0, 1) and Di,t denotes the risk drivers relevant for company i, e.g., returns of a

financial institution itself, and/or variables reflecting the general state of the economy.

However, recent perturbations at the financial market lead to wide recognition of the fact

that in terms of risk what is optimal for a single company is not optimal for the economy

as a whole. Therefore, in our model we extend this information set, Di,t, and include

asset returns of other financial institutions. This allows us to model interaction effects

between financial institutions. By extending the information set with asset returns of

other financial institutions we assume that the risks are transmitted through returns.

This is a simplified assumption, since the risk transmission channels can be defined in

a finer way, however, asset returns are known to reflect many aspects of the state of a

financial institution simultaneously and, thus, we think it is justified to use them for the

analysis of network effects.

The starting point of our research is the AB model proposed. Built upon the con-

cept of VaR they proposed: CoVaR, estimated in two steps. In the first step linear

quantile regressions are estimated under standard assumption of F−1εi,t
(τ |Mt−1) = 0 and

F−1εj|i,t
(τ |Mt−1, Xi,t) = 0:
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Xi,t = αi + γiMt−1 + εi,t, (2)

Xj,t = αj|i + γj|iMt−1 + βj|iXi,t + εj|i,t, (3)

where Xi,t is the log return of institution i and Mt−1 are lagged macroprudential variables

describing the general state of the economy (See Section 4 for description of macropru-

dential variables). AB propose to determine VaR of an institution i by regressing log

return of company i on macroprudential variables. The obtained βj|i in the equation

(3) has standard linear regression interpretation, i.e. it determines the sensitivity of log

return of an institution j to changes in log return of an institution i. In the second step

the CoVaR is calculated by plugging in VaR of company i at level τ into the equation

(3):

V̂aRi,t = α̂i + γ̂iMt−1, (4)

ĈoVaR
AB

j|i,t = α̂j|i + γ̂j|iMt−1 + β̂j|iV̂aR
τ

i,t, (5)

= V̂aR
τ

j|Xi=V̂aR
τ

i,t
+ β̂j|iV̂aR

τ

i,t. (6)

Thus, the risk of a financial institution j is estimated as the sum of its own value-at-risk

conditional on the fact that the financial institution i is at its VaR level τ and a weighted

VaR of an institution i where the magnitude of the weight is determined by the degree

of interconnectedness between institutions i and j reflected in βj|i, or βj←i. By setting j

equal to the return on a system, e.g. value-weighted average return on a financial index,

and i to the return on a financial company i, we obtain the contribution CoVaR which

characterizes how a company i influences the rest of the financial system. By doing the

reverse, i. e. by setting j equal to a financial institution and i to a financial system, one

obtains exposure CoVaR, i. e. the extent to which a single institution is exposed to the

overall risk of a system.

This approach allows to identify the key elements of systemic risk, namely, network ef-

fects, a single institution’s contribution to systemic risk and a single institution’s exposure

to systemic risk, however, it has certain limitations. First of all, it is questionable how

to define the return on a system: it has to be proxied by the return on publicly available

financial institutions, which, in turn, can be problematic since as AB point out it can cre-

ate mechanical correlation between a single financial institution and the value-weighted

financial index. Although they state that no such correlation is detected, this approach

has to be adopted with caution. Secondly, by performing only pairwise quantile regres-
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sions one assumes that two companies are interacting in an isolated environment which

is not a realistic assumption since all other interaction effects are suppressed.

This motivates us to extend this bivariate model to a (ultra)high dimensional setting by

including more variables into the analysis and also allowing for non-linear relationship be-

tween the variables. The key element in identifying systemic interconnectedness between

the financial institutions lies in precise measurement of the network effects. Based on es-

timated network effects we evaluate single institution’s exposure and single institution’s

contribution to systemic risk.

To identify the spill-over effects we employ the methodology by Fan et al. (2014) ex-

tended to a time series setting. This requires estimation of a single-index model and

performing variable selection to identify the key risk drivers for each financial institution

simultaneously. More precisely, we estimate:

Xi,t = αi + γiMt−1 + εi,t, (7)

Xi,t = g(β>i|−iD−i,t) + εi,t, (8)

where Xi,t is the log return, D−i,t contains the risk drivers relevant for institution i,

g(·) is a link function allowing for the nonlinear relationships. Here D−i,t is equal to

macroprudential variables as well as log returns of the financial institutions except for an

institution i . We employ the same macroprudential variables as AB, and estimate the

VaR by linear quantile regression (7) of log returns of an institution i on macroprudential

variables. This is justified by the analysis of Chao et al. (2014), who found no nonlinear

effects in regressing Xi,t on Mt.

Estimation of equation (8) is performed in two steps: in the first step we perform variable

selection to identify relevant risk drivers; in the second step, we estimate link function,

g(·), which characterizes relationship between asset returns of an institution i and the

rest of the financial system defined in our case as all financial institutions in a sample

except for an institution i. Thus, the spill-over effects, for example, from institutions −i
to an institution i are determined by coefficients βi|−i.

We then obtain VaR and CoVaR as follows:

V̂aRi,t = α̂i + γ̂iMt−1, (9)

ĈoVaR
TENET

i|−i,t = ĝ(β̂>i|−iD̂
∗
−i,t) + εi,t (10)

where D̂∗−i,t = (VaR∗−i,t,Mt−1) and a star denotes that only the VAR of those financial
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institutions are included which are chosen to be relevant by the variable selection proce-

dure. As one sees in (10) CoVaR comprises not only the influences of financial institutions

in a sample except for i, but also incorporates non-linearity reflected in the shape of a

link function g. Therefore, we name it CoV aRTENET which stands for Tail-Event-driven

NETwork risk.

Non-zero β̂ coefficients obtained as a result of estimation of a single-index model allow to

measure spill-over effects across the financial institutions and characterize their evolution

as a system represented by a network. The term network refers to a (directed) graph,

formally written as G = (V,E) where V is a set of vertices and E is a set of links,

or edges. To classify financial institutions by their role in the systemic risk context we

focus rather on matrix than on network representation of a system and summarize the

estimation results in a form of a weighted and unweighted adjacency matrices. A weighted

adjacency matrix contains β̂ coefficients, see Table 1, whereas an unweighted adjacency

matrix is constructed by replacing non-zero β̂ coefficients with di = 1{β̂i 6= 0}.

xs1,1 · · · xs1,n1
xs2,1 · · · xs2,n2

· · · xs4,1 · · · xs4,n4
To



xs1,1 0 · · · β̂s1,n1
|s1,1 β̂s2,1|s1,1 · · · β̂s2,n2

|s1,1 · · · β̂s2,1|s1,1 · · · β̂s4,1|s1,1

p∑
j=1

β̂j|xs1,1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

xs1,n1
β̂s1,1|s1,n1

· · · 0 β̂s2,1|s1,n1
· · · β̂s2,n2

|s1,n1
· · · β̂s4,1|s1,n1

· · · β̂s4,1|s1,n1
xs2,1 β̂s1,1|s2,1 · · · β̂s1,1|s2,1 0 · · · β̂s2,n2

|s2,1 · · · β̂s4,1|s2,1 · · · β̂s4,n4
|s2,1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

xs2,n2
β̂s1,1|s2,n2

· · · β̂s1,n1
|s2,n2

β̂s2,1|s2,n2
· · · 0 · · · β̂s4,1|s2,n2

· · · β̂s4,n4
|s2,n2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

xs4,1 β̂s1,1|s4,1 · · · β̂s1,n1
|s4,1 βs1,n1

|s4,1 · · · β̂s2,n2
|s4,1 · · · 0 · · · β̂s4,n4

|s4,1
.
.
.

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

xs4,n4
β̂s1,1|s4,n4

· · · β̂s1,n1
|s4,n4

βs2,1|s4,n4
· · · β̂s2,n2

|s4,n4
· · · β̂s4,1|s4,n4

· · · 0

From
p∑

i=1

β̂xs1,1
|i · · · · · · · · · · · ·

p∑
i=1

p∑
j=1

β̂i|j

Table 1: An adjacency matrix for financial institutions classified according sectors denoted as sm,k
where m = 1, · · · , 4 are sectors and k = 1, · · · , nm are the corresponding samples in a sector.

The above p×p matrix in Table 1 where p is equal to the number of financial institutions

represents total connectedness across variables at each time point t = 1, · · · , n. The

adjacency matrix, or a total connectedness matrix, is sparse and off-diagonal since our

model by construction does not allow for self-loop effects (namely one variable cannot be

regressed on itself). The rows of this matrix correspond to outgoing edges for a variable

in a respective row and the columns correspond to incoming edges for a variable in a
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respective column. For example, row 1 contains β̂ coefficients of all the variables that are

influenced by company 1 from sector 1, xs1,1 . Thus, a cell (xs1,1 , xs1,n1 ) contains β̂s1,n1 |s1,1
which is the magnitude of the influence of company 1 from sector 1, xs1,1 , on company n

from sector 1, xs1,n1 .

To classify institutions according to their systemic importance we construct two indices

based on the weighted adjacency matrix: index of systemic contribution, Ci,t, and index

of systemic exposure, Ei,t. This allows us to identify risk emitters and risk recipients. We

define the index of systemic contribution, Cm,k
i,t , as a proportion of the sum of β̂ coefficients

corresponding to outgoing links, or a sum of each row of a weighted adjacency matrix, to

the total sum of β̂ coefficients at the particular t = 1, · · · , n:

Cm,k
i,t

def
=
(

1 +

∑
j 6=sm,k β̂j|sm,k∑p
i=1

∑p
j=1 β̂i|j

)
V̂aR

m,k

i,t , (11)

where m = 1, · · · , 4 are sectors and k = 1, · · · , nm are the sample sizes of corresponding

sectors. Index of systemic contribution weights VaR of a corresponding financial insti-

tution with proportion of its influence on the rest of the financial companies. In other

words, VaR of a financial institution is proportional to its monopoly power at the market

defined through its systemic connectedness.

Correspondingly, we define the index of systemic exposure, Em,k
i,t , as a proportion of the

sum of β̂ coefficients corresponding to incoming links, or sum of each column of a weighted

adjacency matrix, to the total sum of β̂ coefficients at the particular t = 1, · · · , T :

Em,k
i,t

def
=
(

1 +

∑
i 6=sm,k β̂sm,k|i∑p
i=1

∑p
j=1 β̂i|j

)
V̂aR

m,k

i,t , (12)

The conceptual difference to AB is that whereas they assume that CoVaR of a financial

institution increases if it is influenced by another institution, we assume that CoVaR

increases if a financial institution is not only being influenced but also exerts significant

influence on other financial institutions itself. This is motivated by the fact that not only

heavily influenced institutions become riskier in the period of crisis, but also those with

high degree of monopoly power in terms of systemic interconnectedness are potentially the

first ones to fail. After constructing these indices we classify a financial institution either

as a risk-emitter, or as a risk-recipient by computing max{Cm,k
i,t , E

m,k
i,t }. As a example, the

value-at-risk based on exposure and contribution indices for selected companies, Fairfield

Greenwich Group (FGG, Broker-Dealers), FBL Financial Group (FFG, Insurance), which
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are the largest risk-contributors and risk-receivers are presented in Figures 11 and 12. A

more comprehensive empirical analysis can be found in Section 4.

3. Statistical Methodology

Let us denote Xt ∈ Rp as p as the variables D−i,t before, p can be very large, namely of

exponential rate. We also suppress the subscripts of the coefficients βi|js, as we focus on

one regression. The SIM of (8) is defined to be:

Yt = g(X>t β
∗) + εt, (13)

where {Xt, εt} are strong mixing processes. Regressors Xts can be the lagged variables

of Yt.

Note that (13) can be formulated in a location model and identified in a quasi maximum

likelihood framework: the direction β (for known g(·)) is the solution of

min
β

E ρτ{Yt − g(X>t β)}, (14)

with loss function

ρτ (u) = ρ(u) = τu1(u > 0) + (1− τ)u1(u < 0), (15)

E(ψτ{Yt − g(X>t β)}|Xt) = 0 a.s.

(where ψτ (·) is the derivative (a subgradient) of ρτ (·) ). It can be reformulated as

F−1ε|Xt(τ) = 0.

The model is similar to the location scale model considered in Franke et al. (2014). Note

that it is not hard to extend it to a quantile AR-ARCH type of single index model,

Y = g(X>t β) + σ(X>t γ)εt (16)

To estimate the shape of a link function g(·) and selected β coefficients we adopt mini-

mum average contrast estimation approach (MACE) outlined in Fan et al. (2014). The

estimation of β and g(·) is as following:
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β̂, ĝ(·) def
= arg min−Ln(β)

= arg minn−1
m∑
j=1

n∑
t=1

ρτ
{
Yt − g(β>Xt)− g′(β>Xt)β

>(Xt −Xj)
}

Kh{β>(Xt −Xj)}/
n∑
t=1

Kh(X
>
tjβ), (17)

where Kh(·) = h−1K(·/h), K(·) is a kernel e.g. Gaussian kernel and h is a bandwidth.

Since the data is not equally spaced we choose a bandwidth h based on k-nearest neighbor

procedure (See Härdle et al. (2004)). The optimal k, number of neighbors, are selected

based on a cross-validation criterion. The implementation involves an iteration between

estimating β and g(·), with a consistent initial estimate for β, see for example Wu et al.

(2010). Further in our procedure, we argument the estimation problem in equation (17)

with variable selection to estimate β:

β̂τ , ĝ(·) = arg min
β,g(·)

n−1
n∑
j=1

n∑
t=1

ρτ
{
Xt − g(β>Xj)− g′(β>Xj)X

>
tjβ
}
ωtj(β) +

p∑
l=1

γλ(|βl|θ),(18)

where Xtj = Xt−Xj, ωtj(β)
def
=

Kh(X
>
tjβ)∑n

t=1Kh(X>tjβ)
, θ ≥ 0, and γλ(t) is some non-decreasing

function concave for t ∈ [0,+∞) with a continuous derivative on (0,+∞). We now

discuss the choices of an optimal penalty function and an optimal penalization param-

eter. There are several approaches in the literature concerning choosing penalty func-

tion. These approaches can be classified based on the properties desirable for an optimal

penalty function, namely, unbiasedness, sparsity and continuity (Fan and Li (2001)). The

classical approach known as least absolute shrinkage and selection operator (LASSO) is

proposed for mean regression by Tibshirani (1996), which is based on L1 penalty for

the coefficients. Numerous studies further adapt LASSO variable selection procedure to

a quantile regression framework such as Yu et al. (2003), Li and Zhu (2008), Belloni

and Chernozhukov (2011), etc. While achieving sparsity, L1-norm penalty tends to over-

penalize the large coefficients as the LASSO penalty increases linearly in the magnitude

of its argument, and, thus, may introduce large bias to estimation. As a remedy to this

problem adaptive LASSO estimation procedure has been proposed (Zou (2006); Zheng

et al. (2013)). Another approach to alleviate bias stemming from LASSO procedure is

proposed by Fan and Li (2001) known as Smoothly Clipped Absolute Deviation (SCAD):
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γλ(t) =


λ|t| for |t| ≤ λ,

−(t2 − 2aλ|t|+ λ2)/2(a− 1) for λ < |t| ≤ aλ,

(a+ 1)λ2/2 for |t| > aλ,

where λ > 0 and a > 2. Fan and Li (2001) recommend to use a = 3.7 .

As for selecting λ, there are two common ways: data-driven generalized cross-validation

criterion (GCV) (Fan and Li (2001)) and likelihood-based Schwartz, or Bayesian infor-

mation criterion-type criteria (SIC, or BIC) (Schwarz (1978); Koenker et al. (1994)),

and their further modifications. The most commonly used criterion is GCV (Fan and

Li (2001), Tibshirani (1996)), however, it has been shown that it leads to an overfitted

model (Wang et al. (2007)). Therefore, we primarily employ a modified BIC-type model

selection criteria proposed by Wang et al. (2007) and use GCV criterion only to verify

whether GCV and BIC diverge significantly.

Define β̂τ
def
= (β̂>τ(1), β̂

>
τ(2))

> as the estimator for β∗
def
= (β∗>(1) , β

∗>
(2))
> attained by the loss in

(18). Let β̂τ(1) and β̂τ(2) be the first q components and the remaining p− q components

of β̂τ respectively. If in the iterations, we have the initial estimator β̂
(0)
(1) as a

√
n/q

consistency one for β∗(1) , we will obtain with a very high probability, an oracle estimator

of the following type, say β̃τ = (β̃>τ(1),0
>)>, since the oracle knows the true modelM∗

def
=

{l : β∗l 6= 0}. The following theorem shows that the penalized estimator enjoys the oracle

property. Define β̂0 as the minimizer with the same loss in (18) but within subspace

{β ∈ Rp : βMc
∗ = 0}. We have the following conditions needed for theorems.

Condition 1. The kernel K(·) is a continuous symmetric function. The link function

g(·) ∈ C2.

Condition 2. The loss function ρτ (x) is convex and ψτ (x), the derivative (or a subgradient)

of ρτ (x), satisfies Eψτ (εt) = 0 and inf |v|≤c ∂ Eψτ (εt − v) = C1 where ∂ Eψτ (εt − v) is the

partial derivative with respect to v, and C1 is a constant.

Condition 3. The density of β∗>X is bounded with bounded absolute continuous first-

order derivatives on its support. Assume E{ψτ (ε|X)} = 0 a.s., which means for a

quantile loss we have F−1ε|X(τ) = 0. Let Xt(1) denote the sub-vector of Xt consist-

ing of its first q elements. Let Zt
def
= X>t β

∗ and Ztj
def
= Zt − Zj . Define C0(1)

def
=

EE{ψ2
τ (εt)|Zt}{[g′(Zt)]2(E(Xt(1)|Zt)−Xt(1))(E(Xt(1)|Zt)−Xt(1))}>, and

C0(1)
def
= E{∂ Eψτ (εt)|Zt}{[g′(Zt)]2(E(Xt(1)|Zt)−Xt(1))(E(Xt(1)|Zt)−Xt(1))}> and the ma-

trix C1(1) satisfies 0 < L1 ≤ λmin(C0(1)) ≤ λmax(C0(1)) ≤ L2 < ∞ for positive constants

L1 and L2. There exists a constant c0 > 0 such that
∑n

t=1{‖Xt(1)‖/
√
n}2+c0 → 0, with

0 < c0 < 1. vtj
def
= Yt − aj − bjX>tjβ. Also, exists a constant C3 such that for all β close
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to β∗ (‖β − β∗‖ ≤ C3)

‖
∑
t

∑
j

X(0)tjωtjX
>
(1)tj∂ Eψτ (vtj)‖2,∞ = Op(n1−α1).

Condition 4. The penalty parameter λ is chosen such that λ = O(n−1/2), with Dn
def
=

max{dl : l ∈ M∗} = O(nα1−α2/2λ) = O(n−1/2), dl
def
= γλ(|β∗l |), M∗ = {l : β∗l 6= 0} be

the true model. Furthermore assume qh→ 0 and h−1
√
q/n = O(1) as n goes to infinity,

q = O(nα2), p = O{exp(nδ)}, nh3 → ∞ and h → 0. Also, 0 < δ < α < α2/2 < 1/2,

α2/2 < α1 < 1.

Condition 5. The error term εt satisfies Var(εt) <∞. Assume that

sup
t

E
∣∣ψmτ (εt)/m!

∣∣ ≤ s0M
m

sup
t

E
∣∣ψmτ (xtj)/m!

∣∣ ≤ s0M
m

where s0 and M are constants, and ψτ (·) is the derivative (a subgradient) of ρτ (·).

Condition 6. The conditional density function f(ε|Zt = u) is bounded and absolutely

continuous differentiable.

Condition 7. The link function g(·) satisfies a Lipschitz condition in the support of β>X:

|g(z)− g(z̃)| ≤ C|z − z̃| (19)

Conditions 8. {Xtj, εt}t=∞t=−∞ are strong mixing process for any j. Moreover, there

exists positive constants cm1 and cm2 such that the α− mixing coefficient for every

j ∈ {1, · · · , p},
α(l) ≤ exp(−cm1l

cm2), (20)

where cm2 > 2α.

With all the above definitions and conditions, we can derive the following theorems.

THEOREM 3.1. Under Conditions 1-8, the estimators β̂0 and β̂τ exist and coincide

on a set with probability tending to 1. Moreover,

P(β̂0 = β̂τ ) ≥ 1− (p− q) exp(−C ′nα) (21)

for a positive constant C ′.
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THEOREM 3.2. Under Conditions 1-8, we have

‖β̂τ(1) − β∗(1)‖ = Op{(Dn + n−1/2)
√
q} (22)

For any unit vector b in Rq, we have

b>C
1/2
0(1)C

−1/2
1(1) C

1/2
0(1)

√
n(β̂τ(1) − β∗(1))

L−→ N(0, 1) (23)

where recall that C1(1)
def
= E{E{ψ2

τ (εt)|Zt}[g′(Zt)]2[E(X(1)|Zt)−Xt(1)][E(X(1)|Zt)−Xt(1)]
>},

and C0(1)
def
= E{∂ Eψτ (εt)|Zt}{[g′(Zt)]2(E(Xt(1)|Zt) − Xt(1))(E(Xt(1)|Zt) − Xt(1))}>. Note

that E(X(1)|Zt) denotes a p × 1 dimension vector with jth element E(Xj(1)|Zt), j =

1, · · · , q, and Zt
def
= X>t β

∗, ψτ (ε) is a choice of the subgradient of ρτ (ε) and

σ2
τ

def
= E[ψτ (εt)]

2/[∂ Eψτ (εt)]
2, where

∂ Eψτ (·)|Zt =
∂ Eψτ (εt − v)2|Zt

∂v2

∣∣∣
v=0

. (24)

Let us now look at the distribution of ĝ(·) and ĝ′(·), the estimator of g(·), g′(·).

THEOREM 3.3. Under Conditions 1-8, let µj
def
=
∫
ujK(u)du and νj

def
=
∫
ujK2(u)du,

j = 0, 1, 2. For any interior point z = x>β∗, fZ(z) is the density of Zt, t = 1, . . . , n, if

nh3 →∞ and h→ 0, we have

√
nh
√
fZ(z)/(ν0σ2

τ )

{
ĝ(x>β̂)− g(x>β∗)− 1

2
h2g′′(x>β∗)µ2∂ Eψτ

(
ε
)} L−→ N (0, 1) ,

Also, we have

√
nh3
√
{fZ(z)µ2

2}/(ν2σ2
τ )
{
ĝ′(x>β̂)− g′(x>β∗)

}
L−→ N (0, 1) ,

The dependence doesn’t have any impact on the rate of the convergence of our non-

parametric link function. As the degree of the dependence is measured by the mixing

coefficient α, is weak enough such that Condition 8 is satisfied. This is also in line with

the results in Kong et al. (2010). In fact we assume exponential decaying rate here, which

implies the (A.4) in Kong et al. (2010).
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4. Empirical Analysis

4.1. Data

Our analysis focuses on the panel of 200 publicly traded U. S. financial institutions

between January 1, 2006 and September 1, 2012 corresponding to SIC code from 6000 to

6799. SIC codes are used to divide companies into the following sectors: (1) depositories,

(2) insurance companies, (3) broker-dealers, (4) others, see Table 2 in Appendix B for a

complete list.

Due to its high-dimensionality this dataset approximates the aggregate fluctuations in

the system fairly well. Thus we do not include companies operating in the real sector

and do not investigate linkages between financial and real sectors of the economy. We

also do not include any proxy for the shadow banking sector which may play a role in

the 2007-2009 crisis. The time period from January 1, 2006 till September 1, 2012 covers

one recession (2007-2009) and several financial crises (2008, 2011).

Our analysis is based on the daily returns of the above mentioned financial institutions

(Table 2). Market returns are a rich and robust source of information reflecting the

overall state of the company. Apart from the data on the financial companies we use

daily observations of macroprudential variables which characterize the general state of

the economy. These variables are defined as follows: (i) the implied volatility index,

VIX, reported by the Chicago Board Options Exchange; (ii) short term liquidity spread

denoted as the difference between the three-month repo rate and the three-month bill

rate to measure short-term liquidity risk; (iii) the changes in the three-month Treasury

bill rate from the Federal Reserve Board; (iv) the changes in the slope of the yield curve

corresponding to the yield spread between the ten-year Treasury rate and the three-month

bill rate form the Federal Reserve Board; (v) the changes in the credit spread between

BAA-rated bonds and the Treasury rate; (vi) the weekly equity market returns from

CRSP, and (vii) the returns on a real estate sector in excess of the market returns.

4.2. Estimation Results

Empirical analysis is performed at three levels: first of all, we characterize the behavior

of a system as a whole, in the second step, we investigate fluctuations across the financial

sectors, and at last, we analyze the systemic importance of particular companies. Figure

1 presents the risk network estimated for the window starting at 20070111, and Figure 2

considers the sparsified network with further thresholding.

To describe aggregate fluctuations in a system represented by financial institutions in a
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sample we define total connectedness in terms of β̂ coefficients, TCs def
=
∑p

i=1

∑p
j=1 |β̂i|j|,

and number of links, TCn def
=
∑p

i=1

∑p
j=1 di|j

def
=
∑p

i=1

∑p
j=1 1{β̂i|j 6= 0}. We distinguish

between the aggregate magnitude of β̂i|j coefficients and total number of links at each

time point to account for the periods when there are large number of small links, and/or

few significant links. Figure 3 shows that the beginning of 2007-2009 financial crisis is

characterized by smaller magnitude of β̂i|j coefficients and fewer links. As the crisis was

unfolding, the system became more heavily interconnected and reached its peak in the

second quarter of 2008 and lasted until beginning of 2009. Total connectedness across

financial institutions started to decrease in the second quarter of 2009 and reached it

minimum by the first half of 2010. Several negative shocks at the U. S. financial market

contributed to a slow increase both in TCs and TCn from the second quarter of 2010 to

through 2011. Examples are Flash Crash in May 2010 attributed to the U. S. reaction

to the debt crisis in Greece and US debt-ceiling crisis in July 2011. The fluctuations in

linkages in 2010-2012 were much smaller than during the financial crisis due to overall

positive performance of the markets.

The average values for a penalization parameter λ̂ for 200 financial companies are pre-

sented in Figure 3 by a dotted line. One sees that the estimation results of total con-

nectivity measures, TCs and TCn have the same time trend as λ̂. The penalization

parameter λ̂ determines the number of selected risk drivers in the whole procedure, and

the fluctuations in λ̂ can also document the noise level and interconnections of the whole

system.

Figure 3 plots also λ̂ empirically. While staying at a low level in the beginning of 2007, λ̂

increases together with TCs and TCn. Both TCs and average λ̂ values reach its maximum

approximately in the middle of 2009, which is during the period of subprime crisis. As

the economy recovers the average λ̂, TCs and TCn values all start to fall, which suggest

a lessened comovement across the financial institutions. Market disturbances in 2011

corresponding to European debt crisis are reflected by another smaller bump TCs and

TCn.

We now turn to analyzing the relative contribution and exposure of each sector as well as

interconnectedness across sectors. To obtain a measure of linkages per company in each

sector, we compute the following density measures for each sector in terms of exposure

and contribution: Dm
exp

def
= 1

nm

∑p
i=1

∑nm
j=1 |β̂sm,j|−i| and Dm

contr
def
= 1

nm

∑p
j=1

∑nm
i=1 |β̂−j|sm,i|

where m is fixed and nm is the sample size of a corresponding sector. By dividing nm we

summarize variations of the relative intensity per link within each sector. The relative

exposure Dm
exp does not exhibit great fluctuations across time as shown in Figure 4, except

that one observes a slightly decreasing intensity for the depositories and a large increase

in exposure intensity of the sector “Others” from 2010 to 2011. This significant increase
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is possibly due to the heterogeneity in sector “Others” which contains companies such as,

American Express, (a credit card company), Equifax, (a credit-rating agency), Sterling

Financial Corporation, (a consumer and commercial bank acquired by PNC Financial

Services Co. in 2007). In contrast to Dm
exp, the contribution density Dm

contr (displayed

in Figure 5) is more volatile, see Figure 5. The contribution densities of depositories

and insurance companies are relatively stable with the former dominating the latter in

the given time period 2007-2012. However, one can observe a interesting interplay in

contribution densities between depositories and insurance companies in 2007-2008 when

insurance companies overtook leadership over the depositories for a short time during the

crisis. Contribution density of broker-dealers exhibits seasonal-type fluctuations. Broker-

dealers played a significant role in the financial crisis as suggested by their relatively

higher contribution density. This is justifiable as they may be more susceptible to runs

and bankruptcy due to their tendency to use short term credit markets to finance their

operations. This was also the reason why during the crisis this particular sector needed

extensive support from the government in order to prevent complete market break-down.

We further describe connections between different financial sectors by defining intercon-

nectedness measures as follows: ICexp
def
=

∑nm1
i=1

∑nm2
j=1 β̂i|j∑p

i=1

∑p
j=1 β̂i|j

and ICcontr
def
=

∑nm1
i=1

∑nm2
j=1 β̂j|i∑p

i=1

∑p
j=1 β̂i|j

.

In other words, to compute how depositories were influenced by, e.g., insurance sector,

we sum up β̂i|j in rows of the adjacency matrix corresponding to insurance sector and

columns corresponding to depositories. The results for this network statistics are pre-

sented on Figure 6. One can see on Figure 6, rows 2, 3 and 4, that depositories dominate

in the interconnectedness between the institutions for all sectors. Especially significant

linkages both in terms of exposure and contribution exist between depositories and in-

surance sector. This pattern changes only around 2011 when broker-dealers influenced

the banking sector more heavily than other sectors. While being the most exposed and

most “contributing” sector among others broker-dealers unlike insurance sector has more

balanced structure of interconnectedness with remaining three sectors.

Based on the above analysis we have the following conclusions: (1) the connections

between institutions tend to increase both in terms of magnitude of coefficients and the

number of links before the financial crisis, (2) the network is characterized by numerous

heavy links at the peak of a crisis, (3) the connections between institutions reflected

by magnitude of coefficients and the number of links get weaker as the financial system

stabilized, (4) the in-going links, or exposure, is far less volatile than the out-going links, or

contribution. Whereas banks and insurance exhibit relatively stable contribution pattern,

the “Others” and, especially, broker-dealer sectors are highly volatile. While 2008 was

dominated by the banks and/insurance, the second half and the aftermath of a financial

crisis are characterized by increased contribution of broker-dealers. A significant increase
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in the magnitude of coefficients due to broker-dealer sector is observed also around 2011.

After having summarized network measures at the aggregate and sector level we turn

to analysis of a network at a single companies level. We define in- and out- degrees of

one variable as follows: cm,kd−
def
=
∑p

i=1 |β̂sm,k|−i| and cm,kd+
def
=
∑p

j=1 |β̂−j|sm,k |. We further

aggregate the two measure over all windows for each company. As for total connectedness

we calculate both measures based on adjacency matrices.

The estimation results for in- and outdegree are presented in Figures 7 and 8. The most

significant risk-recipients and risk-emitters are summarized in Tables 3 to 8. The distri-

bution of incoming and outgoing links differ significantly: while judged by the number of

incoming links almost all financial institutions are equally influenced by others except for

Wisdom Tree Investments (WETF) having the most in-gong links (5584), the structure

of out-going is more heterogenous with multiple companies dominating over the others.

Based on the ratio of the total sum of β coefficients to the total number of links for each

company, it is possible to identify the most influential financial institutions. In case for

IN links these institutions are Fairfield Greenwich Group (FGG, Broker-Dealers), FBL

Financial Group (FFG, Insurance), Radian Group (RDN, Insurance), Morgan Stanley

(MS, Broker-Dealer), Pinnacle Financial Partners (PNFP, Depositories), and Hartford

Financial Services Group (HIG, Insurance). Ratio ranking results suggests the general

importance of broker-dealer industry in the whole financial system especially during fi-

nancial crisis.

Whereas distribution of IN links allows to identify the key players obviously, it is not easy

to identify dominating companies with OUT links. Based on the ranking of sum of cm,kd+

the five most influential companies are FBL Financial Group (FFG, Insurance), Janus

Capital (JNS, Others), Lincoln National Corporation (LNC, Insurance), Morgan Stanley

(MS, Broker-Dealer), and Fairfield Greenwich Group (FGG, Broker-Dealers). However,

Janus Capital’s links are so dispersed (10351) that it has very low ratio of sum to number

of links. The same holds true for Lincoln National Corporation and Morgan Stanley.

Thus, companies with the highest loads per OUT link are Fairfield Greenwich Group

(FGG, Broker-Dealers) and FBL Financial Group (FFG, Insurance), Loews Corporation

(L, Insurance) comes as the third one, followed by Arthur J Callagher & Co (AJG,

Insurance) and BlackRock Inc. (BLK, Others). Unlike with IN links where both Fairfield

Greenwich Group (FGG, Broker-Dealers) and FBL Financial Group (FFG, Insurance)

share the leadership, for OUT links Fairfield Greenwich Group (FGG, Broker-Dealers) is

clearly the only leader with 0.99 ratio.

Thus, in terms of systemic contribution the IN links are primarily dominated by broker-

dealers and insurance sectors, whereas OUT links are primarily due to either broker-

dealers or banks sectors. Other sectors have approximately equal share in terms of both
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IN and OUT links. This is reasonable as it is likely that insurance companies were

connected with the most of the companies to hedge against possible risk. However,

insurance companies themselves were not the active players at the market, and were

dominated by broker-dealers and/or banks in terms of OUT links.

Further, we examine the shape of the link function in the crisis period as well as in the

period of relative financial stability. As one can observe in Figure 9 the link function

tends to be almost linear in a financial crisis period. It exhibits non-linearity in a stable

period as displayed in Figure 10.

Finally, we construct the indices of systemic exposure and systemic contribution, the

results for the whole sample are presented in Table 9. (Cumulative Contribution is

defined as summing up

∑
j 6=sm,k

β̂j|sm,k∑p
i=1

∑p
j=1 β̂i|j

over all windows and Exposure Indices is defined

as summing up

∑
i 6=sm,k

β̂sm,k|i∑p
i=1

∑p
j=1 β̂i|j

over all windows.)

5. Conclusion

In this paper we propose a semiparametric framework to assess systemic importance of

financial institutions based on their interconnectedness in tails. We use a semiparametric

model to allow for more flexible modeling of relationship between the variables. This is

especially justified in a ultra-high-dimensional setting when the assumption of linearity is

not likely to hold. In order to face these challenges statistically we estimate a single-index

model in a generalized quantile regression framework while simultaneously performing

variable selection. Ultra-high dimensional setting allows us to include more variables into

the analysis.

Our empirical results show that there is growing interconnectedness during the period of a

financial crisis, and network-based measure reflecting the connectivity between companies

can be used to forecast the market disturbances. Moreover, by including more variables

into the analysis we can investigate the overall performance of different financial sectors,

depositories, insurance, broker-dealers, and others. We base our analysis on the network

measures. Estimations results show relatively high importance of broker-dealers indus-

try in the financial crisis. We also observe strong non-linear relationship between the

variables, especially, in the period of relative financial stability.

6. Appendix A: Proof

Condition 1. The kernel K(·) is a continuous symmetric function. The link function

g(·) ∈ C2.
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Condition 2. The loss function ρτ (x) is convex and ψτ (x), the derivative (or a subgradient)

of ρτ (x), satisfies Eψτ (εt) = 0 and inf |v|≤c ∂ Eψτ (εt − v) = C1 where ∂ Eψτ (εt − v) is the

partial derivative with respect to v, and C1 is a constant.

Condition 3. The density of β∗>X is bounded with bounded absolute continuous first-

order derivatives on its support. Assume E{ψτ (ε|X)} = 0 a.s., which means for a

quantile loss we have F−1ε|X(τ) = 0. Let Xt(1) denote the sub-vector of Xt consist-

ing of its first q elements. Let Zt
def
= X>t β

∗ and Ztj
def
= Zt − Zj . Define C0(1)

def
=

EE{ψ2
τ (εt)|Zt}{[g′(Zt)]2(E(Xt(1)|Zt)−Xt(1))(E(Xt(1)|Zt)−Xt(1))}>, and

C0(1)
def
= E{∂ Eψτ (εt)|Zt}{[g′(Zt)]2(E(Xt(1)|Zt)−Xt(1))(E(Xt(1)|Zt)−Xt(1))}> and the ma-

trix C1(1) satisfies 0 < L1 ≤ λmin(C0(1)) ≤ λmax(C0(1)) ≤ L2 < ∞ for positive constants

L1 and L2. There exists a constant c0 > 0 such that
∑n

t=1{‖Xt(1)‖/
√
n}2+c0 → 0, with

0 < c0 < 1. vtj
def
= Yt − aj − bjX>tjβ. Also, exists a constant C3 such that for all β close

to β∗ (‖β − β∗‖ ≤ C3)

‖
∑
t

∑
j

X(0)tjωtjX
>
(1)tj∂ Eψτ (vtj)‖2,∞ = Op(n1−α1).

Condition 4. The penalty parameter λ is chosen such that λ = O(n−1/2), with Dn
def
=

max{dl : l ∈ M∗} = O(nα1−α2/2λ) = O(n−1/2), dl
def
= γλ(|β∗l |), M∗ = {l : β∗l 6= 0} be

the true model. Furthermore assume qh→ 0 and h−1
√
q/n = O(1) as n goes to infinity,

q = O(nα2), p = O{exp(nδ)}, nh3 → ∞ and h → 0. Also, 0 < δ < α < α2/2 < 1/2,

α2/2 < α1 < 1.

Condition 5. The error term εt satisfies Var(εt) <∞. Assume that

sup
t

E
∣∣ψmτ (εt)/m!

∣∣ ≤ s0M
m

sup
t

E
∣∣ψmτ (xtj)/m!

∣∣ ≤ s0M
m

where s0 and M are constants, and ψτ (·) is the derivative (a subgradient) of ρτ (·).

Condition 6. The conditional density function f(ε|Zt = u) is bounded and absolutely

continuous differentiable.

Condition 7. The link function g(·) satisfies a Lipschitz condition in the support of β>X:

|g(z)− g(z̃)| ≤ C|z − z̃| (25)

Conditions 8. {Xtj, εt}t=∞t=−∞ are strong mixing process for any j. Moreover, there

exists positive constants cm1 and cm2 such that the α− mixing coefficient for every
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j ∈ {1, · · · , p},
α(l) ≤ exp(−cm1l

cm2), (26)

where cm2 > 2α.

Define β̂0 as the minimizer with the loss

L̃n(β)
def
=

n∑
j=1

n∑
t=1

ρτ
(
Yt − a∗j − b∗jX>tjβ

)
ωtj(β

∗) + n

p∑
l=1

dl|βl|,

but within the subspace {β ∈ Rp : βMc
∗ = 0}, and a∗j , b

∗
j are denoted as g(β∗>X) and

g′(β∗>X). The following lemma assures the consistency of β̂0,

LEMMA 6.1. Under Conditions 1-8, recall dj = γλ
(
|β∗j |
)
, we have that

‖β̂0 − β∗‖ = Op
(√

q/n+ ‖d(1)‖
)

(27)

where d(1) is the subvector of d = (d1, · · · , dp)> which contains q elements corresponding

to the nonzero β∗(1).

PROOF. Note that the last p− q elements of both β̂0 and β∗ are zero, so it is sufficient

to prove ‖β̂0
(1) − β∗(1)‖ = Op

(√
q/n+ ‖d(1)‖

)
.

We first show for γn = O(1):

P

[
inf
‖u‖=1

{
L̃n(β∗(1) + γnu, 0) > L̃n(β∗)

}]
→ 1.

Then there exists a minimizer inside the ball {β(1) : ‖β(1)−β∗(1)‖ ≤ γn}. Construct γn → 0

so that for a sufficiently large constant B0: γn > B0 ·
(√

q/n+‖d(1)‖
)
. We will show that

by the local convexity of L̃n(β(1),0) near β∗(1), there exists a unique minimizer inside the

ball {β(1) : ‖β(1) − β∗(1)‖ ≤ γn} with probability tending to 1.

Let X(1)tj denote the subvector of Xtj consisting of its first q components.

By the uniform Bahadur representation in Kong et al. (2010), there exist a compact set

B with β∗ a interior point, such that uniformly over u ∈ B, we have
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L̃n(β∗(1) + γnu,0)− L̃n(β∗(1),0)

=− γn
n∑
t=1

n∑
j=1

b∗jψτ
(
Yt − a∗j − b∗jX>(1)tjβ∗(1)

)
ωtj(β

∗)X>(1)tju

+
1

2
γ2n

n∑
t=1

n∑
j=1

b∗2j ∂ Eψτ
(
Yt − a∗j − b∗jX>(1)tjβ∗(1) − b∗j γ̄nX>(1)tju

)
ωtj(β

∗)(X>(1)tju)2

+ n

q∑
l=1

dl
(
|β∗(1)l + γnul| − |β∗(1)l|

)
+ Op(max{nγ2n, n(n/q log log n)−1})

def
=P1 + P2 + P3 + Op(max{nγ2n, n(n/q log log n)−1})

where γ̄n ∈ [0, γn].

Define ωtj
def
= ωtj(β

∗), it is not difficult to derive that ωtj =
Kh(Ztj)

nfZ(Zj)
{1 + Op(1)} where

Zt = X>t β
∗, Ztj = Zt − Zj and fZ(·) is the density of Z = X>β∗.

For P1, because ‖u‖ = 1 and Yt = a∗t + εt, we get

|P1| ≤ γn‖
n∑
t=1

n∑
j=1

b∗jψτ
(
Yt − a∗j − b∗jX>(1)tjβ∗(1)

)
ωtjX

>
(1)tj‖{1 + Op(1)}

= γn‖
n∑
j=1

b∗j

{ 1

n

n∑
t=1

ψτ
(
εt + a∗t − a∗j − b∗jZtj

)Kh(Ztj)

fZ(Zj)
X(1)tj

}
‖{1 + Op(1)}

= γn‖
n∑
j=1

b∗j E εt,Xt

{
ψτ
(
εt + a∗t − a∗j − b∗jZtj

)Kh(Ztj)

fZ(Zj)
X(1)tj

}
‖{1 + Op(1)}

= γn‖
n∑
j=1

b∗j E Zt

{
E εt|Zt [ψτ

(
εt + a∗t − a∗j − b∗jZtj

)
]
Kh(Ztj)

fZ(Zj)
E(X(1)tj|Zt)

}
‖{1 + Op(1)}

= γn‖
n∑
j=1

b∗j E Zj [ψτ
(
εj + a∗j − a∗j

)
]{E(X(1)j|Zj)−X(1)j}‖{1 + Op(1)}

where E εt,Xt means taking expectation with respect to the joint distribution of (εt, Xt).

Furthermore we have

E ‖
n∑
j=1

b∗j E[ψτ
(
εj + a∗j − a∗j

)
]{E(X(1)j|Zj)−X(1)j}‖

≤
{
Eψ2

τ

(
εj
)
E

n∑
j=1

b∗2j [E(X(1)j|Zj)−X(1)j]
>[E(X(1)j|Zj)−X(1)j]

}1/2

=
√
n{Eψ2

τ

(
εj
)

tr(C0(1))}1/2,
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recall C0(1)
def
= E{[g′(Zj)]2(E(X(1)j|Zj)−X(1)j)[E(X(1)j|Zj)−X(1)j]}>. We thus arrive at

P1 = Op(γn
√
nq) (28)

because tr(C0(1)) = O(q) and Eψ2
τ

(
εj
)
<∞ by Condition 3.

For P2, according to the property of kernel estimation, it can be seen that

P2 =
1

2
γ2n

n∑
t=1

n∑
j=1

b∗2j ∂ E εt,Xtψτ
(
Yt − a∗j − b∗jZtj − b∗j γ̄nX>(1)tju

)Kh(Ztj)

nfZ(Zj)
(X>(1)tju)2{1 + Op(1)}

=
1

2
γ2n

n∑
j=1

b∗2j ∂E{ψτ
(
Yt − a∗j − b∗j γ̄nX>(1)tju

)
(X>(1)tju)2}{1 + Op(1)}

Let Ht(c) = inf |v|≤c ∂ Eψ(εt − v). By lemma 3.1 of Portnoy (1984), we have

P2 ≥
1

2
γ2n

n∑
t=1

n∑
j=1

b∗2j H(γn|X>(1)tju|
)
(X>(1)tju)2 ≥ cγ2nn (29)

for some positive c.

For P3, it is clear that

|P3| ≤ nγn

q∑
l=1

dl|ul| ≤ nγn‖d(1)‖ (30)

Combining (28), (29)and (30), the following inequality holds with probability tending to

1 that

L̃n(β∗(1) + γnu,0)− L̃n(β∗(1),0) ≥ nγn

(
cγn −

√
q/n− ‖d(1)‖

)
(31)

γn = B0

(√
q/n+ ‖d(1)‖

)
and B0 is a sufficiently large constant, so that the RHS of (31)

is larger than 0. Owing to the local convexity of the objective function, there exists a

unique minimizer β̂0
(1) such that

‖β̂0 − β∗‖ = ‖β̂0
(1) − β∗(1)‖ = Op

(√
q/n+ ‖d(1)‖

)
Therefore, (27) is proved.

Recall that X = (X(1), X(0)) and M∗ = {1, . . . , q} is the set of indices at which β are

nonzero.

Lemma 1 shows the consistency of β̂0, and we need to show further that β̂0 is the unique

minimizer in Rp on a set with probability tending to 1.

LEMMA 6.2. Under conditions 1-8, minimizing the loss function L̃n(β) has a unique

22



global minimizer β̂ = (β̂>1 ,0
>)>, if and only if on a set with probability tending to 1,

n∑
j=1

n∑
t=1

ψτ
(
Yt − âj − b̂jX>tj β̂τ

)
b̂jX(1)tjωtj(β

∗) + nd(1) ◦ sign(β̂τ ) = 0 (32)

‖z(β̂τ )‖∞ ≤ n, (33)

where

z(β̂τ )
def
= d−1(0) ◦

{ n∑
j=1

n∑
t=1

b∗jψτ
(
Yt − a∗j − b∗jX>tj β̂τ

)
X(0)tjωtj(β̂τ )

}
(34)

where ◦ stands for multiplication element-wise.

PROOF. According to the definition of β̂τ , it is clear that β̂(1) already satisfies condition

(32). Therefore we only need to verify condition (33).

To prove (33), a bound for

n∑
t=1

n∑
j=1

b∗jψτ
(
Yt − a∗j − b∗jX>tjβ∗

)
ωtjX(0)tj (35)

is needed. Define the following kernel function

hd(Xt, a
∗
j , b
∗
j , Yt, Xj, a

∗
t , b
∗
t , Yj)

=
n

2

{
b∗jψτ

(
Yt − a∗j − b∗jX>tjβ∗

)
ωtjX(0)tj + b∗tψτ

(
Yj − a∗t − b∗tX>tjβ∗

)
ωjtX(0)jt

}
d

,

where {.}d denotes the dth element of a vector, d = 1, . . . , p− q.

According to Borisov and Volodko (2009), based on Condition 5:

Define Un,d
def
= 1

n(n−1)
∑

1≤i<j≤n hd(Xt, a
∗
j , b
∗
j , Yt, Xj, a

∗
i , b
∗
t , Yj) as the U− statistics for (35).

We have, with sufficient large cm2 in Condition 8.

P{|Un,d − EUn,d| > ε} ≤ cm3 exp(cm5ε/(cm3 + cm4ε
1/2n−1/2))

where cm3, cm4, cm5 are constants. Moreover, let ε = O(n1/2+α), as α < 1/2, we can

further have,

P({|Un,d − EUn,d| > ε}) ≤ cm3 exp(−cm6ε/2),

Define

Fn,d
def
= (n)−1

n∑
t=1

n∑
j=1

bjψτ
(
Yt − a∗j − b∗jX>tjβ∗

)
ωtjX(0)tj,
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also it is not hard to derive that Un,d = Fn,dn/(n− 1).

It then follows that

P(|Fn,d − EFn,d| > ε) = P(|Un,d − EUn,d|(n− 1)/n > ε)

≤ 2 exp
(
−Cnα+1/2

)
Define An = {‖Fn − EFn‖∞ ≤ ε}, thus

P(An) ≥ 1−
p−q∑
d=1

P(|Fn,d − EFn,d| > ε) ≥ 1− 2(p− q) exp
(
−Cnα+1/2

)
.

Finally we get that on the set An,

‖z(β̂0)‖∞ ≤ ‖d−1Mc
∗
◦ Fn‖∞ + ‖d−1Mc

∗
◦

n∑
t=1

n∑
j=1

bj
[
ψτ
(
Yt − a∗j − b∗jX>tj β̂0

)
−ψτ

(
Yt − a∗j − b∗jX>tjβ∗

)]
ωtjX(0)tj‖∞

≤ O(n1/2+α/λ+ ‖d−1Mc
∗
◦

n∑
t=1

n∑
j=1

∂ Eψτ (vtj)bjX
>
(1)tj(β̂(1) − β∗(1))ωtjX(0)tj‖∞),

where vtj is between Yt − a∗j − b∗jX>tjβ∗ and Yt − a∗j − b∗jX>tj β̂0. From Lemma 1,

‖β̂0 − β∗(1)‖2 = Op
(
‖d(1)‖+

√
q/
√
n
)
.

Choosing ‖
∑

t

∑
j X(0)tjωtjX

>
(1)tj∂ Eψτ (vtj)‖2,∞ = Op(n1−α1), q = O(nα2), λ = O(

√
q/n) =

n−1/2+α2/2, 0 < α2 < 1, ‖d(1)‖ = O(
√
qDn) = O(nα2/2Dn)

(n)−1‖z(β̂0)‖∞ = O{n−1λ−1(n1/2+α + n1−α1
√
q/
√
n+ ‖d(1)‖n1−α1)}

= O(n−α2/2+α + n−α1 + n−α1+α2/2Dn/λ),

assume Dn = O(nα1−α2/2λ), and let 0 < δ < α < α2/2 < 1/2, α2/2 < α1 < 1, with rate

p = O{exp(nδ)}, then (n)−1‖z(β̂0)‖∞ = Op(1).

Proof of Theorem 1 . The results follows from Lemma 1 and 2.

Proof of Theorem 2. By Theorem 1, β̂w(1) = β(1) almost surely. It then follows from

Lemma 2 that

‖β̂τ(1) − β∗(1)‖ = Op{(Dn + n−1/2)
√
q}.

This completes the first part of the theorem.

24



Given a∗j , b
∗
j , the estimate β̂τ is:

β̂τ = arg min
β

n∑
j=1

n∑
t=1

ρτ
(
Yt − a∗j − b∗jX>tjβ

)
ωtj + n

p∑
l=1

γλ(|β∗l |)|βl|

where ωtj = ωtj(β
∗) and Xtj = Xt −Xj.

Define ξ̂
def
=
√
n(β̂τ − β∗) and Ytj = Yt − a∗j − b∗jX>tjβ∗. As ωtj(β̃) =

Kh(Ztj)

nfZ(Zj)
{1 + Op(1)}, it

follows that ξ̂ is the minimizer of

Hn(ξ) =
n∑
t=1

n∑
j=1

{
ρτ
(
Ytj − n−

1
2 b∗jX

>
tj ξ
)
− ρτ

(
Ytj
)}Kh(Ztj)

nfZ(Zj)
{1 + Op(1)}

+n

p∑
l=1

γλ(|β∗l |)(|β∗l + n−1/2ξl| − |β∗l |)

def
= Q1(ξ){1 + Op(1)}+Q2(ξ),

recall fZ(z) is the density function of Z = X>t β
∗, t = 1, . . . , n. We study Q1(ξ) and Q2(ξ)

respectively.

Let ∆ij(ξ)
def
= ρτ{Ytj − n−

1
2 g′(Zj)X

>
tj ξ
}
− ρτ

(
Ytj
)
− n− 1

2ψτ (Ytj)g
′(Zj)X

>
tj ξ. It can be seen

that

Q1(ξ) =
{ n∑

t=1

n∑
j=1

n−1/2ψτ (Ytj)g
′(Zj)

Kh(Ztj)

nfZ(Zj)
X>tj ξ

+
n∑
t=1

n∑
j=1

∆ij(ξ)
Kh(Ztj)

nfZ(Zj)

}
{1 + Op(1)}

def
= [A>ξ + I(ξ)]{1 + Op(1)}

Recall that Ytj = εt + a∗t − a∗j − b∗jZtj + op(1).

Therefore we have

A =
n∑
t=1

n∑
j=1

1√
n
ψτ (εt + a∗t − a∗j − b∗jZtj)g′(Zj)

Kh(Ztj)

nfZ(Zj)
Xtj{1 + Op(1)}

=
n∑
t=1

1√
n
ψτ (εt)g

′(Zt){E(X|Zt)−Xt}{1 + Op(1)}.

Similarly we have, as before via the uniform Bahadur representation.
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I(ξ) =
n∑
t=1

n∑
j=1

∆ij(ξ)
Kh(Ztj)

nfZ(Zj)

=
n∑
t=1

n∑
j=1

{
ρτ
(
Ytj − n−

1
2 g′(Zj)X

>
tj ξ
)
− ρτ

(
Ytj
)

−n−
1
2ψτ (Ytj)g

′(Zj)X
>
tj ξ
}Kh(Ztj)

nfZ(Zj)

=
n∑
j=1

E εt,Xt

[{
ρτ
(
Ytj − n−

1
2 g′(Zj)X

>
tj ξ
)
− ρτ

(
Ytj
)

−n−
1
2ψτ (εt)g

′(Zt)X
>
tj ξ
}Kh(Ztj)

fZ(Zj)

]
{1 + O(1)}

=
n∑
j=1

E Zt E εt,Xt|Zt

[{
ρτ
(
Ytj − n−

1
2 g′(Zj)X

>
tj ξ
)
− ρτ

(
Ytj
)

−n−
1
2ψτ (εt)g

′(Zt)X
>
tj ξ
}Kh(Ztj)

fZ(Zj)

]
{1 + O(1)}

=
n∑
j=1

{
E ε,Zρτ

(
ε− n−

1
2 g′(Zj)(Xj − E(Xj|Zj))>ξ

)
− E ερτ

(
ε
)

−n−
1
2E ε,Z [ψτ (ε)]g

′(Zj)(Xj − E(Xj|Zj))>ξ
}
{1 + O(1)}

= (2n)−1
n∑
j=1

E{∂ Eψτ (εj)}[g′(Zj)]2ξ>{Xj − E(Xj|Zj)}{Xj − E(Xj|Zj)}>ξ{1 + O(1)}

=
1

2
ξ> E{{∂ Eψτ (εj)}[g′(Zj)]2{Xj − E(Xj|Zj)}{Xj − E(Xj|Zj)}>}ξ{1 + O(1)}

def
=

1

2
ξ>C0ξ{1 + O(1)},

where C0
def
= E{∂ Eψτ (εt)|Zt}{[g′(Zt)]2(E(Xi|Zt)−Xi)(E(Xi|Zt)−Xi)}>.

About Q2(ξ), we find that if β∗l = 0, that is q < l ≤ p,
√
n(|β∗l + n−1/2ξ| − |β∗l |) = |ξ|,

otherwise when 1 ≤ l ≤ q,
√
n(|β∗l + n−1/2ξ| − |β∗l |) → ξsign(β∗l ). In addition, Theorem

1 implies that β̂w(2) will converge to zero with probability one. Thus

Q2(ξ) = n

p∑
l=1

γλ(|β∗l |)(|β∗l + n−1/2ξl| − |β∗l |)

= n

q∑
l=1

γλ(|β∗l |)ξlsign(β∗l ){1 + Op(1)}.
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As γλ(|β∗l |) = O(Dn) = O(
√
n), the loss function satisfies

Hn(ξ) = Dn(ξ){1 + O(1)} def
= [−ξ>(1)A(1) +

1

2
ξ>(1)C0(1)ξ(1)]{1 + O(1)}

where A(1) is the sub-vector of A consisting of its first q components, and C0(1) is the

up-left q× q sub-matrix of C0. Applying the uniform Bahadur representation, we obtain

ξ̂(1) =
√
n(β̂(1) − β∗(1)) = C−10(1)A(1) + Op(1).

Recall that A(1) =
n∑
t=1

1√
n
ψτ (εt)g

′(Zt){E(X(1)|Zt) − Xt(1)}{1 + Op(1)}, and b is a unit

vector in Rq. Thus we have

√
nb>C

1/2
0(1)C

−1/2
1(1) C

1/2
0(1)(β̂(1) − β

∗
(1)) = b>C

1/2
0(1)C

−1/2
1(1) C

1/2
0(1)C

−1
0(1)

× 1√
n

n∑
t=1

ψτ (εt)g
′(Zt){E(X(1)|Zt)−Xt(1)}{1 + Op(1)}

L−→ N(0, 1)

where C1(1)
def
= E{E{ψ2

τ (εt)|Zt}[g′(Zt)]2[E(X(1)|Zt)−Xt(1)][E(X(1)|Zt)−Xt(1)]
>}, and C0(1)

def
=

E{∂ Eψτ (εt)|Zt}{[g′(Zt)]2(E(Xt(1)|Zt)−Xt(1))(E(Xt(1)|Zt)−Xt(1))}>. The asymptotic nor-

mality of β̂(1) is therefore proved.

Proof of Theorem 3. We note that

√
nh

{
ĝ(x>β̂τ )− g(x>β∗)

}
=
√
nh

{
ĝ(x>β̂τ )− ĝ(x>β∗)

}
+
√
nh

{
ĝ(x>β∗)− g(x>β∗)

}
As ρτ is strictly convex, then ĝ(·) is continuous almost surely. As qh→ 0, the consistency

of β̂ in Theorem 2 implies
√
nh

{
ĝ(x>β̂τ )−ĝ(x>β∗)

}
= Op(1). Consequently it is sufficient

to prove

√
nh3
√
{fZ(z)µ2

2}/(ν2σ2
τ )
{
ĝ(x>β∗)− g(x>β∗)

} L−→ N (0, 1) ,

recall µ2 and ν2 are defined as µj
def
=
∫
ujK(u)du and νj

def
=
∫
ujK2(u)du.

We now prove equation (36). Let Zt = X>t β
∗ and z = x>β∗. Recall that ĝ(z) = â and

ĝ′(z) = b̂ where

(â, b̂)
def
= arg min

(a,b)

n∑
t=1

ρτ
{
Yt − a− b(Zt − u)

}
ωt(β

∗) (36)

where ωt(β
∗) = Kh(Zt − z)/

∑n
k=1Kh(Zk − z) = {1 + Op(1)}Kh(Zt − zt)/{nfZ(z)}

Denote θ = [
√
nh{a− g(z)},

√
nh3{b− g′(z)}]>]> and θ̂ = [

√
nh{ĝ(z)− g(z)},
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√
nh3{ĝ′(z)−g′(z)}]>. Also let Zt

def
= (1, (Zt−z)/h)> and δt

def
= g(Zt)−g(z)−g(z)(Zt−z).

Then θ̂ is the minimizer of

Lg,n(θ)
def
=

n∑
t=1

{ρτ
(
εt + δt − (nh)−1/2Z>t θ

)
− ρτ

(
εt + δt

)
}Kh(Zt − z)

fZ(z)
{1 + O(1)}. (37)

By similar expansion of Q1(ξ) in the proof Theorem 2, we have

√
nhLg,n(θ) =

1√
nh

n∑
t=1

ψτ
(
εt + δt

)
Z>t θ

K{(Zt − z)/h}
fZ(z)

{1 + O(1)}

+
1

2nh

n∑
t=1

{∂ Eψτ
(
εt + δt

)
}(Z>t θ)2

K{(Zt − z)/h}
fZ(z)

{1 + O(1)}

= A>n θ +
1

2
θ>Snθ{1 + O(1)}

where

An =
1√
nh

n∑
t=1

ψτ
(
εt + δt

)
Zt
K{(Zt − z)/h}

fZ(z)

Sn =
1

nh

n∑
t=1

{∂ Eψτ
(
εt + δt

)
}ZtZ>t

K{(Zt − z)/h}
fZ(z)

.

The leading term is then

Sn
def
=

1

h
E

{
∂ Eψτ

(
εt + δt

)
ZtZ

>
t

K{(Zt − z)/h}
fZ(z)

|Zt]
}

=
1

h
E

{
∂ Eψτ

(
εt + δt

)
|Zt]ZtZ>t

K{(Zt − z)/h}
fZ(z)

}
= ∂ Eψτ

(
εt
) ∫ ( 1 (ξ − u)/h

(ξ − u)/h (ξ − z)2/h2

)
K

(
ξ − z
h

)
dξ

h

= [∂ Eψτ
(
εt
)
]

(
1 0

0 µ2

)
{1 + O(1)} def

= S{1 + O(1)}

where µ2 =
∫
t2K (t) dt. Therefore it follows that θ̂ = −S−1An{1 + Op(1)}.

It is clear that Σ−1/2An is asymptotically distributed as a bivariate normal distribution

28



N(0, 1). The asymptotic bias mA = O(1), in particular

mA =
1√
h
E

{
ψτ
(
εt + δt

)
Zt
K{(Zt − z)/h}

fZ(z)

}
=

1√
h
E

{
E
[
ψτ
(
εt + δt

)
|Zt
]
Zt
K{(Zt − z)/h}

fZ(z)

}
=

1√
h

∫∫
ψτ
{
ε+ g(ξ)− g(z)− g′(z)(ξ − z)

}
fE(ε)dε

×

(
1

(ξ − z)/h

)
K((ξ − z)/h)dξ

=
1

2
h5/2g′′(z)µ2[∂ Eψτ (ε)]

(
1

0

)
{1 + O(1)}.

The scaling variance covariance matrix is then

Σ =
1

h
E

{
ψ2
τ

(
εt + δt

)
ZtZ

>
t

[K{(Zt − z)/h}
fZ(z)

]2}
{1 + O(1)}

=
1

h

∫ ∫
ψ2
τ

{
ε+ g(ξ)− g(z)− g′(z)(ξ − z)

}
fE(ε)dε

×

(
1 (ξ − z)/h

(ξ − z)/h (ξ − z)2/h2

)
K2{(Zt − z)/h}

fZ(z)
dξ{1 + o(1)}

=
1

fZ(z)
E[ψ2

τ (ε)]

(
ν0 0

0 ν2

)
{1 + O(1)},

where νk =
∫
tkK2(t)dt.

Thus we finally obtain that as n tends to infinity, Σ−1/2Sθ̂ − Σ−1/2SmA converges in

distribution to N(0, 1). Slight algebra gives

Σ−1/2SmA =
1

2
h5/2g′′(z)fZ(z)1/2ν

−1/2
0 {∂ Eψτ

(
ε
)
}2{Eψ2

τ

(
ε
)
}−1/2

(
1

0

)

S−1ΣS−1 =
E[ψ2

τ (ε)]

{[∂ Eψτ
(
ε
)
]}2

1

fZ(z)

(
1 0

0 µ−12

)(
ν0 0

0 ν2

)(
1 0

0 µ−12

)

= σ2
w

1

fZ(z)

(
ν0 0

0 ν2/µ
2
2

)
.

This completes the proof.
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Figure 1: A risk network formed by 200 financial institutions without thresholding of coefficients,
a circular representation of a weighted adjacency matrix, Depositories: a circle, Insurance: a square,
Broker-Dealers: a triangle, Others: a diamond, T = 1669, τ = 0.05, window size n = 125.
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Figure 2: A risk network formed by 200 financial institutions with thresholding of coefficients (all
links below the average value areset to 0 ); a circular representation of a weighted adjacency matrix,
Depositories: a circle, Insurance: a square, Broker-Dealers: a triangle, Others: a diamond, T = 1669,
τ = 0.05, window size n = 125.

33



2007 2008 2009 2010 2011 2012

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time Period

T
C

,n T
C

,s A
ve

ra
ge

 L
am

bd
a

Figure 3: Total Connectedness standardized on [0, 1] scale, TCs: solid line, TCs: dashed line, λ̄: dotted
line, T = 1669, τ = 0.05, window size n = 125.
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Figure 4: Dm
exp, Depositories: solid line, Insurance: dashed line, Broker-Dealers: dotted line, Others:

dash-dot line, T = 1669, τ = 0.05, window size n = 125.
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contr, Depositories: solid line, Insurance: dashed line, Broker-Dealers: dotted line, Others:

dash-dot line, T = 1669, τ = 0.05, window size n = 125.
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Figure 6: Connectivity between Sectors: ICexp (left) and ICcontr (right); Depositories (row 1): solid
line, Insurance (row 2): dashed line, Broker-Dealers (row 3): dotted line, Others (row 4): dash-dot line;
T = 1669, τ = 0.05, window size n = 125.
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Figure 7: Indegree of 200 financial institutions, cm,kd− =
∑p
i=1 |β̂sm,k|−i| (sum over all windows): solid

line, circles; cm,k
d−n

=
∑p
i=1 dsm,k|−i (sum over all windows): dotted line, squares; standardized on [0, 1]

scale, T = 1669, τ = 0.05, window size n = 125.
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Figure 8: Outdegree of 200 financial institutions, cm,kd+ =
∑p
j=1 |β̂−j|sm,k

| (sum over all windows): solid

line, circles; cm,k
d+n

=
∑p
j=1 d−j|sm,k

(sum over all windows): dotted line, squares; standardized on [0, 1]

scale, T = 1669, τ = 0.05, window size n = 125.
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Ticker Ratio IN Total Sum of IN Coefficients Total Number of IN Links

180 FGG 0.99 1416.99 1417

144 FFG 0.99 1416.99 1417

147 RDN 0.28 1021.09 3562

159 MS 0.28 671.50 2390

87 PNFP 0.25 733.87 2875

122 HIG 0.25 728.37 2855

48 PCBC 0.24 786.25 3223

189 JNS 0.24 657.57 2730

192 SLM 0.23 733.99 3097

152 NFP 0.23 728.83 3076

Table 3: Top 10 financial institutions ranked according to the ratio of total sum of IN coefficients to
total sum of number of IN links.

Ticker Ratio IN Total Sum of IN Coefficients Total Number of IN Links

176 WETF 0.01 77.25 5584

72 FBC 0.18 726.54 4014

91 CPF 0.10 425.74 3935

94 BANR 0.09 349.72 3843

131 WTM 0.06 242.98 3801

177 BLW 0.04 187.27 3797

175 STSA 0.13 494.79 3763

81 CRBC 0.16 599.66 3727

179 EPHC 0.10 386.51 3628

137 ANAT 0.08 290.53 3590

Table 4: Top 10 financial institutions ranked according to the total sum of number of IN links.

Ticker Ratio IN Total Sum of IN Coefficients Total Number of IN Links

180 FGG 0.99 1416.99 1417

144 FFG 0.99 1416.99 1417

147 RDN 0.28 1021.09 3562

48 PCBC 0.24 786.25 3223

192 SLM 0.23 733.99 3097

87 PNFP 0.25 733.87 2875

152 NFP 0.23 728.83 3076

122 HIG 0.25 728.37 2855

72 FBC 0.18 726.54 4014

102 AIG 0.19 687.36 3578

Table 5: Top 10 financial institutions ranked according to the total sum of IN coefficients.
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Ticker Ratio OUT Total Sum of OUT Coefficients Total Number of OUT Links

180 FGG 0.98 1421.37 1446

144 FFG 0.34 2278.29 6652

123 L 0.28 514.96 1815

126 AJG 0.26 479.85 1809

186 BLK 0.25 505.35 1988

177 BLW 0.23 122.82 526

196 EFX 0.23 202.69 872

23 CFR 0.22 110.98 483

158 GS 0.22 819.06 3567

193 CME 0.22 540.86 2389

Table 6: Top 10 financial institutions ranked according to the ratio of total sum of OUT coefficients to
total sum of number of OUT links.

Ticker Ratio OUT Total Sum of OUT Coefficients Total Number of OUT Links

189 JNS 0.16 1694.21 10351

111 LNC 0.18 1432.52 7945

159 MS 0.18 1429.95 7756

88 FCF 0.15 1217.92 7736

99 SRCE 0.15 1215.23 7690

75 FMBI 0.17 1274.22 7466

53 NPBC 0.17 1158.28 6744

170 WDR 0.17 1158.48 6708

144 FFG 0.34 2278.29 6652

14 RF 0.18 1223.46 6533

Table 7: Top 10 financial institutions classified according to total sum of number of OUT links.

Ticker Ratio OUT Total Sum of OUT Coefficients Total Number of OUT Links

144 FFG 0.34 2278.29 6652

189 JNS 0.16 1694.21 10351

111 LNC 0.18 1432.52 7945

159 MS 0.18 1429.95 7756

180 FGG 0.98 1421.37 1446

75 FMBI 0.17 1274.22 7466

162 IVZ 0.19 1239.72 6396

115 PFG 0.20 1230.95 5917

14 RF 0.18 1223.46 6533

88 FCF 0.15 1217.92 7736

Table 8: Top 10 financial institutions classified according to total sum of OUT coefficients.
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Figure 9: Average Link function vs Average Returns, September 1, 2008, Gaussian kernel, T = 1669,
τ = 0.05, window size n = 125.
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Figure 10: Average Link function vs Average Returns, June 1, 2010, Gaussian kernel, T = 1669,
τ = 0.05, window size n = 125.
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Ticker Exposure

180 FGG 21.65

144 FFG 21.65

147 RDN 15.40

48 PCBC 12.11

87 PNFP 11.25

192 SLM 11.21

72 FBC 11.05

122 HIG 11.03

152 NFP 11.00

102 AIG 10.23

159 MS 10.13

17 HBAN 10.12

189 JNS 10.03

156 CIA 10.01

83 BPFH 9.97

4 BAC 9.94

14 RF 9.59

181 MKTX 9.51

9 STT 9.34

5 C 9.30

112 MBI 9.27

188 FITB 9.24

133 PL 9.23

111 LNC 9.11

34 BPOP 9.09

Ticker Contribution

144 FFG 33.01

189 JNS 24.83

180 FGG 21.72

111 LNC 21.13

75 FMBI 18.92

115 PFG 18.68

159 MS 18.16

14 RF 17.81

88 FCF 17.46

52 CATY 17.45

53 NPBC 16.62

99 SRCE 15.92

170 WDR 15.52

4 BAC 15.51

188 FITB 15.49

38 SUSQ 15.45

122 HIG 14.39

113 MET 14.36

5 C 14.06

181 MKTX 13.92

11 STI 13.13

117 PRU 13.08

15 KEY 13.00

30 FHN 12.56

69 MBFI 12.41

Table 9: Cumulative Contribution

∑
j 6=sm,k

β̂j|sm,k∑p
i=1

∑p
j=1 β̂i|j

(right) and Exposure Indices

∑
i6=sm,k

β̂sm,k|i∑p
i=1

∑p
j=1 β̂i|j

(left),

aggregated over windows, T = 1669, τ = 0.05, window size n = 125, top 25 financial institutions.
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Figure 11: V̂aRi,t of FBL Financial Group (FFG) based on linear quantile regression on macroprudential
variables (black) and on max{Cit, Eit} (red), T = 1669, τ = 0.05, window size n = 125.
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Figure 12: V̂aRi,t of Fairfield Greenwich Group (FGG) based on linear quantile regression on macro-
prudential variables (black) and on max{Cit, Eit} (red), T = 1669, τ = 0.05, window size n = 125.
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