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Abstract

We propose a semiparametric measure to estimate systemic interconnectedness
across financial institutions based on tail-driven spill-over effects in a ultra-high
dimensional framework. Methodologically, we employ a variable selection technique
in a time series setting in the context of a single-index model for a generalized
quantile regression framework. We can thus include more financial institutions into
the analysis, to measure their interdependencies in tails and, at the same time, to
take into account non-linear relationships between them. A empirical application
on a set of 200 publicly traded U. S. financial institutions provides useful rankings
of systemic exposure and systemic contribution at various stages of financial crisis.
Network analysis, its behaviour and dynamics, allows us to characterize a role of
each sector in the financial crisis and yields a new perspective of the financial
markets at the U. S. financial market 2007 - 2012.
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1. Introduction

Systematic risk is often known as risk stemming from the aggregate fluctuations in the
economy. The sources of risk are complex, as both exogenous and endogenous factors
are involved. This usually calls for a study on a financial network which accounts for
interaction between the agents in the financial market. Unlike idiosyncratic risk, the
systemic risk is not diversifiable. Although the notion systemic risk is not novel in
the academic literature (see, e.g, Minsky (1977)), it has been neglected both in the
academia and in the financial risk industry until the outbreak of the financial crisis
in 2007-2009. The magnitude of repercussions caused by the financial crisis in 2007-
2009 and its complexity revealed a significant flaw in financial regulation which has been
focused primarily on stability of a single financial institution and triggered several political
initiatives across the world such as establishment of Financial Stability Board (FSB)
after G-20 London summit in 2009, integration of systemic risk agenda into Basel III in
2010 prior to G-20 meeting in Seoul, enacting the Dodd Frank Wall Street Reform and
Consumer Protection Act (‘Dodd Frank Act’) in U. S. in 2010 which is said to bring the

most radical changes into the U. S. financial system since the Great Depression.

These initiatives created several challenges such as identifying systemically important
financial institutions (SIFIs) whose failure can not only impair the functioning of the
financial system but also have adverse effects on the real sector of the economy, studying
the propagation mechanism of a shock in a system, or in a network formed by financial
institutions, investigating the response of a system to a shock as a whole as well as reveal-
ing certain structural patterns in evolution and behavior of a network and establishing a

theoretical framework for systemic risk as such.

Although systemic risk is a relatively straightforward concept aimed at measuring risk
stemming from interaction between the agents, the variety of risk measures employed at
estimating systemic risk and diversity of possible methods to model interaction effects
leads to a fact that the literature on this topic is highly heterogenous. The relevant litera-
ture in this field can be broadly divided into two groups: economic modelling of systemic
risk and financial intermediation including microeconomic (e.g., Beale et al. (2011) and
macroeconomic approaches (e.g., Gertler and Kiyotaki (2010) with the emphasis on theo-
retical, structural framework, and quantitative modelling with the emphasis on empirical
analysis. The quantitative literature can be further classified by statistical methodol-
ogy into quantile regression based modelling such as linear bivariate model by Adrian
and Brunnermeier (2011), Acharya et al. (2012), Brownlees and Engle (2012), high-
dimensional linear model by Hautsch et al. (2014), partial quantile regression by Giglio
et al. (2012) and partial linear model by Chao et al. (2014). Further approaches include

principal-component-based analysis, e.g., by Bisias et al. (2012), Rodriguez-Moreno and



Pena (2013) and others; statistical modelling based on default probabilities by Lehar
(2005), Huang et al. (2009), and others; graph theory and network topology, e.g., Boss
et al. (2006), Chan-Lau et al. (2009).

Our paper belongs the quantitative group of the aforementioned literature, namely, mod-
elling the tail event driven network risk based on quantile regressions augmented with
non-linearity and variable selection in ultra-high dimensional time series setting. As a
starting point of our research we take co-Value-at-Risk, or CoVaR, model by Adrian
and Brunnermeier (2011) (AB), where ‘co-’ stands for ‘conditional’, ‘contagion’; ‘co-
movement’. To capture the tail interconnectedness between the financial institutions in
the system AB evaluate bivariate linear quantile regressions for publicly traded financial
companies in the U. S. The CoVaR concept builds upon the concept of VaR with the
difference that CoVaR is not simply VaR of an institution itself but is augmented with

weighted VaR of another financial institution.

Whereas AB focus on bivariate measurement of tail risk we aim at assessing the tail
interconnectedness of a single financial institution with all other financial companies
simultaneously. Thus, the primary challenge is selecting the set of relevant risk drivers for
each financial institution. Statistically we address this issue by employing the a variable
selection method in the context of single-index model for generalized quantile regressions,
i.e. for quantiles and expectiles. We further extend it to a time series variable selection
context in ultra-high dimensions. The semi-parametric framework due to the single-index
model allows us to investigate possible non-linearities in tail interconnectedness. Based
on identified relevant risk drivers we construct a financial network based on spill-over
effects across financial institutions. Further we propose two indices, namely, systemic
contribution index and systemic exposure index where we rank all the companies based

on their degree of their contribution (or exposure) to systemic risk.

The assumption of non-linear relationship between returns of financial companies is moti-
vated by previous work by Chao et al. (2014), who find that the dependency between any
pair of financial assets is often non-linear, especially in periods of economic downturn.
Moreover, non-linearity assumption is more flexible especially in a ultra-high dimensional

setting where the system becomes too complex to support the belief of linear relationships.

The model is evaluated based on daily return data on 200 publicly traded U. S. financial
institutions from January 1, 2006 till September 1, 2012. The financial institutions are
grouped according to their SIC code by industry. The time period from January 1,
2006 to September 1, 2012 covers one recession (2007-2009) and several documented
financial crises (2008, 2011). Dividing companies by sectors and including several market
perturbations allows not only to select the key players for each time period, but also

additionally to highlight the connections between financial industries, which can in turn



provide additional information on the nature of market dislocations.

The rest of the paper is organized as follows. In Section 2 our approach to systemic
risk modelling is outlined. Section 3 presents the statistical methodology and the related
theorems. Section 4 illustrates the empirical application. Section 5 concludes. Appendix

A contains proofs and Appendix B contains estimation results.

2. Systemic Risk Modelling

Traditional measures assessing riskiness of a financial institution such as VaR, or expected
shortfall (ES) are based either on company characteristics and/or integrate macropru-
dential variables which account for the general state of the economy. Thus, for example,
VaR of a financial institution, a risk measure most commonly used in practice, is defined

as

P(_Xi,t > VGRZADi,t) = P(Xz‘,t < th|Di,t) =T, (1)

where X, is the return of a financial institution, q;, is the conditional T-quantile of X,
at 7 = (0,1) and D;; denotes the risk drivers relevant for company i, e.g., returns of a

financial institution itself, and/or variables reflecting the general state of the economy.

However, recent perturbations at the financial market lead to wide recognition of the fact
that in terms of risk what is optimal for a single company is not optimal for the economy
as a whole. Therefore, in our model we extend this information set, D,,, and include
asset returns of other financial institutions. This allows us to model interaction effects
between financial institutions. By extending the information set with asset returns of
other financial institutions we assume that the risks are transmitted through returns.
This is a simplified assumption, since the risk transmission channels can be defined in
a finer way, however, asset returns are known to reflect many aspects of the state of a
financial institution simultaneously and, thus, we think it is justified to use them for the

analysis of network effects.

The starting point of our research is the AB model proposed. Built upon the con-
cept of VaR they proposed: CoVaR, estimated in two steps. In the first step linear
quantile regressions are estimated under standard assumption of Fs_ij (T|M;—1) = 0 and
FE;‘li,t(ﬂMt_l, Xit) = 0:



Xip = o + 7M1 + €5y, (2)
Xjo = ayji +viMi—1 + B5i Xt + €jjit (3)

where X; ; is the log return of institution ¢ and M,_; are lagged macroprudential variables
describing the general state of the economy (See Section 4 for description of macropru-
dential variables). AB propose to determine VaR of an institution i by regressing log
return of company 4 on macroprudential variables. The obtained 3;; in the equation
(3) has standard linear regression interpretation, i.e. it determines the sensitivity of log
return of an institution j to changes in log return of an institution <. In the second step

the CoVaR is calculated by plugging in VaR of company ¢ at level 7 into the equation

(3):

VaRi, = d; + 4 M;_1, (4)

_—_ AB N — =7
CoVaR;, = ajii + 7M1 + B VaR, 4, (5)
= VaRﬂXi:ﬁ;t + Bj:VaR, ;. (6)

Thus, the risk of a financial institution j is estimated as the sum of its own value-at-risk
conditional on the fact that the financial institution 7 is at its VaR level 7 and a weighted
VaR of an institution ¢ where the magnitude of the weight is determined by the degree
of interconnectedness between institutions 7 and j reflected in 3;;;, or 3;.;. By setting j
equal to the return on a system, e.g. value-weighted average return on a financial index,
and ¢ to the return on a financial company i, we obtain the contribution CoVaR which
characterizes how a company ¢ influences the rest of the financial system. By doing the
reverse, i. e. by setting j equal to a financial institution and i to a financial system, one
obtains exposure CoVaR, i. e. the extent to which a single institution is exposed to the

overall risk of a system.

This approach allows to identify the key elements of systemic risk, namely, network ef-
fects, a single institution’s contribution to systemic risk and a single institution’s exposure
to systemic risk, however, it has certain limitations. First of all, it is questionable how
to define the return on a system: it has to be proxied by the return on publicly available
financial institutions, which, in turn, can be problematic since as AB point out it can cre-
ate mechanical correlation between a single financial institution and the value-weighted
financial index. Although they state that no such correlation is detected, this approach

has to be adopted with caution. Secondly, by performing only pairwise quantile regres-



sions one assumes that two companies are interacting in an isolated environment which

is not a realistic assumption since all other interaction effects are suppressed.

This motivates us to extend this bivariate model to a (ultra)high dimensional setting by
including more variables into the analysis and also allowing for non-linear relationship be-
tween the variables. The key element in identifying systemic interconnectedness between
the financial institutions lies in precise measurement of the network effects. Based on es-
timated network effects we evaluate single institution’s exposure and single institution’s

contribution to systemic risk.

To identify the spill-over effects we employ the methodology by Fan et al. (2014) ex-
tended to a time series setting. This requires estimation of a single-index model and
performing variable selection to identify the key risk drivers for each financial institution

simultaneously. More precisely, we estimate:

Xip =a; +79Mi_y + g4, (7)
Xy = g(ﬁiT‘_ini,t) + Eit, (8)

where X;; is the log return, D_;; contains the risk drivers relevant for institution i,
g(-) is a link function allowing for the nonlinear relationships. Here D_;; is equal to
macroprudential variables as well as log returns of the financial institutions except for an
institution ¢ . We employ the same macroprudential variables as AB, and estimate the
VaR by linear quantile regression (7) of log returns of an institution ¢ on macroprudential
variables. This is justified by the analysis of Chao et al. (2014), who found no nonlinear

effects in regressing X, on M,.

Estimation of equation (8) is performed in two steps: in the first step we perform variable
selection to identify relevant risk drivers; in the second step, we estimate link function,
g(+), which characterizes relationship between asset returns of an institution ¢ and the
rest of the financial system defined in our case as all financial institutions in a sample
except for an institution 7. Thus, the spill-over effects, for example, from institutions —z

to an institution ¢ are determined by coefficients 3;_;.

We then obtain VaR and CoVaR as follows:

@i,t = a; + My, (9)
—— TENET —__ ~
COV&Ri\fi,t = g<ﬂi\7iD7i,t) T Eig (10)

where ﬁii,t = (VaR”,;, M;_;) and a star denotes that only the VAR of those financial
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institutions are included which are chosen to be relevant by the variable selection proce-
dure. As one sees in (10) CoVaR comprises not only the influences of financial institutions
in a sample except for ¢, but also incorporates non-linearity reflected in the shape of a
link function g. Therefore, we name it CoVaRTFNET which stands for Tail-Event-driven
NETwork risk.

Non-zero B coefficients obtained as a result of estimation of a single-index model allow to
measure spill-over effects across the financial institutions and characterize their evolution
as a system represented by a network. The term network refers to a (directed) graph,
formally written as G = (V, E) where V is a set of vertices and E is a set of links,
or edges. To classify financial institutions by their role in the systemic risk context we
focus rather on matrix than on network representation of a system and summarize the
estimation results in a form of a weighted and unweighted adjacency matrices. A weighted
adjacency matrix contains B\ coefficients, see Table 1, whereas an unweighted adjacency

matrix is constructed by replacing non-zero B coefficients with d; = 1{@ # 0}.

Ts1,1 Ts1,mq Tsa,1 Ts2,ng Tsq,1 Tsq,ny
P
Ts1,1 0 ﬁsl,n,l\Sl,l ﬁ52,1\51,1 ﬂsz,nzlﬂl,l ﬁ52,1\51,1 654,1\51,1 zjl
=
Ts1,ny Bj1,1\51,n1 R 0 BS2,1|31,n1 sz,nzlsl,nl $4,1151,n 654,1|81,n1
Ts2,1 651,1\52,1 631,1\52,1 0 652,712'52,1 534,1\52,1 554,714\32,1
Ts2,my ﬁ«ﬂ,l\sz,nz BSl,nl\Sz,nz ’852,1\52,n2 0 ﬁﬂ4,1\52,n2 ’354,714‘52,112
Tsa1 651,1\34,1 651,n1\34,1 BS1,n1\S4,1 652,n2|54,1 0 BS4,n4\S4,1
sy $1,1184,n ,nils4,n N ,n S2,n \n ,1184,n
Tsq Bsy 1154 4 Bsy 1184,my Bsa 1lsa n Bsy o lsa,ny Bsy1lsa 4 0
P P
From 2:5%1‘1” 3
i=1 ’

Table 1: An adjacency matrix for financial institutions classified according sectors denoted as sy,
where m = 1,--- ;4 are sectors and k = 1,--- ,n,, are the corresponding samples in a sector.

The above p X p matrix in Table 1 where p is equal to the number of financial institutions
represents total connectedness across variables at each time point ¢t = 1,--- ,n. The
adjacency matrix, or a total connectedness matrix, is sparse and off-diagonal since our
model by construction does not allow for self-loop effects (namely one variable cannot be
regressed on itself). The rows of this matrix correspond to outgoing edges for a variable

in a respective row and the columns correspond to incoming edges for a variable in a

Jlesy 1



respective column. For example, row 1 contains B coefficients of all the variables that are
influenced by company 1 from sector 1, x, ,. Thus, a cell (s, ,, 7, ) contains S, , |, ,
which is the magnitude of the influence of company 1 from sector 1, z,, ,, on company n

from sector 1, zy, , .
]

To classify institutions according to their systemic importance we construct two indices
based on the weighted adjacency matrix: index of systemic contribution, C;;, and index
of systemic exposure, F; ;. This allows us to identify risk emitters and risk recipients. We
define the index of systemic contribution, C’Zz’k, as a proportion of the sum of 3 coefficients
corresponding to outgoing links, or a sum of each row of a weighted adjacency matrix, to

the total sum of 3 coeflicients at the particular t =1,--- , n:

Z : /’6\ m — 7k‘
th d:ef (1 + JFSm .k ]|5A,k )VaRZ ’ (11)
) ¥4 P )
i=1 Zj:l Bij
where m = 1,--- ,4 are sectors and k = 1,--- ,n,, are the sample sizes of corresponding

sectors. Index of systemic contribution weights VaR of a corresponding financial insti-
tution with proportion of its influence on the rest of the financial companies. In other
words, VaR of a financial institution is proportional to its monopoly power at the market

defined through its systemic connectedness.

Correspondingly, we define the index of systemic exposure, El”;k, as a proportion of the
sum of § coefficients corresponding to incoming links, or sum of each column of a weighted

adjacency matrix, to the total sum of E coefficients at the particular ¢t =1,--- | T"

e 21 s B\m i\ ——=m,k
EnE (1 + f — i VaR;, (12)
i=1 2uj=1 Bilj

The conceptual difference to AB is that whereas they assume that CoVaR of a financial
institution increases if it is influenced by another institution, we assume that CoVaR
increases if a financial institution is not only being influenced but also exerts significant
influence on other financial institutions itself. This is motivated by the fact that not only
heavily influenced institutions become riskier in the period of crisis, but also those with
high degree of monopoly power in terms of systemic interconnectedness are potentially the
first ones to fail. After constructing these indices we classify a financial institution either
as a risk-emitter, or as a risk-recipient by computing maX{Cﬁ’k, Eﬁk} As a example, the
value-at-risk based on exposure and contribution indices for selected companies, Fairfield
Greenwich Group (FGG, Broker-Dealers), FBL Financial Group (FFG, Insurance), which



are the largest risk-contributors and risk-receivers are presented in Figures 11 and 12. A

more comprehensive empirical analysis can be found in Section 4.

3. Statistical Methodology

Let us denote X; € R” as p as the variables D_;; before, p can be very large, namely of
exponential rate. We also suppress the subscripts of the coefficients 3;;s, as we focus on
one regression. The SIM of (8) is defined to be:

Yi=g(X/B") + e, (13)

where {X;, &, } are strong mixing processes. Regressors X;s can be the lagged variables
of Y;.

Note that (13) can be formulated in a location model and identified in a quasi maximum

likelihood framework: the direction § (for known g(-)) is the solution of
min E pr{Y; — g(X/' 8)} (14)
with loss function
pr(u) = p(u) = 7ul(u > 0) + (1 — 7)ul(u < 0), (15)

E(U.{Y: - g AHX) =0 as.

(where ,(-) is the derivative (a subgradient) of p,(-) ). It can be reformulated as
F;pl(t (1) = 0.
The model is similar to the location scale model considered in Franke et al. (2014). Note

that it is not hard to extend it to a quantile AR-ARCH type of single index model,

Y =g(X/ B) +o(X/ 7)e (16)

To estimate the shape of a link function g(-) and selected § coefficients we adopt mini-
mum average contrast estimation approach (MACE) outlined in Fan et al. (2014). The

estimation of # and g¢(+) is as following:



() = argmin—L o(8)

= argminn_ ZZ/}T {(Vi—g(B'X) — g (8" X)B" (X, — X))}

7j=1 t=1

KA }/Z Ku(X (17)

>
Na'

where Kj(-) = h™'K(-/h), K(-) is a kernel e.g. Gaussian kernel and & is a bandwidth.
Since the data is not equally spaced we choose a bandwidth h based on k-nearest neighbor
procedure (See Hérdle et al. (2004)). The optimal k, number of neighbors, are selected
based on a cross-validation criterion. The implementation involves an iteration between
estimating § and ¢(-), with a consistent initial estimate for g, see for example Wu et al.
(2010). Further in our procedure, we argument the estimation problem in equation (17)

with variable selection to estimate :

@,Q()—argmmn ZZPT{Xt g (BTX)X ;B w (B) + Y m(5il)(18
=1

j=1 t=1

Kn(X506)
Z?:l Kh(Xt; )7

function concave for t € [0,+00) with a continuous derivative on (0,400). We now

where X;; = X; — X, wy;(B) =

6 > 0, and 7,(t) is some non-decreasing

discuss the choices of an optimal penalty function and an optimal penalization param-
eter. There are several approaches in the literature concerning choosing penalty func-
tion. These approaches can be classified based on the properties desirable for an optimal
penalty function, namely, unbiasedness, sparsity and continuity (Fan and Li (2001)). The
classical approach known as least absolute shrinkage and selection operator (LASSO) is
proposed for mean regression by Tibshirani (1996), which is based on L; penalty for
the coefficients. Numerous studies further adapt LASSO variable selection procedure to
a quantile regression framework such as Yu et al. (2003), Li and Zhu (2008), Belloni
and Chernozhukov (2011), etc. While achieving sparsity, Li-norm penalty tends to over-
penalize the large coefficients as the LASSO penalty increases linearly in the magnitude
of its argument, and, thus, may introduce large bias to estimation. As a remedy to this
problem adaptive LASSO estimation procedure has been proposed (Zou (2006); Zheng
et al. (2013)). Another approach to alleviate bias stemming from LASSO procedure is
proposed by Fan and Li (2001) known as Smoothly Clipped Absolute Deviation (SCAD):

10



Al for [t| < A,
MW(t) =9 = —2a\[t| + A?)/2(a—1)  for A < |t] < a),
(a+1)\2/2 for [t| > a),

where A > 0 and a > 2. Fan and Li (2001) recommend to use a = 3.7 .

As for selecting A, there are two common ways: data-driven generalized cross-validation
criterion (GCV) (Fan and Li (2001)) and likelihood-based Schwartz, or Bayesian infor-
mation criterion-type criteria (SIC, or BIC) (Schwarz (1978); Koenker et al. (1994)),
and their further modifications. The most commonly used criterion is GCV (Fan and
Li (2001), Tibshirani (1996)), however, it has been shown that it leads to an overfitted
model (Wang et al. (2007)). Therefore, we primarily employ a modified BIC-type model
selection criteria proposed by Wang et al. (2007) and use GCV criterion only to verify

whether GCV and BIC diverge significantly.

Define 3, & (ATT(l), BTT(Q))T as the estimator for g* & (ﬁef), BE"QT))T attained by the loss in

(18). Let -1y and f3;(2) be the first ¢ components and the remaining p — ¢ components
of BT respectively. If in the iterations, we have the initial estimator B((%) as a \/n/q

consistency one for ﬁg‘l) , we will obtain with a very high probability, an oracle estimator

of the following type, say /3, = (j(l), 0")T, since the oracle knows the true model M, o

{l: Bf # 0}. The following theorem shows that the penalized estimator enjoys the oracle
property. Define 3° as the minimizer with the same loss in (18) but within subspace
{B € R?: Bpe = 0}. We have the following conditions needed for theorems.

Condition 1. The kernel K(-) is a continuous symmetric function. The link function
g(-) € C%.

Condition 2. The loss function p,(x) is convex and 1, (z), the derivative (or a subgradient)
of p-(x), satisfies Ev(¢;) = 0 and inf}, <. O E4)-(e; — v) = Cy where OE); (e — v) is the

partial derivative with respect to v, and (] is a constant.

Condition 3. The density of 8*T X is bounded with bounded absolute continuous first-
order derivatives on its support. Assume E{¢,(¢|X)} = 0 a.s., which means for a

quantile loss we have FET;((T) = 0. Let X,u) denote the sub-vector of X, consist-

ing of its first ¢ elements. Let Z; def XtTﬁ* and Zy; def Zy — Z; . Define Cyy) def

EE{v(e)| Z: 9 (Z)PP (E(Xir)| Z2) — Xey)) (BE(Xey | Ze) — Xun))} ', and

Coq) = E{o E7/’7(57&)|Zt}{[9/(Zt)]2(E(Xt(1)|Zt) — X)) (BE(Xyy| Z4) —Xt(1))}T and the ma-
trix Cy(1y satisfies 0 < L1 < Amin(Co1)) < Amax(Coq)) < Lo < oo for positive constants
Ly and Ly. There exists a constant ¢o > 0 such that Y 7 {||X;q)l|/v/n}*T® — 0, with

0<co <1 wy o Y, —a; — ijJB. Also, exists a constant C3 such that for all g close

11



to B ([|8 = B[ < C5)

1D X X by Er (vig)llz2.00 = Op(n' ).
t

Condition 4. The penalty parameter ) is chosen such that A\ = O(n~='/?), with D, of

max{d; : | € M.} = o(n®=°2/2)) = o(n~12), d; & 1 (18]), M, = {l : BF # 0} be

the true model. Furthermore assume gh — 0 and h=*y/q/n = o(1) as n goes to infinity,
q = 0n*2), p = Ofexp(n®)}, nh® — oo and h — 0. Also, 0 < § < a < a/2 < 1/2,
042/2 <o <1

Condition 5. The error term &, satisfies Var(e;) < co. Assume that

sup E[7(e1)/m | < soM™
t

St:p E[o (m)/ml]| < seM™

where sy and M are constants, and 1, (+) is the derivative (a subgradient) of p,(-).

Condition 6. The conditional density function f(¢|Z; = u) is bounded and absolutely

continuous differentiable.

Condition 7. The link function g(-) satisfies a Lipschitz condition in the support of 87 X:

l9(2) —9(2)] < Clz - 2| (19)

Conditions 8. {Xij,e: 1=, are strong mixing process for any j. Moreover, there

—00

exists positive constants c¢,,; and c¢,,» such that the a— mixing coefficient for every

je {17 7p}7
a(l) < exp(—cpilm?), (20)

where ¢,,2 > 2a.

With all the above definitions and conditions, we can derive the following theorems.

THEOREM 3.1. Under Conditions 1-8, the estimators BO and BT exist and coincide

on a set with probability tending to 1. Moreover,
P(6° = f:) > 1— (p — q) exp(—C'n") (21)

for a positive constant C".

12



THEOREM 3.2. Under Conditions 1-8, we have

180y = Byl = Op{ (D +072) /) (22)

For any unit vector b in RY, we have

b’ Colt i) Colivn(Briry — Bfyy) == N(0, 1) (23)
where recall that Cy 1y = E{E{2(2,)|Zi} g (Z0)P[E(X 1) Ze) — Xun)) [E(X ()| Z0) — Xun)] T},
def
and Cony = E{OEY-(e)|ZH{[9'(Z0)]*(E(Xu)| Z2) — Xo))(E(Xu) | Z2) — X))} T Note
that E(X(1 | Z) denotes a p x 1 dimension vector with jth element E(X;)|Z;), j =
1, -, q, and 7, XTB Y- (g) is a choice of the subgradient of p-(g) and

2 S E[, (e0)]2/ [0 E s (1)), where

0 E¢T<8t - U)2’Zt

OEY, ()2 = -

v=0

Let us now look at the distribution of g(-) and §'(-), the estimator of g(-), ¢'(-).

THEOREM 3.3. Under Conditions 1-8, let p; = o [ WK (u)du and v, o [ W K?(u)du,

j =0,1,2. For any interior point z = x' B*, fz(2) is the density of Z;, t = 1,...,n, if
nh® — 0o and h — 0, we have

Vnhy/f2(2)/ (0?) {aafﬁ) (T8 ~ S O E v (e)} SN0, 1),

Also, we have

VAl {f2()3} (va02) {27 B) — ¢/ (278 } 3N (0, 1),

The dependence doesn’t have any impact on the rate of the convergence of our non-
parametric link function. As the degree of the dependence is measured by the mixing
coefficient «, is weak enough such that Condition 8 is satisfied. This is also in line with
the results in Kong et al. (2010). In fact we assume exponential decaying rate here, which
implies the (A.4) in Kong et al. (2010).

13



4. Empirical Analysis

4.1. Data

Our analysis focuses on the panel of 200 publicly traded U. S. financial institutions
between January 1, 2006 and September 1, 2012 corresponding to SIC code from 6000 to
6799. SIC codes are used to divide companies into the following sectors: (1) depositories,
(2) insurance companies, (3) broker-dealers, (4) others, see Table 2 in Appendix B for a

complete list.

Due to its high-dimensionality this dataset approximates the aggregate fluctuations in
the system fairly well. Thus we do not include companies operating in the real sector
and do not investigate linkages between financial and real sectors of the economy. We
also do not include any proxy for the shadow banking sector which may play a role in
the 2007-2009 crisis. The time period from January 1, 2006 till September 1, 2012 covers
one recession (2007-2009) and several financial crises (2008, 2011).

Our analysis is based on the daily returns of the above mentioned financial institutions
(Table 2). Market returns are a rich and robust source of information reflecting the
overall state of the company. Apart from the data on the financial companies we use
daily observations of macroprudential variables which characterize the general state of
the economy. These variables are defined as follows: (i) the implied volatility index,
VIX, reported by the Chicago Board Options Exchange; (ii) short term liquidity spread
denoted as the difference between the three-month repo rate and the three-month bill
rate to measure short-term liquidity risk; (iii) the changes in the three-month Treasury
bill rate from the Federal Reserve Board; (iv) the changes in the slope of the yield curve
corresponding to the yield spread between the ten-year Treasury rate and the three-month
bill rate form the Federal Reserve Board; (v) the changes in the credit spread between
BAA-rated bonds and the Treasury rate; (vi) the weekly equity market returns from

CRSP, and (vii) the returns on a real estate sector in excess of the market returns.

4.2. Estimation Results

Empirical analysis is performed at three levels: first of all, we characterize the behavior
of a system as a whole, in the second step, we investigate fluctuations across the financial
sectors, and at last, we analyze the systemic importance of particular companies. Figure
1 presents the risk network estimated for the window starting at 20070111, and Figure 2

considers the sparsified network with further thresholding.

To describe aggregate fluctuations in a system represented by financial institutions in a
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sample we define total connectedness in terms of 3 coefficients, TC® % 1D et |B\i|j|,
and number of links, 7C™ < D di o =1 D 1{@“ # 0}. We distinguish

between the aggregate magnitude of 3;; coefficients and total number of links at each
time point to account for the periods when there are large number of small links, and/or
few significant links. Figure 3 shows that the beginning of 2007-2009 financial crisis is
characterized by smaller magnitude of Ei‘j coefficients and fewer links. As the crisis was
unfolding, the system became more heavily interconnected and reached its peak in the
second quarter of 2008 and lasted until beginning of 2009. Total connectedness across
financial institutions started to decrease in the second quarter of 2009 and reached it
minimum by the first half of 2010. Several negative shocks at the U. S. financial market
contributed to a slow increase both in T'C'* and T'C"™ from the second quarter of 2010 to
through 2011. Examples are Flash Crash in May 2010 attributed to the U. S. reaction
to the debt crisis in Greece and US debt-ceiling crisis in July 2011. The fluctuations in
linkages in 2010-2012 were much smaller than during the financial crisis due to overall

positive performance of the markets.

The average values for a penalization parameter \ for 200 financial companies are pre-
sented in Figure 3 by a dotted line. One sees that the estimation results of total con-
nectivity measures, T'C* and T'C™ have the same time trend as \. The penalization
parameter X determines the number of selected risk drivers in the whole procedure, and
the fluctuations in A can also document the noise level and interconnections of the whole

system.

Figure 3 plots also h) empirically. While staying at a low level in the beginning of 2007, h)
increases together with 7'C'* and T'C"™. Both T'C*®* and average X values reach its maximum
approximately in the middle of 2009, which is during the period of subprime crisis. As
the economy recovers the average X, TC?® and TC™ values all start to fall, which suggest
a lessened comovement across the financial institutions. Market disturbances in 2011
corresponding to European debt crisis are reflected by another smaller bump T'C* and
TC™.

We now turn to analyzing the relative contribution and exposure of each sector as well as
interconnectedness across sectors. To obtain a measure of linkages per company in each
sector, we compute the following density measures for each sector in terms of exposure

def 1

‘bution: def 3 2 lef A
and contribution: Dy = =370 370 B, jil and Dy = =378 T (B s il

where m is fixed and n,, is the sample size of a corresponding sector. By dividing n,, we

summarize variations of the relative intensity per link within each sector. The relative

m

ezp dOes ot exhibit great fluctuations across time as shown in Figure 4, except

exposure D
that one observes a slightly decreasing intensity for the depositories and a large increase

in exposure intensity of the sector “Others” from 2010 to 2011. This significant increase
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is possibly due to the heterogeneity in sector “Others” which contains companies such as,
American Express, (a credit card company), Equifax, (a credit-rating agency), Sterling
Financial Corporation, (a consumer and commercial bank acquired by PNC Financial
Services Co. in 2007). In contrast to D7, , the contribution density D[y .. (displayed
in Figure 5) is more volatile, see Figure 5. The contribution densities of depositories
and insurance companies are relatively stable with the former dominating the latter in
the given time period 2007-2012. However, one can observe a interesting interplay in
contribution densities between depositories and insurance companies in 2007-2008 when
insurance companies overtook leadership over the depositories for a short time during the
crisis. Contribution density of broker-dealers exhibits seasonal-type fluctuations. Broker-
dealers played a significant role in the financial crisis as suggested by their relatively
higher contribution density. This is justifiable as they may be more susceptible to runs
and bankruptcy due to their tendency to use short term credit markets to finance their
operations. This was also the reason why during the crisis this particular sector needed

extensive support from the government in order to prevent complete market break-down.

We further describe connections between different financial sectors by defining intercon-
nectedness measures as follows: 1C.,, o —Z%T ZZQQF B oand IC.omr = —Z%nll ZEQQFj'i.
i=1 Zj:l 5%‘\]‘ i=1 Zj:l fBi\j
In other words, to compute how depositories were influenced by, e.g., insurance sector,
we sum up BZ-U in rows of the adjacency matrix corresponding to insurance sector and
columns corresponding to depositories. The results for this network statistics are pre-
sented on Figure 6. One can see on Figure 6, rows 2, 3 and 4, that depositories dominate
in the interconnectedness between the institutions for all sectors. Especially significant
linkages both in terms of exposure and contribution exist between depositories and in-
surance sector. This pattern changes only around 2011 when broker-dealers influenced
the banking sector more heavily than other sectors. While being the most exposed and
most “contributing” sector among others broker-dealers unlike insurance sector has more

balanced structure of interconnectedness with remaining three sectors.

Based on the above analysis we have the following conclusions: (1) the connections
between institutions tend to increase both in terms of magnitude of coefficients and the
number of links before the financial crisis, (2) the network is characterized by numerous
heavy links at the peak of a crisis, (3) the connections between institutions reflected
by magnitude of coefficients and the number of links get weaker as the financial system
stabilized, (4) the in-going links, or exposure, is far less volatile than the out-going links, or
contribution. Whereas banks and insurance exhibit relatively stable contribution pattern,
the “Others” and, especially, broker-dealer sectors are highly volatile. While 2008 was
dominated by the banks and /insurance, the second half and the aftermath of a financial

crisis are characterized by increased contribution of broker-dealers. A significant increase

16



in the magnitude of coefficients due to broker-dealer sector is observed also around 2011.

After having summarized network measures at the aggregate and sector level we turn
to analysis of a network at a single companies level. We define in- and out- degrees of

1 . m7k dﬁf P a mvk dﬁf p P
one variable as follows: ¢;"" = >3 |55, | and ¢;2° = >0 [Bjys,, [ We further
aggregate the two measure over all windows for each company. As for total connectedness

we calculate both measures based on adjacency matrices.

The estimation results for in- and outdegree are presented in Figures 7 and 8. The most
significant risk-recipients and risk-emitters are summarized in Tables 3 to 8. The distri-
bution of incoming and outgoing links differ significantly: while judged by the number of
incoming links almost all financial institutions are equally influenced by others except for
Wisdom Tree Investments (WETF) having the most in-gong links (5584), the structure
of out-going is more heterogenous with multiple companies dominating over the others.
Based on the ratio of the total sum of 5 coefficients to the total number of links for each
company, it is possible to identify the most influential financial institutions. In case for
IN links these institutions are Fairfield Greenwich Group (FGG, Broker-Dealers), FBL
Financial Group (FFG, Insurance), Radian Group (RDN, Insurance), Morgan Stanley
(MS, Broker-Dealer), Pinnacle Financial Partners (PNFP, Depositories), and Hartford
Financial Services Group (HIG, Insurance). Ratio ranking results suggests the general
importance of broker-dealer industry in the whole financial system especially during fi-

nancial crisis.

Whereas distribution of IN links allows to identify the key players obviously, it is not easy
to identify dominating companies with OUT links. Based on the ranking of sum of cgi’k
the five most influential companies are FBL Financial Group (FFG, Insurance), Janus
Capital (JNS, Others), Lincoln National Corporation (LNC, Insurance), Morgan Stanley
(MS, Broker-Dealer), and Fairfield Greenwich Group (FGG, Broker-Dealers). However,
Janus Capital’s links are so dispersed (10351) that it has very low ratio of sum to number
of links. The same holds true for Lincoln National Corporation and Morgan Stanley.
Thus, companies with the highest loads per OUT link are Fairfield Greenwich Group
(FGG, Broker-Dealers) and FBL Financial Group (FFG, Insurance), Loews Corporation
(L, Insurance) comes as the third one, followed by Arthur J Callagher & Co (AJG,
Insurance) and BlackRock Inc. (BLK, Others). Unlike with IN links where both Fairfield
Greenwich Group (FGG, Broker-Dealers) and FBL Financial Group (FFG, Insurance)
share the leadership, for OUT links Fairfield Greenwich Group (FGG, Broker-Dealers) is
clearly the only leader with 0.99 ratio.

Thus, in terms of systemic contribution the IN links are primarily dominated by broker-
dealers and insurance sectors, whereas OUT links are primarily due to either broker-

dealers or banks sectors. Other sectors have approximately equal share in terms of both
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IN and OUT links. This is reasonable as it is likely that insurance companies were
connected with the most of the companies to hedge against possible risk. However,
insurance companies themselves were not the active players at the market, and were
dominated by broker-dealers and/or banks in terms of OUT links.

Further, we examine the shape of the link function in the crisis period as well as in the
period of relative financial stability. As one can observe in Figure 9 the link function
tends to be almost linear in a financial crisis period. It exhibits non-linearity in a stable

period as displayed in Figure 10.

Finally, we construct the indices of systemic exposure and systemic contribution, the

results for the whole sample are presented in Table 9. (Cumulative Contribution is
Z]'?éé‘m’k Bj‘sm,k

f:1 Z§:1 Bi\j
Zi#sm,k B\sm,k”

as summing up m
1= = v}

defined as summing up over all windows and Exposure Indices is defined

over all windows.)

5. Conclusion

In this paper we propose a semiparametric framework to assess systemic importance of
financial institutions based on their interconnectedness in tails. We use a semiparametric
model to allow for more flexible modeling of relationship between the variables. This is
especially justified in a ultra-high-dimensional setting when the assumption of linearity is
not likely to hold. In order to face these challenges statistically we estimate a single-index
model in a generalized quantile regression framework while simultaneously performing
variable selection. Ultra-high dimensional setting allows us to include more variables into

the analysis.

Our empirical results show that there is growing interconnectedness during the period of a
financial crisis, and network-based measure reflecting the connectivity between companies
can be used to forecast the market disturbances. Moreover, by including more variables
into the analysis we can investigate the overall performance of different financial sectors,
depositories, insurance, broker-dealers, and others. We base our analysis on the network
measures. Estimations results show relatively high importance of broker-dealers indus-
try in the financial crisis. We also observe strong non-linear relationship between the

variables, especially, in the period of relative financial stability.

6. Appendix A: Proof

Condition 1. The kernel K(-) is a continuous symmetric function. The link function
g() € C*.
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Condition 2. The loss function p,(x) is convex and 1, (z), the derivative (or a subgradient)
of p;(x), satisfies E4);(e¢) = 0 and inf},<. 0 Ev-(ey — v) = C, where OE1);(e; — v) is the
partial derivative with respect to v, and C] is a constant.

Condition 3. The density of 8*"X is bounded with bounded absolute continuous first-
order derivatives on its support. Assume E{¢,(¢|X)} = 0 a.s., which means for a

quantile loss we have FaT)l((T) = 0. Let X, denote the sub-vector of X; consist-
ing of its first ¢ elements. Let Z; def XtTB* and Zy; of Z; — Zj . Define Cy) dof

E E{@/szggt)|Zt}{[9/(Zt)]2(E(Xt(1)|Zt) — X)) (E(Xy)| Z:) — Xy1))} ', and
Coy = E{OEY-(e)| Z {9 (Z)*(E(Xy1)| Ze) — Xo1)) (E(Xy1)| Ze) — Xy1))} T and the ma-

trix C(p) satisfies 0 < L1 < Anin(Coq)) < Amax(Co1y) < La < oo for positive constants
Ly and Ly. There exists a constant ¢y > 0 such that Y. {||X;q)l|/v/n}*T — 0, with
0<co <l wy et Y, —a; — ijt;ﬁ. Also, exists a constant (5 such that for all 5 close

to 5" (|6 — B[ < Cs)

1323 Kot Xy B (v e = Opln ™).
toJ

Condition 4. The penalty parameter ) is chosen such that A\ = O(n~"/?), with D, o
max{d; : | € M,} = o(n®=22/2)\) = o(n=Y2), d; € \(187]), M, = {l : BF # 0} be
the true model. Furthermore assume gh — 0 and h_l\/q/_n = 0(1) as n goes to infinity,
q = 0n*), p = Ofexp(n®)}, nh® — oo and h — 0. Also, 0 < § < a < ay/2 < 1/2,
a2 < aq < 1.

Condition 5. The error term ¢; satisfies Var(e;) < co. Assume that

sup E|¢T(5t)/m!‘ < soM™
t

sup E|y" (z7) /m!| < soM™
t

where so and M are constants, and ¢, (+) is the derivative (a subgradient) of p,(-).

Condition 6. The conditional density function f(¢|Z; = wu) is bounded and absolutely

continuous differentiable.

Condition 7. The link function g(-) satisfies a Lipschitz condition in the support of 7 X:
9(2) —9(2)| < Clz — 2| (25)

Conditions 8. {X;,e}i=>°, are strong mixing process for any j. Moreover, there

—00

exists positive constants c,,; and c¢,,2 such that the a— mixing coefficient for every
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jG {17 ,p},
a(l) < exp(—cp1lm?), (26)

where ¢,,2 > 2a.

Define 3° as the minimizer with the loss

La(B) =30 pr (V= af = B X B)wy(87) + 1y dil i,
=1

j=1 t=1

but within the subspace {3 € R? : Sx = 0}, and aj, b} are denoted as g(4*" X) and

¢'(8*TX). The following lemma assures the consistency of 3°,

LEMMA 6.1. Under Conditions 1-8, recall d; = v, (|B;|), we have that

18° = B*| = O, (Va/n + |l dw]|) (27)

where dyy is the subvector of d = (di,- - ,d,) T which contains q elements corresponding

to the nonzero ﬁa).

PROOF. Note that the last p — ¢ elements of both BO and [* are zero, so it is sufficient
to prove || 5% — Byl = Op(Va/n + [dw ).
We first show for 7, = o(1):

P| inf {L,(Bh) +mu, 0) > L,(8)}| — L.

l[uf=1

Then there exists a minimizer inside the ball {Bq) : [|B81)—8(;)ll < }. Construct v, — 0
so that for a sufficiently large constant By: v, > By - (\/q/n—i— |d) H) We will show that
by the local convexity of f}n(ﬁ(l), 0) near B{1) there exists a unique minimizer inside the
ball {8 : [|Ba) — B(y)ll <} with probability tending to 1.

Let X(1y; denote the subvector of X;; consisting of its first ¢ components.

By the uniform Bahadur representation in Kong et al. (2010), there exist a compact set

B with 8* a interior point, such that uniformly over u € B, we have
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Ln(By + 7w, 0) — L (53, 0)

== Z Z b (Ve = a5 = b X (580 ) (B) Xy
t=1 j=1
1 & . * * * * * — *
+ 50 D D OO (Vi — af = b X80 — 0 X ) wis (B7) (X )
=1 j—1

q
+n Z di (1601 + ] — |Biiyl) + op(max{nyyz, n(n/qloglogn)™'})
=1

P+ P+ P+ o,(max{ny? n(n/qloglogn)~'})

where 7, € [0,7,].

Define wy; o wj(B*), it is not difficult to derive that wy; = Z” {1 + 0,(1)} where
Zy=X,'B*, Zy; = Z; — Zj and fz(-) is the density of Z = XTﬂ*

For P;, because ||ul| =1 and Y; = a; + &;, we get

Pl <yl D0 D 050 (Vi = @ = B5X (800 )wi X by 1L+ 0p(1)}

t=1 j=1

RO XAPMECRUETALLY Z(Zt Ko f 1+ ol
j=1 t=1
K3(Zy

J

=l Y5 B e (e — 0 — 1:2) S Vs 0,0
j=1

fZ(ZJ

Ki(Zy;)
f2(Z;)

= 7n|| Z b;k EZt{ E€t|Zt[wT<€t + a;fk - Cl; - b;Zt])] E(X(l)tJ|Zt)}||{1 + Op(l)}
=1

= Yl DB E [ (25 + af — o) HE(X(y5125) — Xy, {1 + 0,(1)}
j=1

where E ., x, means taking expectation with respect to the joint distribution of (g, X3).

Furthermore we have

EID b5 Eler (g5 + a; — ay) {E(X)1Z;) — Xyl

j=1

< { E2(e;) ED bPIE(X)1Z5) — Xyl T [E(X;1Z5) — X(l)ﬂ}
j=1

= Vn{Evi(g;) tr(Con))} 2,

1/2
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def

recall 00(1) = E{[g/(ZJ)]Z(E(X(l)j|Z]) — X(l)])[E(X(l)]|Zj) — X(l)]]}T We thus arrive at

Py = Op(ay/1q) (28)

because tr(Cy1y) = O(q) and E¢?2(g;) < oo by Condition 3.

For P,, according to the property of kernel estimation, it can be seen that

1 n n . . i} . Kh(Z )
Py = om ) D UPOEL x e (Yi—af — 02, — b nX<T1>tj“)WZ—(ZtJ,)(X<T1>tj“)2{1 +0p(1)}
t=1 j=1 j
1 n

= 5%21 Z b;2aE{wT (Y;t —aj — b;_nX(TUtju) (X(Tl)tju)z}{l +0,p(1)}

j=1

Let Hy(c) = infjy<. OEv(e; — v). By lemma 3.1 of Portnoy (1984), we have

1 n n .
Py 2 5 > b H | Xl (Xw)? > eyin (29)

t=1 j=1

for some positive c.

For Pj, it is clear that

q
1P| < myn ) difr] < oyl | (30)

=1

Combining (28), (29)and (30), the following inequality holds with probability tending to
1 that

Yo = Bo(v/a/n+ [|[d@)||) and By is a sufficiently large constant, so that the RHS of (31)
is larger than 0. Owing to the local convexity of the objective function, there exists a

unique minimizer B?l) such that

18° = 871l = 158 = Biyll = Op(Va/n + lldwl)
Therefore, (27) is proved. O

Recall that X = (X(1), X(0)) and M, = {1,...,q} is the set of indices at which 5 are
nonzero.
Lemma 1 shows the consistency of 3°, and we need to show further that 4° is the unique

minimizer in R? on a set with probability tending to 1.

LEMMA 6.2. Under conditions 1-8, minimizing the loss function En(ﬁ) has a unique
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global minimizer B = (BI, 0")7", if and only if on a set with probability tending to 1,

Z Z Yy (Yt —a; — l;jX;;BT)BjX(l)tjwtj(ﬂ*) + nd(l) ° Sigﬂ(/@f) =0 (32)

j=1 t=1
2l < (33)
where N n
def o « x g 3 3
(@ < (0) { Z bJZUT —a; - ijtgﬁv)X(O)tjwtj(ﬁr)} (34)
7j=1 t=1

where o stands for multiplication element-wise.

PROOF. According to the definition of BT, it is clear that B(l) already satisfies condition
(32). Therefore we only need to verify condition (33).

To prove (33), a bound for
Z Z b3, (Y — af — b5 X% 87w X oy (35)
t=1 j=1

is needed. Define the following kernel function
hd(Xt7 (l;, b;ka Y:‘,a Xj7 (l:, b:‘fa Y})

n * * >k * * * *
= §{bj¢r(yt — af = b;X 58wy Xoyey + 0yr (Vi — af — b X8 )wth(O)Jt} )
d

where {.}4 denotes the dth element of a vector, d =1,...,p —q.
According to Borisov and Volodko (2009), based on Condition 5:
Define U, 4 &f D D icicjon ha(Xe, @}, 07, Yy, X5, a7, b;,Y;) as the U— statistics for (35).

j ) ] )
We have, with sufﬁment large ¢,,2 in Condition 8.

P{lUna — EUndl > €} < s exp(mse/(ems + cmac?/*n?)

where Cp3, Cma, Cms are constants. Moreover, let ¢ = O(n'/2t%), as a < 1/2, we can

further have,
P({|Una — EUnd| >¢}) < cmzexp(—cmee/2),

Define

n n

def —1 * * v | Q%
nd = § bﬂﬂf —a; — ijtj )Wth(O)tj7
1 j=1

t=
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also it is not hard to derive that U, 4 = F,, 4n/(n — 1).
It then follows that

P(|Fha—EF,al >¢) = P(|Uya—EU,4l(n—1)/n>¢)
< 2exp(—0na+l/2)

Define A, = {||F,, — EF,||c < €}, thus

=

—q

P(An) 2 1= D P(|Fua — EFpdl > ) 2 1= 2(p — q) exp(~Cn+17?).

I
)

Finally we get that on the set A,

12(8%le < Ildpte © Fulloo + ldte © > > " bi [0, (Y — af — b;X,; 8°)

t=1 j=1
—r (Ye — a5 — b5 X,587) Jw; Xoytillo

~

< OMMPPYN+ [[djge 0 0 OB (vi)b Xy (Bray — By )wii X oy lloe),

t=1 j=1

where v;; is between Y; — a; — b;Xg *and Y, — a; — b;Xt;BO. From Lemma 1,
18° = B ll2 = Oy (Ildeay | + va/ V).

Choosing || 37, 3= X(0)jwij X (1,0 EUr (1) 2,00 = Op(n' 1), ¢ = O(n2), A = O(\/q/n) =
n~lHe22 0 < ap < 1, ||[d)|| = O(/gDy) = O(n*2/2D,,)

() 2l = Ofn AT (02 0t /g i+ ([ et )}
== O(n7a2/2+°‘ —+ n % + n*Ozl‘l’OtQ/ZDn/)\)7

assume D,, = o(n®°2/2)) and let 0 < § < a < /2 < 1/2, ay/2 < a; < 1, with rate
p = O{exp(n’)}, then (n)7'[|2(8°) ]| = 05(1). O

Proof of Theorem 1 . The results follows from Lemma 1 and 2. O

Proof of Theorem 2. By Theorem 1, Bw(l) = (1) almost surely. It then follows from
Lemma 2 that

1Bty = Byl = Op{ (D +0712) /3.

This completes the first part of the theorem.
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Given aj, b}, the estimate (3, is:

n n p
B, = argmﬁinz > o (Ye—a; =X B)wy +n ) n(6])8
=1 t=1 =1

where wy; = wy;(6*) and X3 = Xy — X
Define £ = \/n(B, — 8%) and Yy = Y, — ] — 5 X8 As wyy(8) = 12Z8{1 + 0,(1)}, it

J nfz(Z

follows that é is the minimizer of

1O = 33 {00 - X6 o) f T 0, 0)

+n ) (BB +n72G] - 1871
=1

def

= QO+ op(D)} + Q2(8),

recall f7(z) is the density function of Z = X,"8*,t = 1,...,n. We study Q;(£) and Q(€)

respectively.

Let A;(&) def pA{Ys; — n*%g’(Zj)Xt;g} — pr (ng) — n’%wT(Ytj)g’(Zj)thf. It can be seen

that
Kn(Zj) v

77ffZ(Zj)th6

Qu©) = {3 (Vg ()

t=1 j=1

+> ) Aij(i)ﬁz(éi)) }{1 +o,(1)}

t=1 j=1

[ATE+ (N1 + 0p(1)}

def

Recall that Yy; = e, + af — aj — b5 Z;; + 0p(1).

Therefore we have

"2 ] i . . , Ko7
A = Zzﬁwq—(gt—i_at_aj_ijtj)g<Zj> h( t])

t=1 j=1 an<Zj)th{1+Op(1)}

- Z %wT(Et)g/(Zt){E(X|Zt) — XeH1+ 0p(1)}-

Similarly we have, as before via the uniform Bahadur representation.
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10 = LY ay0ra)

t=1 j=1
=SS (e (Y — R (Z)X6) — e (Vi)
t=1 j=1
K ( Zt
—-n QwT(Y;t] 5} - J

— Z E..x [{pT (Y — nﬁg/(Zj)Xt;é) — - (Yy))

7=1

]{H o(1)}

—n 2'¢T gt

= Z EZt Eé‘t,Xt|Zt [{,07— (}/tj - n_ig/(Zj)Xt—lj—'g) — Pr ()/U)

7j=1

-n 2¢T 5t

2 oy
= Z {Eezpr(e —n72g/(Z;)(X; — E(X,1Z)))7€) — Eop. (e)

—n 2B [ ()9 (Z))(X; — E(X12)) {1 + 0(1)}

= (2n)7! Z E{OEv-(e)}d' (Z))P¢{X; — E(X;|Z) HX; — E(X;]Z;)} T¢{1 + o(1)}
= %5 E{{OE ¢ (e;) o' (Z){X; — E(XG1Z) HX; — E(X;1Z)} T }e{1 + o(1)}
KTk + o),

where Cy € E{OE v, (2)| Z (g (Z)(E(Xi|Z,) — X)) (E(X,|Z) — X))}

About @Q,(€), we find that if 3f = 0, that is ¢ < [ < p, Vn(|8; +n~Y2¢| — |B]) = €],
otherwise when 1 <1 < ¢, v/n(|8; +n~Y2¢| — |Bf]) — &sign(By). In addition, Theorem

1 implies that Bw(g) will converge to zero with probability one. Thus
p
Q2(6) = n>_ n(BNUB +n7 28] — 18]
=1

= 03 18 Design(8){L + op(1)}.
=1
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As w(18f]) = O(D,,) = o(y/n), the loss function satisfies

e 1
Ho(€) = Dal&){1 + 0(1)} € [=€ A + 560, Comém {1 +o(1)}

where Ay is the sub-vector of A consisting of its first ¢ components, and Cy() is the

up-left ¢ x ¢ sub-matrix of Cy. Applying the uniform Bahadur representation, we obtain

€y = V(B — Bhy) = 00(1 Any + 0,(1).

Recall that Aq) = \/LﬁwT(gt)g’(Zt){E(X(l)\Zt) — Xy H1 + 0,(1)}, and b is a unit
=1

vector in R?. Thus we have

\/—bTC1/2C—1/2C1/2 (5(1) 5 ) _ bTC’l/2C' 1/201/20 1

0(1) 1(1) ~o(1)

Z% (e0)g' (ZO{E(X ()| Ze) = Xy H1 + 0p(1)}

£, N(0,1)

where Cy1) & E{E{0:2(20)| Z: o' (Z0) 2IE(X (1) Ze)— X)) ] [E(X (1) Ze)— X)) T}, and Coy &
E{8 E ¢T(5t> |Zt}{[g/<Zt)]2(E(Xt(1) |Zt) _Xt(l))(E(Xt(l) |Zt) —Xt(l))}T. The asymptotic nor-
mality of f(;) is therefore proved. O

Proof of Theorem 3. We note that
M{g@c%) - g<m*>} - m{g(ﬂﬁ;) - Wﬁ*)} n m{g(ﬂﬂ*) - g<x%*>}

As p; is strictly convex, then §(-) is continuous almost surely. As gh — 0, the consistency
of 3 in Theorem 2 implies v/ nh{g(xT@T) —g(a:Tﬁ*)} = 0,(1). Consequently it is sufficient

to prove

Vb f2(2)13} /(va02) {(2T B) — g(aT B} S5 N(0, 1),

recall 115 and vy are defined as y1; % [ 1 K (u)du and v; & [ ui K2(u)du.

We now prove equation (36). Let Z; = X,'3* and z = 2 8*. Recall that §(z) = a and
§'(z) = b where

(a,b) = rgmmZpT{Yt a—b(Zy — u) u (B (36)
(a,b)

where wi(*) = Kp(Zy — 2)/ Y pey Kn(Z — 2) = {14+ 0,(1) } K (Zy — ) /{nfz(2)}
Denote 6 = [Vih{a — ()}, V(b — ¢(2)]"]" and § = Wah{4() — o(=)}.
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def def

W{?’(z)—g’(z)}]? Alsolet Z; = (1,(Z;—2)/h)T and §; = g(Z;) —g(2)—g(2)(Z;—2).
Then 6 is the minimizer of
Kh(Zt — Z)

Z(Z

0) < i{m (e1 4 6 — (nh)°2]0) — p,(e0 + 61) }

~—

By similar expansion of @1(£) in the proof Theorem 2, we have

VnhL,,(0) = Lim(sﬁ&t)zje[({(zf_Z>/h}{1+o(1)}

Vnh = fz(2)
1 — T 2K{(Zt—z>/h}
—i-% ;{aEwr(Et—i—dt)}(zt 0) F2(2) {1+o(1)}

1
= A0+ 501%49{1 +o(1)}

where

L O Kz 2
A = e 2 BT

K{(Zt - Z)/h}
fz(2) '

1 n
Sn = E;{aEwT(gt+5t)}ztz,j

The leading term is then

Q.
-

212)

)
K{ Zt /h}}
(5

S, =

E {a E (e + <5t)ztzT

bl»— S| =

{a Ev, (e + 6)|Z)Z: 2]

_ aEwT(gt)/<( _1u>/h —u;;;) - )_

- [aEwT(em(; ’ ){1+ o(1)} & S{1 +o(1)}

K2

where yi = [ 1K (t) dt. Therefore it follows that § = —S~'A,{1 + 0,(1)}.

It is clear that >~ 1/ 2A,, is asymptotically distributed as a bivariate normal distribution
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N(0,1). The asymptotic bias m4 = o(1), in particular

K{(Z —Z)/h}}
fz(2)

K{(Z; — Z)/h}}
fZ(Z)

- \/—//¢T{€+9 ()~ )} fle)de

(( )/h) K((€ = 2)/m)dg

- Y| ) ey

ma = % E {Y/JT(& + 5t)Zt

_ L {[¢T(at+5t)|zt]zt

The scaling variance covariance matrix is then

h Iz

= //1/} {e+9() —§'(2)(§ — 2) } fu(e)de

) - \ KL Z-am
<<—z>/h< >/h2> ZE I

1 ) vg 0

n - L {Qzﬂ(et 1+ 8)Z,ZT [K{<Zt z )z)/h}r} (1+0(1)}

where v, = f thK2(t)dt.

Thus we finally obtain that as n tends to infinity, $-1280 — ©25my converges in
distribution to N(0, 1). Slight algebra gives

Sy = S () (o) Py OB () VHE V(€))7 ( (1) )

e EREE] 1 (10 w 0) (1 0
Soas = {[0E ¢, (e)]}? f2(2) (0 u2_1><0 VQ)(O u2_1>
_ 0_2 1 40 0
“fz(2) \ 0 w/ud )

This completes the proof. O
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Figure 1: A risk network formed by 200 financial institutions without thresholding of coefficients,
a circular representation of a weighted adjacency matrix, Depositories: a circle, Insurance: a square,
Broker-Dealers: a triangle, Others: a diamond, T' = 1669, 7 = 0.05, window size n = 125.
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Figure 2: A risk network formed by 200 financial institutions with thresholding of coefficients (all
links below the average value areset to 0 ); a circular representation of a weighted adjacency matrix,

Depositories: a circle, Insurance: a square, Broker-Dealers: a triangle, Others: a diamond, T" = 1669,
7 = 0.05, window size n = 125.
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Figure 3: Total Connectedness standardized on [0, 1] scale, TC*: solid line, TC*: dashed line, X: dotted
line, T' = 1669, 7 = 0.05, window size n = 125.
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Depositories: solid line, Insurance: dashed line, Broker-Dealers: dotted line, Others:

dash-dot line, T' = 1669, 7 = 0.05, window size n = 125.
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Figure 5: D .., Depositories: solid line, Insurance: dashed line, Broker-Dealers: dotted line, Others:

dash-dot line, T'= 1669, 7 = 0.05, window size n = 125.
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Figure 6: Connectivity between Sectors: IC.y, (left) and IC.ons (right); Depositories (row 1): solid
line, Insurance (row 2): dashed line, Broker-Dealers (row 3): dotted line, Others (row 4): dash-dot line;

T = 1669, 7 = 0.05, window size n = 125.
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Figure 7: Indegree of 200 financial institutions, c;"jk =>r, \Bsm,k\—ﬂ (sum over all windows): solid
line, circles; cng =" ,d,, .~ (sum over all windows): dotted line, squares; standardized on [0, 1]
scale, T = 1669, 7 = 0.05, window size n = 125.
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Figure 8: Outdegree of 200 financial institutions, cgﬁr’k = Z§:1 |B—j\sm.k| (sum over all windows): solid
line, circles; cgfr’k = Z§:1 d_js,,, (sum over all windows): dotted line, squares; standardized on [0, 1]

scale, T = 1669, 7 = 0.05, window size n = 125.
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Ticker Ratio IN Total Sum of IN Coefficients Total Number of IN Links

180 FGG 0.99 1416.99 1417
144  FFG 0.99 1416.99 1417
147 RDN 0.28 1021.09 3562
159  MS 0.28 671.50 2390
87 PNFP 0.25 733.87 2875
122 HIG 0.25 728.37 2855
48 PCBC 0.24 786.25 3223
189  JNS 0.24 657.57 2730
192 SLM 0.23 733.99 3097
152 NFP 0.23 728.83 3076

Table 3: Top 10 financial institutions ranked according to the ratio of total sum of IN coefficients to
total sum of number of IN links.

Ticker Ratio IN Total Sum of IN Coeflicients Total Number of IN Links

176 WETF 0.01 77.25 5584
72 FBC 0.18 726.54 4014
91 CPF 0.10 425.74 3935
94 BANR 0.09 349.72 3843
131 WTM 0.06 242.98 3801
177  BLW 0.04 187.27 3797
175 STSA 0.13 494.79 3763
81 CRBC 0.16 599.66 3727
179 EPHC 0.10 386.51 3628
137 ANAT 0.08 290.53 3590

Table 4: Top 10 financial institutions ranked according to the total sum of number of IN links.

Ticker Ratio IN Total Sum of IN Coefficients Total Number of IN Links

180 FGG 0.99 1416.99 1417
144  FFG 0.99 1416.99 1417
147 RDN 0.28 1021.09 3562
48 PCBC 0.24 786.25 3223
192 SLM 0.23 733.99 3097
87 PNFP 0.25 733.87 2875
152 NFP 0.23 728.83 3076
122 HIG 0.25 728.37 2855
72 FBC 0.18 726.54 4014
102 AIG 0.19 687.36 3578

Table 5: Top 10 financial institutions ranked according to the total sum of IN coefficients.
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Ticker Ratio OUT Total Sum of OUT Coeflicients Total Number of OUT Links

180  FGG 0.98 1421.37 1446
144 FFG 0.34 2278.29 6652
123 L 0.28 514.96 1815
126 AJG 0.26 479.85 1809
186 BLK 0.25 505.35 1988
177  BLW 0.23 122.82 526
196 EFX 0.23 202.69 872
23 CFR 0.22 110.98 483
158 GS 0.22 819.06 3567
193 CME 0.22 540.86 2389

Table 6: Top 10 financial institutions ranked according to the ratio of total sum of OUT coefficients to
total sum of number of OUT links.

Ticker Ratio OUT Total Sum of OUT Coefficients Total Number of OUT Links

189  JNS 0.16 1694.21 10351
111  LNC 0.18 1432.52 7945
159 MS 0.18 1429.95 7756
88 FCF 0.15 1217.92 7736
99 SRCE 0.15 1215.23 7690
75  FMBI 0.17 1274.22 7466
53 NPBC 0.17 1158.28 6744
170  WDR 0.17 1158.48 6708
144 FFG 0.34 2278.29 6652
14 RF 0.18 1223.46 6533

Table 7: Top 10 financial institutions classified according to total sum of number of OUT links.

Ticker Ratio OUT Total Sum of OUT Coeflicients Total Number of OUT Links

144 FFG 0.34 2278.29 6652
189  JNS 0.16 1694.21 10351
111 LNC 0.18 1432.52 7945
159  MS 0.18 1429.95 7756
180 FGG 0.98 1421.37 1446
75  FMBI 0.17 1274.22 7466
162 IVZ 0.19 1239.72 6396
115  PFG 0.20 1230.95 9917
14 RF 0.18 1223.46 6533
88  FCF 0.15 1217.92 7736

Table 8: Top 10 financial institutions classified according to total sum of OUT coefficients.
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Figure 9: Average Link function vs Average Returns, September 1, 2008, Gaussian kernel, T" = 1669,
7 = 0.05, window size n = 125.
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Figure 10: Average Link function vs Average Returns, June 1, 2010, Gaussian kernel, T = 1669,
7 = 0.05, window size n = 125.
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Ticker  Exposure
180 FGG 21.65
144 FFG 21.65
147 RDN 15.40
48 PCBC 12.11
87 PNFP 11.25
192 SLM 11.21
72 FBC 11.05
122 HIG 11.03
152 NFP 11.00
102  AIG 10.23
159 MS 10.13
17 HBAN 10.12
189 JNS 10.03
156 CIA 10.01
83 BPFH 9.97
4 BAC 9.94
14 RF 9.59
181 MKTX 9.51
9 STT 9.34
5 C 9.30
112 MBI 9.27
188 FITB  9.24
133 PL 9.23
111 LNC 9.11
34 BPOP 9.09

Table 9: Cumulative Contribution

Zj?f&m,k Eﬂsm,k
Ef:l Z?:l Bil;
aggregated over windows, T' = 1669, 7 = 0.05, window size n = 125, top 25 financial institutions.
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Ticker  Contribution
144 FFG 33.01
189 JNS 24.83
180 FGG 21.72
111 LNC 21.13
75 FMBI  18.92
115 PFG 18.68
159  MS 18.16
14 RF 17.81
88 FCF 17.46
52 CATY 17.45
53 NPBC 16.62
99 SRCE 15.92
170 WDR  15.52
4 BAC 15.51
188 FITB 15.49
38 SUSQ 1545
122 HIG 14.39
113 MET 14.36
5 C 14.06
181 MKTX 13.92
11 STI 13.13
117 PRU 13.08
15 KEY 13.00
30 FHN 12.56
69 MBFI 1241
(right) and Exposure Indices %M

(left),
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Figure 11: @i,t of FBL Financial Group (FFG) based on linear quantile regression on macroprudential
variables (black) and on max{Cj, E;:} (red), T = 1669, 7 = 0.05, window size n = 125.
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Figure 12: @z}t of Fairfield Greenwich Group (FGG) based on linear quantile regression on macro-
prudential variables (black) and on max{Cy, E;;:} (red), T = 1669, 7 = 0.05, window size n = 125.
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