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Abstract

The distribution of treatment effects extends the prevailing focus on average treat-
ment effects to the tails of the outcome variable and quantile treatment effects
denote the predominant technique to compute those effects in the presence of a
confounding mechanism.
The underlying quantile regression is based on a L1–loss function and we propose
the technique of expectile treatment effects, which relies on expectile regression with
its L2–loss function. It is shown, that apart from the extreme tail ends expectile
treatment effects provide more efficient estimates and these theoretical results are
broadened by a simulation and subsequent analysis of the classic LaLonde data.
Whereas quantile and expectile treatment effects perform comparably on extreme
tail locations, the variance of the expectile variant amounts in our simulation on
all other locations to less than 80% of its quantile equivalent and under favourable
conditions to less than 2/3. In the LaLonde data expectile treatment effects reduce
the variance by more than a quarter, while at the same time smoothing the treat-
ment effects considerably.

Keywords: distributional treatment effects, efficiency, expectile treatment effects,
LaLonde data, quantile treatment effects

JEL codes: C21, C31, C54, J64
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1 Introduction

The analysis of a particular intervention and especially the effect it exhibits on a spe-
cific outcome variable has been a central issue in statistical data analysis and several
classic techniques were invented to answer this question (Fisher, 1935). Whereas
at first the design and analysis of experiments were of much interest, more recently
the focus in social sciences has shifted to the evaluation of treatment effects from
observational data, as in many circumstances the execution of experiments is in-
feasible or too costly. In this context treatment effects quantify causal outcomes
arising from a clearly identifiable intervention and are for example applied to assess
new policies or programmes (e.g. LaLonde, 1986; Dehejia and Wahba, 1999).

These applications most often concentrate on an average effect on the population
or some subgroup thereof. However, the predominant Rubin Causal Model (Rubin,
1974) allows for heterogeneity in response to a treatment and the focus on average
affects inhibits the disclosure of possibly deviant effects in the tails of the outcome
distribution. Contrary quantile treatment effects (Doksum, 1974; Lehmann, 1974)
allow to analyse the effect distribution and, given covariates, apply quantile regres-
sion techniques (Koenker and Bassett, 1978) to infer the causal effect. Quantile
treatment effect have been applied to such diverse topics as teacher shortage in
African countries (Bourdon et al., 2010), returns to education in China (Messinis,
2013) or export promotion programmes in developing countries (Volpe Martincus
and Carballo, 2010). Recent methodology advances have addressed the usage of
instrument variables (Abadie et al., 2002; Chernozhukov and Hansen, 2005) or re-
gression discontinuity designs (Frandsen et al., 2012). Furthermore Machado and
Mata (2005) and Firpo et al. (2009) extend quantile treatment effects to the uncon-
ditional distribution of the outcome variable.

The application of quantile regression to compute the distribution of treatment
effects seems to denote an obvious choice, as its usage of the inverse c.d.f. allows
for an intuitive understanding of the location parameter τ ∈ (0, 1) on the distri-
bution of the outcome variable. Accordingly any quantile qτ may be denoted as
qτ = F−1(τ). Furthermore quantiles may also be defined as a minimum contrast
parameter estimator, as

qτ = arg min
qτ

(
(1− τ)

∫ qτ

−∞
|v − qτ | f(v)dv + τ

∫ ∞
qτ

|v − qτ | f(v)dv

)
.

Quantile regression subtitutes the quantile qτ for a regression model based on co-
variates.

However, given the somewhat arbitrary loss (contrast) function above it may be
noted that quantile regression describes only one particular candidate to infer the
(conditional) distribution of an outcome variable and expectiles, respectively expec-
tile regression (Newey and Powell, 1987), denote a suitable alternative. Given some
location parameter α ∈ (0, 1), expectiles eα are based on a slight variation of the
minimization problem detailed above, as they solve the optimization

eα = arg min
eα

(
(1− α)

∫ eα

−∞
(v − eα)2 f(v)dv + α

∫ ∞
eα

(v − eα)2 f(v)dv

)
and consequently exchange the L1–loss function of quantiles for a L2 variant. As be-
fore expectile regression generates a regression model for eα given a set of covariates.
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Although some authors have assigned expectiles to the “spittoon” (Koenker, 2013),
they have recently gained considerably attention and a lively debate can be found in
Kneib (2013a) and the accompanying discussion. Recent applications of expectiles
were presented in financial statistics (Taylor, 2008), business statistics (Kokic et
al., 2000) and demographics (Schnabel and Eilers, 2009b) and much methodology
research on expectiles has concentrated on confidence measures (Duran et al., 2011;
Guo and Härdle, 2012; Sobotka et al., 2013).

Whereas expectiles miss the intuitive indication of the location the parameter α
defines, Newey and Powell (1987) note that expectiles are more efficient than quan-
tiles. Hence, as both techniques present unbiased estimates, any comparison in
terms of mean squared error is restricted to analysing the estimators’ variances
and in this respect expectiles predominately outperform quantiles. Furthermore the
smaller variance in expectile regression affects the computation of treatment effects
twice, as the potential outcome framework (Neyman, 1923; Rubin, 1974) demands
a regression for the programme group separately from the regression in the control
group.

Given this efficiency gain of expectiles, we adopt them to compute the distribu-
tion of treatment effects along an outcome variable and consequently introduce the
technique of expectile treatment effects. In order to demonstrate the advantages of
this novel approach we present a proof that apart from extreme tail ends expectile
regression is more efficient than quantile regression, and this advantage of expec-
tiles causes expectile treatment effects to be more efficient than quantile treatment
effects.

In a subsequent simulation we drop some of the assumptions, which are necessary
for the theoretical proof, and quantify the efficiency gain on broader terms. We find,
that apart from extreme tail locations expectile treatment effects possess an at least
20% smaller variance and under favourable conditions the variance of the expectile
procedure amounts to only 2/3 of the quantile variant. However, this advantage of
expectile treatment effect is not observed at the more difficult tail ends, where both
approaches perform comparably.

In an application of the novel expectile treatment effects procedure we analyse
the classic LaLonde data (LaLonde, 1986) and contrast the new approach with
the standard quantile treatment effect. In our implementation of a counterfactual
decomposition approach (Machado and Mata, 2005) we observe that expectile treat-
ment effects and quantile treatent effects present comparable medial results, but the
variance of expectile variant amounts to less than 3/4 of the quantile equivalent.

In the next section we will detail the expectile treatment effects technique and
present a theoretical comparison with quantile treatment effects in the end. After-
wards in section 3 the efficiency gain of expectile treatment effects is quantified in a
simulation and section 4 describes the aforementioned application of both techniques
to analyse the LaLonde data. Finally section 4 concludes.

2 Expectile Treatment Effects

The analysis of treatment effects strives to quantify causal consequences generated
by a specific intervention, e.g. the implementation of a new programme, a change of
policy or the execution of an experiment, and denote a popular tool in the evalua-
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tion of medicine, public policies and other interventions. In these settings a portion
of the statistical units i ∈ {1, . . . , N} is treated by a particular measure and the
resulting effects, if any, are evaluated by some outcome variable Yi. An overview
on the applied econometric techniques and the accompanying literature is given by,
among others, Imbens and Wooldridge (2009), while Pearl (2000) presents a sta-
tistical approach to intervention effects based on graphical models and structural
equation models, which is, however, not of direct interest to our work.

The evaluation is typically performed by comparing statistical units affected by
the measure, denoted by Wi = 1, with other units which are not exposed to the
measure, that is Wi = 0. Obviously at any point in time the same unit can only be
analysed in one of the two settings and a direct comparison at the individual level
is therefore infeasible (Holland, 1986). The potential outcome framework (Neyman,
1923; Rubin, 1974) overcomes this issue by defining the realized outcome Yi as a
function of the two potential outcomes Yi(Wi) which arise if the observation is,
respectively is not, treated:

Yi = Yi(Wi) = Yi(0)(1−Wi) + Yi(1)Wi. (1)

Apart from the effect of Wi the realized outcome Yi is often also influenced by
other factors. Experiments guarantee by their random assignment into treatment
or control group, that any side effects are balanced between the two groups and con-
sequently any observable difference might solely be caused by W . An application
of this approach can for example be found in Heinrich et al. (2001) for behavioural
economics and several other examples in development economics are cited in the
review of Duflo et al. (2008). However, the use of experiments is often limited by
moral constrains, e.g. the participation by a free agent can obviously not be forced,
but is of voluntary character, or practical issues, e.g. additional costs for setting up
an experiment.

On the other hand the quantification of treatment effects from observational data
is often obscured by a selection mechanism, if either the statistical units or the
corresponding administrator relates the potential participation in the intervention
with the expected individual outcome. Such confounding mechanisms render a di-
rect comparison between the treated and untreated statistical units unsuitable and
Rosenbaum and Rubin (1983) propose to utilize the conditional independence be-
tween intervention participation and outcome given a vector of covariates Xi

Wi ⊥⊥ Yi(Wi)|Xi

to account for the confounding effect of Xi and consequently control its influence
on the treatment effect. Ideally this approach ensures a so–called unconfounded
assignment, also known as selection on observables or exogeneity and depicts the
workhorse of non-experimental treatment analysis. However, its properness in a
certain research context can not be verified by a statistical test (Pearl, 2000).

Whereas the potential outcome framework allows for heterogeneity in response to
the treatment due to its broad modelling approach, most studies are primarily
concerned with medial treatment effects on the population, e.g. the so–called av-
erage treatment effect (ATE), or some specific subgroups thereof, e.g. the average
treatment effect on the treated (ATOT). This limited analysis neglects any deviant
treatment effects in the tails of the outcome’s distribution and consequently might
miss important characteristics of the intervention of interest.
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Quantile treatment effects (QTE) describe not only an average effect in terms of the
effect on the median, but offer also effects at any quantile of interest and therefore
describe the treatment effect’s distribution. Doksum (1974) and Lehmann (1974)
define QTE as the horizontal difference between the quantiles of two potential out-
come functions:

QTEτ = F−1Y (1)(τ)− F−1Y (0)(τ), (2)

where τ ∈ (0, 1) defines the quantile and F−1Y denotes the inverse c.d.f., also known
as quantile function. In case of additional covariates, either included for precision or
their confouding nature, the conditional quantile treatment effects can be denoted
by

cQTEτ = F−1Y (1)|X(τ)− F−1Y (0)|X(τ). (3)

Linear quantile regression (Koenker and Bassett, 1978) denotes one parametric ap-
proach to infer the conditional quantiles and facilitates the computation (3). In an
i.i.d. setting the linear model

Yi = X>i βτ + εi, with Fεi,τ (0) = τ

is solved for the estimate β̂τ via the optimization constraint

β̂τ = arg min
βτ

n−1
n∑
i=1

%τ

(
Yi −X>i βτ

)
, (4)

where %(u) = u (τ − I (u < 0)) denotes the check function and I(·) the indicator
function. Consequently quantile regression is based on an asymmetrically weighted
L1–loss function.

Expectile regression (Newey and Powell, 1987) denotes an alternative approach to
infer the conditional distribution Yi|Xi at some location α ∈ (0, 1), which also
weights the error terms asymmetrically, but optimizes the L2–loss function

β̂α = arg min
βα

n−1
n∑
i=1

ρα

(
Yi −X>i βα

)
(5)

with the asymmetric least squares check function ρ(u) = u2 |τ − I (u < 0)|. Ex-
pectile regression can be understood as a particular form of M–quantile estimation
(Breckling and Chamber, 1988), but usually α differs from τ to describe the same
location on the conditional distribution Yi|Xi. Indeed there exists a one–to–one
relation between expectiles and quantiles (Jones, 1994; Yao and Tong, 1996) and
Schulze Waltrup et al. (2013) exploit this relation to deduce quantiles from ex-
pectiles. This inference, although with less efficiency, has also been accomplished
by Efron (1991), who obtains so–called percentiles from expectiles by counting the
number of observations below the expectile of interest.

Any well defined relation between quantiles and expectiles increases the practicabil-
ity of expectiles, as contrary to quantiles and due to the expectiles’ dependence on
the global properties of the respective distribution, expectiles miss an intuitive indi-
cation of the exact location any chosen α defines. A further adverse consequence of
this dependence is found in the sensitivity of expectile regression to outliers, whereas
quantile regression is well–known for its robustness (Koenker, 2013). On the other
hand the estimation of expectiles relies on a least asymmetric weighted squares
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algorithm (LAWS) and possess therefore a computational advantage if compared
to the estimation of quantile regression (Kneib, 2013a). The quantile optimization
constraint (4) is not continuously differentiable and instead linear programming
techniques are applied. However, this difference affects the actual computation
time less than the ease of implementing both approaches (Pertnoy and Koenker,
1997).

Concerning the application of both regression techniques to the analysis of treat-
ment effects a crucial difference between quantile and expectile regression arises
from the unequal variances of the respective estimators. Whereas both estimators
are unbiased and asymptotically return the true coefficients β, the expectile regres-
sion estimator is predominately more efficient than the quantile regression one. This
property was at first observed by Newey and Powell (1987) and can be explained by
the implied smoothing of expectile regression (Kneib, 2013b) and the information
available to each estimator. Whereas expectiles utilise the actual distance between
data points and fitted values, quantiles rely solely on the binary information of the
data points lying below or above the fitted values (Schnabel and Eilers, 2009a).

In detail, He and Shao (1996) present the asymptotic variance–covariance matrix
for the estimate β̂τ of quantile regression in the case of independently and possibly
identically distributed observations by

ACov(β̂τ ) = τ(1− τ)

(
n∑
i=1

fε,i(0)XiX
>
i

)−1 n∑
i=1

XiX
>
i

(
n∑
i=1

fε,i(0)XiX
>
i

)−1
, (6)

where fε,i describes the density of the error. The presence of this term complicates
the actual computation of (6), as its estimation, and consequently the estimation of

ACov(β̂τ ), depends on the applied smoothing.

This issue does not translate to expectile regression, as Sobotka et al. (2013) re-

port the equivalent for β̂α as

ACov(β̂α) =

(
n∑
i=1

ω◦α,iXiX
>
i

)−1 n∑
i=1

Var
(
ω◦α,i

(
yi −X>i βα

))
XiX

>
i

(
n∑
i=1

ω◦α,iXiX
>
i

)−1
,

where ω◦α,i = E
[
ω◦α,i
]

defines the expectation of the true individual weights
of the asymmetric weighting schema (5).

An indication for the greater efficiency of expectile regression can be derived
from the following lemma and its proof in the appendix.

Lemma 1. For Zi = {Yi,Xi} ∼ identically and independently ∀ i with a
distribution according to the c.d.f. F(Yi|Xi) and an error term following a
normal distribution εi ∼ N(µε, σ

2
ε), which is independent of the explanatory

variables Xi, it can be shown that

1. ACov(β̂τ ) > ACov(β̂α), if the location τ ∈ [τl, τu].

2. The corresponding endpoints τl,u are defined by

τl,u = 0.5±

√√√√
0.25−

exp
(
−µ2ε
σ2
ε

)
2π

.
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Following the standard assumption of µε = 0 allows to infer the interval as
τ ∈ [0.199, 0.801]. Obviously |µε| > 0 increases the interval, whereas a large
variance σ2

ε decreases it. Nevertheless, under the given assumptions expec-
tile regression is more efficient on most parts of the distribution Yi|Xi and is
outperformed by quantile regression only on the extreme tail ends. In the sub-
sequent simulation we will consider a reduced set of assumptions to broaden
this theoretical result and quantify the actual efficiency gain.

Having noted the superior performance of expectile regression and mirror-
ing QTE defined by (2) expectile treatment effects (ETE) may be introduced
as

ETEα = GY (1)(α)−GY (0)(α),

where GY denotes the expectile function of Yi corresponding to a particular
location α. Conditional expectile treatment effects also make use of covariates
to reduce variance or, in case of confouding variable, to identify the actual
treatment effect:

cETEα = GY (1)|X(α)−GY (0)|X(α), (7)

where GY (W )|X can be obtained via expectile regression for any given vector Xi.

The difference in variance between the expectile and quantile regression esti-
mator detailed above affects naturally the efficiency of cETE and cQTE and
the resulting corollary is stated in the following lemma.

Lemma 2. Given the conditional distribution of Yi|Xi denoted jointly by τ and
α, a treatment effect in the form of a global location change and the efficiency
gain of expectile regression observed before as ACov(β̂τ ) > ACov(β̂α), it can
be shown that

AVar(ĉETE) < AVar(ĉQTE).

The corresponding proof is stated in the appendix.

3 Simulation

Our simulation is split in two parts. At the start of each bootstrap run an
artificial population of size N = 200, 000 is generated to infer the quantile
location parameter τ describing the same locations as its expectiles equivalent
α on the distribution Yi|Xi. Afterwards a sample is drawn from this popula-
tion and the cETE, respectively cQTE, are computed on this sample. Within
a stochastic parametrization framework this two–step procedure is repeated
100, 000 times to observe the variance of both estimators.

The outcome Yi of the i ∈ {1, . . . , N} observations is defined as the sum
of the gaussian treatment variable Zi ∼ N(µZ,W , 1), three standard normal

confouding variables X
(1,2,3)
i ∼ N(0, 1) and a heteroscedastic error term εi to

allow for varying treatment effects:

Yi = Zi +X
(1)
i +X

(2)
i +X

(3)
i + εi. (8)
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In order to provide robust simulation results independent of a specific parame-
trization, we vary certain parameters randomly along our simulation. Hence
in the equation (8) above we allow the standard deviation SD(εi) of the het-

eroscedastic error term εi = εi
(Zi+5)
κ

to amount to a half or a quarter of the

standard deviation of all explanatory variables SD
(
Zi +X

(1)
i +X

(2)
i +X

(3)
i

)
.

In detail, εi ∼ N(0, 1) describes a standard normal random variable and
κ ∼ U(0.5, {5, 10}) denotes a scaling parameter, which is uniformly distributed
on the set {5, 10} with probability 0.5 for each element. Furthermore in ap-
proximately half of the repetitions we randomly allow for a covariance of size

Cov
(
X

(·)
i , X

(·)
i

)
= 0.25 among the three confounding variables and no covari-

ance in the other half.

The treatment effect is modeled as a global location shift on the expectation
µZ,W of the treatment variable Zi. Whereas observations with a treatment
status Wi = 0 are not affected by any treatment and consequently µZ,0 = 0,
the expectation in the treatment group differs from zero and we randomly
apply three different values by setting

µZ,1 ∼ U

(
1

3
, {0.7, 1.4, 2.1}

)
to mirror the average effect each confounding variable X

(·)
i possess on the

treatment effect in the outcome Yi.

The assignment method to separate the treatment group from the control
group is of stochastic nature to allow for an overlap between both groups and
is based on the confounding variables. In detail, the individual participation
Wi is determined by an application of the Bernoulli distribution

Wi ∼ B(πi),

where πi denotes the individual propensity score which is computed as the
logistic function

πi =
exp(ηi)

1 + exp(ηi)
.

of the sum of the confounding variables ηi =
∑3

p=1X
(p)
i .

Consequently due to their relatively high value in the confounding variables
X

(·)
i approximately half of the population is assigned to the treatment group

and consequently affected by the treatment. Their above average realization
of X

(·)
i also affects the output variable Yi via (8) and completes therefore the

confounding mechanism which has to be controlled for to identify the treat-
ment effect of Zi. The other half of the population is not affected by the
treatment and might serve in the control group.

Before we draw one sample from the artificial treatment population and an-
other one from the artificial control population to compute the cETE and
cQTE, we approximately determine τ corresponding to

α = {0.01, 0.1, 0.25, 0.75, 0.9, 0.99}.
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Hence we regress in an expectile regression framework the confouding vari-
ables X

(1,2,3)
i on the outcome Yi and observe how many observations possess

smaller conditional outcome values Yi|X(1,2,3) than the computed conditional
expectiles Yα|X(1,2,3) (Efron, 1991):

τ = N−1
N∑
i=1

I (Yi < Yα|X(1,2,3)). (9)

To facilitate the computation (9) we condition on the small interval [x −
0.25σx, x + 0.25σx], where x denotes the population wide multivariate mean
of the confouding variables and σx describes the variable specific standard de-
viation. This definition and the size of the artificial population N = 200, 000
ensure that in every repetition the observed empirical relation between τ and
α is based on more than 1000 observations.

Having established the relation between quantiles and expectiles in our sim-
ulation, we continue with the second step of actually comparing cQTE and
cETE. Therefore we draw a random sample of the treated population and
the untreated population. This size of the treatment sample nt, respectively
control sample nc, are determined stochastically according to

nt ∼ U

(
1

3
, {100, 500, 1000}

)
nc ∼ U

(
1

3
, {2nt, 5nt, 10nt}

)
.

Hence the combined samples include between 300 and 11, 000 observations and
the control sample outnumbers the treatment sample to allow for the neces-
sary overlap in the confouding variables between both samples.

Afterwards quantile regression, respectively expectile regression, are applied
separately to both samples and the cQTE, respectively the cETE conditional

on the population mean of the confouding variables X
(1,2,3)

are computed ac-
cording to (3) and (7). Figure 1 presents the distribution of both estimators,
which arise due to the 100, 000 simulation repetitions.

In our simulation both estimators report on average the same unbiased es-
timates, which however vary due to the introduced heteroscedasticity along
the distribution of the conditional outcome variable Yi|X i with the location
parameter α. For example, at α = 0.5 both approaches generate unbiased es-
timates of the ATE µZ,1 = 0.7, as cETE0.5 = 0.700 and cQTE0.5 = 0.704, but
in the lower tail at α = 0.1 the mean cETE (cQTE) of 0.651 (0.652) is consid-
erably lower than the reported 0.750 (0.757) at the upper tail location α = 0.9.

However there is also some visible variation present in the estimates and for
example at α = 0.1 the variance of the expectile (quantile) treatment esti-
mators amounts to 0.019 (0.027). As with the mean, the size of the variance
varies with the location parameters α, respectively τ , as any treatment effects
in the tails are more difficult to determine than the more centric ones. Apart
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Figure 1: Distribution of the cETE (grey area) and cQTE (solid black line)
of a simulated treatment effect µZ,1 = 0.7 at various locations α.

from this specific feature of the applied estimation procedures, the observed
variation is also caused by the stochastic data generating process and the spe-
cific parametrization.

In detail, a treatment group size of nt = 100 raises the variance sixfold
(µZ,1 = 2.1) to tenfold (µZ,1 = 0.7), if compared to a treatment group of
nt = 1000 observations. The same reasoning holds for the size of the control
group, as a being able to compare the treatment group to a control group of
only double its size increases the variance of the treatment estimate by 20%
(µZ,1 = 2.1) to 30% (µZ,1 = 0.7) if compared with a control group of ten times
the size of the treatment group. Whereas the existence of covariance among
the confounding variable increases the variance only slightly by around 7% for
all values of µZ,1, the incrases of the error’s standard deviation from a quar-
ter to a half of the standard deviation of all explanatory variables raises the
variance sharply by 72% (µZ,1 = 0.7) to 103% (µZ,1 = 2.1). Finally our simula-
tion indicates that the estimators’ variances are positively correlated with the
treatment size, as increasing the simulated treatment effect from µZ,1 = 0.7 to
µZ,1 = 2.1 increases the variance by 36%. This observation might be explained
by the resulting reduction in the essential overlap between both samples.

Apart from these general observations, which hold for both estimators, there
persists, apart from extreme locations, a statistically significant difference be-
tween both estimators. As one may note in Figure 1, the density of the cETE
estimator is visibly more concentrated on the mean than the density of the
cQTE etimator, as the cETE estimates vary less than the cQTE estimates.
However, this difference decreases with less centric locations and both estima-
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α
µZ,1

0.7 1.4 2.1
0.01 0.951 1.071 1.196
0.10 0.724 0.792 0.880
0.25 0.650 0.681 0.711
0.75 0.681 0.679 0.674
0.90 0.776 0.781 0.794
0.99 0.994 1.010 1.041

Table 1: Ratio θ of Var(cETE) to Var(cQTE) for a simulated treatment effect
µZ,1 computed at several locations α.

tors can not be distinguished visually at extreme locations. Still this empirical
finding of a predominately smaller variance of the cETE estimator supports
and, via the broad parametrization, extends the theoretical arguments de-
tailed above.

In order to quantify this difference Table 1 compares both estimators and
reports the ratio θ of the observed variance of the cETE estimates to the
variance of the cQTE estimates

θ =
Var(cETE)

Var(cQTE)

for several locations α and various simulated treatment effect sizes µZ,1.

Apart from extreme locations and one less pronounced occurrence at µZ,1 = 2.1
the cETE estimator possess in our simulation an at least 20% smaller variance
than the cQTE estimator and under favourable conditions the variance of the
cETE procedure amounts to only 2/3 of the cQTE equivalent. This substantial
increase in efficiency is observable for all treatment values µZ,1, but decreases
slightly as the treatment effect size is raised. However, this gain is neutralised
in the extreme tails, where both estimating procedures result in comparable
variances. In summary, these findings fit well with the theoretical results
above and show, that the potential gain of cETE is substantial, whereas the
efficiency loss in the extreme tail ends seems to be negligible.

4 Application

Given their nature cETE and cQTE only report conditional results, which
restricts their usefulness in many cases. Their generalization is limited by the
observation that for example in the case of quantiles F−1(τ) 6= EX [F−1(τ)|X]
and therefore their direct application to compute the more interesting uncon-
ditional effect of the treatment on the output variable is inhibited. Indeed a
conditional treatment effect at the upper tail of Yi|Xi may describe an effect
at the lower tail for unconditional Yi, if the particular Xi = xi values assign
the observation to the lower tail of the unconditional distribution of Yi.
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One remedy to overcome these restrictions is denoted by the adoption of quan-
tile regression to the counterfactual decomposition approach (Gosling et al.,
2000; Machado and Mata, 2005), which has for example been implemented to
study the gender wage gap in Sweden (Albrecht et al., 2003) and wage inequal-
ity in the U.S. (Melly, 2005). The counterfactual decomposition framework
(Juhn et al., 1993) divides the total difference between the treatment and
control group into a confounding and a treatment effect, that is

FY 〈1|1〉−FY 〈0|0〉 =
(
FY 〈1|1〉−FY 〈0|1〉

)
+
(
FY 〈1|1〉−FY 〈1|0〉

)
, (10)

where FY 〈r|s〉(Y ) =
∫

FYr(Y |X) d FXs(X) denotes the distribution of the out-
put variable Yi arsing from integrating the characteristics Xi out of the con-
ditional distribution Yi|Xi and r, s ∈ {0, 1} indicate the control, respectively
treatment group. Hence this approach identifies the treatment and confouding
effect by allowing for a factual and counterfactual combination of characteris-
tics Xi and valuation of these characteristics Yi|Xi.

Accordingly the first subtraction on the RHS in equation (10) denotes the
treatment effect arising from a difference in the valuation of equal charac-
teristics among control and treatment group, whereas the second subtraction
describes the confounding effect caused by a difference between control and
treatment group in their particular characteristics. Consequently the counter-
factual decomposition denotes a variant of the Blinder–Oaxaca decomposition
(Blinder, 1973; Oaxaca, 1973) and we adapt expectile regression to this ap-
proach to study the classic LaLonde data set (LaLonde, 1986) on the effect of
the National Supported Work (NSW) Demonstration programme.

The resulting unconditional quantile, respectively expectile treatment effect
may be denoted as

uTE(l) = φ(FY 〈1|1〉, l)− φ(FY 〈0|1〉, l), (11)

where φ(FY , l) ∈ {F−1Y (l),GY (l)} describes either a quantile or expectile at the
location l ∈ {α, τ} of the distribution of the outcome variable Yi. In order to
estimate the factual and counterfactual densities in equation (11) we follow
the algorithm of Machado and Mata (2005) and note that instead of quantile
regression also expectile regression may be deployed to estimate the condi-
tional distribution FYr(Y |X), as the estimated conditional expectile function
also denotes a consistent estimator of the population expectile function and
may describe the conditional distribution in its entirety (Newey and Powell,
1987).

Given the argumentation by Dehejia and Wahba (1999) we restrict our analy-
sis to those male observations with information on their pre–treatment wage in
1975 and 1974 and consequently regress the 1978 wage linearly on age, educa-
tion, an indicator for not possessing a degree, indicators for African Americans
and Hispanic Americans, marital status and the aforementioned pre–treatment
wages. We also define the four observations earning more than 30, 000USD
as outliers and exclude them beforehand. Due to the restricted number of
observations, 259 control and 182 treatment observations, we set the number
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Figure 2: Mean (black solid line) and standard deviation (black dashed line)
from the distribution of the treatment effect from QTE (left) and ETE (right)
accompanied by 100 random draws (grey dotted lines) from the 1000 bootstrap
runs.

of random draws in the algorithm to m = 150 and obtain a variation in the
quantile and expectile estimation procedures via the same bootstrap samples
arising from 1000 runs.

Due to the experimental character of the NSW data, we observe hardly any
confounding effect at any location of the output variable. In addition the
rather simplistic model and small set of confounding variables do not allow
for the confouding effect and the displayed treatment effect to add up to the
overall difference between both groups. A sizeable mean residual of up to 26%
(ETE), respectively 28% (QTE) of the total difference can not be explained by
the model and, together with the rather small number of observations, prob-
ably explain, why neither ETE nor QTE report average values close to the
average treatment effect of 1314USD obtained by comparing the 1978 mean
wage in the control and treatment group.

Figure 2 compares the estimates resulting from either applying quantile re-
gression or expectile regression, where we compute quantiles, respectively ex-
pectiles on the locations α = λ = {0.5, 0.15, . . . , 0.85, 0.95} for the factual
and counterfactual margials. In detail, the left panel of Figure 2 is at first
based on linear quantile regression to obtain the conditional distribution and
secondly displays the difference in quantiles between the resulting factual and
counterfactual marginals. Accordingly the right panel in Figure 2 is excluively
based on linear expectile regression and expectiles of the resulting marginals.

Both procedures basically present the same results of an overall positive effect,
which is rather small at the lower tail, but tripled at the upper tail. Conse-
quently in absolute terms the NSW Demonstration programme benefited high
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income earners stronger than low income earners. Comparing both procedures
in Figure 2, it might be noted that due to its nature the ETE estimates present
a much smoother picture. On the other hand QTE presents a broader picture
as setting the same value for α and τ results in more extreme tail locations for
QTE than for ETE. This inherited behaviour of QTE and ETE from its dis-
tinct regression techniques complicates any direct comparison of the respective
variances, as our simulation has shown that the variance increases in the tails.
Neglecting this nuisance ETE presents a substantially smaller variance than
QTE, as the sum of the standard deviations at the aforementioned locations
by applying ETE amounts to only 71% of its QTE equivalent, well in line
with our simulation results. In addition some bootstrap samples causes QTE
to report treatment effects relatively far from its overall mean, whereas the
corresponding ETE estimates stick much closer to the ETE average treatment
effects.

5 Conclusion

Observing the distribution of a treatment effect instead of solely relying on an
average facilitates the detection of deviant treatment effects in the tails. Quan-
tile treatment effects and expectile treatment effects have both been shown to
generate unbiased estimates and whereas quantile treatment effects have been
applied frequently, expectile treatment effects denote a related, but novel tech-
nique with substantial advantages in terms of mean squared error.

Its smaller variance, if compared to quantile treatment effects, has been proven
for the main chunk of the distribution, whereas in the more difficult extreme
tail ends expectile treatment effects has been observed to be as efficient as
quantile treatment effects. This performance stems from the predominately
more efficient expectile regression estimation, which due to the potential out-
come framework in the Rubin Causal Model affects the estimation of treatment
effects twice, once in the estimation for the programme group and once in the
equivalent procedure for the control group.

Furthermore, Schulze Waltrup et al. (2013) indicate that also in an exper-
imental setting, in which confounding variables are balanced between both
groups and can consequently be omitted, the application of expectiles could
be advantageous. And finally the limitation to linear models throughout our
study has been taken for simplicity and computation convenience. The differ-
ence in the contrast function between the exepctile and quantile approach is
unaffected by the form of the regression model applied to estimate qτ , respec-
tively eα in the aforementioned optimization problems and consequently the
observations made in the linear case should also carry over to more flexible
non–linear regression models.

Still in certain settings efficiency in mean squared error will not denote the
only criterion to choose between expectile treatment effects and its quantile
cousin. Whereas Koenker (2013) points out that in theory quantiles can be
computed as fast as expectiles and therefore the slower computation of quan-
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tiles is only due to the ease of implementing both approaches, the superior
robustness of quantiles could favour the application of QTE. Contrary to ex-
pectiles, quantiles are hardly affected by any outliers and consequently expec-
tile treatment effects may result in biased estimates, if such outliers are not
excluded beforehand or the data is not well behaved. These observations will
disproportionately affect the extreme tail ends, at which expectile treatment
effects performs only on a par with quantile treatment effects even on standard
data.

Hence, if the extreme tail ends are of particular interest, quantile treatment
effects may present more reliable results. If on the other hand the entire
treatment effect distribution is of concern and general observations on deviant
treatment effects in the tails are of interest, than the more efficient expec-
tile treatment effects seem to denote a reasonable choice. In these cases the
missing intuitive indication of the exact location any chosen α defines seems
irrelevant, as not a specific α is of interest, but several values and in particu-
lar the resulting distribution of the treatment effect. In many applications the
analysis of the entire treatment distribution seems more expedient and under
these circumstances expectile treatment effects propose an efficient alternative
to the established quantile treatment effects.

A Proofs

A.1 Lemma 1

We assume Zi = {Yi,Xi} ∼ identically and independently ∀ i according to
the c.d.f. F(Yi|Xi) and define a gaussian error term εi ∼ N(µε, σ

2
ε), which is

independent of the explanatory variables Xi. Furthermore we allow τ and α
to denote the same location and, if feasible, suppress the location subscript to
simplify the notation.

Given the stated proposition

ACov
(
β̂τ

)
> ACov

(
β̂α

)
,

we can combine the definitions of the respective variances to the inequality

τ(1− τ)

(
n∑
i=1

xi fi,ε(0)x>i

)−1( n∑
i=1

xix
>
i

)
>

(
n∑
i=1

ω◦ixix
>
i

)−1( n∑
i=1

xix
>
i Var (ω◦i εi)

)

×

(
n∑
i=1

xi fi,ε(0)x>i

)−1
×

(
n∑
i=1

ω◦ixix
>
i

)−1
,

where we separate the p.d.f. of the error fi,ε(0), respectively the expectation
of the true individual weights ω◦i from the inverse summation terms due to
the i.i.d. assumption and subsequently reduce those summation terms:

τ(1− τ) fε(0)−2

(
n∑
i=1

xix
>
i

)
> (ω◦i )

−2

(
n∑
i=1

xix
>
i Var (ω◦i εi)

)
.
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Excluding the parameter ω◦i from the variance terms allows to cancel them
and the independence between the error variance Var (εi) = σ2

εi
and Xi allows

to cancel the remaining summation terms. Entering the assumed functional
form of the error, the inequality becomes

τ(1− τ)

(
1√

2πσε
exp

(
−(0− µε)2

2σ2
ε

))−2
> σ2

ε ,

which we can be solved for τ to obtain the aforementioned solution for τl,u as

τl,u = 0.5±

√√√√
0.25−

exp
(
−µ2ε
σ2
ε

)
2π

.

A.2 Lemma 2

We assume a treatment effect in form of a global location change and allow
as before τ and α to jointly denote the same location on Yi|Xi.

The stated proposition

AVar
(
ĉETE

)
< AVar

(
ĉQTE

)
⇐⇒ AVar

(
ĜY (1)(α)− ĜY (0)(α)

)
< AVar

(
F̂−1Y (1)(τ)− F̂−1Y (0)(τ)

)
can be rewritten as a sum of variances due to the independent samples:

AVar
(

ĜY (1)(α)
)

+ AVar
(

ĜY (0)(α)
)
< AVar

(
F̂−1Y (1)(τ)

)
+ AVar

(
F̂−1Y (0)(τ)

)
.

Owning to the definition of the treatment effect, this inequality is fulfilled, if

AVar
(

ĜY (·)(α)
)
< AVar

(
F̂−1Y (·)(τ)

)
⇐⇒ X>ACov

(
β̂α

)
X < X>ACov

(
β̂τ

)
X

⇐⇒ ACov
(
β̂α

)
< ACov

(
β̂τ

)
,

which has been shown to hold given the conditions stated in lemma 1.
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