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Miles, speed and technology: traffic safety under oligopolistic in-

surance

Maria Dementyeva and Erik Verhoef,1

VU University Amsterdam, and Tinbergen Institute Amsterdam

Abstract:

We study road safety when insurance companies have market power, and

can influence drivers’ behavior via insurance premiums. We obtain first- and

second-best premiums different market structures in insurance. The insur-

ance program consists of an insurance premium, and marginal dependencies

of that premium on speed and own safety technology choice. A private

monopolist internalizes accident externalities up to the point where compen-

sations to users’ benefit matches the full (immaterial) costs; in oligopolistic

markets, insurers do not fully internalize accident externalities. Analytical

results demonstrate how insurance firms’ incentives to influence traffic safety

coincide with or deviate from socially optimal incentives.

Keywords: Road safety, accident externalities, traffic regulation, congestion

externalities

JEL codes: D43, D62, R41, R42, R48

1Financial support from the ERC, Advanced Grant OPTION (#246969), is gratefully
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1. Introduction

Accident externalities are among the most important external costs of

road transport, see for example Parry et al. (2007). The social cost of road

accidents is a multiple of that of congestion externalities (Steimetz (2008)

provides an overview of the literature on accident externalities). Both drivers’

behaviour (such as speeding, distance to the next car, attention paid towards

the other road users) and technical characteristics (such as safety belts, ad-

vanced breaking systems, window shields, lights, weight, etc.) of vehicles

heavily influence the safety of the car driver and passengers, as well as of

others on the road. This conclusion has been drawn from both empirical (see,

for example, Lave (1985), Cohen and Einav (2003), Aarts and van Schagen

(2006), Steimetz (2008), Hultkrantz and Lindberg (2011), Hultkrantz et al.

(2012)) and theoretical works (e.g., Jansson (1994), Verhoef and Rouwendal

(2004), Nitzsche and Tscharaktschiew (2013), Wang (2013)).2

2Reanalysis (Aarts and van Schagen (2006)) of the data from Kloeden et al. (2001)

revealed an exponential function between individual speed and the risk of being involved

into an accident on urban roads. Also, on urban roads the accident rate increases more

with increasing speed than on rural roads. In Cohen and Einav (2003), authors state

that seat belt usage enforcement severely reduced traffic fatalities: “We estimate that a

1-percentage-point increase in usage saves 136 lives (using a linear specification), and a

1% increase in usage reduces occupant fatalities by about 0.13% (using a log-log specifi-

cation)”.
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Furthermore, Delhaye (2007), Rizzi (2008), and Hultkrantz et al. (2012),

suggest that incentives stemming from insurances can change drivers’ strate-

gic behaviour. However, the effect of insurance companies, efforts and incen-

tives to affect driver behaviour remain under-investigated in the economic

literature. For instance, based on Steimetz (2004), and Gossner and Picard

(2005), Rizzi (2008) considers a rational driver who optimally chooses risk-

reducing efforts (care), such as speed, distance between the cars etc., in a

model where car insurance is available. Rizzi clearly shows that insurance in-

fluences driver’s efforts to drive safely. However, in his work insurance agents

do not play an active role controlling drivers’ choice, and only drivers’ utility

functions are maximized.

We study the regulation of road safety, when insurance companies have

market power, and can influence road users’ choices in terms of aggregate

mileage, investments in private car safety for drivers, and speed. The latter

may benefit the driver as well as a possible “partner” in a collision. A social

regulator, in turn, has instruments to affect both insurance providers and

thus indirectly the drivers.

Our model describes a two-stage game between car insurance providers

and road users. First, insurance companies maximize their profit by opti-

mizing the level of insurance premiums, and how these depend on speed and

technology, subject to equilibrium constraints. Then, each atomistic road
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user opts for a safety technology and speed, in order to minimize its general-

ized price. Next, an aggregate kilometrage results from the inverse demand

function for trips, given this minimized generalized price. This price includes

time costs, investments into own safety technology, insurance premiums, and

a (possibly immaterial) part of the expected accident costs not covered by

the insurance. We assume that an individual’s speed choice does affect both

one’s own and other road users’ safety, while the technology affects only the

former. The technology chosen by a driver could in reality also influence the

safety level of other road users, but distinguishing between a strictly internal

safety measures (technology investment) and a combined internal-external

safety measure (speed) is helpful for a clear interpretation of our results.3

Following and extending the reasoning provided in papers Verhoef and

Rouwendal (2004) and Dementyeva et al. (2015), we obtain marginal condi-

tions for the first- and second-best premiums. In our model we assume that

companies can influence drivers’ behavior via insurance programs. A social

regulator can then impose taxes or subsidies on companies and/or road users,

3In our terminology, ‘own safety technologies’ include, for example, air bags, interior

head-impact protection, seat belts, child car seats, flammability of interior materials, etc.

Advanced breaking systems, tire-pressure monitoring system, high intensity lamps would

rather be included into the other characteristics of driving, affecting also the safety of

others. We refer to such characteristics as ‘speed’.
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fines for speeding over a certain speed limit, and other regulations. We con-

sider social welfare-maximizing and private profit-maximizing monopolies,

and oligopolistic markets of firms playing Nash in a Cournot fashion.

A number of conclusions stand out: For each type of market structure,

the insurance premium (function) drivers face is defined by an insurance

premium level in the equilibrium point, and marginal dependence of that

premium function on speed and technology, given by what we will call opti-

mal “slopes” of the premium function with respect to the individual driver’s

choice of speed, and choice of technology (the latter is also modeled as a

continuous variable). Although such a sophisticated, continuous design of

insurance premiums may appear unrealistic, we model it in such a way in

order to identify whether and how the company would prefer to affect speed

and technology choices of its insurees, in an analytical setting that does not

introduce additional second-best distortions arising from imperfect instru-

ments.

The insurance premiums we derive reflect that monopolists fully inter-

nalize the accident externalities imposed by their drivers upon one another,

while competing firms provide only partial internalization. The same is true

for the optimal “slopes” of the premium with respect to the speed and tech-

nology choices of the road users. A safer technology may only influence

driver’s own accident costs, and does not directly affect the chance to be
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guilty of an accident. The speed choice, on the other hand, decreases the

risk to cause a collision and therewith other drivers’ risks, and this fact is

reflected in the control over the marginal change of the premium.

Policy implications of the results can be of various nature. Both pub-

lic and private insurers’ objectives depend on the safety level on the road;

however, the distinction of between their objective functions causes differ-

ent insurance prices, as well as different marginal premiums. In order to

compensate for non-optimal pricing (and, correspondingly, to fill in the gap

between the first- and second-best aggregate kilometrage), a social regula-

tor can introduce subsidies and/or taxes imposed on the firms, Dementyeva

et al. (2015). Correcting the speed and safety technology choices, the social

regulator might have to address mispricing by introducing appropriate lim-

its and/or supplementary fines or bonuses. We derive analytical expressions

describing these.

The paper is organized as follows: We introduce the model in Sec. 2.

Then we start the analysis by finding the first-best social optimum in Sec. 3.

We continue with the analysis of an oligopolistic market of insurance firms,

competing in Nash–Cournot manner. Sec. 4 provides us with the profit-

optimizing insurance premiums, as well as the optimal (from insurers’ point

of view) regulations of speed and technology choices. Firms that do not have

perfect control over all choices of their clients are considered in Sec. 5. Sec. 6

6



concludes.

2. Model description

There are three types of actors in this model: Road users consume kilo-

meters driven, and choose the speed at which to drive and vehicle technology.

Insurance companies provide auto insurance to (partially) cover accident

costs of the drivers. In doing so, they choose the premium per kilometer,

which depends on speed and technology chosen by the insuree. We will refer

to this dependence as the “slopes” of the premium, with respect to speed

and technology. Finally, the regulator aims to maximize social welfare, for

example, by setting taxes or subsidies for drivers or insurers.

One of the main assumptions of the model is that road users are homo-

geneous in costs, and are individually infinitely small. Due to the atomistic

nature of the drivers, we may assume that individual kilometrage driven by

each of them is infinitesimal compared to the aggregate kilometrage driven

in the network, so that there is no self-imposed accidents, and that each

unit of consumption corresponds to a different driver.4 The terms “driver”

and “kilometer driven”, thus, may and will be used interchangeably, unless

4Infinitely small individual kilometrage lets us avoid drivers making decision on speed-

ing every unit of distance driven. Infinitesimal individual kilometrage also does not affect

accident costs of other drivers.
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it causes confusion. In order to emphasize the atomistic nature of units of

consumption, we will also speak of “particles” in the continuum of kilometers

driven. This aspect is important in the context of our paper, as it defines

which part of marginal costs are internal and which are external to a driver.

We denote with K̄m the set of the drivers/road particles insured by firm

m = 1, . . . , N , where N is the total number of firms on the market. The

cardinal number Km = |K̄m| is the total kilometrage of drivers insured by

firm m. K = |
⋃N
m=1 K̄m| =

∑N
m=1Km is the aggregate kilometrage of all

drivers in the network.

Road user k faces the following costs of driving: expected accident cost

CAk
, travel time cost CTk , and cost of investment into own safety technol-

ogy CMk
, all per kilometer driven. Accident cost of driving a road distance

particle k is an additive function CAk
(·) =

∑N
m=1Kmc

m
k (Sk, µk; S̄m). The

function CAk
(·) represents the accident cost per kilometer driven, and, thus,

functions cmk (·), for all m = 1, . . . , N , are accident costs “per kilometer,

per other drivers’ kilometer”. Here, speed Sk and own safety technology µk

(both scalar) are chosen by the driver consuming particle k. The notation

S̄m stands for a scalar function of generalized speed of all drivers insured

by firm m taking the continuum of all particles’ speeds from the set K̄m as

argument.5 Because drivers are symmetric by assumption, in equilibrium,

5This implies that marginal reaction of driver k’s generalized costs CAk
when individual
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generalized speed S̄m is equal to the equilibrium speed S∗m of every driver

insured by the firm m. Time cost CTk is a function of individual speed Sk of

driver particle k. The safety investment CMk
has the own safety technology

µk as its argument. Economic life-time of a car is assumed to be proportional

to distance driven, therefore, the total spending on car is considered to be

variable costs proportional to kilometrage.

Insurance firms cover an exogenous (legally determined) share α of the

drivers’ accident costs. The assumption 0 < α < 1 reflects that insurance

companies may fully cover material/monetary costs of drivers, but leave other

immaterial costs, such as emotional costs of drivers, at least partly unreim-

bursed.

A driver k insured by firm l, k ∈ K̄l, minimizes his generalized price of

driving when choosing Sk and µk:

min
Sk,µk

pk(Sk, µk, ·) = πl(·) + (1− α)CAk
(·) + CTk(Sk) + CMk

(µk), (1)

where πl(·) is the insurance premium charged by the firm. The premium func-

tion depends on many parameters and variables including individual speed

Sk, speed functions S̄m, for every insurance company m, and own technology

µk, and some of those the firm might be able to control via the premium

speed Sn of driver n insured by firm l changes is
∂CAk

∂Sn

∣∣∣
k 6=n

= Kl
∂clk
∂S̄l
· ∂S̄l

∂Sn
, for n and k

being insured by the same firm l.

9



slopes. We first assume that firms can affect both individual speed and tech-

nology, and then in Sec. 5 and App. Appendix A insurers have imperfect

control. The latter cases allow us to analyse how firms use available instru-

ments in order to compensate for the lack of control. The premium slopes

∂πl
∂Sk

and ∂πl
∂µk

do not directly affect the level of driving costs, as these can be

set independent of the premium level, but they are present in the individual’s

minimization problem (1).

We assume that, for a given accident, the probabilities of guilt of both

parties depend on their speed choices. This could be reflected by introducing

a function γmk (·) = γ(Sk, S̄m), which assigns the probability of guilt of driver

k for a given accident between driver k and any other driver insured by a

firm m.6 Again, because drivers are assumed to be symmetric, we can use a

firm-specific superscript in γmk , as γmk will be equal for all drivers of firm m.

In order to present the insurance firm’s objective function, we assume that

the drivers’ cost functions are continuous on K̄, which is satisfied for identical

drivers, as we assume is the case, but also if distributions of preferences over

drivers or kilometers is continuous. Insurer’s profit is the difference between

6Hence, γkm(·) = 1 − γmk (·) is the probability of individual k not being guilty of an

accident with a driver insured by firm m. We choose the risk to cause an accident to be

independent of safety technology choice µk in order to emphasize that µk only influences

own expected accident costs of driver k.
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the firm’s revenue, i.e. insurance premiums collected from all drivers k ∈ K̄l,

and its payments of two sorts. One type of payments is coverage of the

accident costs of own customers when they are guilty of causing accidents;

the other type of payments is coverage of the accident costs of non-guilty

parties suffered from drivers of that firm. Firm’s l profit function Πl is then

as follows:

Πl(·) =

∫
K̄l

πl(Sk, µk)dk

− α
∫
K̄l

N∑
m=1

γmk (Sk, S̄m)Kmc
m
k (Sk, µk, S̄m)dk

− α
N∑
m=1

∫
K̄m

(
1− γlx(Sx, S̄l)

)
Klc

l
x(Sx, µx, S̄l)dx.

(2)

Let us go through equation (2) in more detail. The first integral in (2)

sums up insurance premiums collected from every driver k ∈ K̄l, and, thus,

gives the firm’s revenue. The other terms reflect the firm’s expenses. An

insurance firm covers accident costs if its client is the guilty party. The term

on the second line represents the compensation paid to firms l’s customers k

when having caused an accident. For each customer/road particle dk driven,

α
∑N

m=1 γ
m
k (·)cmk (·) is the expected payment from firm l to driver k if an

accident occurs and the driver is guilty (otherwise it is covered by the insurer

of the “accident partner”). The first integral represents the total expenses of

this kind, and it thus sums over the particles k insured by the firm.

The final term in (2) represents the aggregate payment of the firm to non-
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guilty parties of accidents. The term under the integral sign is the expected

payment to the second, non-guilty driver involved into each accident caused

by an insuree of firm l. The non-guilty driver might be a client of firm l, or

from any other firm m on the market. Hence, we integrate over the sets K̄m

to sum up the expected accident costs of the victims of customers of firm l.

For m = l, the integral covers the same particles as the integral in the second

term; for m 6= l, other particles are covered, and we emphasize it by using

notation x for the particles in the last integral. The values of the integrals

in (2) depend on the domain of integration, and, hence, differ for K̄m, for

all m = 1, . . . , N , even though the functional form of the expected accident

costs is the same due to symmetry of the drivers.

Let B(K1, . . . , KN) be the social benefit function giving the user benefits

of trips. Firm l maximizes the profit (2) with respect to its total kilometrage

Kl, speed Sk and technology µk choices of its customers k ∈ K̄l, subject to

equilibrium conditions where driver’s willingness to pay Dl(K1, . . . , KN) =

∂B(·)
∂Kl

, is equal to the generalized price of road use:

π∗l = Dl(·)− (1− α)CA(S∗l , µ
∗
l , S

∗
l )− CT (S∗l )− CM(µ∗l ), (3)

and from (1):

∂pk
∂Sk

=
∂pk
∂µk

= 0, ∀k ∈ K̄l. (4)

The F.O.C. ∂Πl

∂Kl
= 0, subject to the equilibrium condition (3), gives the
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profit-maximizing insurance premium level; ∂Πl

∂Sk
= 0, and ∂Πl

∂µk
= 0, for all

k ∈ K̄l, subject to the individual particle conditions (4), defines the optimal

marginal reaction of the premium to the speed and technology choices for

every road user insured by firm l. Together, the optimal premium level

and the optimal slopes ∂πl
∂Sk

and ∂πl
∂µk

, for all k ∈ K̄l, determine the optimal

insurance premium for firm l.

3. Public welfare-maximizing monopoly

A natural reference and benchmark is the first-best social optimum. We

find this by solving the maximization problem for what we call the “social

monopolist”, who maximizes social surplus, taken as the measure for social

welfare:

maxW(·) = B(K)−
∫
K̄

(
CAk

(·) + CTk(Sk) + CMk
(µk)

)
dk. (5)

The equilibrium condition (3) has the following form:

πfb(·) = D(Kfb)− (1− α)CAn(Sfb, µfb, Sfb)− CTn(Sfb)− CMn(µfb), ∀n.

(6)

In addition, every driver n ∈ K̄ chooses own safety technology µn and indi-

vidual speed Sn such that the conditions (4) hold:

∂π

∂µn
= −(1− α)Kfb∂c

1
n(µn, ·)
∂µn

− ∂CMn(µn)

∂µn
, (7)

∂π

∂Sn
= −(1− α)

∂CAn(Sn, ·)
∂Sn

− ∂CTn(Sn)

∂Sn
. (8)
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In case of a monopolistic market, the accident cost function can be rewrit-

ten as follows: CAn(·) = Kc1
n(Sn, µn, S̄). Then, given first-best choice of

speed and technology Sfb, µfb, the F.O.C. is

∂W
∂K

= D(Kfb)− (CAn(·) + CTn(Sfb) + CMn(µfb))−
∫
K̄

∂CAk
(·)

∂K
dk = 0, ∀n.

Using equilibrium constrain (6), we can rewrite this F.O.C. and get the solu-

tion of the maximization problem of the public welfare-maximizing monop-

olist as the first-best premium:

πfb = (α + 1)CAn(Sfb, µfb, ·), (9)

which essentially implies full internalization of the accident externalities that

the drivers impose on each other plus a correction for the moral hazard

problem of not considering all accident costs when a part is insured and,

thus, borne by an insurer. Insurance premium level guaranties the optimal

aggregate kilometrage, but does not directly motivate drivers to optimally

care about safe speed and technology.

Let us now consider the socially optimal regulation towards speed and

technology choices. The technology-related first-order condition for particle
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n is:

∂W
∂µn

=− ∂

∂µn

∫
K̄

(
CAk

(µ, ·) + CTk(·) + CMk
(µk)

)
dk

=− ∂CAn(µn·)
∂µn

− ∂CMn

∂µn
= 0. (10)

Substitution of (7) into (10) gives:

∂π

∂µn
= α

∂CAn(µn, ·)
∂µn

. (11)

The first-best slope captures the driver’s insured responsibility for accident

costs he is involved in.

The first-order condition w.r.t. the driver’s speed choice is:

∂W
∂Sn

=− ∂

∂Sn

∫
K̄

(
Kc1

k(Sk, ·) + CTk(Sk) + CMk
(·)
)
dk

=−K∂c1
n(Sn, ·)
∂Sn

− ∂CTn(Sn)

∂Sn
−
∫
K̄\{n}

K
∂c1

k(·, S̄)

∂Sn
dk = 0. (12)

Combining conditions (8) and (12), we have:

∂π

∂Sn
= αK

∂c1
n(Sn, ·)
∂Sn

+

∫
K̄\{n}

K
∂c1

k(·, S̄)

∂Sn
dk. (13)

It is intuitive that a social regulator internalizes full accident externality:

the first term in (13) reflects the part of expected accident costs covered by

insurance and, thus, would not be taken into account by driver himself, and

the second term counts for the entire accident externality imposed by driver

upon all other drivers. The reason why this second term is not weighted by α,

to make it correspond to the firm’s compensation to other drivers, is that all
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drivers are insured with the same firm, and the uninsured accident cost that

driver n imposes on other drivers fully translated into a reduced willingness

to pay premium, so that the firm would also fully face that uninsured part of

the externality. Adding up the fractions α (compensation to be paid by the

firm) and 1− α (reduced willingness to pay for other insurees, a term unity

remains); hence, the second term.

4. Firms playing Nash–Cournot fashion and controlling drivers’

choices of technology and speed

4.1. Profit-maximizing insurance premium

We now turn to the market form of interest: oligopolistic supply of in-

surance.

In order to define a profit-maximizing insurance premium (per kilometer

driven), an insurance firm l solves the F.O.C.:

∂Πl

∂Kl

=
∂

∂Kl

∫
K̄l

(
Dl(·)− (1− α)CAk

(·)− CTk(·)− CMk
(·)
)
dk } 1st

− α ∂

∂Kl

∫
K̄l

N∑
m=1

γmk (·)Kmc
m
k (·)dk } 2nd

− α
N∑
m=1

∂

∂Kl

∫
K̄m

(
1− γlx(·)

)
Klc

l
x(·)dx = 0, } 3rd (14)

subject to the equilibrium condition, i.e. for individual n’s choice Ssbl of speed
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and µsbl of technology, for all n ∈ K̄l:

πsbl = Dl(·)− (1− α)CAn(·)− CTn(Ssbl )− CMn(µsbl ). (15)

We mark the lines in (14) in order to make it easier to follow the deriva-

tions and to interpret the terms in the final expression. Let us first do the

derivations:

∂Πl

∂Kl

=
(
Dl − (1− α)CAn − CTn − CMn

)
} 1st

+

∫
K̄l

(∂Dl
∂Kl

− (1− α)
∂CAk

∂Kl

)
dk } 1st

− α
N∑
m=1

γmn Kmc
m
n − α

∫
K̄l

γlkc
l
kdk } 2nd

− α
N∑
m=1

∫
K̄m

(1− γlx)clxdx− α(1− γln)Klc
l
n = 0, } 3rd

therefore, given second-best equilibrium (Ssbl , µ
sb
l ), optimal premium level is:

πsbl =−Ksb
l

∂Dl
∂Kl

+ (1− α)Ksb
l

∂CAn

∂Kl

} 1st (16)

+ α

N∑
m=1

γmn (·)Kmc
m
n (·) + αKsb

l γ
l
n(·)cln(·) } 2nd (17)

+ α

N∑
m=1

Ksb
m (1− γlm)clm(·) + α(1− γln)Klc

l
n(·). } 3rd (18)

In (16), the insurance premium (per kilometer driven) is followed by the

demand related mark-up, and the compensation for the appearance of an

extra driver on the road that decreases willingness to pay of other drivers of

the same firm. The terms in the second line refer to additional payments from
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firm l to its own customers when guilty. The first of these is the (expected)

payment to the additional particle when guilty. The second term represents

the increase in payments to firm l’s inframarginal particles, which have an

increased probability of causing an accident due to the marginal increase in

Kl. The terms on the third line refer to additional payments from firm l to

non-guilty drivers. The first term is such that payments when the marginal

particle insured is guilty; it sums over all other particles on the road, including

those insured by firm l. The second term represents the additional payments

on the firms’ inframarginal insurances, when these drivers cause an accident

and the marginal driver is the non-guilty partner and must be compensated

by firm l.

Let us note that for private profit-maximizing monopoly case, N = 1, the

insurance premium (16)–(18) reduces to:

πsb1 = −Ksb
1

∂D
∂K1

+ CAn(·) + αCAn(·). (19)

The private monopolist makes drivers to compensate fully for their expected

accident costs, as well as for their impact on the other drivers on the road

due to negative externality. Quite intuitively, and as will be continued below,

on top of the market mark-up, a term is added which is equal to the socially

optimal price rule.
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4.2. Optimal speed and technology choice

In addition to insurance premiums, insurance programs include “rules”

to control drivers’ choices of speed and own safety technology.

Let us first analyze how insurance providers can influence individual

drivers’ choice of safety technology level. We assume that each driver insured

with firm l (n ∈ K̄l) looks for a technology µn to balance the investments

and the safety, therefore, minimizing the own generalized price (1):

∂pn
∂µn

=
∂πl(·)
∂µn

+ (1− α)
∂CAn(·, µn)

∂µn
+
∂CMn(µn)

∂µn
= 0,

which is equivalent to

∂πl(·)
∂µn

= −(1− α)Kl
∂cln(µn, ·)
∂µn

− ∂CMn(µn)

∂µn
, ∀n ∈ K̄l. (20)

From firm l’s perspective, individual’s choice must optimize firm’s expected

profit (2):

∂Πl

∂µn
=

∂

∂µn

∫
K̄l

(
Dl(·)− (1− α)

N∑
m=1

Kmc
m
k (µk, ·)− CTk(·)− CMk

(µk)︸ ︷︷ ︸
πl

)
dk

}
1st

− α ∂

∂µn

∫
K̄l

N∑
m=1

γmk (·)Kmc
m
k (µk, ·)dk

}
2nd

− α
N∑
m=1

∂

∂µn

∫
K̄m

(
1− γlx(·)

)
Klc

l
x(µx, ·)dx = 0, ∀n ∈ K̄l.

}
3rd

(21)

In order to make the derivations more transparent, let us point out that

among all integrals in (21), only those taken over the domain K̄l have terms
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depending on choice of technology µn made by an individual n ∈ K̄l, and

that each driver’s choice appears among µk in the second line and among

µx in the third. Let us do the derivations, and take into account drivers’

reasoning (20):

∂Πl

∂µn
=− (1− α)

N∑
m=1

Km
∂cmn (µn, ·)

∂µn
− ∂CMn(µn)

∂µn

}
1st

− α
N∑
m=1

γmn (·)Km
∂cmn
∂µn︸ ︷︷ ︸

2nd

−α(1− γln)Kl
∂cln
∂µn︸ ︷︷ ︸

3rd

=
∂πl
∂µn
− α

N∑
m=1

γmn Km
∂cmn (µn, ·)

∂µn
− α(1− γln)Kl

∂cln(µn, ·)
∂µn

= 0.

Hence, insurance firm’s control for the premium slope w.r.t. personal tech-

nology is as follows:

∂πl
∂µn

= α
N∑
m=1

γmn (·)Km
∂cmn
∂µn

+ α(1− γln)Kl
∂cln
∂µn

. (22)

To interpret this slope condition, let us go back to equation (21). The terms

relating to the first line of (21) represent the impact of µn on particle n’s pri-

vate cost. Because this translates directly into willingness to pay premium,

the firm takes this effect fully into account. The term stemming from the

second line can be seen as a moral hazard term: it is that part of damage

incurred by driver n himself when guilty that he would ignore in setting µn

because it is insured. Hence, it is α times the marginal impact of µn upon

self-inflicted accident costs. The third line reflects the marginal savings for

20



firm l on compensation to particle n when other drivers insured by firm l

cause an accident with particle n. There is no further firm-internal exter-

nalities involved for this particular firm, as the safety technology choice only

influences own safety and by assumption does not affect any other driver

directly. Of course, for cross-firm effects there are externalities, but those

are not taken into account by firm l.

Comparing condition (22) with formula (11) for the slope of a monopolist

maximizing social surplus, we can see that the second-best slope with respect

to technology lacks the part of driver’s marginal accident costs covered by the

firm-insurer m 6= l of the driver guilty of an accident (in case when driver n is

the injured party). However, a private monopolist’s optimal slope coincides

with the first-best one, and fully internalized driver’s responsibility.

Let us now turn to individual speed choice analysis. From driver’s n ∈ K̄l

perspective, in marginal terms the costs of driving have to be compensated

by benefits from speeding up:

∂pn
∂Sn

=
∂πl
∂Sn

+ (1− α)
∂CAn(Sn, ·)

∂Sn
+
∂CTn(Sn)

∂Sn
= 0, ∀n ∈ K̄l.

Equivalently,

∂πl
∂Sn

= −(1− α)
∂CAn(Sn, ·)

∂Sn
− ∂CTn(Sn)

∂Sn
, ∀n ∈ K̄l. (23)

And insurer maximizes its profit for each driver n ∈ K̄l by taking the partial
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derivative with respect to Sn:

∂Πl

∂Sn
=

∂

∂Sn

∫
K̄l

(
Dl(·)− (1− α)CAk

(Sk, S̄, ·)− CTk(Sk)− CMk
(·)
)
dk

}
1st

− α ∂

∂Sn

∫
K̄l

N∑
m=1

γmk (Sk, S̄m)Kmc
m
k (Sk, S̄m, ·)dk

}
2nd

− α
N∑
m=1

∂

∂Sn

∫
K̄m

(
1− γlx(Sx, S̄l)

)
Klc

l
x(Sx, µx, S̄l)dx = 0.

}
3rd

(24)
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Let us do the derivations:

∂Πl

∂Sn
=− (1− α)

∂CAn(Sn, ·)
∂Sn

− ∂CTn(Sn)

∂Sn
−
∫
K̄l\{n}

(1− α)
∂CAk

(Sk, S̄l, ·)
∂Sn

dk
}

1st

− α
N∑
m=1

(∂γmn
∂Sn

Kmc
m
n + γmn Km

∂cmn
∂Sn

) }
2nd

− α
∫
K̄l\{n}

( ∂γlk
∂Sn

Klc
l
k + γlkKl

∂clk
∂Sn

)
dk

}
2nd

− α
N∑
m=1

∫
Km\{n}

(
(1− ∂γlx

∂Sn
)Klc

l
x + (1− γlx)Kl

∂clx
∂Sn

)
dx

}
3rd

− α
(
(1− ∂γln

∂Sn
)Klc

l
n + (1− γln)Kl

∂cln
∂Sn

) }
3rd

=
∂πl
∂Sn
−
∫
K̄l\{n}

(1− α)Kl ·
∂clk(Sk, µk, S̄l)

∂Sn
dk

}
1st

− α
N∑
m=1

(∂γmn
∂Sn

Kmc
m
n + γmn Km

∂cmn
∂Sn

) }
2nd

− α
∫
K̄l\{n}

( ∂γlk
∂Sn

Klc
l
k + γlkKl

∂clk
∂Sn

)
dk

}
2nd

− α
N∑
m=1

∫
Km\{n}

(
(1− ∂γlx

∂Sn
)Klc

l
x + (1− γlx)Kl

∂clx
∂Sn

)
dx

}
3rd

− α
(
(1− ∂γln

∂Sn
)Klc

l
n + (1− γln)Kl

∂cln
∂Sn

)
= 0.

}
3rd

∂CAk
(Sk, S̄l, ·)
∂Sn

∣∣∣
k 6=n,n∈K̄l

=
N∑
m=1

Km
∂cmk (Sk, µk, S̄m)

∂Sn

∣∣∣
k 6=n,n∈K̄l

= Kl ·
∂clk(Sk, µk, S̄l)

∂Sn

∣∣∣
k 6=n

(25)
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Equivalently:

∂πl
∂Sn

=

∫
K̄l\{n}

(1− α)Kl ·
∂clk(Sk, µk, S̄l)

∂Sn
dk︸ ︷︷ ︸

1.1

+ α

N∑
m=1

∂γmn
∂Sn

Kmc
m
n︸ ︷︷ ︸

2.1

+α

N∑
m=1

γmn Km
∂cmn
∂Sn︸ ︷︷ ︸

2.2

+ α

∫
K̄l\{n}

∂γlk
∂Sn

Klc
l
kdk︸ ︷︷ ︸

2.3

+α

∫
K̄l\{n}

γlkKl
∂clk
∂Sn

dk︸ ︷︷ ︸
2.4

+ α
N∑
m=1

∫
K̄m\{n}

(1− ∂γlx
∂Sn

)Klc
l
xdx︸ ︷︷ ︸

3.1

+ α
N∑
m=1

∫
K̄m\{n}

(1− γlx)Kl
∂clx
∂Sn

dx︸ ︷︷ ︸
3.2

+ α(1− ∂γln
∂S̄l

∂S̄l
∂Sn

)Klc
l
n︸ ︷︷ ︸

3.3

+α(1− γln)Kl
∂cln
∂S̄l

∂S̄l
∂Sn︸ ︷︷ ︸

3.4

.

(26)

Here we have three channels of n’s speed choice influence: Sn directly

affects the probability of inflicting self-damage via the cost incurred given

being guilty, and via the probability of being guilty, and indirectly via the

generalized speed S̄l as an argument of accident cost functions as well as

the probabilities of being involved into an accident when not being guilty.

The term 1.1 reflects changes of other drivers of firm l willingness to pay for

insurance, as speeding of n increases accident costs of other drivers through

the generalized speed S̄l. Comparing the other terms with those obtained for
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µ, we spot some similarities. As such, the term 2.2 mirrors the first term from

(22), and being now accompanied by terms 2.1, 2.3, and 2.4, it represents

the moral hazard, namely, self-induced accident cost covered by insurance

and, thus, not taken into account by the driver. The last term 3.4 of (26)

mirrors the last term in (22), and now together with 3.1,7 3.2, and 3.3, it is

equal to a compensation to particle n when another driver of firm l is guilty.

Because, in contrast to what we assumed for the technology, speed not only

affects one’s own expected accident costs but also those of fellow drivers,

we therefore get additional terms in (26) compared to (22). In particular,

terms 2.1 and 3.3 reflect that individual speed Sn affects the probability γmn

to cause an accident and to be involved into one as a non-guilty party. When

the guilty party is insured by firm l, the cost are firm-internal, and hence

firm l fines it, optimal to adjust the slope accordingly. Terms 2.3, 2.4, 3.1,

and 3.2 reflect indirect effect of individual speed choice on accident costs and

probabilities of guilt via generalized speed S̄l.

The second-best monopolistic slope is represented as follows:

∂π1

∂Sn
= αK

∂c1
n

∂Sn
+

∫
K̄\{n}

K
∂c1

k

∂Sn
dk + α

∫
K̄\{n}

Kc1
xdx+ αKc1

n. (27)

It is easy to notice (cf. (13)) that, unlike with safety technology choice,

a social regulator has to introduce a policy in order to keep drivers’ speed

7In this term, K̄m \ {n} = K̄m, for all m 6= l, as n ∈ K̄l.
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choice optimal even if there is only one insurance firm present on the market.

The difference is not only in the two last terms of (27) but also stems in

the difference between the first and second-best aggregate kilometrage. This

conclusion is in line with what we observe in reality, where speed limits are

one of the widely spread road safety regulations.

5. Insurance market with imperfect control of speed or technology

choice

Let us now consider the case where firms do not have perfect control

over all choices. We assume now that firms charge drivers insurance premi-

ums that do not depend on speed choices. Firms therefore cannot influence

drivers’ speed directly, but can take into account drivers’ incentives to bal-

ance marginal accident costs and time spent on the road, which is given

by:

(1− α)
∂CAn

∂Sn
+
∂CTn
∂Sn

= 0, ∀n ∈ K̄l. (28)

This is equivalent to

(1− α)
N∑
m=1

Km
∂cmn
∂Sn

+
∂CTn
∂Sn

= 0, ∀n ∈ K̄l.

Furthermore, the equilibrium condition for aggregate kilometrage becomes:

π̃l = Dl(·)− (1− α)CAk
(·)− CTk(Sk)− CMk

(µk). (29)
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Firm l maximizes its profit (2), where the premium πl is now substituted

by a new premium π̃l, which is not regulated by speed restrictions:

Π̃l(·) =

∫
K̄l

π̃l(·)dk

− α
∫
K̄l

N∑
m=1

γmk (Sk, S̄m)Kmc
m
k (Sk, µk, S̄m)dk

− α
N∑
m=1

∫
K̄m

(
1− γlx(Sx, S̄l)

)
Klc

l
x(Sx, µx, S̄l)dx,

(30)

with respect to the equilibrium conditions (28) and (29). The Lagrangian of

this maximization problem is

Ll = Π̃l + λS

(
(1− α)

N∑
m=1

Km
∂cmn
∂Sn

+
∂CTn
∂Sn

)
, (31)

where the Lagrangian multiplier λS is the shadow price reflecting the marginal

impact of condition (28) on optimized profits. The higher the shadow price,

the stronger the inability of insurance company to control drivers’ speed in-

fluences its profit, and so is the adjustment for the remaining instruments

to imperfectly compensate for this. Analysis of this Lagrangian will pro-

vide us with a new, second-best insurance premium, as well as a second-best

slope with respect to driver’s own safety technology. We discuss this and

the analytical representation of λS below, but first present the second-best

optimum premium and slope for technology under this constraint, leaving λS

as a variable in our analytical expressions.

The F.O.C. for the Lagrangian with respect to aggregate kilometrage Kl
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is:

∂Ll
∂Kl

=
∂Π̃l

∂Kl

+ λS
∂

∂Kl

(
(1− α)

N∑
m=1

Km
∂cmn
∂Sn

+
∂CTn
∂Sn

)
=
∂Π̃l

∂Kl

+ λS(1− α)
∂cln
∂Sn

= 0. (32)

Because ∂Π̃l

∂Kl
in (32) takes on the same form as ∂Πl

∂Kl
in the original firm problem

(14), the new premium per kilometer driven is:

π̃l = πl − λS(1− α)
∂cln
∂Sn

, (33)

where πl represents the analytical expression in (16)–(18). The last term in

(33) corrects for the inability to directly affect speed choice, and only takes

care of the uninsured part of accident costs within the firm. The fact that

the per kilometer accident costs are different (typically, higher) when speed

cannot be affected will be reflected already in the different equilibrium values

for the variables in πl.

The F.O.C. with respect to individual safety technology choice µn is:

∂Ll
∂µn

=
∂Π̃l

∂µn
+ λS

∂

∂µn

(
(1− α)

N∑
m=1

Km
∂cmn
∂Sn

+
∂CTn
∂Sn

)
=
∂Π̃l

∂µn
+ λS(1− α)Kl

∂2cln
∂Sn∂µn

= 0. (34)

Comparing (34) to (21), the last term of (34) shows that the stronger in-

terrelation between driver’s speed and technology choices is, the higher the

indirect control of the firm is, and the more strongly it will adjust the slope
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with respect to µn in order to also affect Sn. Since drivers only react to

the change of uninsured part of the costs, assuming the rest covered by the

insurer, this cross-effect is multiplied by (1 − α). In this extra term, the

insurance firm internalizes only internal accident costs, and ignores those ac-

cidents where other firms’ clients involved. The latter implies that a larger

firm has more powerful instruments to influence its drivers’ behavior as it

fines drivers for a larger share of the accident externality they impose on

others.

Finally, the F.O.C. with respect to individual speed Sn allows us to find

an analytical representation of the Lagrangian multiplier λ:

∂Ll
∂Sn

=
∂Π̃l

∂Sn
+ λS

∂

∂Sn

(
(1− α)

∂CAn

∂Sn
+
∂CTn
∂Sn

)
=
∂Π̃l

∂Sn
+ λS

(
(1− α)

∂2CAn

∂S2
n

+
∂2CTn
∂S2

n

)
= 0. (35)

From (35) we obtain the Lagrangian multiplier λ, equal to the marginal firm’s

profit over the marginal relaxation of the condition (28):

λS = − ∂Π̃l/∂Sn

(1− α)
∂2CAn

∂S2
n

+
∂2CTn

∂S2
n

. (36)

The magnitude of the shadow price λS (and so an incentive of insurance firm

to control its drivers’ speed choice via premiums and optimal “slopes” for

technology) is proportional to firm’s marginal profit with respect to individ-

ual speed choice, in the numerator of (36). The higher the losses a firm faces

due to speeding, the stronger will be its effort to use accessible instruments
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to control the speed choice. On the other hand, λS is in inverse proportion to

the marginal change of the equilibrium condition (28), which reflects the sen-

sitivity of the equilibrium perceived price with respect to speed. The closer

the denominator to zero, the higher the speed change induced in reaction to

the firm’s manipulation of speed via the instruments available to the firm

(µn and Kl, here), because drivers will have to make a larger adjustment in

speed to achieve equilibrium again. The role of the denominator is thus to

reduce λ when perceived price reacts strongly to Sn, as this implies that a

change in that price will induce only a relatively small adjustment in Sn.

Lack of firm’s control over drivers’ choice of own safety technology in the

presence of (firm’s) speed regulation, as well as an inability to control either

of the variables Sn and µn, are not conceptually different from the case we

have just considered and will therefore not be presented analytically. The

corresponding Lagrangian multipliers of the cross effects are the following:

λM = − ∂Π̄l/∂µn

(1− α)
∂2CAn

∂µ2n
+

∂2CMn

∂µ2n

, (37)

where Π̄l stands for the profit of firm whilst insurance premium is considered

to be dependent on speed but not on technology.

Appendix A presents the case where the firm can only set a premium,

independent of individual’s speed or technology choice. The firm hence has

to compensate for lack over optimal slopes control by adapting its insurance

premium level.
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6. Conclusion

In this paper we analyzed car insurance schedules that allow insurance

firms and a social regulator to influence safety on the road via multiple con-

trols over individual drivers’ behavior. We compare the first-best social op-

timum with an insurance market of private profit-maximizing firms, given

that insurance is obligatory. The insurance premium schedules that we con-

sider consist of the insurance premium, along with what we call the “slopes”

of the premium function with respect to the individual driver’s choices of

speed and own safety technology. Speed may be considered to represent all

the individual characteristics of driving that influence both the drivers’ own

and other drivers’ safety. Unlike speed, safety technology by assumption

only decreases drivers’ own accident costs, without influencing other drivers’

safety. Congestion was not considered, meaning that individual speed does

not directly depend on the number of drivers entering the road.

Our main framework assumes that insurance firms can control both speed

and technology choices of the drivers. In that case, companies offer insurance

for a certain premium per kilometer driven, and use the optimal slopes in or-

der to motivate drivers to choose a certain equilibrium speed and technology.

The insurance premium is thus characterized by three choices on behalf of the

insurance company: the level of the premium and the two slopes. The level

is used to affect kilometrage. Similar to what was found in Dementyeva et al.
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(2015), the profit maximizing premium internalizes part externality, but not

all as long as there are more tax are also similar to those in Dementyeva et al.

(2015).

The internalization of externalities by an insurance firm is also reflected in

the marginal dependence of the premium functions on individual’s speed and

technology level (see formulae (11), (13), (22), and (26)). When setting the

optimal profit-maximizing slopes, the firm only partly internalizes marginal

externalities imposed by their insurees upon other drivers. That is, it takes

care only of that part of the total accident costs it has to cover, and ignores

the costs covered by other firms, as well as other firms’ drivers’ own risks. For

instance, in case of technology control, this implies that an insurance firm’s

optimal slope is less steep than the one of a social regulator; that is, a social

regulator is stricter to an individual driver’s choice of own safety technology,

than a private firm, and a larger firm is stricter, than a firm with lower

market power. And only a private profit-maximizing monopolist’s slope with

respect to technology coincides with the first-best one. On the contrary, the

analysis of the first-best and second-best slopes with respect to individual

speed choice shows that any private insurance fails to motivate drivers well

enough, and extra regulation is required in order to keep speed choices on

the socially optimal level.

We also considered the case of imperfect control over drivers’ behavior.
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When only one of the two “slope” variables (e.g., technology choice) can be

controlled by the insurance firm directly, the other one (here, speed) can still

be controlled indirectly via the insurance premium, and by the slope of the

first one. The corresponding optimization problem represents a second-best

problem. The associated solutions for the insurance premium and the remain-

ing optimal slope include, in the Lagrangian multiplier, terms correcting for

the lack of control over the third margin. The stronger the mutual depen-

dence between driver’s speed and technology is, the more effective indirect

control of insurance firm is. Also, a firm with larger market power implies

a higher degree of accident externalities internalization. Thus, a larger firm

has better instruments of indirect control. The higher the losses a firm faces

due to speeding, the stronger will be its effort to use accessible instruments to

control the speed choice. The role of the corrective term is reduced when per-

ceived price reacts strongly to individual speed, as this means that a change

in that price will induce a relatively small adjustment in speed.

The results achieved in this paper can be used for evaluation of road safety

policies. Adjustment of the insurance premium level was thoroughly studied

in Dementyeva et al. (2015). Depending on the number of insurance firms in

the market and their size, a social regulator can introduce subsidies or taxes

in order to correct for the accident externalities uninternalized by insurance

firms. A no-claim policy can be used as an instrument to implement the
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optimal slopes by the firms. According to our analysis, such means as (upper)

speed and (lowest) technology limits as well as other regulative actions are

needed even when (oligopolistic) firms manage to influence drives’ behaviour

directly, and only a private profit-maximizing monopolist would give exactly

the same incentive for drivers to choose their own safety technology as a

social regulator does.

This paper also offers some perspective on future research. Our model

includes a number of important assumptions. The first to mention is that the

model is deterministic. While in reality many processes and variables of the

road traffic are better described as stochastic, for the moment, we exclude any

of it from our consideration. Furthermore, we excluded possible congestion

(and so its influence on speed choice) from consideration, the drivers were

assumed to be symmetric, information about expected accident costs as well

as about the dependance of insurance premiums on speed and technology

was full and available equally to all actors on the market. Relaxation of

these assumptions such as including drivers’ diversity (they can have different

value of time or safety, level of income, be more or less dangerous and/or

risk-averse), and considering asymmetric information and stochastic elements

(notably, accidents), gives possible directions to further develop the model.
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Appendix A. Insurance market with no control over speed neither

technology choices

Once a private profit-maximizing firm does not have control of speed nor

technology choice of its drivers, it solves the following constrain maximization

problem: max Π̂l with premiums that do not directly reflect individual speed

and safety technology. The equilibrium constraints are:

π̂l(·) = Dl − (1− α)CAn − CTn − CSn , (A.1)

(1− α)
∂CAn

∂µn
+
∂CMn

∂µn
= 0, (A.2)

(1− α)
∂CAn

∂Sn
+
∂CTn
∂Sn

= 0. (A.3)

We will use notations condM and condS for the expressions on the left-

hand side (A.2) and (A.3). We work with the corresponding Lagrangian

that includes λ̂M and λ̂S, the Lagrangian multipliers of condM and condS,

respectively:

L̂ = Π̂l + λ̂M · condM + λ̂S · condS.

From FOCs we conclude that the Lagrangian multipliers are a solution of

the following linear system:

∂Π̂l

∂Sn
+ λ̂M ·

∂ condM

∂Sn
+ λ̂S ·

∂ condS

∂Sn
= 0, (A.4)

∂Π̂l

∂µn
+ λ̂M ·

∂ condM

∂µn
+ λ̂S ·

∂ condS

∂µn
= 0. (A.5)
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Solving the system, we get:

λ̂M = −

∣∣∣∣∣∣∣
∂Π̂l

∂Sn

∂condS
∂Sn

∂Π̂l

∂µn
cross

∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣

cross ∂condS
∂Sn

∂condM
∂µn

cross

∣∣∣∣∣∣∣ , (A.6)

λ̂S = −

∣∣∣∣∣∣∣
cross ∂Π̂l

∂Sn

∂condM
∂µn

∂Π̂l

∂µn

∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣

cross ∂ condS
∂Sn

∂condM
∂µn

cross

∣∣∣∣∣∣∣ , (A.7)

where cross stands for the cross-effects ∂condM
∂Sn

and ∂condS
∂µn

, both being equal

to ∂2Cn

∂Sn∂µn
.

The resulting Lagrangian multipliers λ̂M and λ̂S are not (easily) repre-

sentable via the analytical forms of λS from (36) and λM from (37), and do

not allow clear intuitive interpretation. We therefore leave it out of the main

paper.
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