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Abstract 

 

Of the two most widely estimated univariate asymmetric conditional volatility models, 

the exponential GARCH (or EGARCH) specification can capture asymmetry, which 

refers to the different effects on conditional volatility of positive and negative effects of 

equal magnitude, and leverage, which refers to the negative correlation between the 

returns shocks and subsequent shocks to volatility. However, the statistical properties of 

the (quasi-) maximum likelihood estimator (QMLE) of the EGARCH parameters are not 

available under general conditions, but only for special cases under highly restrictive and 

unverifiable conditions, such as EGARCH(1,0) or EGARCH(1,1), and possibly only 

under simulation. A limitation in the development of asymptotic properties of the QMLE 

for the EGARCH(p,q) model is the lack of an invertibility condition for the returns 

shocks underlying the model. It is shown in this paper that the EGARCH(p,q) model can 

be derived from a stochastic process, for which the invertibility conditions can be stated 

simply and explicitly. This will be useful in re-interpreting the existing properties of the 

QMLE of the EGARCH(p,q) parameters.  

 

Keywords: Leverage, asymmetry, existence, stochastic process, asymptotic properties, 

invertibility. 

 

JEL classifications: C22, C52, C58, G32. 
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1. Introduction 
 

In addition to modeling and forecasting volatility, and capturing clustering, two key 

characteristics of univariate time-varying conditional volatility models in the GARCH 

class of Engle (1982) and Bollerslev (1986) are asymmetry and leverage. Asymmetry 

refers to the different impacts on volatility of positive and negative shocks of equal 

magnitude, whereas leverage, as a special case of asymmetry, captures the negative 

correlation between the returns shocks and subsequent shocks to volatility. Black (1976) 

defined leverage in terms of the debt-to-equity ratio, with increases in volatility arising 

from negative shocks to returns and decreases in volatility arising from positive shocks to 

returns. 

 

The two most widely estimated asymmetric univariate models of conditional volatility are 

the exponential GARCH (or EGARCH) model of Nelson (1990, 1991), and the GJR 

(alternatively, asymmetric or threshold) model of Glosten, Jagannathan and Runkle (1992). 

As EGARCH is a discrete-time approximation to a continuous-time stochastic volatility 

process, and is expressed in logarithms, conditional volatility is guaranteed to be positive 

without any restrictions on the parameters. In order to capture leverage, the EGARCH 

model requires parametric restrictions to be satisfied. Leverage is not possible for GJR, 

unless the short run persistence parameter is negative, which is not consistent with the 

standard sufficient condition for conditional volatility to be positive, or for the process to 

be consistent with a random coefficient autoregressive model (see McAleer (2014)). 

 

As GARCH can be obtained from random coefficient autoregressive models (see Tsay 

(1987)), and similarly for GJR (see McAleer et al. (2007) and McAleer (2014)), the 

statistical properties for the (quasi-) maximum likelihood estimator (QMLE) of the 

GARCH and GJR parameters are straightforward to establish. However, the statistical 

properties for the QMLE of the EGARCH parameters are not available under general 

conditions. A limitation in the development of asymptotic properties of the QMLE for 

EGARCH is the lack of an invertibility condition for the returns shocks underlying the 

model.   
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McAleer and Hafner (2014) showed that EGARCH(1,1) could be derived from a random 

coefficient complex nonlinear moving average (RCCNMA) process. The reason for the 

lack of statistical properties of the QMLE of EGARCH(p,q) under general conditions is 

that the stationarity and invertibility conditions for the RCCNMA process are not known, 

except possibly under simulation, in part because the RCCNMA process is not in the class 

of random coefficient linear moving average models (for further details, see Marek 

(2005)). 

 

The recent literature on the asymptotic properties of the QMLE of EGARCH shows that 

such properties are available only for some special cases, and under highly restrictive and 

unverifiable conditions. For example, Straumann and Mikosch (2006) derive some 

asymptotic results for the simple EARCH(∞) model, but their regularity conditions are 

difficult to interpret or verify. Wintenberger (2013) proves consistency and asymptotic 

normality for the QMLE of EGARCH(1,1) under the non-verifiable assumption of 

invertibility of the model. Demos and Kyriakopoulou (2014) present sufficient conditions 

for asymptotic normality under a highly restrictive conditions that are difficult to verify. 

 

It is shown in this paper that the EGARCH(p,q) model can, in fact, be derived from a 

stochastic process, for which the invertibility conditions can be stated simply and 

explicitly. This will be useful in re-interpreting the existing properties of the QMLE of the 

EGARCH(p,q) parameters.  

 

The remainder of the paper is organized as follows. In Section 2, the EARCH(∞) model is 

discussed, together with notation and lemmas. Section 3 presents a new stochastic process 

and regularity conditions, from which EARCH(∞) is derived, without proofs of existence 

and uniqueness. Section 4 develops a key result for the invertibility of the EARCH(∞) 

model. Section 5 analyses the EGARCH(p,q) specification, while Section 6 develops the 

regularity conditions for the invertibility of EGARCH(p,q). Section 7 considers the 

special case of the N(0,1) distribution. Section 8 provides a summary of the invertibility 

conditions for EGARCH(p,q). Some concluding comments are given in Section 9. Proofs 

of the lemmas and propositions are given in the Appendix. 
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2. EARCH(∞), Notation and Lemmas 

 

Instead of using a recursive equation for conditional volatility, which would require 

proofs of existence and uniqueness, we will work on a direct definition of the stochastic 

process that drives the so-called innovation, t . By definition, the new process will 

define uniquely the stochastic process that drives the innovation, as follows: 
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i , and t ~(0,1), so that 2Lt  . Thus, we have 

the EARCH(∞) model, as introduced by Nelson (1990, 1991): 
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The primary purpose of this paper is to establish the invertibility of the model, where 

invertibility refers to the fact that the normalized shocks ( t ) may be written in terms of 

the previous observed values, that is, t  is  ,, 1tt  -adapted. Note that this 

definition is equivalent to that used by Wintenberger (2013) and Straumann and Mikosch 

(2006), namely that t  is  ,, 21  tt  - adapted. 

 

In a similar manner to proving invertibility for the Moving Average (MA) case, we will 

express recursively all the independently and identically distributed (iid) shocks in terms 

of the past observed shocks and some arbitrary fixed constant, and then prove that this 

backward recursion converges almost surely to the real value of t . 
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Consider the following notation: 

 

 tt sign 
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so that: 
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As sign( t ) = sign( t ), t  is indeed  t -adapted. Therefore, by proving that t  is 

 ,, 1tt  -adapted, it will follow automatically that the model is invertible.  

 

By assuming that the distribution of t  does not admit a probability mass at 0, we can 

take the absolute value and then the logarithm of t . In order to be rigorous in the 

development below, we assume that 0t , almost surely. By rewriting the equation, we 

have: 
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so that we have: 
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This function is not Lipschitzian, so that we should find some results about variability, as 

in the Lyapunov coefficient in other invertibility proofs. Lemma 1.1 gives a solution, 

which will be used widely in several proofs below: 
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Lemma 1.1  
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The proof of Lemma 1.1 is given in the Appendix (part 1). Moreover, we will also use the 

Borel-Cantelli Lemma and one of its corollaries, namely Lemma 1.2 (which is also given 

in the Appendix (part 1)). 

 
 

3. EARCH(1): A New Stochastic Specification and Regularity 
Conditions 

 
 

By ensuring positivity, the EGARCH model allows the possibility of leverage, namely 

that positive shocks lead to a decrease in volatility and negative shocks lead to an 

increase in volatility. Therefore, leverage occurs when    and 0 . We will also 

examine two other cases where shocks lead to either an increase in volatility (   ) or 

a decrease in volatility (   ). A fourth possibility is symmetric to the leverage case, 

and hence need not be considered in detail.  

 

All of these cases allows asymmetry as there are still two coefficients. The three cases are 

summarized in these graphs, where xxxf  )( : 

 
 
 
 
 
 
 
 
 

   0    
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Before examining the invertibility of EARCH(∞) and EGARCH(p,q), we will examine 

briefly the simple EARCH(1) model to provide a justification for restricting the analysis 

to one of the above cases as a pre-condition for invertibility. This is also motivated by two 

other reasons: (i) it will allow us to introduce a novel approach; and (ii) the conditions for 

EARCH(1) are slightly different and less restrictive than those found in Section 6 for 

EGARCH(p,q) when p = 1 and q = 0 because of the concavity of log(.).  

 

Consider the equation induced from (2) above for the special case of EARCH(1), that is, 

where 11   and 0,2  ii   : 
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We now introduce the following recursive series for a fixed *n : 
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It follows by recursion that: 
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These series n  are  ,, 1tt  -adapted. In order to prove invertibility, we examine 

the convergence of the series )()( n
n

n
n uv   toward zero, as the series defined in (5) is 

simply the natural backward recursion defined in (4), but conditionally on some constant 

value for previous shocks, namely )exp( 0cnt  . 

 
 
(i) First case:    

 

By using Lemma 1.1, as 0t  in this case: 
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Dealing with a sum of max(. , .), as it would be the case if we expand the recursion 

further, is difficult, so linearization yields: 
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By recursion we have: 
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From the upper bound, the invertibility conditions based on the Law of Large Number 

(LLN) are given as: 
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The proof of invertibility under these conditions (Proposition 2.1) is given in the 

Appendix (part 2). The proposition is given as: 

 

Proposition 2.1   

 If Conditions 1 are verified when   , then the model EARCH(1) is invertible, 

that is, we have : 
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(which is a non-empty set), we have invertibility. This condition is the same as in Remark 

3.10 of Straumann and Mikosch (2006), so that our approach will not necessarily lead to 
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more restrictive conditions than those already known.  

 

Remark: For purposes of rigour in the proof, we had to assume that 1log Lt  , or that 

the shocks t  do not admit a mass at zero. However, in our backward recursion, )(n
nu , if 

we had found t  = 0 (which is equivalent to t  = 0, and is therefore a  ,, 1tt  - 

adapted event), we would have obtained directly the invertibility of the model. Actually, 

only   1log Lt   is required, but it is already implied by the fact that 2Lt  . 

 

(ii) Second case:  
 

 

This case is the third case in the graphs above, namely where a shock leads to a decrease 

in volatility. For this case, we provide a counter-example to show that we cannot have the 

case of invertibility under the same general conditions and approach as stated above, but 

perhaps under more restrictive conditions (such as the normalized shocks are uniformly 

bounded). 

 

Assume  1,0~ t , although any other distribution with thicker tails would lead to a 

similar result as given below. 

 
 
Proposition 2.2   

 If  1,0~
...


dii

t  and   , then we cannot prove invertibility with our method as 

 )()( n
n

n
n uv   does not converge to 0, and even admits an extracted series that diverges 

 almost surely toward infinity. 

 

 

The proof of this proposition can be found in the Appendix (part 2). More precisely, this 

result indicates that the backward recursion will behave too erratically to allow us to 

prove invertibility. It indicates also that the past tends to have a persistent effect on the 
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time series induced by this model, and could be quite divergent. For this reason, the 

model here might not be invertible, and so it will be assumed that  
 
does not 

hold. 

 

(iii) Third case:    and 0  

 
We now examine leverage. We can also consider for this case the counter-example used 

for the previous case (see Appendix (part 2)). Given the previous results, we cannot use 

inequality (1) in Lemma 1 to reach a conclusion regarding invertibility. Specifically, we 

would not be able to obtain an upper bound for )()( n
n

n
n uv   that converges to zero. 

Moreover, we would also not be able to use inequality (2) of Lemma 1 recursively to 

prove the divergence like in Proposition 2.2 as we could obtain a lower bound that would 

tend to zero. Actually, it would be difficult to conclude in this case, but as this is a 

combination of the two first cases, we are also likely to find a very erratic asymptotic 

behavior for )()( n
n

n
n uv  . 

 

Thus, as a conclusion of this part, our approach could lead to a proof of invertibility for 

the case   , and possibly lead to non-invertibility for the other two cases. 

Accordingly, in order to examine a more general case than the simple EARCH(1) model, 

it will be necessary to assume that   . 

 
 

4. Key Result for the Invertibility of EARCH(∞) 
 
 
Given the previous analysis, in the following it will be assumed that    and that all 

the i  are non-negative. The following was derived from equation (2): 
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Define the )(n
ku  and )(n

kv  series as: 
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As before, it follows that: 
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As it is not as straightforward as the EARCH(1) case, Lemma 3.1 will be useful (the 

proof of which is given in the Appendix (part 3)): 

 

Lemma 3.1   
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We remark that )(n
kv  is established like )(n

ku , but by assuming that all the i  for 

nti   are equal to zero. Here, we have chosen these “initial values” in order to 

simplify the development, but one can also check our further results for any kind of 

values for i  before t - n, as long as the sum does not diverge. In any event, the proof of 

invertibility will be based on the )(n
kv  as  ,, 1tt  -adapted. 
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It is essential to prove that: 
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can be shown that: 
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The recursion may be extended, as follows: 
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The above leads to Lemma 3.2, the proof of which is given in the Appendix (part 3): 
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following general result for EARCH(∞): 

 

 





l

j
il

j
1

  

 
 




l

j St
l

j

D
1

  



 

16 
 

Proposition 3.1   

 If   , ii  ,0 , then we have the following inequality for the series  

u and v for EARCH(∞): 
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An examination of invertibility for a general EARCH(∞) would use this upper bound. In 

our case, as it could be difficult if we do not assume a minimum on the behavior of the 

beta coefficients, we will examine the case of EGARCH(p,q). 

 
 

5. EGARCH(p,q) Specification 
 
 
Consider the general EGARCH(p,q) model: 
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In order to be able to use the previous result for EARCH(∞), this model should admit an 

EARCH(∞) representation. By using the backward lag operator L, this model can be 

rewritten as: 
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In order to have an EARCH(∞) representation, the polynomial 
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In order to consider invertibility, we should have    and the i  coefficients of the 

EARCH(∞) representation to be non-negative. This could easily be achieved if all the 

coefficients ia  and ib  are non-negative. Indeed, if we rename ititiy   , one can 

easily check the positivity of the i  coefficients by taking the partial differential of 

tlog  with respect to ty : 
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where 1 represents the index function. From the above equation, one can easily check 

recursively the positivity of the i  coefficients. 

 

Remark: In the following, it will be assumed that all the coefficients ia  and ib  are 

non-negative, so the i  of the EARCH(∞) representation are also non-negative. 

 

As the i  coefficients are assumed to be non-negative, we wish to find an appropriate 

upper bound that can be used in Proposition 3.1, specifically an upper bound such as 

1.  i
i C  , where C is a positive real number and  1,0 . As long as such a bound can 

be found, this can be used in the inequality in Proposition 3.1 by redefining the 

coefficients as: 
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and to reduce examination of invertibility of an EGARCH(p,q) model to a simple 

EGARCH(1,1) model of this following specification: 
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These “updated” coefficients will be given as *** ,,   below.  

 

From equation (12), in the EARCH(∞) representation the above *  would be greater 

than the maxima of the absolute values of the i . When all the i  are different, we 

could choose *  as being the maximum value. However, the polynomial 
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may have double roots, or at least, as it is a polynomial with real coefficients, admits 

couples of complex roots and their conjugates, thereby having the same absolute value. In 

these case, we would not be able to find an upper bound like 
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 max*  . Therefore, in our “general” analysis, consider a coefficient such as 

i
i
 maxsup  . This coefficient can be chosen arbitrarily as long as it is strictly less than 1 

and above the absolute values of the i . Order these parameters such that p  ...1 . 

As shown in the analysis of EARCH(1), it will be recalled that the parameter ω had no 

influence on invertibility.  

 

In order to find the appropriate *** ,,   values, we present a recursion. Starting with 
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Therefore, one can easily check by following the above recursion that: 
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 (and uC  is a positive number). (15) 
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From (14), we obtain: 
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Therefore, the EGARCH(p,q) model has an EARCH(∞) representation with positive  
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C  , and coefficients  C*  and  C* . If we consider the 

inequality in Proposition 3.1, we can see that we can also use the 1
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obtain the new upper bound : 
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6. Invertibility of EGARCH(p,q) 

 
 
It can be seen that our approach has the distinct advantage of reducing the problem of the 

invertibility of EGARCH(p,q) to the simpler case of an EGARCH(1,1) model, using the 

above coefficients. The inequality in (16) can be rewritten to make the proof of 

invertibility more straightforward. Note that we have: 
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where: 
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We now provide sufficient conditions for the invertibility of the EGARCH(p,q) 

specification. It is assumed that the conditions hold, and we then prove some lemmas 

before proving invertibility under these conditions: 

 

   0log
1

**

*

*















 tt

tt E 



 (Conditions 2) 

 

If 0*  , we find a condition that is deduced by concavity of log(.) from the conditions 

for EARCH(1) (in part 3), which is more restrictive. Moreover, by using the fact that 

  0 t  and   1 t  (as   12  t ), we can obtain the following simpler sufficient 

condition: 
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. (19) 

 

We notice also that when we set *  toward 0, the condition 1*   proposed by 

Straumann and Mikosch (2006) in their Remark 3.10 is also verified. 

 

Remark: We continue to assume that   00  t  in order to retain rigour in the proofs. 

However, as in the case of examining the simple EARCH(1) model, it may be also 

possible to relax the constraint here, even if it is less straightforward to prove the result. 

In the following proofs, the condition 1log Lt   is no longer necessary. 

 

The proof of Lemma 4.1 is given in the Appendix (part 4): 
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Lemma 4.1   

 For any 2/1 , we have, with probability 1: 

   noBn exp . 

 

  

Inside the larger brackets in inequality (18), we have sums of independent variables,  

1...1 1  nss p , which is more difficult to control than a sum from 1 to p, for 

instance. So we cannot simply use (LLN) as it was the case with the EARCH(1) model. 

Therefore, we will simply take the expectation in the proof to return to a sum over 

consecutive indexes (we also take expectations in order to use Lemma 1.2 with the 

Markov inequality to obtain convergence toward zero of )()( n
n

n
n uv  ).  

 

The following proposition proves invertibility, the proof of which can be found in the 

Appendix (part 4): 

 

Proposition 4.1   

 If   , the ia  and ib  are non-negative, the roots of 
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 outside the unit circle and, if the Conditions 2 are verified, then EGARCH(p,q) is 

 invertible as: 
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7. Special case of the N(0,1) distribution  

 

In the case of the Gaussian distribution, the Conditions 2 can be re-written as: 
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Therefore, if we calculate the maximum beta for several values of alpha (and gamma) 

under this condition, we obtain the following graphs: 

 
 

  
 
 
 

It would seem that our domain of possible parameters is more restrictive, in the case of a 

Gaussian distribution for the normalized shocks, and for the case of EGARCH(1,1), than 

those given in Wintenberger (2013). 

 

However, under further restrictions on the distribution of t , the condition could be 

extended to a slightly less restrictive condition, as follows: 

 

     0logexplog
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. 

 

By the convexity of the exp(.) function, the last condition is indeed implied by Conditions 

2. Moreover, when 0*  , this yields the condition in the case of EARCH(1), which is 

also the condition given in Straumann and Mikosch (2006). 
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8. Summary of the Invertibility Conditions for EGARCH(p,q) 

 

It is instructive to summarize the conditions we have derived for the invertibility of any 

EGARCH(p,q) model, namely: 
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where:  
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The conditions for the invertibility of the EGARCH(p,q) specification are as follows: 

 

 t  ~ (0,1), and so 2Lt  ; 

   00  t  (it is highly probable that such condition can be ignored); 
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 the ia  and ib  coefficients are non-negative; 
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, but more generally, the following condition is 

sufficient : 
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9. Concluding Remarks 

 

The two most widely estimated asymmetric univariate models of conditional volatility are 

the exponential GARCH (or EGARCH) model and the GJR model. Asymmetry refers to 

the different effects on conditional volatility of positive and negative effects of equal 

magnitude, As EGARCH is a discrete-time approximation to a continuous-time stochastic 

volatility process, and is expressed in logarithms, conditional volatility is guaranteed to be 

positive without any restrictions on the parameters. For leverage, which refers to the 

negative correlation between returns shocks and subsequent shocks to volatility, EGARCH 

requires parametric restrictions to be satisfied. Leverage is not possible for GJR, unless the 

short run persistence parameter is negative, which is unlikely in practice, or if the process is 

to be consistent with a random coefficient autoregressive model (see McAleer (2014)). 

 

The statistical properties for the QMLE of the GJR parameters are straightforward to 

establish. However, the statistical properties for the QMLE of the EGARCH(p,q) 

parameters are not available under general conditions, but rather only for special cases 

under highly restrictive and unverifiable conditions, and possibly only under simulation. 

 

To date, a limitation in the development of asymptotic properties of the QMLE for 

EGARCH has been the lack of invertibility for the returns shocks underlying the model. 

The purpose of this paper was to establish the invertibility conditions for the 
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EGARCH(p,q) specification, in a more general case, and following an approach that is 

different from that in the literature. It was shown in the paper that the EGARCH model 

could be derived from a stochastic process, for which the invertibility conditions could be 

stated simply and explicitly (see the sets of Conditions 1 and 2). This should be useful in 

re-interpreting the existing properties of the QMLE of the EGARCH(p,q) parameters.   

 

The main findings of the paper can be given as follows:  

 

 We used a novel approach that was based directly on the stochastic process from 

which the EGARCH model may be derived, instead of working with the stochastic 

recursive equation, which requires proofs of theoretical properties, such as the existence 

and uniqueness of the solution. 

 An examination of the simple EARCH(1) model provided a strong motivation for 

assuming that   , which is standard in the literature. In order to do that, we provide 

a proof that under this case, invertibility can be proved, as in the case of Straumann and 

Mikosch (2006). Moreover, we provided an alternative proof of the (possible) lack of 

invertibility for the symmetric case,   . As the case of leverage is a combination of 

the two previous cases, we conclude that instability is highly possible in this case. 

 The paper also provided a general inequality for the proof of invertibility of any 

EARCH(∞) model. 

 We then used this inequality to derive the conditions for invertibility of the 

EGARCH(p,q) specification, which is a new and general result in the literature. 

 Finally, our conditions, despite (possibly) being more restrictive, are more easily 

verified and do not require numerical simulations, as it is the case of the conditions given 

in Straumann and Mikosch (2006). 

 The asymptotic properties of the estimated parameters, such as consistency of the 

QMLE or alternative estimators, may be proved using the invertibility conditions 

established in the paper, based on the methods given in Wintenberger (2013). 
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Appendix 

 
 

Part 1: Proofs of the Lemmas 

 

Lemma 1.1  
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Proof: 

 

The case 21 xx   is obvious, so assume 21 xx  . We have: 
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If we note minx  and maxx , respectively, the min and the max among 1x  and 2x , we 

know that  maxmin , xxc  , such that : 
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The first inequality is obtained by the fact that exp(.) is an increasing function. For the 

second inequality, some straightforward algebra leads to: 
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where 
2

minmax xx
x


 . By using the Taylor expansion of the function exp(.), as x > 0, we 

have the terms in the log(.) function are greater than 1, and therefore c > 
2

21 xx 
. This 

proves the second inequality. 

  

 

Borel-Cantelli Lemma 

 

 Consider the probability space, (Ω,A,P), and .0,  nAn  

 (1) If   
0n

nA  then 0suplim 





 n

n
A ; 

 (2) If  nnA  is independent, and if   
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nA  then 1suplim 
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Lemma 1.2   
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Part 2: Invertibility of EARCH(1) 

 

First case:    

 

We have by recursion the following inequality: 
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The invertibility conditions in this case are: 
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Proposition 2.1   

 If the set of Conditions 1 is verified when   , then the model EARCH(1) is 

invertible as: 
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Proof: 

 

Note that    0log  tttt  , and by the Law of Large Numbers (LLN), we 

have: 
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Using the Markov inequality, version (1) of the Borel-Cantelli Lemma, and t  is iid: 
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Thus, by using inequality (6), we have almost surely: 

  




















 ncnonuvNnN n

n
n

n

2
exp)exp(

2
)(exp:, 0

)()( 
 . 

 

Therefore, it follows with “exponential speed”, as defined in Straumann and Mikosch 

(2006) and Wintenberger (2013): 
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)(limexp , this proves invertibility. 

  

 

Second case:  
 

 

As  1,0~ t , also assume 0c , and consider (with 0  , by assumption): 
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Obviously, under independence, we have: 
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As all the terms except the second term do not depend on n, and therefore are constant, 
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we can rewrite the above equality as follows, where Φ(.) is the CDF of the normal 

distribution: 
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and, by direct comparison to a Bertrand sum, we can see that  
n

nA  diverges. 

Therefore, as the nA  are independent, we can apply line (2) of the Borel-Cantelli 

Lemma, as stated previously and nAknk :,   will occur with probability one. 

 

Consider taking n sufficiently large such that the event nA  occurs. By straightforward 

calculus, it follows that : 
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 By using the Taylor expansion of the exp(.) function, we have: 
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This result allows us to prove Proposition 2.2: 

 

 

Proposition 2.2   
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By the assumption on the distribution, and by using (LLN), it follows that: 
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Therefore, we can extract a series that diverges toward infinity. Moreover, this holds for 

any value of 0c , except -∞. As the backward recursion, )(n
kv , is implied conditionally on 

0log cnt  , and as the probability of having 0nt  is equal to zero, the proposition 

proves that, under such conditions and with this method, we cannot prove invertibility as 

we will face a backward series that behaves erratically. Such an outcome would likely 

also hold for other distributions with thicker tails than the Gaussian. 

 

Third case:    and 0  

 

We finally look at the leverage case. We can also consider for this case the set of events 

  *nnA . Given previous results, we can see that we cannot use inequality (1) of Lemma 

1 to prove invertibility, specifically because of the asymptotic properties of   *nnA  we 

would not be able to obtain an upper bound for )()( n
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n uv   that converges to zero. 

Moreover, we also would not be able to use recursively inequality (2) of Lemma 1 as 

each event of   *nnA  that occurs could be followed by a )4(
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nv  which is negative (if 

44  nt  is sufficiently negative) with a greater absolute value than )4(
4

nv , so we could 

obtain a lower bound that would tend to zero. 

 

Part 3 : Proofs of Lemmas and Propositions for Invertibility of EARCH(∞)  

 

It is assumed that    and that all the i  coefficients are non-negative: 
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We will prove the result recursively for any *n . Fix n > 0 and define: 
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by using  p , then we can conclude by matching the previous equality with (7), so that 

 1 p  is true. 
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Lemma 4   
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Proof: 
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Part 4: Invertibility of EGARCH(p,q) 
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Lemma 4.1   

 For any 2/1 , we have with probability 1: 
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Proposition 4.1   
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It can be shown that nZ  goes to zero almost surely, as follows. Let 0  by the 

Markov inequality: 
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which proves invertibility of EGARCH(p,q). 

  



 

46 
 

References 

Black, F. (1976), Studies of stock market volatility changes, 1976 Proceedings of the 
American Statistical Association, Business and Economic Statistics Section, pp. 177-181. 
 
Bollerslev, T. (1986), Generalised autoregressive conditional heteroscedasticity, Journal 
of Econometrics, 31, 307-327.  
 
Demos, A. and D. Kyriakopoulou (2014), Asymptotic normality of the QMLEs in the 
EGARCH(1,1) model.  
Available online: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2236055 (accessed 
on 14 June 2014).  
 
Engle, R.F. (1982), Autoregressive conditional heteroscedasticity with estimates of the 
variance of United Kingdom inflation, Econometrica, 50, 987-1007.  
 
Glosten, L., R. Jagannathan and D. Runkle (1992), On the relation between the expected 
value and volatility of nominal excess return on stocks, Journal of Finance, 46, 
1779-1801.  
 
Marek, T. (2005), On invertibility of a random coefficient moving average model, 
Kybernetika, 41(6), 743-756. 
 
McAleer, M. (2014), Asymmetry and leverage in conditional volatility models, 
Econometrics, 2(3), 145-150. 
 
McAleer, M., F. Chan and D. Marinova (2007), An econometric analysis of asymmetric 
volatility: Theory and application to patents, Journal of Econometrics, 139, 259-284. 
 
McAleer, M. and C. Hafner (2014), A one line derivation of EGARCH, Econometrics, 
2(2), 92-97. 
 
Nelson, D.B. (1990), ARCH models as diffusion approximations, Journal of 
Econometrics, 45, 7-38.  
 
Nelson, D.B. (1991), Conditional heteroskedasticity in asset returns: A new approach, 
Econometrica, 59, 347-370. 
 
Tsay, R.S. (1987), Conditional heteroscedastic time series models, Journal of the 
American Statistical Association, 82, 590-604. 
 
Straumann, D. and T. Mikosch (2006), Quasi-maximum-likelihood estimation in 
conditionally heteroscedastic time series: A stochastic recurrence equation approach, 
Annals of Statistics, 34, 2449–2495. 
 
Wintenberger, O. (2013), Continuous invertibility and stable QML estimation of the 
EGARCH(1,1) model, Scandinavian Journal of Statistics, 40, 846–867. 


