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Abstract

Of the two most widely estimated univariate asymmetric conditional volatility models,
the exponential GARCH (or EGARCH) specification can capture asymmetry, which
refers to the different effects on conditional volatility of positive and negative effects of
equal magnitude, and leverage, which refers to the negative correlation between the
returns shocks and subsequent shocks to volatility. However, the statistical properties of
the (quasi-) maximum likelihood estimator (QMLE) of the EGARCH parameters are not
available under general conditions, but only for special cases under highly restrictive and
unverifiable conditions, such as EGARCH(1,0) or EGARCH(1,1), and possibly only
under simulation. A limitation in the development of asymptotic properties of the QMLE
for the EGARCH(p,q) model is the lack of an invertibility condition for the returns
shocks underlying the model. It is shown in this paper that the EGARCH(p,q) model can
be derived from a stochastic process, for which the invertibility conditions can be stated
simply and explicitly. This will be useful in re-interpreting the existing properties of the
QMLE of the EGARCH(p,q) parameters.

Keywords: Leverage, asymmetry, existence, stochastic process, asymptotic properties,

invertibility.

JEL classifications: C22, C52, C58, G32.



1. Introduction

In addition to modeling and forecasting volatility, and capturing clustering, two key
characteristics of univariate time-varying conditional volatility models in the GARCH
class of Engle (1982) and Bollerslev (1986) are asymmetry and leverage. Asymmetry
refers to the different impacts on volatility of positive and negative shocks of equal
magnitude, whereas leverage, as a special case of asymmetry, captures the negative
correlation between the returns shocks and subsequent shocks to volatility. Black (1976)
defined leverage in terms of the debt-to-equity ratio, with increases in volatility arising
from negative shocks to returns and decreases in volatility arising from positive shocks to

returns.

The two most widely estimated asymmetric univariate models of conditional volatility are
the exponential GARCH (or EGARCH) model of Nelson (1990, 1991), and the GJR
(alternatively, asymmetric or threshold) model of Glosten, Jagannathan and Runkle (1992).
As EGARCH is a discrete-time approximation to a continuous-time stochastic volatility
process, and is expressed in logarithms, conditional volatility is guaranteed to be positive
without any restrictions on the parameters. In order to capture leverage, the EGARCH
model requires parametric restrictions to be satisfied. Leverage is not possible for GJR,
unless the short run persistence parameter is negative, which is not consistent with the
standard sufficient condition for conditional volatility to be positive, or for the process to

be consistent with a random coefficient autoregressive model (see McAleer (2014)).

As GARCH can be obtained from random coefficient autoregressive models (see Tsay
(1987)), and similarly for GJR (see McAleer et al. (2007) and McAleer (2014)), the
statistical properties for the (quasi-) maximum likelihood estimator (QMLE) of the
GARCH and GJR parameters are straightforward to establish. However, the statistical
properties for the QMLE of the EGARCH parameters are not available under general
conditions. A limitation in the development of asymptotic properties of the QMLE for
EGARCH is the lack of an invertibility condition for the returns shocks underlying the

model.



McAleer and Hafner (2014) showed that EGARCH(1,1) could be derived from a random
coefficient complex nonlinear moving average (RCCNMA) process. The reason for the
lack of statistical properties of the QMLE of EGARCH(p,q) under general conditions is
that the stationarity and invertibility conditions for the RCCNMA process are not known,
except possibly under simulation, in part because the RCCNMA process is not in the class

of random coefficient linear moving average models (for further details, see Marek

(2005)).

The recent literature on the asymptotic properties of the QMLE of EGARCH shows that
such properties are available only for some special cases, and under highly restrictive and
unverifiable conditions. For example, Straumann and Mikosch (2006) derive some
asymptotic results for the simple EARCH(c0) model, but their regularity conditions are
difficult to interpret or verify. Wintenberger (2013) proves consistency and asymptotic
normality for the QMLE of EGARCH(1,1) under the non-verifiable assumption of
invertibility of the model. Demos and Kyriakopoulou (2014) present sufficient conditions

for asymptotic normality under a highly restrictive conditions that are difficult to verify.

It is shown in this paper that the EGARCH(p,q) model can, in fact, be derived from a
stochastic process, for which the invertibility conditions can be stated simply and
explicitly. This will be useful in re-interpreting the existing properties of the QMLE of the
EGARCH(p,q) parameters.

The remainder of the paper is organized as follows. In Section 2, the EARCH(e) model is
discussed, together with notation and lemmas. Section 3 presents a new stochastic process
and regularity conditions, from which EARCH(x) is derived, without proofs of existence
and uniqueness. Section 4 develops a key result for the invertibility of the EARCH(0)
model. Section 5 analyses the EGARCH(p,q) specification, while Section 6 develops the
regularity conditions for the invertibility of EGARCH(p,q). Section 7 considers the
special case of the N(0,1) distribution. Section 8 provides a summary of the invertibility
conditions for EGARCH(p,q). Some concluding comments are given in Section 9. Proofs

of the lemmas and propositions are given in the Appendix.



2. EARCH(»), Notation and Lemmas

Instead of using a recursive equation for conditional volatility, which would require
proofs of existence and uniqueness, we will work on a direct definition of the stochastic

process that drives the so-called innovation, ¢,. By definition, the new process will

define uniquely the stochastic process that drives the innovation, as follows:

£ = 77t~exp(§+ Zﬂ,»[%lm_,»l +%m_iDa (0)
i=1

where weR, (a,y)e R, Z|,Bl.|<oo, and 77,~(0,1), so that 7, e L*. Thus, we have

the EARCH(o0) model, as introduced by Nelson (1990, 1991):

log(c) =@+ Alafn..|+..]
i=1

gt = nto-t

The primary purpose of this paper is to establish the invertibility of the model, where

invertibility refers to the fact that the normalized shocks (77,) may be written in terms of
the previous observed values, that is, 7, is of(e,,é,,...) -adapted. Note that this

definition is equivalent to that used by Wintenberger (2013) and Straumann and Mikosch

(2006), namely that o, is ol(e, ¢, ,,...)- adapted.

In a similar manner to proving invertibility for the Moving Average (MA) case, we will
express recursively all the independently and identically distributed (iid) shocks in terms
of the past observed shocks and some arbitrary fixed constant, and then prove that this

backward recursion converges almost surely to the real value of 7,.



Consider the following notation:
a y .
o =—+=signln ),
=+ sign(n,)

so that:

exp[ 30 ,|j. 1)

As sign(n,) = sign(¢g,), o, is indeed a( ) -adapted. Therefore, by proving that |77t| is

ole,.€,,,...)-adapted, it will follow automatically that the model is invertible.

By assuming that the distribution of 7, does not admit a probability mass at 0, we can
take the absolute value and then the logarithm of ¢,. In order to be rigorous in the
development below, we assume that 7, # 0, almost surely. By rewriting the equation, we

have:

logl,| =loglé,| —g— D B n|- @)

Define the following function:

a +sign(y).y

exp(x),
5 p(x)

ga,;,(x,y)z -

so that we have:

).

10g|77t| = 10g|‘9z| - % + Z ﬂ[ 8oy (log|771—i
i=1

This function is not Lipschitzian, so that we should find some results about variability, as
in the Lyapunov coefficient in other invertibility proofs. Lemma 1.1 gives a solution,

which will be used widely in several proofs below:



Lemma 1.1

o+ sign(y).y

0y 5

Loy (x1 , y)— Sy (xz,yj < exp(max(xl, )cz))|x1 - x2|

2

ga,y(xlay)_ga,y('XZ’yx 2 “ +Slg2n(y)7/ exp[XI —’2_')(:2 j|xl —X2|

The proof of Lemma 1.1 is given in the Appendix (part 1). Moreover, we will also use the
Borel-Cantelli Lemma and one of its corollaries, namely Lemma 1.2 (which is also given

in the Appendix (part 1)).

3. EARCH(1): A New Stochastic Specification and Regularity
Conditions

By ensuring positivity, the EGARCH model allows the possibility of leverage, namely

that positive shocks lead to a decrease in volatility and negative shocks lead to an

increase in volatility. Therefore, leverage occurs when |a| < |7/| and y <0. We will also
examine two other cases where shocks lead to either an increase in volatility (o > |}/| ) or

a decrease in volatility (o < —|7/|). A fourth possibility is symmetric to the leverage case,

and hence need not be considered in detail.

All of these cases allows asymmetry as there are still two coefficients. The three cases are

summarized in these graphs, where f(x)= a|x| + g0

o2y (of <Gy <0) a <]
A f(X) A f(X) A f(X)
\= X= \=




Before examining the invertibility of EARCH(x) and EGARCH(p,q), we will examine
briefly the simple EARCH(1) model to provide a justification for restricting the analysis
to one of the above cases as a pre-condition for invertibility. This is also motivated by two
other reasons: (i) it will allow us to introduce a novel approach; and (ii) the conditions for
EARCH(1) are slightly different and less restrictive than those found in Section 6 for
EGARCH(p,q) when p =1 and g = 0 because of the concavity of log(.).

Consider the equation induced from (2) above for the special case of EARCH(1), that is,
where B, =1 and Vix=2, =0 :

). 3)

loglrz,| =logle,| —§+ g, (logl,.,

. . . . *
We now introduce the following recursive series for a fixed ne N :

(n) _
u" —log|g, ,5H)

—n+1

- % +g,,(logn,,
4)

(n _ @ ( (n) )
U = 10g|gt—n+k+l|_5+ga,y U &k

It follows by recursion that:

VneN ,VkeN,

(n) _
u, = 10g|nt—n+k

so that:

(n) _

u,"’ = log|77t ,VneN".

Define for any ¢, e RU{-oo}:



vl(n) = 10g|g _Q+ga,y(00’8t—n)

t—n+l

o (5)
(n) _ (n)
Vsl = 10g|€t—n+k+l | - ; + ga,;/ (vk s _nik )

These series Vn are o(s,,&, ,,...)-adapted. In order to prove invertibility, we examine

(n)

the convergence of the series ‘vn —u'”| toward zero, as the series defined in (5) is

simply the natural backward recursion defined in (4), but conditionally on some constant

value for previous shocks, namely |77,_n

=exp(c,) -

(i) First case: o > |7|

By using Lemma 1.1, as &, 20 in this case:

u™ (n)

l’l

<0, exp(max(ui’f) v(”)»u(") -yl

12 "n-1 n—1 n—1

—logl,| =

Dealing with a sum of max(. , .), as it would be the case if we expand the recursion

further, 1s difficult, so linearization yields:

(1 Yy = u(”)—i-((”) u™

max(u,",v,") u," 1) where (x)" = max(0,x).

(n) _ (n) (”)

But we have: u") =logln,_,| and v\ —u{" =logle,_ |—3+gw( " &, 2) loglr,_,|-

By using the fact that:

10g|5x—1| = 10g|77t—1| +%+%|77t—2| +%77t—2 , and 8ay (V;(q’i)za £.,)<0,

by assumption, we have:



(n) | ,(n)

max(un—l >Vt )S 10g|77;-1 | + %|77z—2| + gﬂt—z .

By recursion we have:

+exp(cy)).  (6)

n-1
v —logln,| < eXp(Z 10g(6,_[7,_.|)+ 6l IJ@_H (7.,
i=1

From the upper bound, the invertibility conditions based on the Law of Large Number

(LLN) are given as:

logln,|e L'

(Conditions 1)
Ellog(6n,[)+ 8| [] < 0

The proof of invertibility under these conditions (Proposition 2.1) is given in the

Appendix (part 2). The proposition is given as:

Proposition 2.1

If Conditions 1 are verified when o > | 71, then the model EARCH(1) is invertible,

that is, we have :

a.s.
— 0.

n—>0

m _ | _|,m

Therefore, when « and y satisfy a2|7| and E{log(dmt"?/’hj_l_05|771|2+7771}<0

(which is a non-empty set), we have invertibility. This condition is the same as in Remark

3.10 of Straumann and Mikosch (2006), so that our approach will not necessarily lead to

10



more restrictive conditions than those already known.

Remark: For purposes of rigour in the proof, we had to assume that log|77,| e L', or that

the shocks 7, do not admit a mass at zero. However, in our backward recursion, uff’) , if
we had found 7, = 0 (which is equivalent to &, = 0, and is therefore a o(s,,¢, ,...)-
adapted event), we would have obtained directly the invertibility of the model. Actually,

only (10g|77t|)+ e L' is required, but it is already implied by the fact that 7, € L.
(ii) Second case: o <—y|

This case is the third case in the graphs above, namely where a shock leads to a decrease
in volatility. For this case, we provide a counter-example to show that we cannot have the
case of invertibility under the same general conditions and approach as stated above, but
perhaps under more restrictive conditions (such as the normalized shocks are uniformly

bounded).

Assume 7, ~N(0,1), although any other distribution with thicker tails would lead to a

similar result as given below.

Proposition 2.2

iid.
If 7, ~ N(0,1) and a<—|7

, then we cannot prove invertibility with our method as

() _ gy (m

n n

v does not converge to 0, and even admits an extracted series that diverges

almost surely toward infinity.

The proof of this proposition can be found in the Appendix (part 2). More precisely, this
result indicates that the backward recursion will behave too erratically to allow us to

prove invertibility. It indicates also that the past tends to have a persistent effect on the

11



time series induced by this model, and could be quite divergent. For this reason, the

model here might not be invertible, and so it will be assumed that o < —|7/| does not

hold.

(iii) Third case: |o|<|y| and y <0

We now examine leverage. We can also consider for this case the counter-example used
for the previous case (see Appendix (part 2)). Given the previous results, we cannot use
inequality (1) in Lemma 1 to reach a conclusion regarding invertibility. Specifically, we

(n) _

n

\%

(n)
un

would not be able to obtain an upper bound for

that converges to zero.

Moreover, we would also not be able to use inequality (2) of Lemma 1 recursively to
prove the divergence like in Proposition 2.2 as we could obtain a lower bound that would
tend to zero. Actually, it would be difficult to conclude in this case, but as this is a

combination of the two first cases, we are also likely to find a very erratic asymptotic

) _ 4,

n n

behavior for |v

Thus, as a conclusion of this part, our approach could lead to a proof of invertibility for

the case o >|y|, and possibly lead to non-invertibility for the other two cases.

Accordingly, in order to examine a more general case than the simple EARCH(1) model,

it will be necessary to assume that o > |}/| .

4. Key Result for the Invertibility of EARCH(x)

Given the previous analysis, in the following it will be assumed that o > |;/| and that all

the B are non-negative. The following was derived from equation (2):

£). (7)

logl,| =logle,| —§+ > g, logn,.,
i=1

12



Define the u{” and v\" series as:

t—n+l

- 2 + Z ﬂiﬂga,y (10g|77[,,,,,’ i

u{” =logle

®)
i)

gt—n—i)
(n)

o0
(n)
uk+1 - log|gt—n+k+l| Zﬂ ga }/( klil Jj° t n+k+1- /) ZﬂHHkga,;/ (log|77t—n—i
i=0

As before, it follows that:

(n) _
U

As it is not as straightforward as the EARCH(1) case, Lemma 3.1 will be useful (the

proof of which is given in the Appendix (part 3)):

Lemma 3.1

(n) _
uk - 10g|77[—n+k s

Now we define the v(") series:

v =logle

t—n+1|

)
(n) _ (n)
Vk}j—l 10g|gt—n+k+l| +Zﬂ ga}/(vk}-:—l Jj° tn+k+1 ])

We remark that v\ is established like u\”, but by assuming that all the 7, for
i<t—n are equal to zero. Here, we have chosen these “initial values” in order to
simplify the development, but one can also check our further results for any kind of
values for 7, before ¢ - n, as long as the sum does not diverge. In any event, the proof of

(n)

invertibility will be based on the v{" as o(e,, s, ,,...)-adapted.

13



It is essential to prove that:

e —login = ~ul] > 0.
n—>+00
Consider the upper bound for ‘vf,”) —u'”| in inequality (1) of Lemma 1.1, from which it

can be shown that;:

—y™

n

+00
0 W
£ Zﬁl+n5t i +ZIB exp(max(vn_j,un_j )lvn—j U]

=0

77!711

so that:

J.

max(u(”) (”)) lognu‘ (“’) —log

n—jo n J

M-

(n) —
n J

;- 1"" Zﬂga}/( i(ln)j i) tj—i)

=logly, ,\+Zﬂ, i

(”) <10g77t ]‘+Zﬂ ]177t11 ’
as g, Iisnon-positive function, so that:
() ()
maX(un—j’Vn—j) é: 10g77; 1‘+Zﬁ -j= znt J= 1"

Therefore. It follows that:

14



n—1

N (n) (n)
< Z ﬁi+né‘t—iz—i|77[—n—i| + Z ﬁjé‘t—j exp(ft—j 1unrij - vn,ij
i=0

J=1

u’(ln) _ VLH)

The recursion may be extended, as follows:

Define:
+00 k—l A A P
ak = Zé‘t—n—i 77[—;1—1‘| ﬂi+n +Z Z Hp Dp eXp zf ~ Xﬂ‘ A +
i=0 Pl iyyeoiyed) =1 1S +n=Sp
A A k
+ z I« D« exp Zf ™ =™
. X (n) — t=S; n—Sk n—Sk
iy sy €AY i=1
where:
A ! A 1
° S1=2l] o HIZHﬂI/
Jj=1 J=1
(m Q r [
o AV =<i>1..,>1:5,<n-1 eDi=||0 .
P 1 T Tp H =S,

The above leads to Lemma 3.2, the proof of which is given in the Appendix (part 3):

Lemma 3.2

<a,,Vkell,n

() _ (m
vl’l _un

(n) _
1

(n)
v I< Z B0, ..\n._..|, we have the

i=0

By taking k£ = n - I, by using the inequality ‘u

following general result for EARCH():

15




Proposition 3.1

If a2|;/

, B, 20,Vi, then we have the following inequality for the series

u and v for EARCH():

u,(qn)_vy(,n) Sié‘t—n—i Mni ﬂiw +§ Z ﬁp lA)p eXp[ifg‘JXﬂ' -5 :l

i=0 =Ly, ed" =t

.....

An examination of invertibility for a general EARCH(o0) would use this upper bound. In
our case, as it could be difficult if we do not assume a minimum on the behavior of the

beta coefficients, we will examine the case of EGARCH(p,q).

5. EGARCH(p,q) Specification

Consider the general EGARCH(p,g) model:

P q
logo, :Q-'_Zai logo, +Zbié‘t—i‘ﬂt—i , @, €N, bz eR. (10)
2 =l i=l

In order to be able to use the previous result for EARCH(), this model should admit an
EARCH(wx) representation. By using the backward lag operator L, this model can be

rewritten as:

, a,€R, beR, (11)

) , o <
(1 —Zal.L’jlogo; =—+ Zbi@_i‘n[_i
2

i=1 i=1

p
In order to have an EARCH(o0) representation, the polynomial (1 - Z aiLij should have

i=1

roots outside the unit circle. If we set 6, € C,

Q| <1, we can rewrite the model as:

16



olelo, b eR. (12)

9
(1-6L)..(1-6,L)loga, =2 +3 b5, |, |,
2 =l
In order to consider invertibility, we should have « > |;/| and the S, coefficients of the

EARCH() representation to be non-negative. This could easily be achieved if all the

coefficients g, and b, are non-negative. Indeed, if we rename y, Eét_l.|77t_i

, one can
easily check the positivity of the f; coefficients by taking the partial differential of

logo, with respectto y,:

ologo,

logat=g+z,8iyi:>w B

where 1 represents the index function. From the above equation, one can easily check

recursively the positivity of the S, coefficients.

Remark: In the following, it will be assumed that all the coefficients @, and b, are

non-negative, so the S, of the EARCH(o0) representation are also non-negative.

As the f. coefficients are assumed to be non-negative, we wish to find an appropriate

upper bound that can be used in Proposition 3.1, specifically an upper bound such as
B.<C.A™, where C is a positive real number and /3 € ]0,1[. As long as such a bound can

be found, this can be used in the inequality in Proposition 3.1 by redefining the

coefficients as:

17



a<—Cxa
y <« Cxy
ﬂi<_ﬂi—l

and to reduce examination of invertibility of an EGARCH(p,q) model to a simple
EGARCH(1,1) model of this following specification:

w
IOgO't = E +ﬂ10go-z—1 +5t—1‘77t—1‘ .

These “updated” coefficients will be given as «, 7, f below.

From equation (12), in the EARCH(c0) representation the above B  would be greater

than the maxima of the absolute values of the &,. When all the |¢9i| are different, we

p .
could choose A" as being the maximum value. However, the polynomial (I—Za[ﬂ]

i=1
may have double roots, or at least, as it is a polynomial with real coefficients, admits

couples of complex roots and their conjugates, thereby having the same absolute value. In
these case, we would not be able to find an upper bound like f, < C.,B*i_1 if we use

f = max|6i| . Therefore, in our “general” analysis, consider a coefficient such as
Baw > max|¢9l.| . This coefficient can be chosen arbitrarily as long as it is strictly less than 1

and above the absolute values of the &.. Order these parameters such that |6?1| 2.2 ‘Gp‘.

As shown in the analysis of EARCH(1), it will be recalled that the parameter @ had no

influence on invertibility.

In order to find the appropriate o, 7, S values, we present a recursion. Starting with

(-oL) (Zb |,7,_i|j;

18



77[ -m|*

min(g,m) ,
1 0[4 (zb |77t—l|] ze zb tlz|77t [— 1|_zem 1[ z i ll_ljgt—m

i=1

By taking m =i + /, we can introduce S,

sup

ﬂ ml
sup m tm

S oS g N | O " (e bo
; 1 ; i1 t—m|77z—m| - ;ﬂsup ﬂ_ z t m|77z ”
sup

771 m
m=1
where:
m—1
min(gq,m) )
Cm = 61 ( zq bl-ell_lj,
ﬂsup i=l
so that:
R |01| . 1-i N 1-i
|C‘m|S z bi - Igsup SzbilBsup :
i=1 ﬂsup i=1
Consider:
1-0L)" x 3 "1C & |n_ ||, and for any other 0., i>2,
( i ) Zﬂsup m>~t—m 77t m y i
m=1
so that:
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=S

m=1 =0 m=l

/
(1-91)" x[zp:z;cma,_mm_m\j SUS iG-S z{ﬁ J
sup

0. a .
It follows by assumption that: u<1, and by definition that: |Cm| < Zblﬂ,l_l . If we
i=1

sup

ﬂsup
redefine recursively:
1
51 |9i|
C = — 1 C,,,
=0 ﬂsup
we can see that:
1-i
b P
CS S i=1

from which it follows that:

(l_elL) 1 9[4 (Zb i|77t—t|j Zﬂsvuplcsé‘t -5 77[ S| (13)
Therefore, one can easily check by following the above recursion that:
(l_elL)_lx"'X(l_epL) (th t— l|77[ 1|J:z st:lplcué‘t u|771—u 4 (14)
where:
q .
Db
C|<—E———=C (and C, isa positive number). (15)
61
1=
};!2[ ﬂsup
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From (14), we obtain:

(1-6L) x.x(1-0,L) x| > x[

.l Jj-zﬁ;; S,

Therefore, the EGARCH(p,q) model has an EARCH(wx) representation with positive

B = ,Bs’upl ¢ ,Bs’upl , and coefficients o =Ca and y =Cy . If we consider the

inequality in Proposition 3.1, we can see that we can also use the f, < ﬂ;;l inequality to

obtain the new upper bound :

400 X B n-1 el p . .
<Y B | BT Y eXP(Z 10%(@_3/ )+ Sis, H (16)
i=0 p=1 I1<s)<.<s,<n-1 Jj=1

where the previous parameters are replaced by the following coefficients:

Zb

° a=—=
H l—ﬂ

2<i<p ﬂsup

Zb
el

2<i<p ﬂsup

. B =B
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6. Invertibility of EGARCH(p,q)

It can be seen that our approach has the distinct advantage of reducing the problem of the
invertibility of EGARCH(p,q) to the simpler case of an EGARCH(1,1) model, using the

above coefficients. The inequality in (16) can be rewritten to make the proof of

invertibility more straightforward. Note that we have:

ié* S ilOg 77t S; iiﬂ*i_léj—sj—i nt—s/—i‘
J=1 Jj=1 i=l1

p +00 i1 .

=X logyn,., |+ Y.55]

Jj=1 I=1 1<j<p

i>1
i+s;=l

P n—1 . +00 .
1 wi—1 % =1 %
=2 logln,_, |+ 2 A+ il
Jj=1 I=1 1<j<p I=n 1<j<p
i>1 i>1
its;=l i+s;=l

sl—n

As 1<s <. L, Y g <—— if I<n,and Y p7 < ﬂ - if [2n,
1:1/<p _,B 1§1j<p ﬂ
;+s/-7[ i+.sj:l
so that:
P . p n—1 5* xl—n
Y& <Dlogn,, |+ Y 2 ’|+Zﬂ (17)
j=1 ! Jj=1 =1 1— ln — *

It follows that:

‘”in) _ Vin)

n—1 5:_1
< B, exp z
=1 1

ﬂ; |J{ﬁ*nl +"2ﬂ*n,l,p z exp(i log(é‘:_sj s )}i| (18)

M-s
p=1 1<s)<..<s,<n-1
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where:

Bn = z /B*ié‘z*—n—i

i=0

nt—n—i

ol
exp[zﬂ—* 5:1|77z1|J .

I=n —IB

We now provide sufficient conditions for the invertibility of the EGARCH(p,q)
specification. It is assumed that the conditions hold, and we then prove some lemmas

before proving invertibility under these conditions:

E[M]+1og(ﬂ* +E[5n[)<0 (Conditions 2)
1-p°

If B =0, we find a condition that is deduced by concavity of log(.) from the conditions
for EARCH(1) (in part 3), which is more restrictive. Moreover, by using the fact that
E[nt]:O and Eﬂnt”ﬁl (as E[n,zJ:I), we can obtain the following simpler sufficient

condition:

Z%)+log(ﬁ*+%*J<0. (19)

We notice also that when we set B toward 0, the condition « <1 proposed by

Straumann and Mikosch (2006) in their Remark 3.10 is also verified.
Remark: We continue to assume that P(n, = O) =0 1in order to retain rigour in the proofs.

However, as in the case of examining the simple EARCH(1) model, it may be also

possible to relax the constraint here, even if it is less straightforward to prove the result.

In the following proofs, the condition 10g|77t| e L' is no longer necessary.

The proof of Lemma 4.1 is given in the Appendix (part 4):
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Lemma 4.1

Forany v >1/2, we have, with probability 1:

B = exp(o(nv ))

Inside the larger brackets in inequality (18), we have sums of independent variables,

I<s <..<s,<n-1, which is more difficult to control than a sum from 1 to p, for

instance. So we cannot simply use (LLN) as it was the case with the EARCH(1) model.
Therefore, we will simply take the expectation in the proof to return to a sum over

consecutive indexes (we also take expectations in order to use Lemma 1.2 with the

).

(n)

n

Markov inequality to obtain convergence toward zero of [v\" —u

The following proposition proves invertibility, the proof of which can be found in the

Appendix (part 4):

Proposition 4.1

It a2|;/

p .
, the a, and b, are non-negative, the roots of (I—Zaiﬂ] are

i=1
outside the unit circle and, if the Conditions 2 are verified, then EGARCH(p,q) is

invertible as:

(m)

n

a.s.
— 0.
n—0

=l = - logly

7. Special case of the N(0,1) distribution

In the case of the Gaussian distribution, the Conditions 2 can be re-written as:

. oa
+log| f + ]<0.
( N27

%

V2r(1-p')
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Therefore, if we calculate the maximum beta for several values of alpha (and gamma)

under this condition, we obtain the following graphs:

alpha

10

08
|

)
beta
06
1

04

02

gamma

alpha

It would seem that our domain of possible parameters is more restrictive, in the case of a
Gaussian distribution for the normalized shocks, and for the case of EGARCH(1,1), than

those given in Wintenberger (2013).

However, under further restrictions on the distribution of 7,, the condition could be

extended to a slightly less restrictive condition, as follows:

E| — + log(ﬂ* + exp(E [10g(5,*|77,|)]))< 0.

S |n|

By the convexity of the exp(.) function, the last condition is indeed implied by Conditions
2. Moreover, when ,B* =0, this yields the condition in the case of EARCH(1), which is

also the condition given in Straumann and Mikosch (2006).
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8. Summary of the Invertibility Conditions for EGARCH(p,q)

It is instructive to summarize the conditions we have derived for the invertibility of any

EGARCH(p,g) model, namely:

, a,€R, beR,

0 & q
logo, =—+ Zai logo, , + Zbié;—i ‘nt—i
2 =l i=l

where:

0, E%Jr%sign( ).

The conditions for the invertibility of the EGARCH(p,q) specification are as follows:

n, ~(0,1),andso 7, el’;

P(nt = 0) =0 (it is highly probable that such condition can be ignored);

a2|7'

b

the a, and b, coefficients are non-negative;

i=1

p .
the roots of [1 - ZaiL’J lie outside the unit circle;

)4 ) )4 _
o if (I—ZaiL’J:H(l—HiL’) and an arbitrary chosen parameter A, such that

i=1

>8> m[ax|91. , then we consider the parameters:

q q
D D 7 S
o =———a Y=y B =P, 5 E?+;Sign( BE
H l—ﬂ H 1_ﬂ
2<i<p ﬂsup 2<i<p ﬂsup
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5, |n,| . . : L
El —— +10g(ﬂ +E[5, |77[|D<0, but more generally, the following condition is
1 *

sufficient :

a . a
—~+1o +— <0}
2A0-4) g(ﬂ 2J

9. Concluding Remarks

The two most widely estimated asymmetric univariate models of conditional volatility are
the exponential GARCH (or EGARCH) model and the GJR model. Asymmetry refers to
the different effects on conditional volatility of positive and negative effects of equal
magnitude, As EGARCH is a discrete-time approximation to a continuous-time stochastic
volatility process, and is expressed in logarithms, conditional volatility is guaranteed to be
positive without any restrictions on the parameters. For leverage, which refers to the
negative correlation between returns shocks and subsequent shocks to volatility, EGARCH
requires parametric restrictions to be satisfied. Leverage is not possible for GJR, unless the
short run persistence parameter is negative, which is unlikely in practice, or if the process is

to be consistent with a random coefficient autoregressive model (see McAleer (2014)).

The statistical properties for the QMLE of the GJR parameters are straightforward to
establish. However, the statistical properties for the QMLE of the EGARCH(p,q)
parameters are not available under general conditions, but rather only for special cases

under highly restrictive and unverifiable conditions, and possibly only under simulation.

To date, a limitation in the development of asymptotic properties of the QMLE for
EGARCH has been the lack of invertibility for the returns shocks underlying the model.
The purpose of this paper was to establish the invertibility conditions for the
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EGARCH(p,q) specification, in a more general case, and following an approach that is
different from that in the literature. It was shown in the paper that the EGARCH model
could be derived from a stochastic process, for which the invertibility conditions could be
stated simply and explicitly (see the sets of Conditions 1 and 2). This should be useful in
re-interpreting the existing properties of the QMLE of the EGARCH(p,q) parameters.

The main findings of the paper can be given as follows:

We used a novel approach that was based directly on the stochastic process from
which the EGARCH model may be derived, instead of working with the stochastic
recursive equation, which requires proofs of theoretical properties, such as the existence
and uniqueness of the solution.

An examination of the simple EARCH(1) model provided a strong motivation for

assuming that o > | 7|, which is standard in the literature. In order to do that, we provide

a proof that under this case, invertibility can be proved, as in the case of Straumann and

Mikosch (2006). Moreover, we provided an alternative proof of the (possible) lack of

invertibility for the symmetric case, « < —| ;/| . As the case of leverage is a combination of

the two previous cases, we conclude that instability is highly possible in this case.

The paper also provided a general inequality for the proof of invertibility of any
EARCH(e) model.

We then used this inequality to derive the conditions for invertibility of the
EGARCH(p,q) specification, which is a new and general result in the literature.

Finally, our conditions, despite (possibly) being more restrictive, are more easily
verified and do not require numerical simulations, as it is the case of the conditions given
in Straumann and Mikosch (2006).

The asymptotic properties of the estimated parameters, such as consistency of the
QMLE or alternative estimators, may be proved using the invertibility conditions

established in the paper, based on the methods given in Wintenberger (2013).
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Appendix

Part 1: Proofs of the Lemmas

Lemma 1.1

a+sign(y).y
2

0y

8oy (x1 ,y)— Sy (xz,yx < exp(max(xl, )cz))|x1 - x2|

2

ga,;/(xlay)_ga,y(XZ’yX 2 “ +Slg2n(y)7 exp(XI ;xz j|xl _x2|

Proof:

The case x, =x, is obvious, so assume x, # x,. We have:

a+ sign(y).y|.| exp(x,) — CXP(X2)|
2 H X=X ‘

o (00) e, (0] -

If we note x,,, and x_, , respectively, the min and the max among x, and x,, we

max *

know that 3¢ € Jx , such that :

min > xmax [

eXpO) —exp()| _
X=X, ‘

The first inequality is obtained by the fact that exp(.) is an increasing function. For the

second inequality, some straightforward algebra leads to:

c= X nax +xmin + log eXp(x) - exp(_x)J ,
2 2x
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where x =

xmax

ity By using the Taylor expansion of the function exp(.), as x > 0, we

. . + .
have the terms in the log(.) function are greater than 1, and therefore ¢ > % This

proves the second inequality.

Bo

rel-Cantelli Lemma

Consider the probability space, (2,A,P), and 4, € A,Vn >0.

(1)If > P(4,)<+oo then P(limsupAnjzo;

n>0 n

(2)If (4, )n is independent, and if ZP(An )=+ then P(lim sup An) =1.

n=0 n

Lemma 1.2

P.a.s.

If V>0 and ZP(]XW—X|>5)<+oo,then X, > X.

n—>0

Part 2: Invertibility of EARCH(1)

First case: o > |]/|

We have by recursion the following inequality:
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y +exp(c,))- (6)

n—1
;(1’!) - 10g|77z ” < exp(z log(5t—i |77z—i |)+ O i |77z—i—1 |j5t—n (Jﬂt_n
i=1

The invertibility conditions in this case are:

10g|77t| el

(Conditions 1)
E[log(5t|77t|)+ 5,|77t|] <0

Proposition 2.1

If the set of Conditions 1 is verified when « >

7|, then the model EARCH(1) is

invertible as:

a.s.
— 0.

n—>0

(n) (m) (n)
vn _un vn _10g|77t

Proof:

Note that —¢ = E[log(§t|77t|)+ §,|77t|] <0, and by the Law of Large Numbers (LLN), we

have:

a.s.

n—1
Z log(5t—i|77t—i|)+ §t—i—l|nt—i—l| =—én+ 0(”)'
i1

Using the Markov inequality, version (1) of the Borel-Cantelli Lemma, and 7, is iid:

P[|77,_n > exp[% nD < EH?}J]eXp(—gnj

= ZP[ 7 —— exp(%n]} <400
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= P(Hn eN,Vk>n: |77,_k| < exp(ng =1.
Thus, by using inequality (6), we have almost surely:

AN eN,Vn>N:

v’(ln) _ u,(,”)

< exp(— en+ o(n))x M (exp(co) + exp[£ nD .
2 2

Therefore, it follows with “exponential speed”, as defined in Straumann and Mikosch

(2006) and Wintenberger (2013):

v{" —logln,|

V,(,n) _ u’(1n)

a.s.
— 0.
n—o0

As 77, = exp(lim e )x sign(s, ), this proves invertibility.

Second case: o < —|7/|

As 7, ~N(0,1), also assume ¢, # —o0, and consider (with —a —y >0, by assumption):

exXp(c 4 2
4,={0sn,, <) flog )~ 2 Mianes 2 '
o) —a-y —a-y

Obviously, under independence, we have:

P(4,)= P[O <Ny, < eXpT(CO)J X P(?]t_4n+1 > \Jlog(n"*) — l)x P{me > L} x P{me > L}

As all the terms except the second term do not depend on 7, and therefore are constant,
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we can rewrite the above equality as follows, where ®(.) is the CDF of the normal

distribution:

P(4,)=C,, x cp( 1og(n”4))

exp(c 4 2
Ca,y = P(O < i —an = M] xP Ti—4ns2 2 xP T)i—4n+3 2——|#0.
2 —-a-y —a—y

But we can see that:

2

e 2dx>

Jod )1 ,ﬁ 1 e,@ﬂ) 11
x/login”“) / [272_ - /272_ n7/8

( log(nm) J-\/@m-l\/_

and, by direct comparison to a Bertrand sum, we can see that ZP(AH) diverges.

Therefore, as the A, are independent, we can apply line (2) of the Borel-Cantelli

Lemma, as stated previously and Vk e N,3n>k: 4, will occur with probability one.

Consider taking n sufficiently large such that the event 4, occurs. By straightforward

calculus, it follows that :

(4n)

10g|8

t—4n+l1

_g—i_ ga,}/ (CO’gt—4n ) >

'

- ga,y (Cob 81—4;1) = — exp(CO) > by assumption (Sign(gt—4n) = Sign(nt—mz) )5

+Z77t4n .
2

loé Eiann 10Q’7t4n+1 +Q+g|77t74n
2 2

exp(c, )

Given 0<7, ,, < ), it is easy to conclude that:
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(4n)
V2 10g|77t—4n+1

+ ﬂexp(co) .
4

n —a- —o-
V§4 ' > 10g(’7174n+2 )+ 5 ! (eXp[ 4 ! eXp(Co)j - 1J|77t4"+1

As we have 7, ., >+/log(n”"*) -1, for n sufficiently large, we have:

77t—4n+1 Z log(l’l3/2 + 1)/(_a_7 (exp( —a- 7/ eXp(CO )] - I]J s
2 4

V)" 210g(77,_y,,.)+/log(n" +1) |

so that:

By using the Taylor expansion of the exp(.) function, we have:

exp(ﬁlogin”2 +1 ))2 1 +llog(n3/2 + 1).

2

4 .
As 1,4,,, 2——, we obtain:

" >1og(1), 4,5 )+log(n’? +1)}

. 2 .
Finally,as 7, ,,.; 2 , we obtain:

+n3/2

(4n)
vy 2 10g|77t—4n+4
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This result allows us to prove Proposition 2.2:

Proposition 2.2

iid.
If 7, ~ N(0,1) and a<—|y

, then we cannot prove invertibility using our method,

as

yi —ufj”‘ does not converge to 0, and even admits an extracted series that

diverges almost surely toward infinity.

Proof:

(n) _ . (n)
n n

In order to show that

v u

diverges, we have to show that one of its extracting

series diverges. Consider ‘vf‘i") —u{M

. By applying recursively (2) of Lemma 1.2, by

taking v;" =c¢,, and because we have g, (...)>0, we obtain:

o

(4n) (4n)

_ 4n—1
v, —uy, >ex 4]’[10%M + Z (logﬂ,[|+éL_i_l|77H_l|J+IOQUHMM |77t74” —eXp(CO)|
2 i=1 2 2
i#4n—4
By the assumption on the distribution, and by using (LLN), it follows that:
a|— & 5[—[— t—i—
4n log% + Y (loglm_il + %J +10g[77,_4,..4| = O(n).
i=1
i#4n—4

From the results given above, VN e N,dn> N: 4, occurs with probability one, so that

vi" > 10|, 4,.4| +1°”* . Therefore, with probability one:

35



VNeN,In>N: |vf‘j") —ul

|77 t—4n

Zex{o(n)+i;]

Therefore, we can extract a series that diverges toward infinity. Moreover, this holds for

- exp(co)| > eX[{O(n)+ ﬁj% .
2 2

any value of ¢,, except -o0. As the backward recursion, v\”’, is implied conditionally on

=c¢,, and as the probability of having 7,_, =0 is equal to zero, the proposition

logln, ,
proves that, under such conditions and with this method, we cannot prove invertibility as
we will face a backward series that behaves erratically. Such an outcome would likely

also hold for other distributions with thicker tails than the Gaussian.
Third case: |a| < |7| and y <0

We finally look at the leverage case. We can also consider for this case the set of events

(An )neN*. Given previous results, we can see that we cannot use inequality (1) of Lemma

1 to prove invertibility, specifically because of the asymptotic properties of (An) we

neN*

() _ (m)
Vﬂ - un

would not be able to obtain an upper bound for that converges to zero.

Moreover, we also would not be able to use recursively inequality (2) of Lemma 1 as

(4n)

each event of (4, ) that occurs could be followed by a v, which is negative (if

neN*
N,_4r.a is sufficiently negative) with a greater absolute value than v{*”, so we could

obtain a lower bound that would tend to zero.

Part 3 : Proofs of Lemmas and Propositions for Invertibility of EARCH(o0)

It is assumed that o > | 7/| and that all the B, coefficients are non-negative:

) (7

10g|77t| = 10g|‘9t| _%+ Zﬂz 'ga,;/ (10g|77t—i
i=1
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gt—n—i )

(n) _ ( N
Uy = 10g|gt—n+k+1| + Z ﬂ i8a y( k,jr)l —j2 € prki—j )+ z :Bi+1+kga,y (10g|77t—n—i )
i=0

Ml(n) = 10g|8t—n+1| - 2 + Z ﬂi+1ga,;/ (log|77t_"_i >
(8)

gt—n—i )

Lemma 3.1

VneN',VkeN".

(n) _
uk - 10g|77[—n+k ’

Proof:

We will prove the result recursively for any 7 e N". Fix n > 0 and define:

(1, )= vk et pluf” =logln,.,..|"

According to equality (8), (Hl) is true. Assume (H ) and prove (H p+1):

P

L’?l = IOg t— n+p+1 Zﬂ ga y( ‘E;,ir)l j?° t n+p+l- /) iﬂi+l+pga,7(log|nz—n—i ’gt—n—t)
i=0
_log‘ t n+p+1 +Zﬂ ga y(log‘nt n+p+l—j|° t n+p+l— j) Zﬂga y(log‘nt n+p+1-i [° t n+p+1- 1)

i=p+1

by using (H » ), then we can conclude by matching the previous equality with (7), so that

(Hp+1) is true.

We have:

(n) (n)
un -V nt—n—i

0
v1 < Zﬂl#né‘t—n—i
i=0

n—1
36 el Ju, | =,
J=1
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and also:

n—j-1

( ) (n) (n)
! <Zﬂl+n —j 7 t—n— z|77t n— z|+ z ﬁl t—j— lexp(ét Jj— l} nnj—l_vn}ij—l :

so that we can write:

0 n—1 4o
(n) (n)
‘un - Vn ‘ = Zﬁiﬂlé‘t—n—i nt—n—i + ZZﬂjﬂi+n—j§t—j eXp( t—j )5t—n—i nt—n—i +
i=0 Jj=1i=0

-1

J=
(n) () —
Zﬂ] t—j— 1 eXp(é:t Jj- l+§t /X nnjl nn] l‘ a2

j=1 1=l

n-2 n—

Define:
+o0 ,
a4y = Z5t—n—i /- l+n + Z Z H Dp eXp Z § +
. (n) _ —S, l+n S,;
=0 P=liy,..i,ed) Jj=1
A A k
+ I1x Diexp Z§ u  —ym
RRAY | i1 =S n—Sk n—Sk
where
A /
¢ Si= Zij

N i
hd I =H18i.
A
N 1
° Di=]10 .
=175
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Lemma 4

u"|<a,,Vkel,n

Proof:

We will prove the lemma recursively:

(n)
Vn

(H,):"|u <a,

According to the first two inequalities derived above, we have (H,) and (H,), which

are true. Assume (H,) and prove (H,,,):

+00 P
kzz Vll|77tnl| l+n+z Z HpreXp zé +
i=0

= lzl """" 1 EA(”) = t— S, 1+n S,,
AA
+ > IhiDiexp| Y & . [u™ —v",
t-S; 7S/( n—Sk

However:

(Vt) _v(n)

u(*”)A _v(”)A A D)
n— Sk - n=Sk—Il

n—Sk n—Sk

ng'kl
B ol X e e o

+n-S Sk— t=Sk—1

so that:




< z 5kﬁkeXp if ‘(”)—vl(”)

iy sl €4S j=1

A
Sir=n-1

n— g'k 1
S YT 5 2 D2 LN N A
13 i,(eAIE'” Jj=1 t— S,‘ iy =l =Sk i =Sk =iy n— Sk —iy n=Sk—iy,,
Sk<n-1
k o
* Z Dk Hk eXp Zéj Zﬂ A 5t—n—i|77t—n—i|
1y ikeA,((") j=1 1=S; i=0 i+n—Sk
A

By using the inequality:

‘ul(n) _vl(n)

ZﬂHl t—n— 1|77t—n7i 4

and by recombining the sums above, we can see that:

u(")A _ v(ﬂ)A
n—Sk n—Sk

N k
Z I« Dkexp Z:;ft 4

< Y Dilliexp ig | n_flﬂ,a ) eXp(g ) ju(”l _y»

s A
il €4 J=l =5 i =1 1=Sk~ira 1=Sk—iry n=Sk~igy n=Sk—iy
A
Sk<n-1
AA k
+ Z Dk Hk eXp Zé g Zﬁ :5\‘ t—n—i|77t—n—i|
i yesip €4 o S N\GZo e
n-— S/( &
n n
< 2 ZDka,B[ P DL +E u® ="
iy €4 =1 “Sk i j=1 1=S; =Sk ~igy n=Sk—ir, n=Sk—iyy
A
Sk<n-1
AA k
Z nl|771nz| Z Dkaexp Zf g A 3,
T AY| PRy i+n—Sk
By noticing that:
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{il,...,ik eA",i., E|:1,n—Sk—1j|:Sk <n—l}: A",

we finally have:

(n) _ (") ;
‘ n <a say, = (Hk+1) 1s true.

By taking k = n - 1, and by using the inequality ‘uf") ")‘ < Z B0, ,|77,_n_,- )

the following general result for EARCH(o0):

Proposition 3.1

, B, 20,Vi, then we have the following inequality for the series

u and v for EARCH():

: , —n—1

(n) (n)

77[—)1—1

1S

M+Z Z H D exp(zplf /) HnSJ.

Part 4: Invertibility of EGARCH(D,Q)

We have:

(n) _,(m
un - v?’l

n-l1 e P "
red ST S 3 of Sk,
=1 — p= <8< <8, <n— J=

e
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Lemma 4.1

For any v >1/2, we have with probability 1:

B, = exp(o(nv ))

Proof:

We have:

U o rln
Bn = Zﬁ* 5:—11—1' Ti—ni eXp[Zﬂ—*5f*l|77tl|\} :

i=0 1 —

wl—n

We know that X, = Zﬂ—5,i1|7717,| are L’ -variables as absolutely convergent sum of
I=n 1— ﬂ*

L’ -variables (it is assumed that 7, ~ (0,1)) as L’ is a Hilbert space). Furthermore, by

using Chebychev inequality, we obtain:

el |_sb]

n2v n2v

P(x,|>n")<

asthe X, areidentically distributed. Therefore, ZPQX n|2nv)<oo and, by using the

Borel-Cantelli Lemma, we have with probability one that: X = O(n”). As this is true

Vv >1/2,wealso have: X, =0(nv).

, we obtain the invertibility

+00 .
By using the same reasoning with Y = Z p *15,*_,1_1. /-
i=0

condition.
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Proposition 4.1

P
(1 ->. al.Lij lie outside
P

the unit circle and, if Conditions 2 are satisfied, then EGARCH(p,q) is invertible as:

p" gy ) = (n)

u

n n

~logln,| >

*)OO

Proof:

According to Conditions 2 and by continuity, we know that J¢,,&, >0, such that:

{ |n’|}+log(,6’ +E[§ 7, ])+€1 <-g,.
1-p

We also have inequality (18):

n-l é‘t*—l|77t—l| wn—1 nl «n—1-p 2 *
u™ —v"| < B exp Z—* B+ B D> exp zlog(é‘,_sj,
Jj=1

=1 l—ﬂ p=l 1< <5, <n—1

s,

)

If we note that:

{ gy exp[ﬁmg(@; n\)ﬂ
7 p=1 Jj=1

1<s<..<s,<n-1

n 5

expl(n—Dlog(8" + E[5; n,[)}+ (n—1)z,)

we have:

u — (n)

ﬂ

<B exp["ia e ’|+(n Dlog(8 + E[5 ||+ (n - 1)51J
=1 11— ﬁ
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It can be shown that Z goes to zero almost surely, as follows. Let £>0 by the

J

Markov inequality:

s,

ﬂ*n_l 4 nz_iﬁ*n—l—p Z exp(zpllog(é‘,*_s/
p=l J=1

l<s)<..<s,<n-1

i
P(Z <
( "7 5) exp((n—l) log(ﬂ* +E[5:|77t|])+ (n—l)gl)xg

However:
n-1
E{ e .S e 3 exp{ilog(gjs/ Moy, )ﬂ
p=1 1<s;<...<s, <n—1 j=1 )
2 n _1 *n—1— *
i Z[ Jﬂ L)
p=0 p
where:
(n—l) _ (n-1)
p ) (n=1-p)pV’
as 51*_5, M| are L' and iid. Using Newton’s formula, it can be shown that:

I

e,

E ﬁ*n—l +Zlﬂ*”_l_p Z eXp[ilog(é‘:_sj
=

p=1 I<s)<.<s,<n-1

)ﬂ = (8" +E[s5[n,

Therefore:

44



P(Z, > )< exp(~(n—1e,)

- 2

&

and, by using Lemma 1.2, we can show that:

a.s.

% 2.0
Moreover by LLN:
=S [n,| _ E{ ol ] xn+o(n).
a-p =4
Therefore:

n—1
exp| Y,
=1

i +n log(ﬂ* + E[&:|77t|])+ nglj =exp(-ne, +o(n)).
1-4

According to Lemma 4.1, we have:
B, = explo(n)).

Therefore:

(m) _ )

u™ —v\"| < exp(-ne, +o(n))z,,
) _ ] _ |, N
n n n

v —u"=\v —log|77t n:)(nO,

which proves invertibility of EGARCH(p,q).

45



References

Black, F. (1976), Studies of stock market volatility changes, 1976 Proceedings of the
American Statistical Association, Business and Economic Statistics Section, pp. 177-181.

Bollerslev, T. (1986), Generalised autoregressive conditional heteroscedasticity, Journal
of Econometrics, 31, 307-327.

Demos, A. and D. Kyriakopoulou (2014), Asymptotic normality of the QMLESs in the
EGARCH(1,1) model.

Available online: http://papers.ssrn.com/sol3/papers.cfm?abstract 1d=2236055 (accessed
on 14 June 2014).

Engle, R.F. (1982), Autoregressive conditional heteroscedasticity with estimates of the
variance of United Kingdom inflation, Econometrica, 50, 987-1007.

Glosten, L., R. Jagannathan and D. Runkle (1992), On the relation between the expected
value and volatility of nominal excess return on stocks, Journal of Finance, 46,
1779-1801.

Marek, T. (2005), On invertibility of a random coefficient moving average model,
Kybernetika, 41(6), 743-756.

McAleer, M. (2014), Asymmetry and leverage in conditional volatility models,
Econometrics, 2(3), 145-150.

McAleer, M., F. Chan and D. Marinova (2007), An econometric analysis of asymmetric
volatility: Theory and application to patents, Journal of Econometrics, 139, 259-284.

McAleer, M. and C. Hafner (2014), A one line derivation of EGARCH, Econometrics,
2(2), 92-97.

Nelson, D.B. (1990), ARCH models as diffusion approximations, Journal of
Econometrics, 45, 7-38.

Nelson, D.B. (1991), Conditional heteroskedasticity in asset returns: A new approach,
Econometrica, 59, 347-370.

Tsay, R.S. (1987), Conditional heteroscedastic time series models, Journal of the
American Statistical Association, 82, 590-604.

Straumann, D. and T. Mikosch (2006), Quasi-maximum-likelihood estimation in
conditionally heteroscedastic time series: A stochastic recurrence equation approach,

Annals of Statistics, 34, 2449-2495.

Wintenberger, O. (2013), Continuous invertibility and stable QML estimation of the
EGARCH(1,1) model, Scandinavian Journal of Statistics, 40, 846—867.

46



