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Abstract

We study strategic negotiation models featuring costless delay, general recognition

procedures, endogenous voting orders, and finite sets of alternatives. Two examples

show: 1. non-existence of stationary subgame-perfect equilibrium (SSPE). 2. the

recursive equations and optimality conditions are necessary for SSPE but insuffi -

cient because these equations can be singular. Strategy profiles excluding perpetual

disagreement guarantee non-singularity. The necessary and suffi cient conditions for

existence of stationary best responses additionally require either an equalizing con-

dition or a minimality condition. Quasi SSPE only satisfy the recursive equations

and optimality conditions. These always exist and are SSPE if either all equalizing

conditions or all minimality conditions hold.
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1 Introduction

Strategic negotiation theory has contributed significantly to the understanding of negoti-

ation processes.1 Many influential contributions analyze limits of vanishing costly delay

and some consider costless delay.2 Costly delay is often modeled as a risk of breakdown

or discounting. Negotiation models with costly delay have the property of continuity at

infinity, a suffi cient condition under which the one-stage-deviation property characterizes

subgame-perfect equilibrium (SPE) and SPE in stationary strategies (SSPE). This prop-

erty states that all one-stage deviations are unprofitable. Negotiation models with costless

delay, however, lack continuity at infinity, see e.g. Bloch (1996). Also, the players’ex-

pected utilities fail lower semi-continuity in stationary strategies, a condition under which

Alós-Ferrer and Ritzberger (2012) establish the equivalence between SPE and the one-

stage-deviation property in discrete extensive forms with perfect information. This raises

the obvious question whether the one-stage-deviation property still characterizes equilibria

under costless delay, which we consider to be stationary for explanatory reasons.

We show the necessity to address these issues by means of two motivating examples. The

most intriguing example is the symmetric hedonic game of coalition formation proposed

in Bloch (1996) and Bloch and Diamantoudi (2011) that has no SSPEs in pure strategies

under costless delay. We derive the symmetric SSPE in mixed strategies under costly

delay, and derive its limit under vanishing costly delay. Even though the SSPE’s limit

strategy profile is well-defined, we show that it fails as an SSPE under costless delay.

Moreover, we show non-existence of symmetric SSPE in mixed strategies under costless

delay. Technically speaking, we show that the correspondence of symmetric SSPE strategies

lacks upper semi-continuity, may fail to be closed and may even be empty valued. A

puzzling phenomenon is that the symmetric SSPE converges to a strategy profile that

induces Pareto ineffi cient perpetual disagreement, whereas the corresponding SSPE utilities

converge to Pareto effi cient utilities. Also puzzling is that the limit SSPE utilities are a

solution to the system of recursive equations, but fail to represent the correct expected

utilities. We provide an explanation for these phenomena and derive the necessary and

suffi cient conditions that do characterize SSPEs in mixed strategies.

We address these issues in a general negotiation model in discrete time with an arbitrary

number of players, stochastic recognition of the proposing player, public and sequential en-

1Rubinstein (1982) boosted the literature on strategic negotiations. For surveys we refer to e.g. Osborne

and Rubinstein (1990), Muthoo (1999), Houba and Bolt (2002), Banks and Duggan (2006), and Ray (2007).
2Costless delay is analyzed in e.g. Binmore (1986), Perry and Reny (1994), Moldovanu and Winter

(1995), Bloch (1996), Banks and Duggan (2000), Dávila and Eeckhout (2008), Horniaček (2008), and

Herings and Houba (2010).
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dogenous voting orders, and discrete sets of feasible alternatives. We explicitly include

costly and costless delay to enhance studying limits of vanishing costly delay. Also, this

enables us to pin down the differences between costly and costless delay. At any negotia-

tion round, one player is recognized to make a proposal. Proposals specify an alternative,

a set of players who have the right to approve this alternative, and an order in which

the players in this set sequentially and publicly vote. The first vote against the proposed

alternative ends the current round of voting. After that, nature decides whether the ne-

gotiations permanently break down, or who will be next round’s recognized player. Our

model’s recognition rules represent more general institutions than analyzed in the liter-

ature so far and allow many special cases: Fixed rotating orders of recognized players

including alternating-offers procedures; Markov recognition probabilities including station-

ary random recognition rules; and coalitional negotiation procedures including endogenous

protocols such as the rejector-becomes-proposer protocol in e.g. Selten (1981).3 The play-

ers’preferences are represented by expected utility functions.

The main reasons to assume public and sequential voting in our model are that i) it

captures such voting rules of several negotiation models in the literature and ii) that, in

SSPE, such voting rules are equivalent to the stage-undominated voting strategies under

simultaneous voting rules as in Baron and Kalai (1993). So, our model implicitly obtains

the most appealing voting strategies under simultaneous voting. The endogenous voting

orders in our model extend upon the exogenous voting rules in the literature.

This class of negotiation models belongs to the class of recursive games with perfect

information, which is a subclass of stochastic games. Under costly delay, existence of an

SSPE is not an issue, since it follows from standard results on equilibrium existence in

stochastic games, see e.g. Fink (1964), Takahashi (1964), and Sobel (1971). For the class

of stochastic games, Haller and Lagunoff (2000) show that generically the set of SSPEs

is finite, and Herings and Peeters (2004) show that generically there is an odd number of

SSPEs. For stochastic games under costless delay, using the average reward criterion to

evaluate payoff streams, non-existence of Nash equilibrium in mixed strategies has been

noted by Blackwell and Ferguson (1968) and has spurred an extensive literature seeking

existence of weaker notions of Nash equilibrium in special classes of stochastic games and

conditions under which SPE exist. For ε-Nash equilibria, existence has been shown by

Mertens and Neyman (1981) for two-person zero-sum stochastic games and by Vieille

3In terms of institutions, we encompass models analyzed by e.g., Selten (1981), Rubinstein (1982),

Haller (1986), Sutton (1986), Binmore (1987), Hoel (1987), Baron and Ferejohn (1989), Chatterjee et al.

(1993), Moldovanu and Winter (1995), Bloch (1996), Muthoo (1999), Banks and Duggan (2000, 2006),

Kalandrakis (2004a), Horniaček (2008), Britz et al. (2010), Herings and Predtetchinski (2010), Bloch and

Diamantoudi (2011) and Duggan (2011).

2



(2000a, 2000b, and 2000c), for general two-player stochastic games. A general result for

stochastic games with three or more players is lacking thus far. For the subclass of recursive

games with non-negative utilities, Flesch et al. (2010) have demonstrated the existence of a

subgame-perfect ε-equilibrium for every ε > 0. For a class of coalitional bargaining models

that belong to the class of negotiation models we consider, Bloch and Diamantoudi (2011)

derive a necessary and suffi cient condition for the existence of pure SSPEs under costless

delay. General conditions for existence of mixed SSPE in stochastic recursive games is an

open issue.

Under costly delay, the one-stage-deviation property is equivalent to dynamic program-

ming, which can be separated into the optimality conditions and the recursive equations.4

Both characterize SSPE strategy profiles and their conditional expected utilities. For

costless delay, we denote strategy profiles that satisfy the optimality conditions and the re-

cursive equations as quasi SSPE. Quasi SSPE always exist, but as our motivating examples

show these may fail to be SSPE.

We will now summarize our main results. Our first main result states exclusion of

perpetual disagreement is the necessary and suffi cient condition such that the expected

utilities induced by a stationary strategy profile constitute the unique solution to the

recursive equations. The explanation is as follows: Stationary strategy profiles induce a

Markov process and the corresponding expected utilities can be expressed in terms of this

process. These utilities always satisfy the recursive equations, but it is not the case that

any solution to the recursive equations corresponds to the expected utilities. The Markov

process has absorbing states that either represent which agreement has been reached or

represent permanent breakdown. This process might cycle forever on the other states,

which represent who is recognized. Such cycling is excluded by the necessary and suffi cient

condition. Of course, under costly delay, the positive risk of breakdown excludes forever

cycling a priori, and then the recursive equations admit a unique solution. Only under

costless delay it may occur that the optimality conditions return stationary strategy profiles

with forever cycling, called perpetual disagreement from here on, and then the recursive

equations have the entire Null space as its solution, which is of dimension one or higher.

Indeed, this is the case in one of our examples: the limit symmetric SSPE induces perpetual

disagreement, which explains one puzzle for the limit SSPE.

Our examples illustrate that, in case of singularity of the recursive equations under

costless delay, dynamic programming is no longer suffi cient to characterize the players’

4This technique is first pioneered by Bellman (1953) and Shapley (1953). For a survey of Markov

decision processes, we refer to e.g. Puterman (1994). In this literature, the optimality conditions and the

recursive equations are often integrated, but in our analysis it pays off to keep these separately.
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best responses and, consequently, for SSPE. Our second main result provides a character-

ization of SSPE that is also valid when the recursive equations are singular. Given the

other players’stationary strategies, each player’s best response is the optimal solution of

a stationary Markov decision process with expected total rewards that are bounded. We

show that such decision processes are well-defined for our class of negotiation models and

that stationary best responses exist. The necessary and suffi cient conditions for station-

ary best responses require that, in addition to the conditions of optimality and recursive

equations, either an equalizing condition or a minimality condition has to be satisfied.

The equalizing condition is a necessary condition for a solution to the recursive equations

to coincide with the expected utilities induced by stationary strategies. The minimality

condition is needed to select among several expected utilities in case the optimality condi-

tions and the recursive equations return several candidates for the optimal solution with

different induced expected utilities. What is relevant for practical purposes, whenever the

recursive equations admit a unique solution, then both the minimality condition and the

equalizing conditions automatically hold. This is equivalent to a player’s stationary best

response against the other players’stationary strategies that, combined to form a strategy

profile, exclude perpetual disagreement.

In essence, SSPE requires that each player’s stationary strategy is a best response given

the stationary strategies of the other players. This means that all the necessary and suf-

ficient conditions of all the stationary Markov decision processes of the individual players

together form the equilibrium conditions. A suffi cient condition such that all SSPE strat-

egy profiles exclude perpetual disagreement is the following: Every player is able to propose

some alternative and some coalition whose members all prefer this alternative to the status

quo. This is a mild assumption that relaxes the popular assumption of an essential bar-

gaining problem. It is also easy to check. Under this assumption, SSPE strategy profiles

are equivalent to the optimality conditions and the recursive equations on the domain of

strategy profiles that exclude perpetual disagreement. The latter automatically holds for

costly delay. Under costless delay, all strategy profiles with perpetual disagreement have to

be discarded a priori and the resulting subdomain of strategy profiles is no longer closed,

which is a technical problem in establishing existence of equilibria. Our existence result

for quasi SSPE is an inferior substitute for existence of SSPE.

Although SSPEs are popular in negotiation theory and are axiomatized in Bhaskar

et al. (2013), these are also criticized as being too specific. Our focus on SSPE obscures

that many of our results are more general than might appear. At the end of our paper, we

show that, by enlarging the state space, more general results can be immediately obtained.

Our results extend to SPE on the class of non-stationary strategy profiles that can be
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represented as finite automata, which covers most of the relevant strategy space in many

negotiation models, see e.g. the discussion in Section 3.5 in Osborne and Rubinstein (1990).

This class of automata includes the automata needed to apply the method proposed in

Shaked and Sutton (1984) to establish lower and upper bounds on the set of SPE payoffs.

The enlarged state space can also capture multilateral contracting as in e.g. Gomes (2005)

and stochastically fluctuating sets of feasible utilities as in e.g. Merlo and Wilson (1995)

and Duggan (2011).

This paper is organized as follows. After the introduction of the negotiation model and

discussing preliminaries such as dynamic programming, the one-stage-deviation principle

and quasi SSPE in Section 2, two motivating examples are discussed in Section 3. The nec-

essary and suffi cient conditions such that the recursive equations admit a unique solution

are established in Section 4. The necessary and suffi cient conditions for stationary best

responses are derived in Section 5. In Section 6 the SSPE conditions are stated, a suffi cient

condition that excludes perpetual disagreement in SSPE is proposed, and vanishing costly

delay is investigated. Section 7 discusses how our negotiation model incorporates several

influential negotiation models and presents several extensions of our results. Section 8

concludes.

2 The Model and Preliminaries

In this section, we introduce our model before we discuss some preliminaries that identify

the technical issues to be dealt with and that are also necessary for the motivating examples.

The description of the model and the preliminaries are separated into two subsections.

2.1 The Model

Consider n ≥ 2 players who negotiate the selection of an alternative from m ≥ 1 alterna-

tives in the shadow of a status quo under sequential and public voting. Players are indexed

by i and belong to the finite set N = {1, . . . , n} . The status quo is the outcome under
breakdown and it is denoted by q.

Proposals consist of an alternative and a voting order of a decisive coalition, i.e., a

group of players who have the right to approve in order for a proposal to be accepted.

Voting orders are permutations of groups of players that form decisive coalitions. The set

A = {a1, . . . , am} denotes the finite set of feasible alternatives. We assume without loss of
generality that q /∈ A. As in many influential models, the recognized player is assumed to
cast a vote in favor of his proposed alternative and is excluded in the proposed voting order.

Formally, for C a proper subset of N , the collection Π (C) consists of all permutations of
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the players in C, and the set O ⊂ ∪C∈2N :|C|<nΠ(C) consists of all feasible voting orders.

The non-empty set X i ⊂ A×O denotes the set of feasible proposals of a recognized player
i. So, a proposal (a, o) ∈ X i consists of an alternative a ∈ A and a voting order o ∈ O of

players that does not include player i. Our formulation allows for the possibility that the

set of decisive coalitions depends upon the proposed alternative.

Negotiations proceed in discrete time, where t ∈ N denotes round t. At round t,

recognized player it ∈ N first proposes xt = (at, ot) ∈ X it , after which all players in

the range C(ot) of ot sequentially and publicly vote in the order described by ot. Given

xt = (at, ot), alternative at is implemented if all players in C(ot) approve. Otherwise, the

first voter in C(ot) against ends the voting in round t and alternative at is rejected. The

identity of the first voter in C(ot) against is denoted by rt. If all players in ot approve, we

define rt = 0. If rt ∈ N , round t is concluded with a draw by nature that is modeled as a
compound lottery: First, nature decides with probability δ ∈ [0, 1] whether the negotiations

proceed to round t+1. With complementary probability 1−δ the negotiations break down,
leading to the implementation of the status quo q. Note that it is standard to identify costly

delay with δ < 1 and costless delay with δ = 1. Second, in case negotiations proceed to

round t+ 1, nature recognizes player i at round t+ 1 with probability ρi (it, xt, rt) ∈ [0, 1],

where
∑

i∈N ρi (i
t, xt, rt) = 1. Prior to the first round, nature recognizes player i with

probability ρ̄i ∈ [0, 1], where
∑

i∈N ρ̄i = 1.

The negotiation procedure fits the framework of multi-stage games with perfect infor-

mation, see e.g. Fudenberg and Tirole (1991). It has n + 1 stages per round t ∈ N under
the understanding that i) at most one player is active per stage and all other players choose

the trivial action “do nothing” ii) all players do nothing either after all players in C (ot)

have voted in favor or after the first vote against. In terms of Maskin and Tirole (2001),

the multi-stage game is cyclical with cycle length n + 1. Stages are indexed (t, k), t ∈ N
and k = 1, . . . , n + 1. The recognized player proposes at stage k = 1, all other players

sequentially vote or do nothing at stages k = 2, . . . , n and nature moves at stage k = n+1.

As soon as a proposal is accepted, the negotiations end and the draw by nature becomes

trivial.

To keep track of the voting behavior in the various stages k = 1, . . . , n + 1, we define

rt,k ∈ C(ot) ∪ {0} as follows. Since there is no voting in stage (t, 1), we set rt,1 = 0. For

k = 2, . . . , n+1, we define rt,k = 0 if no rejection has occurred in stages (t, 2), . . . , (t, k−1).

Otherwise, rt,k is equal to the first player in C(ot) who rejected the proposal. Notice that

rt,n+1 = rt. Finally, rt,n+1 = rt = 0 implies that the proposed xt at round t is accepted

after which the bargaining ends and all players do nothing forever.

Histories are defined recursively for all t ∈ N and k = 1 . . . , n + 1. The history up to
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stage (t, k) is denoted ht,k. The initial history h0,n+1 = ∅. For t ∈ N, define the history
at the first stage of round t as ht,1 = (ht−1,n+1, it), the history at the second stage as

ht,2 = (ht,1, xt) , and the history at stages k = 3, . . . , n + 1 as ht,k =
(
ht,k−1, rt,k

)
. The

non-empty and finite set of all histories up to stage (t, k) is denoted H t,k and the set

of all histories is H = ∪(t,k)∈N×{1,...,n+1}H
t,k. Since the negotiation procedure has perfect

information, histories define subgames and vice versa.

Mixed behavioral strategies and strategy profiles are defined in the usual way: σi is a

function from the set of histories at which player i has to act into a probability distribu-

tion over the history-dependent set of feasible actions and Σi denotes the set of all such

strategies. A strategy profile is σ ∈ Σ ≡ ×i∈NΣi. Sometimes we write σ = (σi, σ−i). Any

strategy profile σ ∈ Σ induces cumulative probabilities that some agreement is accepted

prior to or at round t. For σ ∈ Σ, π (a, t;σ, δ) ∈ [0, 1] denotes the cumulative probability

of reaching agreement on a ∈ A at a round τ ≤ t. For all σ ∈ Σ, these cumulative prob-

abilities are well-defined, non-decreasing in t, and bounded due to
∑

a∈A π (a, t;σ, δ) ≤ 1

for all t ∈ N. Hence, for all a ∈ A, π (a, t;σ, δ) converges as t goes to infinity and we de-

fine π (a;σ, δ) as this limit cumulative probability: π (a;σ, δ) = limt→∞ π (a, t;σ, δ). Note

that π (q;σ, δ) = 1−
∑

a∈A π (a;σ, δ) is the probability of perpetual disagreement plus the

probability of breakdown. In particular, π (q;σ, δ) = 1 implies π (a;σ, δ) = 0 for all a ∈ A.
Players have expected utility functions. Player i derives utility from agreed upon al-

ternatives and the status quo alternative denoted by the numbers ui (a), a ∈ A, respec-

tively, ui (q). Because expected utility functions are unique up to affi ne transformations,

we use the normalization ui (q) = 0 and ūi = maxa∈A∪{q} u
i (a) ≥ 0. Also, we define

ui = mina∈A∪{q} u
i (a) ≤ 0. Expected utilities are defined in the usual way. Finally, we

define the set of all feasible utility profiles as

Ū = conv{(u1(a), . . . , un(a)) ∈ Rn | a ∈ A ∪ {q}},

where conv denotes the convex hull of a set.

In terms of cumulative probabilities, player i’s expected utility of σ ∈ Σ is given by

U i (σ, δ) =
∑
a∈A

π (a;σ, δ)ui (a) . (1)

Note that (U1 (σ, δ) , . . . , Un (σ, δ)) ∈ Ū . In case π (q;σ, δ) = 1, it holds that the expected

utility U i (σ, δ) = 0. We assume non-negative utilities: For all i ∈ N , ui = 0. As will

be made clear later, under costless delay this assumption ensures that each player’s best

response against arbitrary stationary strategies will be the optimum of a positive bounded

model in terms of Markov Decision Theory.
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Since we have a multi-stage game with perfect information, the concept of subgame-

perfect equilibrium (SPE) is appropriate. A strategy profile is an SPE if no player has a

profitable deviation at any history.

Our main analysis deals with strategy profiles that we call stationary strategy profiles.

We first define an exogenous partition of the set of all histories, and then define strategy

profiles on this partition.5 The partition for non-trivial rounds is as follows: At stage (t, 1)

only the identity of the recognized player matters. At voting stages (t, 2), . . . , (t, |ot|+ 1),

the identity of the recognized player and the proposal xt matter. Formally, for i ∈ N ,

x ∈ X i, and k ∈ {2, . . . , n}, we define

H (i) = {h ∈ ∪t∈NH t,1| h = (ht−1,n+1, i) for some t ∈ N} ,

H (i, x, k) =
{
h ∈ ∪t∈NH t,k| h = (ht−1,n+1, i, x, 0, . . . , 0) for some t ∈ N

}
.

A stationary strategy σS,i for player i specifies σS,i
(
ht,k
)

= σS,i(h̄t
′,k) whenever either

k = 1 and ht,k, ht
′,k ∈ H(i) or it holds that k ∈ {2, . . . , n}, ht,k, ht′,k ∈ H(j, x, k) for j 6= i,

and x ∈ Xj. Therefore, player i’s stationary strategy reflects that bygones are bygones.

When player i ∈ N is chosen as the recognized player, he chooses a history-independent

probability distribution over X i. When player i ∈ N is chosen as a responder at stage

(t, k) , he conditions his behavior only on the recognized player and the proposal made.

We denote ∆(X i) as the space of probability distributions on X i and we define recognized

player i’s randomized proposal as αi ∈ ∆(X i) with αi(x) as the probability that x ∈ X i

is proposed. Similarly, we define βi (j, x) ∈ [0, 1] as the probability that player i votes

in favor of the proposal x = (a, o) ∈ Xj made by player j, where ki (o) ∈ {2, . . . , n}
denotes the stage at which player i votes according to the proposed voting order o. All

such probabilities form βi = (βi (j, x))j∈N,x∈Xj . A stationary strategy profile is denoted by

σS = (α, β), where α = (α1, . . . , αn) and β = (β1, . . . , βn). We write σS =
(
σS,i, σS,−i),

where σS,i = (αi, βi) denotes player i’s stationary strategy and σS,−i = (α−i, β−i) denotes

the stationary strategies of all players except player i. We denote player i’s set of all

stationary strategies as ΣS,i and the set of all stationary strategy profiles as ΣS = ×i∈NΣS,i.

Finally, an SPE in stationary strategies is denoted SSPE.

Player i ∈ N takes a non-trivial decision either as the recognized player in states ofH (i),

denoted state i, or as a voter in states of H (j, (a, o) , ki (o)), denoted state (j, (a, o) , ki (o)),

where this player is the ki (o)-th voter after player j ∈ N\ {i} has proposed x = (a, o) ∈ Xj

and all voters before player i approved. The set of all states where player i votes is denoted

5Maskin and Tirole (2001) define stationary strategy profiles as strategy profiles on an endogenously

determined partition, which, depending on the negotiation protocol, may be coarser than the one we study.
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V i = {(j, (a, o) , ki (o)) |j ∈ N\ {i} , (a, o) ∈ Xj}. Then, the finite set of states where player
i is active is denoted as Si = {i} ∪ V i. Additionally, we denote V = ∪i∈NV i as the set of

all states that refer to stages where one of the players casts a vote. Finally, S = ∪i∈NSi

denotes the set of states in which one of the players makes a non-trivial decision.

2.2 Preliminary Results

The main motivation for our analysis is that SPE and SSPE are well understood under

costly delay and that open issues appear under costless delay. For costless delay, matters

are less straightforward and it will pay off to focus on SSPE before considering SPE in the

class of finite automata.

For δ ∈ [0, 1), existence of an SSPE is not an issue, since it follows from standard results

on equilibrium existence in stochastic games, see e.g. Fink (1964), Takahashi (1964), and

Sobel (1971). For the class of stochastic games, Haller and Lagunoff (2000) show that

the set of SSPEs is generically finite, and Herings and Peeters (2004) show that generically

there is an odd number of SSPEs and they provide an algorithm to compute the equilibrium

that would be selected by a generalization of the tracing procedure. Also for δ ∈ [0, 1), the

one-stage-deviation principle, see e.g. Blackwell (1965) and Fudenberg and Tirole (1991),

applies to characterize SPEs in our negotiation model. It states that, for any strategy

profile, SPE is equivalent to the one-stage-deviation property. Furthermore, SSPEs can

be characterized using dynamic programming techniques as first pioneered by Bellman

(1953) and Shapley (1953). To formalize these dynamic programming techniques and the

one-stage-deviation property, we need to define the state space first, where we confine this

space to states where either players take non-trivial actions or states are absorbing.

Stationary strategy profile σS induces a stationary Markov process on the state space

S ∪ A ∪ {q}, where A ∪ {q} is the set of absorbing states associated with having reached
either agreement a ∈ A, or the status quo outcome q under breakdown. The matrices

denoted P S
(
σS, δ

)
, PA

(
σS, δ

)
and P q

(
σS, δ

)
assign transition probabilities, respectively,

from S to S, S to A, and S to {q}. We state the following result without proof.

Lemma 1 For δ ∈ [0, 1], the stationary strategy profile σS = (α, β) induces a stationary

Markov process on S ∪ A ∪ {q} with transition probabilities

Λ
(
σS, δ

)
=

 P S
(
σS, δ

)
PA
(
σS, δ

)
P q
(
σS, δ

)
0 I 0

0 0 1

 . (2)

Moreover, all probabilities in Λ
(
σS, δ

)
are continuous in (α, β) and δ.
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The initial distribution and these Markov transition probabilities determine the prob-

abilities of reaching states in S ∪ A ∪ {q} at the start of round t. These probabilities in
turn determine the cumulative probabilities π

(
a, t;σS, δ

)
. In order to state these probabil-

ities, denote ρ̄S =
(
ρ̄S

1
, . . . , ρ̄S

n
)
∈ R|S|+ as the initial distribution over states in S, where

ρ̄S
i

= (ρ̄i, 0, . . . , 0) ∈ R|S
i|

+ , i ∈ N .6 Notice that ρ̄S puts probability zero on the voting

states V and that the probability on a state i ∈ N is equal to ρ̄i as specified in the previous

subsection. We state the following result without proof.

Lemma 2 For σS = (α, β), the probability that player i ∈ N is recognized at round t ∈ N is
the element of ρ̄S ·P S

(
σS, δ

)n(t−1)
associated with s = i, i ∈ N , the probability that alterna-

tive a` ∈ A is approved in round t ∈ N is the `-th element of ρ̄S ·P S
(
σS, δ

)n(t−1)
PA
(
σS, δ

)
and the probability of breakdown q at round t ∈ N is equal to ρ̄S ·P S

(
σS, δ

)n(t−1)
P q
(
σS, δ

)
.

Furthermore, the cumulative probability π
(
a`, t;σ

S, δ
)
that alternative a` ∈ A is ap-

proved on or before round t is the `-th element of

ρ̄S ·
t∑

τ=1

P S
(
σS, δ

)n(τ−1)
PA
(
σS, δ

)
.

Moreover, all these probabilities are continuous in (α, β) and δ.

For finite t ∈ N, all cumulative probabilities encountered thus far are continuous in the
stationary strategy profile σS and δ ∈ [0, 1]. Recall that, for all σS and δ ∈ [0, 1], the limit

probability π
(
a;σS, δ

)
= limt→∞ π

(
a, t;σS, δ

)
exists.

Given stationary strategy profile σS and δ ∈ [0, 1], player i’s conditional expected payoff

in state s ∈ S is denoted vi(s;σS, δ), which in vector notation is written as vi
(
σS, δ

)
∈ R|S|.

The following result is also given without proof.

Lemma 3 For stationary strategy profile σS = (α, β) and δ ∈ [0, 1]:

vi
(
σS, δ

)
=
∞∑
τ=1

P S
(
σS, δ

)τ−1
PA
(
σS, δ

)
ui, (3)

where ui = (ui (a1) , . . . , ui (am))>, and

U i
(
σS, δ

)
= ρ̄S · vi

(
σS, δ

)
.

Notice that all vκ (j, x, ki (o)), s = (j, x, ki (o)) ∈ V , are determined by all vκ
(
s;σS, δ

)
,

κ, s ∈ N , through induction. This latter insight conforms with the common practice to

analyze negotiation models on the subset of states that can be reached at the beginning of

each round t, which is N ∪ A ∪ {q}.
6For convenience, when we discuss SSPE actions and the players’associated values, we often restrict

attention to the non-absorbing states, i.e., S.
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2.3 Quasi SSPE and the One-Stage-Deviation Property

Given σS,−i, player i’s set of best responses consists of the set of all optimal strategies

of a stationary Markov Decision Process (MDP) in which the subset Si represents all

states where player i takes a non-trivial decision. For δ ∈ [0, 1), each player’s MDP is a

well-defined MDP with discounting. Such an MDP always returns at least one stationary

strategy as one of the possibly many optimal strategies that can be either characterized

by dynamic programming techniques or by the one-stage deviation (OSD) property, which

says that a player cannot get strictly higher expected payoffs by a one-shot deviation

in a single state, conditional on being in that state. For δ = 1, each player’s objective

function corresponds to the expected total-reward criterion and matters become different.

Without going into details at this moment, each player’s MDP always returns at least one

stationary strategy as one of the possibly many optimal strategies that can be characterized

by dynamic programming techniques if some additional condition is invoked. Without the

additional condition, applying the dynamic programming techniques may lead to solutions

that do not satisfy the OSD property and should be regarded as quasi solutions. Whatever

δ ∈ [0, 1], combining the MDPs of all the players together determines SSPE. In order to

be clear, we will make precise what we mean.

We define solutions when applying the dynamic programming techniques without the

additional condition as quasi SSPE. Formally, an arbitrary conditional expected payoff for

player i in state s ∈ S is denoted wi(s), which in vector notation is written as wi ∈ R|S|.
We introduce the following definition.

Definition 4 For δ ∈ [0, 1], the strategy profile σS = (α, β) is a quasi SSPE if, for each

player i ∈ N , there exist values w = (wi)i∈N such that

1. The optimality conditions hold:

αi ∈ arg maxα̂i∈∆(Xi)

∑
x∈Xi α̂i (x) wi (i, x, 2) , s = i,

βi (s) ∈ arg maxβ̂i∈[0,1] β̂
iwi (j, x, ki (o) + 1)

+(1− β̂i)
∑

i′∈Nδ · ρi′ (j, x, i) wi (i′) , s = (j, x, ki (o)) ∈ V i,

(4)

where wi (j, x, ki (o) + 1) = ui (a) if i is the last voter according to x ∈ Xj.

2. The recursive equations hold: w ∈ Ū |S| and, for every i ∈ N,

wi = PA
(
σS, δ

)
ui + P S

(
σS, δ

)
wi. (5)
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The restriction w ∈ Ū |S| is very natural and superfluous for δ ∈ [0, 1). However, for δ = 1

the restriction rules out solutions to (4) and (5) with w /∈ Ū |S| that lack any interpretation
in the motivating Example 8 in the next section. The following result states that quasi

SSPEs exist. We defer all proofs to the appendix.

Theorem 5 For δ ∈ [0, 1], there exists a quasi SSPE.

The following result summarizes the discussion for costly delay and is stated without

proof.

Theorem 6 For δ ∈ [0, 1), the one-stage-deviation principle applies and the sets of SSPEs

and quasi SSPEs coincide.

As mentioned in the introduction, our motivating examples reveal that some quasi SSPE

may fail to be SSPE. In those cases, we also observe that, for the quasi SSPE strategy pro-

file σS, the values wi (s) of Definition 4 for states s ∈ S differ from the conditional expected
payoffs vi

(
s;σS, δ

)
in (3) for those states. The application of dynamic programming un-

derlying quasi SSPE wrongly suggests that we also satisfy robustness against one-stage

deviations. However, the OSD property for stationary strategy profiles is the absence of

one-stage deviations that are profitable with respect to the conditional expected payoffs

vi
(
s;σS, δ

)
. The following definition makes this formal.

Definition 7 For δ ∈ [0, 1], the OSD property holds for the strategy profile σS = (α, β) if,

for each player i ∈ N , the optimality conditions (4) hold with wi equal to the conditional
expected utilities vi(σS, δ) given by (3).

When we compare the definitions of quasi SSPE and the OSD property we have the

same optimality conditions and that the main difference is whether (5) or (3) is imposed.

We will derive conditions under which a quasi SSPE also satisfies the OSD property.

3 Motivating examples

We discuss two important examples in this section, where we restrict attention to sym-

metric strategy profiles for explanatory reasons. The first example, which is deliberately

oversimplified, illustrates some of the technical issues that arise in applying the conditions

of optimality and the recursive equations under costless delay. The second example illus-

trates that the symmetric SSPE under costly delay converges to a quasi SSPE as the costs

of delay vanish, but that its limit fails the OSD property under costless delay and, hence,
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fails as an SSPE under costless delay. Moreover, this example does not have any symmetric

SSPEs under costless delay.7

Example 8 Common-interest alternating-offers bargaining

Consider bilateral alternating-offers bargaining with two players, so N = {1, 2}, the set of
alternatives A = {â}, the set of voting orders O = {(1) , (2)} and, for i, j = 1, 2 and j 6= i,

the set of feasible proposals X i = {(â, (j))}. For each player, the utility of accepting â
is 1 and the utility of the status quo q is 0. To obtain the alternating-offers bargaining

procedure, we specify recognition probabilities ρi (j, xi, 1) = 1 for xi ∈ X i. This example

is a special case of Muthoo (1991).

We consider symmetric stationary strategies: Recognized player i proposes (â, (j)) with

probability 1. When it comes to a vote, player i approves â with probability β ∈ [0, 1]. Con-

ditional on being recognized, vp ≡ vi(i; β, δ) denotes the expected utility for the proposing

player. The conditional expected utility of the responding player in the role of a voter is

denoted vr ≡ vj (i, xj, 2; β, δ). We adopt similar notation for wp and wr.

Under costly delay, the one-stage-deviation property is necessary and suffi cient for SSPE

and the definition of SSPE coincides with the definition of quasi SSPE. We first derive all

quasi SSPEs for all δ ∈ [0, 1] by solving

β̄ ∈ arg maxβ∈[0,1] β + (1− β) δwp,

wp = β̄ +
(
1− β̄

)
δwr = β̄ (1− δwr) + δwr,

wr = β̄ +
(
1− β̄

)
δwp = β̄ (1− δwp) + δwp,

plus the restriction wp, wr ∈ [0, 1]. Since wp, wr ∈ [0, 1] , solving under δ ∈ [0, 1) gives the

unique solution wp = wr = 1 and β̄ = 1, which means a unique SSPE with immediate

agreement in every subgame. For δ = 1, we obtain wp = wr = 1 and β̄ ∈ [0, 1]. Further-

more, the restrictions on wp and wr exclude the class of bizarre solutions (wp, wr) > (1, 1)

and β̄ = 0. Combining these results for all δ ∈ [0, 1], these conditions result in a correspon-

dence of solutions in
(
wp, wr, β̄

)
-space that is non-empty and compact valued and upper

semi-continuous in δ ∈ [0, 1]. Taking the limit as δ goes to 1 is well defined.

The boundary solution β̄ = 0 under costless delay is counter-intuitive, because it induces

zero probability of agreement in each round, i.e. perpetual disagreement, and according

to (3) each player has a conditional expected utility of 0. However, in the above solution

wp = wr = 1 6= 0. Moreover, β̄ = 0 allows for a profitable one-stage deviation and fails

to satisfy the OSD property. Clearly, the equivalence between the set of quasi SSPEs and

7Neither does it have asymmetric SSPEs, but we do not include the tedious calculations involved in

verifying this statement.
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the set of outcomes derived from applying the OSD property breaks down under costless

delay.

We provide the following insight why this occurs. Given an arbitrary stationary strategy

profile β, agreement on â in round t is reached with conditional probability β ∈ [0, 1] per

round and, under costless delay, the negotiations proceed to round t + 1 with probability

(1− β)t. Hence, for costless delay, the conditional expected utilities vp and vr are given by

vp = vr =
∞∑
τ=0

(1− β)τ β · 1 =

{
0 if β = 0,

1 if β > 0,

which are discontinuous in β. Consequently, recursive equations (5) and the conditional ex-

pected utilities (3) are no longer equivalent. Furthermore, conditional expected utilities (3)

always satisfy the recursive equations given by

vp = β + (1− β) vr,

vr = β + (1− β) vp,
or

[
1 β − 1

β − 1 1

][
vp

vr

]
=

[
β

β

]
.

The matrix is non-singular and admits the unique solution vr = vp = 1 if and only if β ∈
(0, 1], i.e., no perpetual disagreement. Under perpetual disagreement, we obtain the entire

Null space (λ, λ), λ ∈ R, as solutions, which contains the conditional expected utilities
vr = vp = 0 associated with β = 0. So, the possible singularity of the recursive equations

causes a breakdown in the equivalence between quasi SSPE and the OSD property. A major

question is what conditions on the set of stationary strategies are necessary and suffi cient

for non-singularity of the recursive equations. In general, this is the set of stationary

strategy profiles that exclude perpetual disagreement.

In this example, even if δ = 1, SSPE is equivalent to the OSD property. To see this,

solving

β̄ ∈ arg maxβ∈[0,1] β + (1− β) vp,

vp =
∑∞

τ=0 (1− β)τ β,

vr =
∑∞

τ=0 (1− β)τ β,

yields vr = vp = 1 and the set of symmetric SSPE strategy profiles given by β ∈ (0, 1].

Several observations follow. First of all, the set of strategy profiles that satisfy the OSD

property and the set of SSPEs are no longer closed sets and, consequently, the correspon-

dence of SSPEs on the domain δ ∈ [0, 1] in the
(
vp, vr, β̄

)
-space is not compact valued

and fails upper semi-continuity. As δ goes to 1, the unique SSPE converges to an SSPE

for δ = 1. In general, this needs not be the case. Second, characterizing each player’s

stationary best responses against the other player’s stationary strategy solves a stationary

Markov decision problem with expected total rewards when delay is costless.
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Example 9 Coalition formation

Consider negotiations between three players in a game of coalition formation. We have

N = {1, 2, 3} and three possible alternatives that are related to one of three possible
coalitions that may form: {1, 2}, {2, 3}, and {3, 1}. We have A = {a12, a23, a31} and
assume utilities are given by

u
(
a12
)

= (2, 1, 0), u
(
a23
)

= (0, 2, 1), and u
(
a31
)

= (1, 0, 2).

Players propose coalitions in which they are contained and decision making takes place by

means of majority voting. That isX1 = {(a12, (2)) , (a31, (3))},X2 = {(a23, (3)) , (a12, (1))},
and X3 = {(a31, (1)) , (a23, (2))}. The utilities display a cyclical pattern that resembles the
Condorcet paradox in the sense that players 2 and 3 prefer coalition {2, 3} to {1, 2},
players 3 and 1 prefer coalition {3, 1} to {2, 3}, and players 1 and 2 prefer coalition {1, 2}
to {3, 1}.
The formation of a coalition is determined by the rejector-becomes-proposer protocol

introduced in Selten (1981). Some player, say i ∈ N , is selected randomly at the first

round. This player proposes to one of the other players to form a coalition, either x+ =

(ai,i+1, (i+ 1)) or x− = (ai−1,i, (i− 1)).8 It holds that i prefers the coalition with i + 1

to the coalition with i − 1. If the player who is proposed to, say j ∈ N \ {i}, approves,
the negotiations end with i and j forming a coalition. Otherwise, j is next in turn to

make a proposal, unless breakdown occurs. Thus, ρj (i, x, j) = 1 and j proposes next with

probability δ.

The stationary partition of the state space S of relevant histories can be characterized

as follows: i proposes, i is proposed to by i − 1, and i is proposed to by i + 1. In this

example, we consider symmetric stationary strategies. Such strategies are summarized by

three probabilities, α, β−, and β+, where α denotes a player’s probability of proposing x+,

his most preferred coalition, β− is the probability by which a player approves his less

preferred coalition and β+ is the probability by which a player approves his most preferred

coalition. It follows that a player proposes x− with probability 1−α. A symmetric SSPE is
therefore denoted by (α, β−, β+). Conditional on being recognized, v ≡ vi (i; (α, β−, β+), δ)

denotes the expected utility for the recognized player, v+ ≡ vj (i; (α, β−, β+), δ) denotes the

expected utility of his most preferred partner j, and v− ≡ vj
′
(i; (α, β−, β+), δ) that of his

least preferred partner j′. We adopt similar notation for w, w+, and w−. Clearly, it holds

that 0 ≤ v + v+ + v− ≤ 3. In particular, perpetual disagreement implies v + v+ + v− = 0,

whereas for δ < 1, v + v+ + v− = 3 holds if and only if agreement is immediate.

8We write i+ 1 or i− 1 instead of i+ 1mod 3, respectively i− 1mod 3.
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The following result is shown in the Appendix. The first two cases cover δ ∈ [0, 1) and

are derived by applying standard conditions of optimality and the recursive equations. For

δ = 1, we first apply these conditions to characterize a unique quasi SSPE, and afterwards,

for reasons similar to Example 8, we verify the OSD property. The unique quasi SSPE

fails the OSD property and, hence no SSPE exists.

Proposition 10

1. For all δ ∈ (0, 1/2], the unique symmetric SSPE is given by (α, β−, β+) = (1, 1, 1)

with conditional expected utilities v = 2, v+ = 1, and v− = 0.

2. For δ ∈ (1/2, 1), the unique symmetric SSPE is given by

α = 1, β− =
− (1− δ2) +

√
(1− δ) (1 + 2δ)

δ2
∈ (0, 1) , and β+ = 1,

with conditional expected utilities

v = 1/δ ∈ (1, 2) , v+ = 1, and v− = (1− β−)δ =
1−

√
(1− δ) (1 + 2δ)

δ
.

3. For δ = 1, the unique symmetric quasi SSPE is given by (α, β−, β+) = (1, 0, 1) with

values w = w+ = w− = 1. Moreover, there does not exist any symmetric SSPE.

We note that the non-existence of SSPE under costless delay arises because for each

stationary strategy profile some player has a profitable one-stage deviation and the OSD

property fails.

For δ ∈ [0, 1), the recognized player always proposes his most preferred coalition, i.e. x+.

A player always approves his most preferred coalition, i.e. β+ = 1. For δ ≤ 1
2
, a player

also approves his least preferred alternative, i.e. β− = 1, and consequently, there is imme-

diate agreement with probability one on the recognized player’s most preferred coalition.

However, for δ > 1
2
, a player randomizes when voting on his least preferred coalition, i.e.

0 < β− < 1. Nevertheless, the recognized player forgoes the immediate agreement on x−

for sure and strictly prefers the risky proposal x+. In such an SSPE, negotiations end with

probability δt−1 (1− β−)
t−1

β− > 0 in round t and before termination we observe the fol-

lowing cycling behavior on the equilibrium path: first proposer i proposes to i + 1, who

in turn proposes to i − 1, who in turn proposes to i, and so on. Perpetual disagreement

occurs with probability zero. Since δ < 1 means that delay is costly, the SSPE is Pareto

ineffi cient without relying on features like asymmetric information or increasing cake sizes

over time as in Merlo and Wilson (1995).
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Figure 1: Expected joint welfare in Example 9 as a function of δ.

In Figure 1 we plot v+ v+ + v−, and we observe an U shape on the domain (1
2
, 1), with

minimum around 2.60 at δ ≈ 0.81. When δ goes to 1, v + v+ + v− goes to 3 with a slope

converging to +∞. Although this limit exists and coincides with the unique symmetric
quasi SSPE, it fails as an SSPE at δ = 1. The intuitive reason is that the limit SSPE

specifies α = 1, β− = 0 and β+ = 1, so the players end up in perpetual disagreement with

probability one and each gets a conditional expected utility of 0 while recognized player

i can secure a utility of 1 by proposing x− to form a coalition with his least preferred

partner i − 1. In general, for costless delay, the set of SSPEs forms a subset of strategy

profiles that satisfy the OSD property, which in turn are a subset of the set of quasi SSPEs.

Since the unique symmetric quasi SSPE fails the OSD property, the set of strategy profiles

for which the OSD property holds is empty and, consequently, no symmetric SSPE exists.9

So, the correspondence of symmetric SSPEs may be empty valued and, therefore, lacks

upper semi-continuity at δ = 1.

For completeness, we mention that the limit value of the SSPE utilities is given by

v = v+ = v− = 1, which does not capture the limit situation of perpetual disagreement

with v = v+ = v− = 0. Similar as in the previous examples, the standard recursive

equations that determine v, v+, and v− in the symmetric SSPE are singular for δ = 1

9Proposition 10 extends the non-existence result for pure strategies in Bloch (1996) at δ = 1 to mixed

strategies. It also extends the non-existence result for pure strategies in Livshits (2002) at δ = 0.99 to all

δ ∈
(
1
2 , 1
)
. Proposition 10 states existence of SSPE in mixed strategies for this range of δ’s.
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whenever the symmetric strategy profile induces perpetual disagreement. For δ ∈ [0, 1],

these equations are given by

w = α
[
2β− + (1− β−)δw−

]
+ (1− α)

[
β+ + (1− β+)δw+

]
,

w+ = α
[
β− + (1− β−)δw

]
+ (1− α)(1− β+)δw−, (6)

w− = α(1− β−)δw+ + (1− α)
[
2β+ + (1− β+)δw

]
.

At δ = 1 and perpetual disagreement at α = 1, β− = 0 and β+ = 1, this system is singular

and any (w,w+, w−) satisfying w = w+ = w− = λ, λ ∈ R, is a solution.
Example 8 might be criticized as being too trivial and of no practical relevance because

the limit SSPE qualifies as an SSPE under costless delay. Example 9 shows that these

issues should be taken seriously and dealt with. This is the purpose of our study.

4 Expected utilities and recursive equations

The motivating examples show that the recursive equations might be singular under costless

delay and that this is an issue. And as will become clear later, non-singularity will turn out

to be crucial in our further analysis. In this section, we derive the necessary and suffi cient

conditions such that the recursive equations are non-singular.

The recursive equations are well known in dynamic programming. These state that each

player’s expected present value in the current state is equal to the instantaneous expected

value in the current state plus the weighted sum over all future states of the state-dependent

present values in these future states times their probabilities. In our negotiation model,

the recursive equations on state space S are given by

wi = PA
(
σS, δ

)
ui + P S

(
σS, δ

)
wi, (7)

where the first term expresses the instantaneous expected utility and the second term the

weighted sum over all future states. Obviously, the right-hand side is a continuous function

in σS, δ, and wi. The following result establishes that the conditional expected utilities

of (3) satisfy the recursive equations.

Proposition 11 For i ∈ N , vi
(
σS, δ

)
in (3) is a solution to the recursive equations (7).

This last result implies that the recursive equations are necessary. The discussion in

Example 8 and 9 indicates that they are not suffi cient. Suffi cient conditions are derived

next. Before we do so, we report a mathematical result for later reference. Recursive

substitution of (7) implies

wi = lim
T→∞

[
T∑
τ=1

P S
(
σS, δ

)τ−1
PA
(
σS, δ

)
ui + P S

(
σS, δ

)T
wi

]
. (8)
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Then, wi = vi
(
σS, δ

)
if and only if the second term of the right-hand side of (8) converges

to 0. The next proposition follows.

Proposition 12 For i ∈ N , if wi is a solution to (8) such that

lim inf
T→∞

P S
(
σS, δ

)T
wi = lim sup

T→∞
P S
(
σS, δ

)T
wi = 0, (9)

then wi = vi
(
σS, δ

)
.

The recursive equations can be rewritten as
[
I − P S

(
σS, δ

)]
wi = PA

(
σS, δ

)
ui and

these equations admit a unique solution if and only if the matrix I − P S
(
σS, δ

)
is non-

singular. Then, wi =
[
I − P S

(
σS, δ

)]−1
PA
(
σS, δ

)
ui and, by Proposition 11, wi = vi

(
σS, δ

)
.

The key insights underlying our main result is to consider the necessary and suffi cient con-

ditions of the opposite case, i.e., I − P S
(
σS, δ

)
is singular. Singularity is equivalent to

a determinant equal to zero, and this implies that P S
(
σS, δ

)
has at least one eigenvalue

equal to 1. So, the matrix I − P S
(
σS, δ

)
is non-singular if and only if all eigenvalues of

P S
(
σS, δ

)
are unequal to 1. Solow (1952) derives a simple condition that is applicable to

our negotiation model. This condition is related to irreducible matrices and their finest

decomposition. An |S|× |S| matrixM ≥ 0 is irreducible if there does not exist an |S|× |S|
permutation matrix Π such that

ΠMΠ−1 =

[
M̃11 M̃12

0 M̃22

]
,

where M̃11 and M̃22 are square and non-trivial, see Solow (1952).10 If a matrix is reducible,

then an appropriate permutation matrix exists from which the upper-triangular block form

can be obtained. In many cases it is possible to further decompose M̃11 or M̃22. A finest

decomposition of M consists of an upper-triangular block form whose diagonal blocks are

irreducible. A finest decomposition exists, see Solow (1952). For P S
(
σS, δ

)
, we define the

finest decomposition into f blocks, 1 ≤ f ≤ |S|, as

P S
(
σS, δ

)
=


P̃11

(
σS, δ

)
P̃12

(
σS, δ

)
· · · P̃1f

(
σS, δ

)
0 P̃22

(
σS, δ

)
· · · P̃2f

(
σS, δ

)
...

...
. . .

...

0 0 · · · P̃ff
(
σS, δ

)

 ,

where P̃de
(
σS, δ

)
≥ 0, d, e = 1, . . . , f and d ≤ e, denotes the (d, e)-th block or matrix in

this decomposition and all diagonal blocks P̃ee are irreducible square matrices. Notice that

10A non-trivial matrix has at least one row.
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a 1× 1 matrix is trivially irreducible, also if its unique element is equal to zero. Denote all

states associated with P̃ee
(
σS, δ

)
as Se

(
σS, δ

)
⊂ S. The following result characterizes the

necessary and suffi cient conditions such that the recursive equations are non-singular.

Proposition 13 The recursive system of equations has a unique solution, equal to vi
(
σS, δ

)
,

if and only if each irreducible block P̃ee
(
σS, δ

)
, e = 1, . . . , f , has at least one row sum less

than 1.

Proposition 13 states the necessary and suffi cient condition such that the system of

recursive equations has a unique solution. This condition has the following interpretation.

If the initial state i1 ∈ Se
(
σS, δ

)
, then P̃ee

(
σS, δ

)
describes the transition probabilities

on the subset Se
(
σS, δ

)
. Because P̃ee

(
σS, δ

)
is irreducible, each state in Se

(
σS, δ

)
has a

positive probability of being reached within finite time. In case a state is reached with a

row sum less than 1, then there is a positive transition probability to some state outside

Se
(
σS, δ

)
, being either an absorbing state in A ∪ {q} or a state in S\Se

(
σS, δ

)
. In both

cases, the Markov process will never return to states in Se
(
σS, δ

)
. Therefore, within finite

expected time, the Markov process leaves the subset of states Se
(
σS, δ

)
. In case it transits

to a state in S\Se
(
σS, δ

)
, then the finest decomposition implies this state must be in

Se+1

(
σS, δ

)
× . . .×Sf

(
σS, δ

)
, let us say a state in Se+1

(
σS, δ

)
. Repeating the logic above,

the transition probabilities on Se+1

(
σS, δ

)
ensure the Markov process leaves the states in

Se+1

(
σS, δ

)
within finite expected time to either an absorbing state in A ∪ {q} or a state

in Se+2

(
σS, δ

)
× . . . × Sf

(
σS, δ

)
, etc. For e = f , the Markov process transits away from

Sf
(
σS, δ

)
within finite expected time to an absorbing state in A∪{q}. So, even though the

Markov process might involve complex dynamics, the transition probabilities P S
(
σS, δ

)
on

S ensure that for any initial state in S we reach an absorbing state in A∪{q} within finite
expected time.

In the proof of Proposition 13, we establish the equivalence between I − P S
(
σS, δ

)
is

non-singular and the largest absolute value of eigenvalues of P S
(
σS, δ

)
is smaller than 1.

Then, the inverse matrix of I−P S
(
σS, δ

)
is given by

∑∞
τ=1 P

S
(
σS, δ

)τ−1
. Moreover, these

results imply that limT→∞ P
S
(
σS, δ

)T
= 0 and condition (9) holds. We therefore have the

following result.

Corollary 14 If I−P S
(
σS, δ

)
is non-singular, then vi

(
σS, δ

)
in (3) is the unique solution

to (8) and limT→∞ P
S
(
σS, δ

)T
= 0.

Note that if for all i ∈ N the row of P S
(
σS, δ

)
associated with s = i sums to 1, then the

Markov process cannot reach any of the absorbing states, including q, and it must cycle on

the states in S forever, which necessarily can only occur when δ = 1. The reason is that
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each player i randomizes over proposals that will be rejected with probability equal to 1

and no breakdown occurs. The following result reformulates this insight into the necessary

and suffi cient condition under which the row of P S
(
σS, δ

)
associated with s = i, i ∈ N ,

sums to less than 1, which we state without further proof. Before stating this result, we

denote the support of αi by Supp (αi) ⊂ X i.

Proposition 15 It holds that
∑

s′∈S P
S
ss′ ((α, β), δ) < 1 for s = i, i ∈ N , if and only if

δ < 1 or for at least one x = (a, o) ∈ Supp (αi) it holds that βj (i, x) > 0 for all j ∈ C(o),

i.e., there is a positive probability that recognized player i proposes x = (a, o) and all players

j ∈ C(o) approve x with positive probability.

For δ < 1, the unique solution to the system of recursive equations is equal to vi
(
σS, δ

)
.

For δ = 1, we must place additional restrictions on the stationary strategy profiles σS in

order to apply these equations. This condition trivially holds for stationary strategy profiles

σS that induce immediate agreement in every state s = i, i ∈ N .
We note that many of the influential bargaining procedures in the literature can be

captured by a matrix of recognition probabilities that is irreducible. For example, in case

all ρj (i, x, r) = ρ̄i,j > 0, i, j ∈ N , x = (a, o) ∈ X i and r ∈ C (o), correspond to time—

invariant recognition probabilities, which includes the special cases of fixed rotating orders

among all players and random recognized players. In general for such irreducible matrices

of recognition probabilities we will have that if the strategy profile σS induces agreement

with positive probability in at least one state s = i, i ∈ N , then there is a sequence of

states connecting every other state in N to state i that each have positive probability

of being realized. If that is the case, the set of absorbing states will be reached within

finite expected time independent of the initial state. In our general setting, the recognition

probabilities ρj (i, x, r) may also depend upon the proposal x ∈ X i and the identity of the

rejector r ∈ N\ {i}. Therefore, there may be multiple matrices of recognition probabilities
that depend upon proposals and rejectors. Formally, for i ∈ N, we choose xi = (ai, oi) ∈ X i

and ri ∈ C(oi) and define the matrix of recognition probabilities

R
(
x1, . . . , xn, r1, . . . , rn

)
=

 ρ1 (1, x1, r1) · · · ρ1 (n, xn, rn)
...

...

ρn (1, x1, r1) · · · ρn (n, xn, rn)

 .
We have the following result.

Corollary 16 Let all matrices of recognition probabilities R be irreducible and δ = 1.

Consider some strategy profile σS. The system of recursive equations has a unique solution,

given by vi
(
σS, 1

)
, if and only if there is a state s = i, i ∈ N , such that some proposal

x ∈ X i is proposed and accepted with positive probability.
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We conclude this subsection by investigating the case in which the necessary and suf-

ficient condition of Proposition 13 does not hold. Then, there is at least one e = 1, . . . , f

such that all rows of P̃ee
(
σS, δ

)
sum to 1, and P̃ee

(
σS, δ

)
induces an irreducible Markov

process on the states in Se
(
σS, δ

)
that never leaves the states in Se

(
σS, δ

)
, i.e., an absorb-

ing set that is a subset of S. Moreover, P̃ed
(
σS, δ

)
= 0 for all d 6= e. Denote PA

e

(
σS, δ

)
as

the sub-matrix of PA
(
σS, δ

)
associated with states in Se

(
σS, δ

)
, and similar for P q

e

(
σS, δ

)
as the sub-matrix of P q

(
σS, δ

)
. For i ∈ N, we denote vie

(
σS, δ

)
as the sub-vector of

vi
(
σS, δ

)
associated with states in Se

(
σS, δ

)
. Obviously, PA

e

(
σS, δ

)
= 0, P q

e

(
σS, δ

)
= 0,

and vie
(
σS, δ

)
= 0. However, the recursive equations are given by

wie = P̃ee
(
σS, δ

)
wie,

or wie = limτ→∞

[
P̃ee
(
σS, δ

)τ
wie

]
in terms of (8). These equations admit the entire Null

space of I − P̃ee
(
σS, δ

)
as solutions, which contains wie

(
σS, δ

)
= 0 in accordance with

Proposition 11. Note that the Null space always contains the subspace spanned by the

vector (1, . . . , 1) and any vector in any orthogonal basis for the Null space is proportional

to this vector. For the symmetric SSPE of Example 9, we obtain for the matrix associated

with linear system (6) that

lim
δ→1

 0 0 (1− β−(δ)) δ

(1− β−(δ)) δ 0 0

0 (1− β−(δ)) δ 0

 =

 0 0 1

1 0 0

0 1 0

 . (10)

The matrix on the right-hand side is irreducible. If we denote this matrix as M , then

limτ→∞M
τ does not exist. The matrix I −M has a one-dimensional Null space spanned

by (1, 1, 1). This explains our finding that w = w+ = w− holds in this example. Moreover,

condition (9) holds if and only if wi = 0 and this condition rules out any (w,w+, w−) =

(λ, λ, λ) with λ 6= 0.

5 Best responses

In Example 8 we argue that the derivation of best responses against stationary strategies

by the other players is more involved under costless delay than under costly delay. Given

the other players’stationary strategies, characterizing a player’s set of best responses is

equivalent to solving a stationary Markov decision problem (MDP) and, under costless

delay, the expected total-reward criterion is appropriate. In this section, we characterize

each player’s set of best responses under costly delay and costless delay by applying the

theory of MDPs to our negotiation model.
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The following result states the necessary and suffi cient conditions for a best response in

stationary strategies against σS,−i. We also include the existence of such a best response.

Before we do so, we define the set of all expected values that correspond to solutions of

the optimality conditions and the recursive equations as

W i
(
σS,−i, δ

)
=
{
wi ∈ R|S|+ |σS,i and wi satisfy (4) and (5) given σS,−i

}
.

For the negotiation model, we have the following result.

Proposition 17 Let σS,−i and δ ∈ [0, 1] be given. There exists a stationary best response

σS,i for player i against σS,−i. Moreover, σS,i is such a best response if and only if there

exists values wi ∈ R|S|+ such that

1. The optimality conditions (4) hold for player i.

2. The recursive equations (5) hold for player i.

3. Either the equalizing condition holds:

lim sup
k→∞

P S
(
σS, δ

)k
wi = 0, (11)

Or the minimality condition holds: wi is a minimal element of W i
(
σS,−i, δ

)
.

By definition of W i(σS,−i, δ), the values wi are non-negative. Therefore, (11) guarantees

that (9) holds. The third condition then also implies that a stationary best response for

player i is equivalent to the conditions imposed by the OSD property for this player.

This result is important because it extends the standard approach for costly delay to

costless delay. Before discussing it, we derive another result that, similar to Corollary 14,

states that if the recursive equations are non-singular then the third condition also holds.

Corollary 18 Let σS,−i and δ ∈ [0, 1] be given. If σS,i and wi form a solution to conditions

1. and 2. of Proposition 17 and I − P S
(
σS,i, σS,−i, δ

)
is non-singular, then σS,i is a best

response to σS,−i.

For δ ∈ [0, 1), the recursive equations are non-singular on the domain of stationary

strategies ΣS,i, and by the last result, player i’s best responses are fully characterized by the

conditions of optimality and the recursive equations, which confirms standard theory. For

δ = 1, one of two additional conditions is required, but as a consequence of Corollary 18,

only in case the optimality conditions return stationary strategies that induce singular

recursive equations. Without repeating the arguments of Section 4, non-singularity requires
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that all diagonal blocks of the finest decomposition of P S
(
σS,i, σS,−i, δ

)
have at least one

row sum smaller than 1. Then, PA
(
σS,i, σS,−i, δ

)
6= 0 and the system cannot cycle forever

on the transient states in S. The need for an additional condition follows from Examples

8 and 9.

Puterman (1994) notes that equalizing stationary strategies drive the system to states

in which there is no opportunity for positive future rewards, which is exactly the case in

our absorbing states in A∪{q} or when the process cycles forever on the transient states S.
In particular, for δ ∈ [0, 1) cycling forever is impossible because of the positive probability

of a permanent breakdown.

Given σS,−i, Puterman (1994) also notes that taking the limit as δ goes to 1 is well

defined. In fact, this is how existence of an optimal value under δ = 1 in MDPs is shown.

What is different in a game theoretic context, as Example 9 illustrates, is that the entire

SSPE strategy profile σS depends upon δ and, hence player i’s MDP changes as δ goes

to 1.

Proposition 17 does not rely on our assumption of non-negative utilities. By the theory

of MDPs in e.g. Puterman (1994), it extends to the class of positive bounded models. Then,

the stationary strategies of the other players, i.e., σS,−i, have to be such that player i can

reach at least one agreement associated with non-negative utilities, which is a condition

that we have avoided for explanatory reasons. In case σS,−i restricts player i to reach

only agreements with negative utilities, player i’s MDP has become a negative bounded

model for which similar results hold that need to be specified somewhat differently. For

explanatory reasons, we have assumed non-negative utilities.

The linearity of the objective function in the optimality condition for αi confirms the

standard wisdom that whenever the recognized player opts for a randomized αi over X i,

then all x, x′ ∈ Supp (αi) should have equal expected conditional utilities that are also

maximal among all feasible proposals. Formally, for x, x′ ∈ Supp (αi) and x′′ ∈ X i,

wi (i, x, 2) = wi (i, x′, 2) ≥ wi (i, x′′, 2) .

Similar, the optimality condition for βi states that every voter has to consider the trade-

off between his conditional expected utility wi (j, x, ki (o) + 1) from approving and the

conditional expected utility
∑

i′∈Sδ · ρi′ (j, x, i) · wi (i′) from forcing disagreement in the

current round. If wi (j, x, ki (o) + 1) is strictly largest, then it is optimal for player i to

approve with probability βi = 1. If wi (j, x, ki (o) + 1) is strictly smallest, then player i

will disapprove with probability one, i.e., βi = 0. In case wi (j, x, ki (o) + 1) =
∑

i′∈Nδ ·
ρi′ (j, x, i) · wi (i′), any randomization over approving and disapproving is optimal. In

particular, whenever player i is the last voter for a proposal x, he approves for sure if
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ui (a) >
∑

i′∈Nδ ·ρi′ (j, x, i) ·wi (i′). Whatever voting stage ki (o) player i is in, the expected
continuation utility

∑
i′∈Nδ · ρi′ (j, x, i) · wi (i′) of disapproving acts as a threshold.

6 Stationary subgame perfect equilibrium

The previous two sections revealed several issues that can be traced back to the possible

singularity of the recursive systems and the players’MDPs characterizing best responses

against stationary strategies. We have investigated both these issues in isolation. In this

section, we first address the implications for the game theoretic analysis in the negotiation

model, then we derive several useful results for applications and finally we investigate

vanishing cost of delay and quasi SSPE.

The definition of SSPE states that each player’s stationary strategy is a best response

given the stationary strategies of the other players. This means that we have an MDP for

each player and all MDPs together form the equilibrium conditions. The following propo-

sition follows trivially from the stationary MDPs that characterize the players’stationary

best responses.

Proposition 19 For δ ∈ [0, 1], the strategy profile σS is an SSPE if and only if, for each

player i ∈ N , there exists values w = (wi)i∈N such that

1. The optimality conditions (4) hold.

2. The recursive equations condition (5) hold.

3. Either equalizing condition (11) holds,

Or the minimality condition holds: wi is a minimal element of W i
(
σS,−i, δ

)
.

This result extends the standard approach to characterize SSPE under costly delay

to costless delay. Similar as in Section 5, we first state an additional result in case the

recursive equations are non-singular.

Corollary 20 If σS is a quasi SSPE and I −P S
(
σS, δ

)
is non-singular, then σS is SSPE.

For δ ∈ [0, 1), the recursive equations are non-singular on the entire domain of sta-

tionary strategies ΣS. We obtain that SSPE is equivalent to the conditions of optimality

and the recursive equations. For δ = 1, the same two conditions remain equivalent to

SSPE on the subdomain of stationary strategies ΣS for which the recursive equations are

non-singular, i.e., the subdomain of strategy profiles that exclude perpetual disagreement.
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Only in case the first two conditions return stationary strategy profiles that induce per-

petual disagreement, one of two additional conditions is required. The need of additional

conditions follows from our motivating examples and we forego repeating the arguments

in Section 5.

In many negotiation models in the literature there exists an alternative that is strictly

preferred to the status quo outcome by all players, i.e., the bargaining problem is essential,

and every recognized player can propose this alternative. Then, perpetual disagreement in

SSPE is impossible. Assuming an essential bargaining problem is too restrictive and does

not capture the utilities of Example 9. We formulate a weaker condition that is easy to

check.

Assumption 21 For each i ∈ N, there exists a proposal (a, o) ∈ X i such that ui (a) > 0

and uj (a) > 0 for all j ∈ C (o) .

This assumption includes all essential bargaining problems in case each player is al-

lowed to propose an alternative with positive utility for all players together with a decisive

coalition to approve this alternative, say N. Formally, for all i ∈ N , the essential bargaining
problem specifies some alternative a ∈ A for which uj (a) > 0 for all j ∈ N , and for some
order o with C (o) = N\ {i} we have that (a, o) ∈ X i. In Example 9, every recognized

player has two feasible proposals with positive utilities for some pair of players (includ-

ing the recognized player) that forms a decision coalition and zero for the third player.

Therefore, Example 9 also satisfies Assumption 21. We obtain the following result.

Proposition 22 Let Assumption 21 hold. Any SSPE strategy profile σS ∈ ΣS induces

a probability of perpetual disagreement equal to 0. Moreover, strategy profile σS ∈ ΣS is

an SSPE if and only if σS ∈ ΣS is a quasi SSPE that induces a probability of perpetual

disagreement equal to 0.

This result states that Assumption 21 rules out that SSPEs induce perpetual disagree-

ment. It implies that we may consider the subdomain of strategy profiles that exclude

perpetual disagreement. Under costless delay, this subdomain is no longer closed and this

is technically speaking unfortunate in deriving results about existence of equilibria. As Ex-

ample 9 shows, the set of SSPE may be empty. In this example, the optimality conditions

and recursive equations identify a unique strategy profile that induces perpetual disagree-

ment as a candidate for SSPE, but given that this example also satisfies Assumption 21,

this candidate fails as an SSPE by our last result.

Our results extend the equivalence result between SSPE and the one-stage-deviation

property in Alós-Ferrer and Ritzberger (2012), who assume no moves by nature, to our
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negotiation model. For δ ∈ [0, 1) and for δ = 1 and the subdomain of ΣS that consists of

stationary strategy profiles without perpetual disagreement, the expected utility function

U i
(
σS, δ

)
is lower semi-continuous in σS. In Alós-Ferrer and Ritzberger (2012) this is ex-

actly the condition under which the equivalence between SSPE and the one-stage-deviation

property is established.

Proposition 22 is of practical relevance. Under Assumption 21, the standard approach

of computing SSPEs from the conditions of optimality and the recursive equations, i.e.,

computing quasi SSPE, is always available. Either these return strategy profiles that

exclude perpetual disagreement and that automatically qualify as SSPE. Or, the conditions

return strategy profiles that induce perpetual disagreement and that obviously fail as SSPE.

An application of these insights is already conducted in Herings and Houba (2010). They

study negotiations among three players who are randomly recognized and the entire class

of non-negative utilities that give rise to a Condorcet paradox. Their results are derived

from the OSD property of Definition 7. They report two robust classes of probabilities

and utilities, one for which a generically unique SSPE exists and one where non-existence

prevails. In the former class, SSPE strategy profiles exclude perpetual disagreement and,

hence, the optimality conditions and the recursive equations suffi ce for SSPE according to

Proposition 22. In the latter class, the OSD property returns strategy profiles that induce

perpetual disagreement and that fail as SSPE.

It is common practice in bargaining theory to attach special meaning to the limit of

vanishing costly delay, see e.g. Binmore et al. (1986), or establish existence of limit pure

SSPEs, as in e.g. Muthoo (1991). We refer to the limit SSPE strategy profile after taking

the limit δ goes to 1 as a limit SSPE. The following results are immediate.

Corollary 23 If there exists a limit SSPE strategy profile that induces a probability of
perpetual disagreement equal to 0, then it is an SSPE under costless delay.

Corollary 24 If there do not exist SSPEs under costless delay, then all limit SSPEs strat-
egy profiles induce a probability of perpetual disagreement equal to 0.

The first result provides a condition that is relatively easy to verify, but it requires

computation of the set of SSPEs under costly delay first, which is impractical. As Example

9 shows, imposing Assumption 21 that excludes perpetual disagreement in any SSPE is

not strong enough in obtaining a limit SSPE without perpetual disagreement. Also, this

example has non-negative utilities, the key assumption in Flesch et al. (2010) for obtaining

existence of subgame-perfect ε-equilibrium for every ε > 0 for δ = 1. Recall that Herings

and Houba (2010) report two robust classes of probabilities and utilities, one for which a

generically unique SSPE under costless delay exists and one where non-existence prevails.
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The second corollary implies that, for the latter class, introducing costly delay and studying

limit SSPE is futile if one hopes to establish existence of SSPE under costless delay.

There are several general existence results under costly delay that establish non-emptiness

and upper-semi continuity of the set of SSPE strategies, see e.g. Banks and Duggan (2000,

2006) and Duggan (2011). In these references, the set of alternatives is continuous and so

are the utility functions, but the negotiation procedure is less general than in our model.

Our results are complementary. As in Duggan (2011), we do not impose any restriction on

the shape of the utility functions to obtain existence of SSPEs under costly delay. How-

ever, Example 9 also indicates that upper semi-continuity of quasi SSPE is not suffi cient

for limit SSPEs to be SSPE under costless delay. This insight is novel.

7 Discussion

In this section, we will demonstrate how to generalize our results. It turns out that our

assumptions and analysis capture the essence of very general models.

7.1 Related models

In this subsection, we illustrate how institutional aspects of several influential bargain-

ing models can be seen as special cases of the model specified in Section 2. We first

discuss the set of feasible proposals. In bilateral unanimity bargaining over a discrete

set of alternatives A,11 X i = {(a, (−i)) |a ∈ A} expresses that approval by the respond-
ing player −i 6= i is required. Unanimity bargaining can be modeled as X i ⊂ A ×
{o ∈ O|C (o) = N\ {i}} . The case of an exogenous voting order, say in ascending order, is
captured by: if (a, o) ∈ X i, then o = (1, . . . , i− 1, i+ 1, . . . , n). Majority approval implies

X i ⊂ A × {o ∈ O| |C (o) ∪ {i}| > n/2}, where voting orders are feasible if its voters plus
player i form a majority. In case player j is a veto-player, then x = (a, o) ∈ X i with i 6= j

implies j ∈ C(o). Or, in case player j is a dictator, then x = (a, o) ∈ X i with C (o) = {j}
for all i 6= j reflecting that other players may propose when being recognized but that

only the dictator is decisive, and x = (a, o) ∈ Xj implies C(o) = ∅, reflecting that j does
not require approval from the other players. These special cases can be easily extended to

general collections of decisive coalitions as in e.g. Baron and Ferejohn (1989) and Banks

and Duggan (2000, 2006).

In many coalitional negotiation models, the recognized player proposes a coalition and

an alternative from a set of feasible alternatives that may be coalition dependent. In our

11For example, in case of a smallest money unit in van Damme et al. (1990) and Muthoo (1991).
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framework, voting orders induce coalitions, and coalitions induce feasible sets of alter-

natives. Let A (C) ⊆ A denote the set of feasible alternatives coalition C is allowed to

propose. Then, X i ⊂ {(a, o) ∈ A×O|a ∈ A (C (o) ∪ {i})} captures such coalitional negoti-
ation models. Although we maintain the assumption that recognized players automatically

vote in favor, voting by recognized players requires only a minor modification of an addi-

tional voting stage in the multi-stage game, which is conceptually similar. For instance,

revoking a proposed alternative as in the bilateral bargaining game of Muthoo (1990) can

be modeled as if the recognized player casts the last vote and X i = A× {(−i, i)} .
We now turn to popular recognition rules in the literature. These are captured as

follows: The bilateral alternating-offers procedure imposes ρ2 (1, x, r) = ρ1 (2, x, r) = 1.

Fixed rotating orders of recognized players can be modeled similarly, for example the

infinitely-repeated order 1, . . . , n is captured by setting ρi+1 (i, x, r) = 1, where we write

i + 1 instead of i + 1 modn. Markov recognition probabilities are studied in Kalandrakis

(2004b), Britz et al. (2010) and Herings and Predtetchinski (2010, 2012). In this case,

the probability of player j being recognized in round t + 1 conditional on player i being

the proposer in round t is given by ρ̄i,j. We obtain Markov recognition probabilities by

setting ρj (i, x, r) = ρ̄i,j. Time-invariant recognition probabilities as in Binmore (1987) are

obtained as a special case in which all ρ̄i,j are independent of the recognized player i. Nohn

(2010) assumes Markov recognition probabilities that depend upon the proposed coalition

C (o) ∪ {i}, i.e., ρj (i, x, r) = ρ̄i,j (o). Duggan (2011) assumes such probabilities to depend

upon the proposed alternative a ∈ A, i.e., ρj (i, a, o, r) = ρ̄i,j (a). Our framework integrates

both formulations by allowing that such Markov recognition probabilities depend upon the

alternative, the proposed coalition and even the voting order through the proposal x ∈ X i,

i.e., ρj (i, x, r) = ρ̄i,j (x) . Finally, we consider coalitional negotiation models. The rejector-

becomes-proposer protocol in e.g. Selten (1981), Chatterjee et al. (1993) and Kawamori

(2013) is that player r becomes next round’s recognized player, i.e., ρr (i, x, r) = 1.

7.2 Extensions

Our negotiation model can also be extended by enlarging the state space S. Formally, let

Z, |Z| ≥ |S|, be a finite set of state variables and denote z ∈ Z. In each round t, the

state variable z ∈ Z is publicly observed and specifies player i ∈ N who is recognized

given this state, denoted by the function ι : Z → N . The set of feasible proposals becomes

X i (z) for i = ι (z), the utility of proposal x ∈ X i (z) becomes uj (x, z) for j ∈ N and

the transition probabilities become ρi (z, x, r). Such an expanded state space would lead

to a stationary Markov process. Stationary strategy profiles can be defined in the obvious

way on this state space and induce modified stationary Markov processes similar to those
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in Section 2.1. Once more, the crucial part of our analysis remains valid. For instance,

the conditions that ensure that the largest absolute value of eigenvalues of the matrix

with transition probabilities is less than 1 still requires that we do not have perpetual

disagreement.

Maintaining A is finite, the enlarged state space offers an amazing number of important

extensions.

1. Stochastic utilities, as in e.g. Merlo and Wilson (1995) and Duggan (2011). Then,

our analysis extends upon assumptions as costly delay, exogenously given public and

sequential voting, and recognition probabilities.

2. General coalitional bargaining procedures, as in Chatterjee et al. (1993), Bloch (1996)

and Bloch and Diamantoudi (2011) in which coalitions leave after they form. The

state indicates which coalitions have formed (and their members left the game) and

what they have agreed upon. The players who did not join any coalition continue

the negotiations among them. These procedures are especially important in market

situations such as two-sided matching models and roommate problems.

3. Multilateral contracting processes that allow coalitions of agents to renegotiate or

rewrite earlier contracts and to merge with other coalitions, as e.g. Gomes (2005).

The state indicates which coalitions have formed and what they agreed upon.

4. SPEs on the class of non-stationary strategy profiles that can be represented as finite

automata. As argued in e.g. Section 3.5 of Osborne and Rubinstein (1990), finite

automata cover most of the relevant strategy space in many negotiation models. The

state space Z then represents the virtual state space of finite automata.

5. The method proposed in Shaked and Sutton (1984). This method is widely applied

to establish lower and upper bounds on each player’s set of SPE utilities. If these two

bounds coincide for all players, we would have uniqueness of SPE utilities, otherwise

multiplicity. It corresponds to a class of automata with state space Z = S × N .

Then, the state z = (s, i) ∈ Z indicates which player i ∈ N is kept to his lowest

SPE payoff. Under costly delay, we obtain as an immediate result that these bounds

always exist. As argued in Houba and Wen (2014), this method might also be applied

to establish existence of SPE under costless delay in the model of Herings and Houba

(2010), especially for parameter values for which no SSPE exists.

Our main results imply that all these extensions can be accommodated for as long as the

extended stationary strategy profile excludes perpetual disagreement under costless delay.
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We do note, however, that the models under 2. and 3. involve at most a finite number

of state transitions involving non-zero utilities associated with the formation of smaller

coalitions during the negotiation process. This causes no technical problems, because the

expected total rewards remain bounded.

8 Concluding remarks

The main results show that the equilibrium analysis of strategic negotiation models un-

der costless delay exhibits important subtleties. The main messages are: the recursive

equations admit a unique solution under costless delay if and only if the strategy profile

excludes perpetual disagreement; the conditions of optimality and the recursive equations

are necessary for SSPE but insuffi cient; necessary and suffi cient conditions are provided

such that these conditions characterize SSPEs under costless delay. Furthermore, care

should be taken when one resorts to limits of stationary equilibria under vanishing costly

delay. Our motivating example of coalition formation shows a unique limit SSPE exists,

but it is not an SSPE under costless delay and under costless delay no SSPE exists at

all. The underlying logic of our results is robust and allows for straightforward extensions

to similar negotiation models and even SPEs in the class of strategy profiles that can be

represented by finite automata.

Alós-Ferrer and Ritzberger (2012) show that lower semi-continuity of all utility func-

tions in strategy profiles is necessary in order to have equivalence between the one-stage-

deviation property and SSPE. This identifies lower semi-continuity as a necessity for well-

defined problems. Such an approach might suggest to discard problems that lack this prop-

erty. However, restricting attention to classes of economic models that are well-defined in

this way, discards important applications such as e.g. the negotiation model under costless

delay. Our study offers an alternative approach in which the lack of lower semi-continuity

is acknowledged as a fact. Before conducting any equilibrium analysis, this lack is dealt

with by deriving necessary and suffi cient conditions that restore the equivalence between

the set of strategy profiles that satisfy the one-stage-deviation property and the set of

subgame perfect equilibria on a particular class of strategy profiles, stationary and finite

automata in our case. This will not automatically resolve the non-existence of subgame

perfect equilibrium, but it provides a systematic and sound approach that includes taking

care of neglected aspects. Also, our study emphasizes the importance of properly defining

the one-stage-deviation property.

Banks and Duggan (2000, 2006) and Duggan (2011) provide general existence results

for a class of negotiation models with sets of feasible alternatives that consist of continuous
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variables and discounting. They also establish non-emptiness and upper-semi continuity of

the set of SSPE strategies in the discount factor on the closed interval that includes costless

delay. So, the set of limit SSPEs as the discount factor goes to one is well defined. Such

properties also hold in our Example 9, the unique SSPE converges to some well-defined

limit, yet this limit fails to be SSPE under costless delay. The issues discussed in our study

are definitely not an artefact of assuming a finite set of alternatives. These issues also

show up in the multilateral contracting model of Gomes (2005) that has sets of feasible

alternatives that consist of continuous variables. In Section 4.2 of this reference, an example

is presented with a unique SSPE under costly delay. In the limit SSPE, the recognized

player passes the initiative with probability one and perpetual disagreement results. The

limit of the conditional expected SSPE utilities, however, exceeds that of the conditional

expected utility of perpetual disagreement, which is similar as in our coalition formation

example. Our results pin down what is going on: the limit SSPE should be seen as a

quasi SSPE that fails to be SSPE due to the lack of suffi ciency of the recursive equations

condition. Our study therefore provides important foundations for further research on sets

of feasible alternatives that consist of continuous variables.
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Appendix: Proofs

Proof of Theorem 5.
Throughout this proof δ ∈ [0, 1] is fixed and we suppress δ in our notation. The proof

consists of applying Kakutani’s fixed-point theorem to a mapping that maps any σS ∈ ΣS

and w = (w1, . . . , wn) ∈ Ū |S| into ΣS× Ū |S|. For i ∈ N , define the function f i : ΣS× Ū |S| →
[0, ūi]

|S| as f i(σS, w) = PA
(
σS
)
ui +P S

(
σS
)
wi. Since f i(σS, w) = PA(σS)ui +P S(σS)wi +

P q(σS)0 and, for every s ∈ S, the sum of all the components of row s of PA(σS), P S(σS),

and P q(σS) together is 1, it follows that (f 1(σS, w), . . . , fn(σS, w)) ∈ Ū |S|. By Lemma 1,
the function f i is continuous.

For given σS ∈ ΣS, in any state s ∈ Si active player i’s conditional best-response corre-

spondence Φi
s : ΣS × Ū |S| → ∆ (X i) if s = i and Φi

s : ΣS × Ū |S| → [0, 1] if s ∈ V i is

the set of maximizers of the linear program given by (4), where all of its coeffi cients in

the objective function are continuous in σS and w. By the Maximum Theorem for convex

programs, Φi
s

(
σS, w

)
is a non-empty, compact, convex-valued and upper semi-continuous

correspondence. Stacking all correspondences and functions together into the correspon-

dence Θ : ΣS × Ū |S| → ΣS × Ū |S| yields a correspondence that satisfies the conditions of
Kakutani’s fixed-point theorem. Hence, there exists a fixed point

(
σS∗, w∗

)
∈ ΣS × Ū |S|.

Finally, by construction of the correspondence Θ, each fixed point
(
σS∗, w∗

)
satisfies the

optimality conditions and the recursive equations and w∗ ∈ Ū |S|. So, each fixed point is a
quasi SSPE. �

Proof of Proposition 10 Part 3
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We first compute quasi SSPE and, afterwards, verify the OSD property. In any quasi

SSPE, recursive equations (5) translate into:

w = 2αβ− + α(1− β−)w− + (1− α)β+ + (1− α)(1− β+)w+, (12)

w+ = αβ− + α(1− β−)w + (1− α)(1− β+)w−, (13)

w− = α(1− β−)w+ + 2(1− α)β+ + (1− α)(1− β+)w, (14)

and the optimality conditions (4) translate into the following implications:

2β− + (1− β−)w− > β+ + (1− β+)w+ ⇒ α = 1, (15)

2β− + (1− β−)w− = β+ + (1− β+)w+ ⇒ α ∈ [0, 1], (16)

2β− + (1− β−)w− < β+ + (1− β+)w+ ⇒ α = 0, (17)

1 > w ⇒ β− = 1, (18)

1 = w ⇒ β− ∈ [0, 1], (19)

1 < w ⇒ β− = 0, (20)

2 > w ⇒ β+ = 1, (21)

2 = w ⇒ β+ ∈ [0, 1], (22)

2 < w ⇒ β+ = 0. (23)

Since every quasi SSPE has to satisfy all these relations, we analyze which values of

(α, β−, β+, w, w+, w−) satisfy (w,w+, w−) ∈ Ū , so in particular 0 ≤ w + w+ + w− ≤ 3

and (12)—(23). We establish the following claim first.

Claim: β+ = 1. Suppose not, then there is an equilibrium with β+ ∈ [0, 1). It follows by

(21) that w ≥ 2, which implies that w+ + w− ≤ 1, so by non-negativity both w+ and w−

are less than or equal to 1. Now (12) implies

2 ≤ w = 2αβ−+α(1−β−)w−+(1−α)β++(1−α)(1−β+)w+ ≤ α(1+β−)+(1−α) = 1+αβ− ≤ 2,

so both β− and α are equal to 1. Implication (20) yields that w ≤ 1, a contradiction to

w ≥ 2. Consequently, the claim β+ = 1 holds.

After substitution of β+ = 1 in (12)—(23), we establish a second claim.

Claim: α ∈ (0, 1]. Suppose to the contrary that α = 0. Now (14) implies that w− = 2, so

by (15) we obtain 2 = 2β− + (1− β−)w− ≤ 1, a contradiction.

We divide the remaining cases in six classes, and show that each one leads to a contradic-

tion, with the exception of class four.
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1. Suppose α ∈ (0, 1) and β− = 0. Using (15) and (17) we obtain that 1 = 2β− + (1 −
β−)w− = w−. Moreover, (12)—(14) lead to

w = 1, w+ = αw, w− = αw+ + 2(1− α),

so w+ = α and 1 = w− = α2 + 2(1 − α). Solving the last equation leads to α = 1, a

contradiction to α ∈ (0, 1).

2. Suppose α ∈ (0, 1) and β− ∈ (0, 1). The system of equations (12)—(14) is equal to

w = 2αβ− + α(1− β−)w− + (1− α),

w+ = αβ− + α(1− β−)w,

w− = α(1− β−)w+ + 2(1− α).

Adding up these equalities leads to

w + w+ + w− = α(1− β−)(w + w+ + w−) + 3αβ− + 3− 3α,

so w+w+ +w− = 3. From β− ∈ (0, 1), (18), and (20), we obtain that w = 1. Substitution

of w = 1 in (13)—(14) yields

w+ = α,

w− = α(1− β−)w+ + 2(1− α) = (1− β−)α2 + 2(1− α).

Adding up w, w+, and w− results in the equality 1 + α + (1 − β−)α2 + 2(1 − α) = 3, so

α = 1/(1− β−) > 1, a contradiction to α ∈ (0, 1).

3. Suppose α ∈ (0, 1) and β− = 1. Since β− = 1 we know from (20) that w ≤ 1. At the

same time we find using (12) that w = 2α+(1−α) = 1+α > 1, leading to a contradiction.

4. Suppose α = 1 and β− = 0. Substitution of α = 1 and β− = 0 into (12)—(14) implies

w = w+ = w−. Next, α = 1 and β− = 0 combined with (17) imply w− ≥ 1, and since

(w,w+, w−) ∈ Ū implies w + w+ + w− ≤ 3, we have w = w+ = w− = 1. It can be verified

that w = w+ = w− = 1, α = 1, β+ = 1 and β− = 0 satisfies (w,w+, w−) ∈ Ū and

(12)—(23).

5. Suppose α = 1 and β− ∈ (0, 1). Using the same derivation as in case 2, we find

that w + w+ + w− = 3. Since β− ∈ (0, 1), we find by (18) and (20) that w = 1, so by

(13) that w+ = 1. Since w + w+ + w− = 3, we find that w− = 1. However, by (14),

w− = (1− β−)w+ < 1, leading to a contradiction.

6. Suppose α = 1 and β− = 1. By (20) it follows that w ≤ 1, but by (12) it holds that

w = 2β− = 2, a contradiction.

Hence, we conclude that perpetual disagreement given by α = 1, β+ = 1 and β− = 0

together with w = w+ = w− = 1 is the unique quasi SSPE. Note that the restriction
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(w,w+, w−) ∈ Ū in Definition 4 excludes, in case 4, α = 1, β+ = 1 and β− = 0 with

w = w+ = w− > 1, which is discussed in the main text.

The derivation of strategy profiles for which the OSD property holds is similar, except

in case 4. There, an agreement is never reached, so v = v+ = v− = 0. Since α = 1, we find

by (17) that 0 = 2β− + (1− β−)v− ≥ 1, a contradiction. So, there are no strategy profiles

for which the OSD property holds. Hence, there are no symmetric SSPEs at δ = 1. �

Proof of Proposition 10 part 1 and part 2
For δ ∈ [0, 1), it holds that (α, β−, β+) forms an SSPE if and only if there is (w,w+, w−)

such that the conditions for quasi SSPE in Proposition 10 part 3 are satisfied when all w,

w+ and w− are replaced by δw, δw+ and δw−, except of course those on the left-hand side

of the recursive equations (12)—(14). Then, part 1 and 2 of Proposition 10 can be verified.

�

Proof of Proposition 11.
By (3), we have that

P S
(
σS, δ

)
vi
(
σS, δ

)
=

[ ∞∑
τ=2

P S
(
σS, δ

)τ−1

]
PA
(
σS, δ

)
ui = vi

(
σS, δ

)
− PA

(
σS, δ

)
ui.

By rewriting this equation, we obtain the stated result. �

Proof of Proposition 13.
By definition, P S

(
σS, δ

)
≥ 0 is a non-negative matrix with row sums of at most 1. So,

many standard results as in e.g. Solow (1952) (or the references therein) directly apply.

Let λ (M) denote the largest absolute value of eigenvalues of a square matrixM ≥ 0 whose

row sums are at most 1. Then, we have

1. λ
(
P S
(
σS, δ

))
∈ [0, 1] is real,

2. the sum
∑∞

t=0 P
S
(
σS, δ

)t
exists if and only if λ

(
P S
(
σS, δ

))
< 1,

3. if λ
(
P S
(
σS, δ

))
< 1, then the inverse

[
I − P S

(
σS, δ

)]−1
=
∑∞

t=0 P
S
(
σS, δ

)t
exists and

is non-negative.

For our negotiation model, 3 implies

vi
(
σS, δ

)
=

∞∑
τ=1

P S
(
σS, δ

)τ−1
PA
(
σS, δ

)
ui =

[
I − P S

(
σS, δ

)]−1
PA
(
σS, δ

)
ui,

and then the following result is immediate:

A. If λ
(
P S
(
σS, δ

))
< 1, then the unique solution of the recursive equations coincides with

vi
(
σS, δ

)
.
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The results in Solow (1952) relate conditions on λ
(
P S
(
σS, δ

))
to row sums associated

with the irreducible diagonal matrices P̃ee
(
σS, δ

)
of the finest decomposition of P S

(
σS, δ

)
.

Then, the following results, which are translated from Solow (1952), hold:

4. If all rows of P̃ee
(
σS, δ

)
sum to 1, then λ

(
P̃ee
(
σS, δ

))
= 1.

5. If at least one row sum of P̃ee
(
σS, δ

)
is strictly less than 1, then λ

(
P̃ee
(
σS, δ

))
< 1.

For our purposes, we slightly extend these results. The converse of 5 states:

5’. If λ
(
P̃ee
(
σS, δ

))
= 1, then all row sums of P̃ee

(
σS, δ

)
are at least 1.

Because all row sums of P̃ee
(
σS, δ

)
are bounded by 1, combining 4 and 5’imply the following

two results:

B. λ
(
P̃ee
(
σS, δ

))
= 1 if and only if all row sums of P̃ee

(
σS, δ

)
equal 1.

C. λ
(
P̃ee
(
σS, δ

))
< 1 if and only if at least one row sum of P̃ee

(
σS, δ

)
is less than 1.

With respect to the finest decomposition of P S
(
σS, δ

)
: Since the set of eigenvalues of

P S
(
σS, δ

)
is equal to the union over all e = 1, . . . , f of the set of eigenvalues of P̃ee

(
σS, δ

)
,

we have that λ
(
P S(σS, δ)

)
= maxe=1,...,f{λ(P̃ee

(
σS, δ

)
)}. Hence, λ

(
P S
(
σS, δ

))
< 1 if and

only if λ(P̃ee
(
σS, δ

)
) < 1 for all e = 1, . . . , f, if and only if at least one row sum of P̃ee

(
σS, δ

)
is strictly less than 1 for all e = 1, . . . , f . �

Proof of Proposition 17.
Given that δ < 1 is the standard case, we only provide a proof for δ = 1. Given stationary

strategies σS,−i, all of agent i’s best responses have to be optimal in a MDP with the ex-

pected total-reward criterion, where such MDPs are defined in e.g. Chapter 7 of Puterman

(1994). In this reference, the class of positive bounded models is defined as those MDPs

that have at least non-negative reward per round and a sum of expected rewards that is

bounded. In our negotiation model, the total rewards satisfy U i
(
σS, δ

)
∈ [0, ūi] because

player i only receives a non-negative utility at most once when the state moves from the

transient states S to an the absorbing states A∪{q} and otherwise receives utility of 0 per

round.

By Proposition 7.1.1 in Puterman (1994), for each s ∈ Si, the vector of optimal values
wi ∈ R|S| can be supported by a stationary strategy and we may restrict attention to such
strategies. By Theorem 7.1.3 in Puterman (1994), the value wi ∈ R|S| has to satisfy

wi (s) = supαi∈∆(Xi)

∑
x∈Xi αi (x) wi (i, x, 2) , s = i,

wi (s) = supβi∈[0,1] β
iwi (j, x, ki (o) + 1)

+(1− βi)
∑

i′∈Nδ · ρi′ (j, x, i) wi (i′) , s ∈ V,
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which can be separated into the optimality conditions (4) and the recursive equations (5).

Both existence and the necessary and suffi cient conditions then follow from combining

Proposition 7.2.1, Theorem 7.2.3 and Theorem 7.2.4 in this reference. These results estab-

lish that the optimal wi ≥ 0 additionally has to satisfy either the minimal vector of values

in W i
(
σS,−i, δ

)
, or lim sup

T→∞
P S
(
σS,i;σS,−i, δ

)T
wi = 0. �

Proof of Proposition 22.
Suppose not: σS is SSPE and induces perpetual disagreement. Then, vj

(
i;σS, δ

)
= 0 for

all i, j ∈ N . Consider the voting stages associated with the proposal (ai, oi) ∈ X i such

that ui (ai) > 0 and uj (ai) > 0 for all j ∈ C (oi) . The last voter of oi has a threshold

of 0. The optimality condition implies he approves ai with probability 1. The second-last

voter of oi also has threshold 0 and knows that his approval of ai followed by the last

voter’s approval will implement alternative ai, from which he derives positive utility. The

optimality condition implies the second-last voter in oi approves ai with probability 1.

By backward induction, in this SSPE with perpetual disagreement all voters in oi have

a threshold of 0 and will approve alternative ai with probability 1. So, player i as the

recognized player has a profitable one-stage deviation, namely propose (ai, oi) from which

he obtains ui (ai) > 0 with probability 1. This contradicts that σS is SSPE and induces

perpetual disagreement. �
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