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In the past, many refinements have been proposed to select equilibria in cheap 

talk games. Usually, these refinements were motivated by a discussion of how 

rational agents would reason in some particular cheap talk games. In this paper, we 

propose a new refinement and stability measure that is intended to predict actual 

behavior in a wide range of cheap talk games. According to our Average Credible 

Deviation Criterion (ACDC), the stability of an equilibrium is determined by the 

frequency and size of credible deviations. ACDC organizes the results from 

several cheap talk experiments in which behavior converged to equilibrium, even 

in cases where other criteria do not make a prediction.  
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1 Introduction 

Crawford & Sobel (1982) showed how meaningful costless communication 

between an informed Sender and an uninformed Receiver can be supported in 

equilibrium when Sender and Receiver’s preferences are not perfectly aligned.1 

Their seminal paper inspired many applications ranging from the presidential 

veto (Matthews, 1989), legislative committees (Gilligan & Krehbiel, 1990) and 

political correctness (Morris, 2001) to double auctions (Matthews & Postlewaite 

(1989); Farrell & Gibbons (1989)), stock recommendations (Morgan & Stocken, 

2003) and matching markets (Coles, Kushnir & Niederle, 2013). These cheap 

talk games are characterized by multiple equilibria which differ crucially in their 

prediction about how much information will be transmitted.  

Several refinements have been proposed to select an equilibrium in cheap talk 

games. Often, such refinements were based on an intuitive notion of how ration-

al players would reason in the context of a particular set of cheap talk games.2 

For instance, Farrell (1993) and Matthews, Okuno-Fujiwara & Postlewaite 

(1991) formulated refinements in which equilibria are discarded if they allow 

senders to submit credible deviating messages.3 Unfortunately, both Farrell’s 

neologism proofness and Matthews et al.’s (strong) announcement proofness 

criteria eliminate all equilibria in many games, including the original Crawford-

Sobel game.4 Several other types of concepts have been proposed that distin-

guish between stable and unstable equilibria (or profiles), such as Partial Com-

mon Interest (PCI) (Blume, Kim & Sobel, 1993), the recurrent mop (Rabin & 

Sobel, 1996) and No Incentive To Separate (NITS) (Chen, Kartik & Sobel, 
                                     
1 Much earlier, Schelling (1960/1980) discussed how costless communication could help play-

ers to coordinate when preferences are aligned (see in particular Chapter 4 and pages 120/121). 
Lewis (1969) showed that meaningful costless communication emerges in a separating equilibri-
um of a sender-receiver game where Sender and Receiver preferences are perfectly aligned. 

2 For a comprehensive review of Sender-Receiver games, see Sobel (2013). 
3 Standard signaling refinements such as Kohlberg & Mertens’ (1986) strategic stability have 

no bite in cheap talk games because messages are costless. 
4 Weak announcement proofness tends to eliminate too few equilibria. 
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2008). These criteria often select a plausible equilibrium in specific settings, but 

fail to discriminate successfully across a wider range of cheap talk games. 

In this paper, we propose a refinement that is intended to predict actual be-

havior in a wide range of cheap talk applications. Our Average Credible Devia-

tion Criterion (ACDC) is based on credible deviations but allows for a continu-

ous instead of a binary stability concept. Its main contribution to the literature 

is that it makes a prediction in many games and that its predictions are validat-

ed by experimental evidence. 

ACDC takes as a point of departure the theory of credible neologisms (Far-

rell, 1993). This theory stipulates conditions under which a message inducing a 

deviation from equilibrium is credible and thus upsets the equilibrium. The 

current approach is to assume that all equilibria that admit credible deviations 

are equally unstable. ACDC, however, assumes that the stability of an equilibri-

um is a decreasing function of its Average Credible Deviation (ACD), a measure 

of the frequency and intensity of credible deviations. The ACD measures the 

mass of types that can credibly deviate and the size of those induced deviations 

(as measured by the difference in Sender payoff between the equilibrium and 

deviating action). Comparable equilibria will perform better if they have a lower 

ACD on this account. In particular, we call an equilibrium that minimizes the 

ACD in a game an ‘ACDC equilibrium.’ This allows us to select equilibria, even 

in games where no equilibrium is completely stable. 

We think ACDC provides an intuitive solution to the equilibrium selection 

problem for cheap talk games. Humans occasionally make errors, which implies 

that behavior is seldom completely in a deterministic equilibrium. In the context 

of a standard Crawford-Sobel game, we show that the predictions of ACDC are 

supported by a simple ‘neologism dynamic’. The neologism dynamic is a best-

response dynamic that allows Senders to send credible neologisms when an 

equilibrium is reached.5  

                                     
5 Quantal response equilibrium (McKelvey & Palfrey 1998) provides an alternative approach 

to account for the possibility that people sometimes err. Unlike ACDC, it is typically not 
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Existing criteria like neologism proofness, announcement proofness, and many 

of the other cheap talk refinements impose a neat binary distinction between 

stable and unstable equilibria. Whereas such a binary criterion is appropriate for 

rational agents, it may unnecessarily lose predictive power when applied to 

human behavior. ACDC solves this problem in two ways. It is able to select 

among equilibria in a wide range of games and it provides a continuous stability 

measure for each equilibrium. 

We derive the following results. First, we show that an ACDC equilibrium 

exists under general conditions. In all applications we have come across, there is 

a unique ACDC equilibrium. Second and more importantly, the predictions of 

ACDC are validated by existing experiments. Wherever experimental evidence 

exists, the predictions of ACDC are in line with the data in two ways. First, if 

outcomes are consistent with some equilibrium, it is most likely to be consistent 

with the ACDC equilibrium. Second, comparing outcomes between games, 

behavior is more likely to be consistent with the ACDC equilibrium the lower its 

ACD. In this way, ACDC performs at least as well as other criteria, if they are 

predictive. In addition, it also makes predictions when other criteria are silent.  

We show that ACDC selects the unique maximum size equilibrium in the 

leading uniform-quadratic case of the Crawford-Sobel game for a large range of 

bias parameters. Until now, only NITS was able to select this equilibrium in the 

Crawford-Sobel setting (Chen, Kartik & Sobel, 2008). In addition, the maximum 

size equilibrium becomes more stable as the bias parameter becomes smaller 

according to ACDC, which is not predicted by existing criteria. Both results are 

supported by experimental work on (discrete) Crawford-Sobel games (Dickhaut, 

McCabe & Mukherji (1995), Cai & Wang (2006), Wang, Spezio & Camerer 

(2010)). 

Furthermore, we find that ACDC organizes the main features of the experi-

mental data of the discrete games analyzed by Blume, DeJong, Kim & Sprinkle 

                                                                                                           
selective in cheap talk games because the pooling equilibrium is always a (limiting principal 
branch agent) quantal response equilibrium. 
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(2001), originally intended to test the Partial Common Interest criterion. Final-

ly, ACDC is also successful in organizing the results of De Groot Ruiz, Offerman 

& Onderstal (2014). In that paper, we test the predictions of ACDC in a class of 

veto-threat games introduced in De Groot Ruiz, Offerman & Onderstal (2012). 

The data corroborate the predictions of ACDC. The ACDC equilibrium per-

forms better in games where its ACD is smaller. In addition, in each treatment 

the ACDC equilibrium predicts best, also in games where all other criteria do 

not select a unique equilibrium.  

This paper has the following structure. In section 2, we motivate, define and 

illustrate ACDC. In section 3, we apply ACDC to the Crawford-Sobel uniform-

quadratic model and compare it to other concepts in this framework. In section 

4, we review existing experimental evidence on the Crawford-Sobel game in the 

light of ACDC and the neologism dynamic. In section 5, we discuss other exper-

imental evidence on ACDC. Finally, section 6 concludes. 

2 Motivation, Definition, Properties, and Applica-

tions 

2.1. Motivation 

Applied theorists who analyze strategic information transmission face the 

following problem when they analyze a new cheap talk game. The model is 

likely to have several equilibria and so one would like a concept that selects the 

most plausible equilibrium, that tells one how stable that equilibrium is, and 

that is validated by experimental data. However, currently chances are high that 

one will not find such a concept for the new cheap talk game for two reasons.  

First, existing selection criteria tend to select an equilibrium in specific clas-

ses of games but not in all relevant applications. Neologism proofness (Farrell, 

1993) and announcement proofness (Matthews, Okuno-Fujiwara & Postlewaite, 

1991) provide a strong intuition and make meaningful predictions in specific 
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simple discrete games. However, they fail to select an equilibrium in many 

applied settings, such as that of Crawford and Sobel (1982). In contrast, NITS is 

very effective in selecting equilibria in the Crawford-Sobel model (Chen, Kartik 

& Sobel, 2008). The predictions by NITS are to some extent in line with exper-

imental evidence on the Crawford-Sobel model (Dickhaut, McCabe & Mukherji 

(1995); Cai & Wang (2006); Wang, Spezio & Camerer (2010)). If subjects 

behave according to any equilibrium, it is the most informative equilibrium, as 

predicted by NITS. However, in other games, NITS is often not defined, as we 

will discuss in section 3. PCI has shown to make a prediction which is borne out 

by experimental data in particular discrete games (Blume, DeJong, Kim & 

Sprinkle, 2001), but does not select a partition in many continuous settings, 

such as that of Crawford-Sobel. 

Second, even if current concepts select an equilibrium, they do not tell how 

stable it is, although experimental evidence suggest there is a considerable 

degree of variation in the stability of cheap talk equilibria. For instance, experi-

ments on (discrete versions of) the Crawford-Sobel game show that the NITS 

equilibrium indeed performs best, but that behavior is less likely to be con-

sistent with the equilibrium outcome when the bias parameter increases. 

Game A in Table 1 illustrates these two issues of selection and stability. In 

Game A, the Sender sends a costless message m to the Receiver, who then takes 

an action from the set 1 2 3 4 5{ , , , , }.a a a a a 6 The payoffs for both players depend on 

the Receiver’s action and the Sender’s type. The Sender’s type is private infor-

mation and is 1t  or 2t  each with probability (1 )/2δ−  and 3t  with probability 

.δ  

 

                                     
6 We will refer to the Sender as a ‘she’ and the Receiver as ‘he.’  
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TABLE 1
GAME A

 1a  2a  3a  4a  5a  

  1t  ( 1
2
δ− ) 1, 4 0, 0 0, 0 0, 0 2, 4 – δ    

  2t ( 1
2
δ− ) 0, 0 0, 2 + δ  3, 0 4, 2 2, 1 

  3t  (δ ) 0, 0  0, 0 2 + ε, 3 2, 2 1, 1 
Notes: The left column shows the Sender’s type and between brackets the 

probability that it is drawn. The top row shows the Receiver’s actions. The 
remaining cells provide the Sender’s payoff in the first entry and the Receiver’s 
payoffs in the second entry. 1

30 δ< < and 0 1.ε≤ <  

 

Game A has two equilibrium outcomes, one resulting from pooling and the other 

from partial separating.7 We say a type t induces action a if the Receiver always 

takes action a after any message t sends in equilibrium. In the pooling equilibri-

um, all Senders induce 5.a  In the partially separating equilibrium, 1t  induces 

1,a  whereas 2t  and 3t  induce 4 .a  

What do credible neologisms (Farrell, 1993) do in this game? Neologisms are 

out-of-equilibrium messages which are assumed to have a literal meaning in a 

pre-existing natural language.8 Farrell considers neologisms which literally say: 

“play action ,a�  because my type is in set N.” Farrell deems a neologism credible 

if and only if (i) all types t in N prefer a� to their equilibrium action ( )tα , (ii) 

all types t not in N prefer their equilibrium action ( )tα  to a� and (iii) the best 

reply of the Receiver after restricting the support of his prior to N is to play .a�  

We will denote neologisms by , .a N�  According to Farrell, credible deviations 

lead rational players to deviate from equilibrium. An equilibrium is neologism 

proof, and stable on this account, if and only if it does not admit any credible 

neologism.  

                                     
7 In the remainder of the text, we will slightly abuse terminology by referring to these equi-

librium outcomes as ‘the pooling equilibrium’ and ‘the partially separating equilibrium’ respec-
tively.  

8 See Blume, DeJong, Kim & Sprinkle (1998) and Agranov & Schotter (2012) for studies on 
the role of natural language in cheap talk games. 
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If 0,ε =  neologism proofness provides a compelling reason why the partially 

separating equilibrium is more plausible than the pooling equilibrium. The 

pooling equilibrium admits the credible neologism 4 2 3, { , } .a t t  Hence, it is likely 

to be unstable as types 2t  and 3t  can credibly separate themselves from 1.t  On 

the other hand, the partially separating equilibrium is neologism proof: it admits 

no credible neologisms and is stable. For 0,ε >  a key limitation of neologism 

proofness becomes evident. In this case, the partially separating equilibrium also 

admits a credible neologism, to wit 3 3, { } .a t  This leaves us with no stable 

equilibrium and no prediction. For entirely rational agents, the fact that neither 

equilibrium is stable might be all there is to be said. When explaining or pre-

dicting human behavior, however, we feel we can go further.9 

In game A, even though the partially separating equilibrium is not entirely 

stable, it seems more plausible than the pooling equilibrium if either 3t  is 

infrequent (δ  small) or 3t  has a very small incentive to deviate (ε  small). If δ  

is small, then the partially separating equilibrium will be upset with a small 

probability, whereas the pooling equilibrium will be upset almost half of the 

time. Similarly, if ε  is small, then 3t  has a small incentive to deviate in the 

partially separating equilibrium and may choose to stick to it, lest she be mis-

understood and get a payoff lower than she gets by sticking to equilibrium. 

Hence, we would expect to observe behavior close to the partially separating 

equilibrium more frequently than behavior close to the pooling equilibrium. This 

implies two things. First, it may be possible to select the most plausible equilib-

rium in a game, even though no equilibrium exists that is entirely stable. Sec-

ond, to describe behavior in a cheap talk game one needs a continuous stability 

measure and not just a binary criterion.  

                                     
9 We consider equilibrium to be most meaningful in a dynamic context, where members of a 

group interact frequently with different other members. In this context language evolves and 
behavior is shaped by strategic forces in the direction of equilibrium. For a one-shot game 
between rational individuals without social information, an approach based on rationalizability 
and some focal meaning of messages, such as that in Rabin (1990), may be appropriate. 
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2.2. Definition and General Results 

Our intuition is that, from a behavioral perspective, the stability of an equilibri-

um is a decreasing function of the average intensity of the credible deviations it 

admits. This depends, firstly, on the mass of types that can credibly induce a 

deviation and, secondly, on the intensity of the deviation, measured by the 

incentive the Sender has to deviate. As a consequence, if the deviating mass and 

the induced deviations from equilibrium are small, the equilibrium is likely to be 

a good predictor of behavior. We formalize this intuition in the ACDC criterion. 

We first provide a definition of ACDC and apply it to the Crawford-Sobel game 

in the following section. 

We define ACDC in the following context. Nature draws the Sender type t 

from probability density f on T, where T is a compact metric space. The Sender 

then privately observes her type t and chooses a costless message ,m M∈  where 

M represents the set of available messages. After having observed the Sender’s 

message, the Receiver chooses an action ,a A∈  where A is a compact metric 

space. 10  Let :RU A T× → \  be the utility function of the Receiver 

:SU A T× → \  that of the Sender. We assume both are bounded from above 

and below. A strategy for the Sender consists of a function : ,T Mμ →  and a 

strategy of the Receiver is a function : .M Aα →  Let SΣ  be the set of Sender 

strategies and RΣ  the set of Receiver strategies. Let { , }μ α  be a strategy profile 

and Σ  the set of all strategy profiles. Finally, let the Receiver have prior beliefs 
0( ) ( ).t f tβ =  A pure strategy perfect Bayesian equilibrium (henceforth just 

‘equilibrium’) { , , }σ μ α β=  is characterized by the following three conditions: 

 

                                     
10 This representation allows for T and A to be de facto discrete, by allowing US and UR to be 

constant on regions of the type and outcome space. 
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μ α∈∈ ∈For each , ( ) arg max ( ( ), )S
m Mt T t U m t   

(1) βα ∈∈ ∈ ∫For each , arg ma( ) ( )x , ) ( |a
R

T
Am U a t t m dtm M   

 

where ( | )t mβ  denotes the Receiver’s posterior beliefs, which is derived from μ  

and 0β  using Bayes’ rule wherever possible.  

Let ∗Σ  be the set of equilibria. ACDC provides a stability measure and a se-

lection criterion for equilibria in .∗Σ  The starting point of ACDC is Farrell’s 

(1993) theory of credible neologisms. Recall that a credible neologism, denoted 

by , ,a N�  satisfies the following properties: (i) all types t in N prefer a�  to their 

equilibrium action ( ),tα  (ii) all types t not in N prefer their equilibrium action 

( )tα  to a�  and (iii) a�  is the Receiver’s best response after restricting the type 

support to N. Following Farrell (1993), we assume that players have access to 

some ‘natural language’ that allows Senders and Receivers to agree on the 

meaning of out-of-equilibrium messages. An equivalent assumption is that the 

players have learned to coordinate on common interpretations of initially ab-

stract messages.11 

We associate a deviating profile ( ) ( )( ) { , }γ σ γ σγ σ μ α= ∈ Σ  with each equilibri-

um { , , }σ μ α β=  where ( )( ,)t a Nγ σμ = �  if type t can send credible neologism 

,a N�  relative to ,σ 12 and ( )( )t aγ σα = � . If a type t is not part of a credible 

neologism relative to ,σ  then ( )( ) ( )t tγ σμ μ=  and ( ) ( )( ) ( ),t tγ σα α μ=  i.e., ( )γ σ  

indicates that those Sender types stick to their equilibrium message and the 

Receiver to the corresponding equilibrium action. So, ( )γ σ  specifies firstly which 

Sender types would deviate and in which way (by sending credible neologisms 

                                     
11 Blume (1996) shows that in cheap talk games with a finite type space (an assumption that 

is typically satisfied in experimental cheap talk games), a dynamic process based on perturbed 
games converges to effective communication under a ‘rich language’ condition (which may or 
may not be satisfied in the laboratory). Blume et al. (1998) present experimental evidence on 
how meaningful communication may evolve in the sense that a priori meaningless messages 
become informative over time. 

12 We assume that if a type can send multiple neologisms, she sends the neologism that gives 
her the highest payoff. 
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according to message strategy ( )γ σμ ), and secondly, how the Receiver would 

react (by responding to credible neologisms according to ( )γ σα ). Note that if an 

equilibrium { , , }σ μ α β=  is neologism proof, no type can send a credible neolo-

gism so that ( ) ( , ).γ σ μ α=  

For simplicity, we define ACDC for pure strategies. The definition of ACDC 

can be straightforwardly extended to also incorporate Receiver mixed strategies. 

Allowing for Sender mixed strategies is more problematic because by doing so 

any equilibrium outcome could be implemented by a strategy where the Sender 

uses all possible messages, leaving no room for neologisms. Farrell (1993) argues 

that in a setting with a natural language it is implausible for the Sender to 

randomize over messages. We follow Farrell (1993) by assuming that sufficiently 

many unused out-of-equilibrium messages exist so that any subset of types that 

wishes to induce the Receiver to play an out-of-equilibrium action is able to 

send a neologism (see also Matthews et al. (1991)). If Senders play pure strate-

gies and if Sender types who induce the same equilibrium action use the same 

message, a sufficient condition for sufficiently many out-of-equilibrium message 

to exist is that the cardinality of M is at least as great as the cardinality of A. 

In that case, for any action the Receiver does not use in equilibrium, the Sender 

has an unused message available she could use to induce the Receiver to play 

that action. 

Let †Σ  be the set of rationalizable strategy profiles. Then, 

( )( )
†{ , }

( ) inf , ( )S SU t U t t
α μ

α μ
∈Σ

≡  and ( )( )
†{ , }

( ) sup , ( )S SU t U t t
α μ

α μ
∈Σ

≡   are the lowest 

and highest rationalizable payoff for Sender type t. Now, we measure the intensi-

ty of type t’s credible deviation as 

 

 (2)  
( ) ( )( ) ( ), ( ( )) , ( ( ))

( , )
( ) ( )

S S

S S

U t t U t t
CD t

U t U t

γ σ γ σα μ α μ
σ

−
≡

−
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if ( ), ( ( )) ( ).S SU t t U tα μ >  If ( ), ( ( )) ( ),S SU t t U tα μ =  then ( , ) 1,CD t σ ≡  as in this 

case the Sender has no incentive to adhere to her equilibrium strategy. 
( , )CD t σ  captures the likelihood of type t deviating from her equilibrium 

strategy. It has the desirable properties that it is 

- invariant to affine transformations of payoffs; 
- increasing in the difference between the deviating and equilibrium payoff. 

Additionally, it is increasing in the lowest rationalizable payoff. We believe 

this to be a desirable as the lowest rationalizable payoff measures how risky it is 

to deviate from equilibrium for the Sender. Finally, we think it is convenient to 

normalize it so that it is 0 if the difference between deviating and equilibrium 

payoff is zero and 1 if the difference between deviating and equilibrium payoff is 

maximal. Even though we think our specific normalization is very natural 

because it makes the measure invariant to affine transformations of payoffs, we 

are aware that there are other ways in which the incentive to send a neologism 

could have been normalized. We acknowledge that the specific implementation 

of the normalization term is important because it may affect the predictions 

from the theory. 

We define the Average Credible Deviation (ACD) of an equilibrium σ  as: 

 

(3)  ( ) [ ( , )]tACD E CD tσ σ=  

 

Based on the ACD, we formulate the ACD-Criterion (ACDC), which says that 

an equilibrium σ∗  will on average predict better than equilibrium σ  if 

( ) ( ).ACD ACDσ σ∗ <  In particular, based on ACDC we can formulate the 

following selection criterion: 

 

Definition 1 An equilibrium σ∗  is an ACDC equilibrium if 

( ) ( )ACD ACDσ σ∗ ≤  for all .σ ∗∈ Σ  
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Note that this selection criterion selects the equilibrium that will predict best on 

average rather than the equilibrium that will always be played. A simple impli-

cation is that if σ  is neologism proof, it is an ACDC equilibrium. 

Observe that if weakly dominated Receiver actions are added to the game, 

( , )CD t σ  may be affected and, in turn, the ACDC predictions may change. At 

this moment, we cannot tell whether this is a good or bad feature of our criteri-

on. We are not aware of existing experiment evidence that would allow us to 

test if behavior changes in the right direction when weakly dominated Receiver 

actions are added to the game.13 

The following result is immediate. 

 

Proposition 1 If the number of equilibrium outcomes is finite, the cheap talk 

game has an ACDC equilibrium. 

 

Hence, existence of an ACDC equilibrium is guaranteed by a finite set of equi-

librium-outcomes. This is a relevant result, as Park (1997) has shown that finite 

Sender-Receiver games have a finite set of equilibrium outcomes under generic 

conditions. Before, Crawford and Sobel (1982) showed a similar result for their 

setting with a continuous type-space. Even if games do not have a finite out-

come set, mild conditions can be formulated in order to guarantee existence of 

an ACDC equilibrium: 

 

Proposition 2 Let s be an equilibrium outcome and ( )ACD s  the ACD of equi-

libria inducing s. Suppose the equilibrium outcome set S can be represented by a 

finite union of compact metric spaces ,ii N
S S

∈
=∪  such that ( )ACD s  is continu-

ous in s on all subsets .iS  Then, an ACDC equilibrium exists. 

                                     
13 If future experiments indicate that adding weakly dominated Receiver actions does not 

affect behavior, in contrast to what ACDC would predict, the ACDC definition can be straight-
forwardly adapted by defining it on the basis of the game that results when all weakly dominat-
ed Receiver actions are eliminated. This would not change any of the results in this paper 
because the Receiver does not have weakly dominated actions in any of the games that we study. 



 

13 
 

Proof ( )ACD s  achieves a minimum on each compact subset iS  and thus on 

S. Hence, min ( )ACD σ∗Σ
 is nonempty and an ACDC equilibrium exists. Q.E.D. 

 

Proposition 2 is informative for continuous games for which the equilibrium 

outcome set is known but not finite. This proposition implies that continuous 

games with an equilibrium set consisting of partition equilibria that are well-

behaved with respect to their ACD will have an ACDC equilibrium.14 For 

instance, the class of continuous veto-threats games we introduce in De Groot 

Ruiz, Offerman & Onderstal (2012) has an infinite equilibrium outcome set that 

meets the conditions of Proposition 2. 

We conclude this subsection with a motivation as to why we use Farrell’s 

(1993) theory of credible neologisms to construct the deviation profile γ  instead 

of (weak/strong) credible announcements as introduced by Matthews, Okuno-

Fujiwara & Postlewaite (1991). We agree with the observations in Matthews, 

Okuno-Fujiwara & Postlewaite (1991) about the limitations of credible neolo-

gisms for rational agents. However, the motivation behind ACDC is to predict 

behavior and explain experimental data. Hence, our aim is somewhat different 

from that of most of the credible deviations literature, of which the main con-

cern is to establish what would be credible from a rational perspective. In our 

view, the simplicity of credible neologisms makes it the most apt to describe the 

behavior of boundedly rational individuals. 

2.3. Applying ACDC 

We will now apply ACDC to Game A in Table 1. In a discrete game, the ACD 

of a pure equilibrium σ  (with a pure ( )γ σ ) reduces to 

                                     
14 An equilibrium of a game with a one-dimensional type and action set is a partition equilib-

rium if there exists a partition 0 1 1n nt t t t−< < <<"  of T such that each type in 1[ , ]i it t−  
induces action ia  with 1 2 ... .na a a< < <  Hence, a partition equilibrium is characterized by a 
vector 1,..., )( na a a=  and a partition equilibrium outcome set can be represented by a finite 
union of subsets of 1,..., .n\ \  
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where ( )f t  is type t’s prior probability. Recall that in Game A in the pooling 

equilibrium, all Senders induce 5a  and 4 2 3, { , }a t t  is the unique credible neolo-

gism. Hence, the ACD of the pooling equilibrium is (1 ) (4 2)
2 4 0
δ− −

+
−

2 1
2 0

δ
ε
−

=
+ −

1 2
.

4 8 4
ε

δ
ε

−
+

+
 In the partially separating equilibrium 1t induces 

1,a  whereas 2t  and 3t  induce 4a  and 3 3,{ }a t  is admitted. Hence, the ACD of 

the partially separating equilibrium is 
(2 2)

.
2 0 2

ε δε
δ

ε ε
+ −

=
+ − +

 It is readily verified 

that the pooling equilibrium’s ACD is greater than the partially separating 

equilibrium’s so that the latter is the ACDC equilibrium. In addition, the ACD 

of the partially separating equilibrium goes to zero if δ  or ε go to zero. Finally, 

even though the partially separating equilibrium is the ACDC equilibrium, if δ  

or ε become large, it becomes less stable because a type can deviate frequently 

or deviations have a high intensity. 

3 Crawford-Sobel Game 

In this section, we apply ACDC to the leading uniform-quadratic case of Craw-

ford & Sobel’s (1982) cheap talk game (henceforth ‘CS game’). We compare its 

predictions to those of existing refinements. 

In the CS game, types are uniformly distributed on [0,1], the action space is 

[0,1], ( )2( , )RU a t a t=− −  and ( )2( , ) ( ) ,SU a t a t b=− − +  with 0b >  capturing 

the Sender bias. Crawford & Sobel (1982) show that this game only has (perfect 

Bayesian) partition equilibria and that the maximum equilibrium size ( )n b  is the 

largest integer n for which  
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(2)  2 ( 1) 1.n n b− <   

 

The game has a unique size-n equilibrium for each {1,..., ( )}.n n b∈  Let 

 

(3)  2 ( ).n
i

i
t bi n i

n
≡ − −   

 

for 0,...,i n=  and 1,..., ( ).n n b=  In the size- n  equilibrium, types in 1[ , )n n
i it t−  

send the same equilibrium message, which induces the Receiver to choose action  

 

(4)  1

1
( ),

2
n n n
i i ia t t−= +  1,...,i n= . 

 

We start by deriving all credible neologisms the equilibria admit. For each 

credible neologism , ,a N�  the set of deviating types N  turns out to be an 

interval between some τ  and .τ  Hence, we can characterize neologisms by [ , ]τ τ  

alone, since the Receiver’s best response is .
2

a
τ τ+

=�  An equilibrium can 

admit three types of credible neologisms. First of all, there may be a credible 

neologism which includes 0.t =  If this credible neologism exists, then it has the 

shape 0[0, )nτ  where  

 

( )0 1

2 4 1 2
1 .

3 3 3 3
n na b b n

n
τ = − = − +   

 

Chen, Kartik & Sobel (2008) show that an equilibrium that fails NITS has a 

credible neologism of this kind and prove that only the size- ( )n b  equilibrium 

satisfies NITS. Hence, the credible neologism 0[0, )nτ  exists if and only if 

( ).n n b<  
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Second, Farrell (1993) shows that if 1
,

2
b <  the game has a credible neologism 

on the right-end of the type space of the form ( ,1]n
nτ  where 

 

1 2
1 ( 1).

3 3
n
n b n

n
τ = − − +  

 

Finally, if {2,..., ( ) 1},n n b∈ −  there are 1n −  credible neologisms “in the mid-

dle.” These take the form ( , )n n
i iτ τ  for 1,..., 1,i n= −  where n

iτ  [ ]n
iτ  is indiffer-

ent between the equilibrium action n
ia  1[ ]n

ia +  and the neologism action 

( ) / 2.n n n
i i ia τ τ= +�  We obtain for 1,..., 1 :i n= −  

 

(5) 

1

3 1
2

4 4
n n n
i i ia a bτ += + −  and  

1

1 3
2 ,

4 4
n n n
i i ia a bτ += + −  

 

If ( ),n n b=  the game has the same types of credible neologisms “in the middle,” 

with the exception that the neologism ( )( ) ( )
1 1,n b n bτ τ  need not exist.15 Observe that 

1
n n
i iτ τ− <  for 1,..., ,i n=  so that none of the credible neologisms overlap. Figure 

1 illustrates the results for 
1

.
18

b =  

It seems intuitive that the highest size equilibrium is the ACDC equilibrium, 

since the deviations seem to get smaller and smaller as the size increases. This 

indeed turns out to be the case. Although one can obtain analytical results for 

the ACD for specific parameter values, finding the ACDC equilibrium for  

                                     
15 If (and only if) 22 ( ) 1,bn b ≥  there is no credible neologism of the form ( ) ( )

1 1( , )n b n bτ τ  because  

( )( ) ( ) ( ) 2
1 1 2

3 1 3
2 2 ( ) 1 0,

4 4 4 ( )
n b n b n ba a b bn b

n b
τ = + − =− − ≤  which is inconsistent with all types 

being in the interval [0,1] or the interval ( ) ( )( ) ( ) ( )
1 1 1, 0,n b n b n btτ τ =  being a neologism. 
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general b  defies an analytical approach. Hence, we calculated the ACD for a 

very fine grid of b  and obtain the following result.  

 

Proposition 3 For all 
1 2 1

, ,...,
10000 10000 4

b
⎧ ⎫⎪ ⎪⎪ ⎪∈ ⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

 it holds that the ACD of the 

size-n equilibrium in the CS game is decreasing in n.  

Proof See the Appendix. 

Corollary 1 For all 
1 2 1

, ,..., ,
10000 10000 4

b
⎧ ⎫⎪ ⎪⎪ ⎪∈ ⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

 the size-n(b) equilibrium is the 

unique ACDC equilibrium of the CS game.  

 

We also derive the following property of the maximum size equilibrium (for 

which we do not need to calculate the ACD’s for each b): 

 

Proposition 4 The ACD of the size-n(b) equilibrium tends to zero if b tends 

to zero in the CS game.  

Proof Let ( )( ) n b
bbσ σ≡  be the maximum size equilibrium for b. Then,  
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4 lim ( ) 4 lim 0

( ) 42 / 1 1b b
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⎛ ⎞⎟⎜ + + ⎟⎛ ⎞ ⎜ ⎟⎜⎟⎜ ⎟⎟≤ ⋅ + + ≤ ⋅ + + =⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟⎜ ⎜⎝ ⎠ ⎟+ −⎜ ⎟⎟⎜⎝ ⎠
 

Equality 1 follows from the specification of SEU  in Crawford & Sobel (1982). 

Inequality 2 follows from 1 1
2 2 2 / 1 1( )n b b⎡ ⎤+⎢⎢= + −⎥⎥  due to (2). The other 

manipulations are straightforward. Q.E.D.  
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Hence, the ACD of the maximum size equilibrium converges to zero if b ap-

proaches zero, i.e. if the interests of the players are almost perfectly aligned. 

This finding is intuitive because the Sender obtains almost her ideal outcome 

when b  is close to zero, so she will not gain much in the case of deviation, and 

even if she deviates, the deviation will hardly change the Receiver’s action. 

We can now compare ACDC with other criteria. First of all, neologism proof-

ness does not make a prediction: all equilibria admit credible neologisms and are 

thus unstable. Matthews, Okuno-Fujiwara & Postlewaite (1991) refine neologism 

proofness with three progressively stronger stability criteria: weak, ordinary and 

strong announcement proofness. Weak announcement proofness eliminates all 

equilibria for the same reasons as neologism proofness. Ordinary announcement 

proofness also tends to eliminate all equilibria and sometimes selects an unintui-

tive equilibrium. For instance, if ( )1 1
24 16, ,b ∈  it selects the pooling equilibrium 

and eliminates the size-2 and size-3 equilibrium.16 Strong announcement proof-

ness fails to select an equilibrium as it eliminates no equilibrium.  

Rabin & Sobel (1996) propose the recurrent mop criterion, which can select 

equilibria that, although not impervious to credible deviations, are likely to 

recur in the long run, because they are frequently deviated to. The authors 

restrict their definition of the recurrent mop to games with a finite number of 

actions as it may run into problems in continuous games, amongst others be-

cause the deviation correspondence may not converge in these settings. 

Blume, Kim & Sobel (1993) put forward the Partial Common Interest (PCI) 

concept. A partition of the typeset satisfies PCI “if types in each partition 

                                     
16 For ( )1 1

24 16, ,b ∈ the pooling equilibrium admits the weakly credible announcement composed 

of the neologisms at the beginning and end, characterized by the set of intervals of deviating 
types sending the same message { }51 4 4

6 6 6 60, , ,1 .b b⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦ In addition, however, it admits the 

weakly credible announcement { }16 16 3 16 161 1 2 12 12 4 4
5 5 5 5 5 5 5 5 5 5 5 50, , , , , , ,1 .b b b b b b⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  Since for 

all weakly credible announcements deviating types exist that prefer another weakly credible 
announcement, none is announcement proof. The size-2 and size-3 equilibria only admit weakly 
credible announcements composed of the non-overlapping credible neologisms, which are thus 
credible. Observe that the computational demands on agents to determine whether credible 
announcements exist and how they look like are quite high. 
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element unambiguously prefer to be identified as members of that element, and 

there is no finer partition with that property.” PCI does not make a definite 

prediction in the CS game, as no partition of the type space satisfies PCI 

(except for the type space itself). The main reason is that the highest Sender-

type of a partition-element always prefers the Receiver to believe that the upper 

boundary is higher than the true boundary (except for type 1t = ).  

Non-equilibrium concepts exist too. Rabin (1990) introduced the concept of 

Credible Message Rationalizability (CMR). This non-equilibrium concept pro-

poses conditions under which communication can be guaranteed to happen. It 

assumes that rational players take truth-telling as a focal point, but use the 

strategic incentives of the game to check whether truth-telling is rational. In the 

CS game, CMR is silent. CMR requires that all Sender-types who send a credi-

ble message receive an action in which they achieve their maximum payoff. This 

would imply that the Receiver does not best respond to credible messages, 

which cannot be the case under CMR.17 

The NITS criterion (Chen, Kartik, & Sobel, 2008) is up till now the only re-

finement based on some notion of stability that can successfully select an equi-

librium in the CS game. NITS starts by specifying a ‘lowest type,’ a type with 

the property that all other types prefer to be revealed as themselves rather than 

as that lowest type. An equilibrium survives NITS if the lowest type has no 

incentive to separate, i.e. if the lowest type prefers her equilibrium outcome to 

the outcome she would get if she could reveal her type. In the general CS game, 

only the maximum size equilibrium outcome satisfies NITS. The strength of 

NITS is that it can make predictions under a general monotonicity assumption, 

and can be justified on the basis of perturbed games with lying averse or non-

strategic players.18 

                                     
17 Rabin also introduces an equilibrium version of CMR, Credible Message Equilibria (CME), 

but as a consequence of the previous analysis, neither equilibrium in the game can be a CME. 
18 A challenge for NITS is that it cannot be applied easily in cheap talk games that have no 

clear lowest type. For instance, in Game A, the lowest type cannot easily be defined. In section 
5.2, we discuss a game that has many NITS equilibria.  
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Alternatively, the maximum size equilibrium in the CS game can also be se-

lected by an approach that does not make use of stability arguments. If players 

coordinate on the Sender’s Ex ante Preferred Equilibrium (SEPE), the equilib-

rium favored by the Sender when she has not yet been informed of her type, the 

maximum size equilibrium of the CS game remains the only equilibrium that 

survives (Crawford & Sobel (1982), Theorem 5). 

The prediction of ACDC in Corollary 1 is thus in line with NITS and SEPE. 

A difference between ACDC on the one hand and NITS and SEPE on the other 

hand is that the predictions of the latter concepts are invariant to the alignment 

of the preferences b. In the CS game, SEPE’s prediction of the maximum size 

equilibrium is simply independent of b. NITS assumes that only the lowest type 

can separate herself. Hence, according to NITS, the most informative equilibri-

um is (equally) stable regardless of b. According to ACDC, also other types can 

separate through credible neologisms. In fact, it predicts that the stability of the 

maximum size equilibrium depends on the bias parameter b. Only in the limit, if 

b becomes negligible, the maximum size equilibrium is expected to be stable. 

The experimental data discussed in the next section provides support for this 

prediction. 

4 The Crawford-Sobel Game in the Lab 

In this section, we discuss existing experimental evidence on the CS game in the 

light of the results obtained in the previous section. There, we concluded that 

both ACDC, NITS, and SEPE select the maximum size equilibrium. Experi-

mental evidence on discrete versions of the Crawford-Sobel linear quadratic 

game supports this prediction (Dickhaut, McCabe & Mukherji, 1995; Cai & 

Wang, 2006; Wang, Spezio & Camerer, 2010). 

ACDC supports another experimental finding that remains unexplained by 

NITS and SEPE: As the bias parameter b decreases, the maximum size equilib-

rium becomes more stable. Consider, for instance, the results on a discrete 
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Crawford-Sobel game by Cai & Wang (2006) depicted in Table 2.19 Applying 

ACDC to this discrete Crawford-Sobel game is straightforward. For example, for 

b = 2, the ACD of the pooling equilibrium is 

 

 1 (5,7) (5,5) (7,7) (7,5) (9,7) (9,5)
0.137.

5 (5,7) (5,1) (7, 9) (7,1) (9, 9) (9,1)

S S S S S S

S S S S S S

U U U U U U
U U U U U U

⎛ ⎞− − − ⎟⎜ ⎟+ + ≈⎜ ⎟⎜ ⎟⎜ − − −⎝ ⎠
 

 

In Table 2, we provide the ACD-measures for the equilibria of the treatments of 

Cai & Wang (2006). ACDC makes two predictions in line with the experimental 

data. First, ACDC selects the most informative equilibrium. Second, the most 

informative equilibrium has a lower ACD and thus becomes more stable as b 

decreases and the reverse holds for the pooling equilibrium. Both predictions are 

intuitive.  The most informative equilibrium admits ‘fewer’ or ‘smaller’ credible 

deviations than the pooling equilibrium for all values of b in Table 2. This could 

provide an explanation why it predicts better. 

In addition, as b increases, the most informative equilibrium admits ‘more’ or 

‘larger’ credible deviations. This may explain the fact that the prediction error 

of the most informative equilibrium appears to become larger as b increases (and 

the pooling equilibrium appears to predict less bad). One particular feature of 

the instability of the most informative equilibrium is that unless it is perfectly 

separating, there appears to be overcommunication. One explanation for over-

communication could be due to lying averse Senders and/or naïve Receivers 

(Kartik, Ottaviani, & Squintani, 2007). Overcommunication may also emerge in 

non-equilibrium models of cognitive hierarchy. Indeed, Crawford, Costa-Gomes, 

and Iriberri (2013) argue that the overcommunication observed in the Cai & 

Wang (2006) experiments are well explained by a level-k model anchored on the 

                                     
19 The results of Dickhaut, McCabe & Mukherji (1995) on a Crawford-Sobel game are similar 

to those reported by Cai and Wang, although they do not interpret their results in terms of 
overcommunication. More recently, Wang, Spezio & Camerer (2010) replicate the results of Cai 
& Wang (2006) and find that look-up patterns of Senders (as measured by eye-tracking) reveals 
a significant amount of information about their type. 
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literal meaning of messages like the one proposed by Crawford (2003).20 An 

additional explanation is that credible neologisms not only destabilize but also 

lead to more information transmission, as can be seen in Table 2. For instance, 

if b = 4, the unique pooling equilibrium predicts no information transmission, 

but credible neologisms allow types 3 to 9 to separate themselves from type 1 if 

equilibrium is reached. 

 

TABLE 2
ACDC IN BASELINE TREATMENTS CAI & WANG (2006) 

 Pooling Equilibrium1 Most Informative Equilibrium 
b 2  Credible  

Neologisms 
Error3 ACD Equilibrium4 Credible 

Neologisms 
Error ACD

0.5 1, {1} , 3, {3} ,

7, {7} , 9, {9}  

  .916 .220 {1},{3},{5},
{7},{9} 

–.084 0 

1.2 1, {1} , 7, {5,7,9} ,

8, {7, 9}  

  .896  .181 {1,3}, 
{5,7,9} 

3, {3} ,

8, {7, 9}  

  .146  .074

2 7, {5,7,9}    .734 .137 {1},
{3,5,7,9} 

7,{5,7,9} ,

8, {7, 9}  

  .234 .099

4 6, {3, 5, 7, 9}    .391 .101 {1,3,5,7,9} 6, {3,5,7,9}    .391 .101

Notes: In this Sender-Receiver game payoffs are given by = − ⋅ − 7/5( , ) 110 10RU a t t a  and 

= − ⋅ + − 7/5( , ) 110 10 .SU a t t b a  The type set is {1,3,5,7,9}, the action set is {1,2,3,4,5,6,7,8,9}. 

Each type is equally likely. 
1 In the pooling equilibrium, the Receiver takes action 5 regardless of the message. 
2 The baseline treatments only differ in the size of the bias parameter b. 
3 As prediction error we take the reported difference between the actual and predicted mes-

sage-type correlation. Cai and Wang also report other measures as message-action and type-
action correlations, which yield a similar picture. 

4 In this column, we show the equilibrium type partition. The Receiver’s action from a mes-
sage coming from a partition element is the average of the types in the partition element. 
 

In fact, a ‘neologism dynamic’ may explain why Cai & Wang’s (2006) findings 

are qualitatively in line with ACDC. The neologism dynamic is a best-response 

dynamic with a twist. If players’ strategies are not in equilibrium, the Sender 

simply best responds to the Receiver’s strategy in the previous round. The 

Receiver, in turn, plays a best response to the Sender’s message strategy in the 

                                     
20 Wang et al. (2010) and Kawagoe and Takizawa (2009) provide further support for level-k 

thinking in cheap talk games.  
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current round of interaction. The difference with a standard best-response 

dynamic is that the neologism dynamic allows Senders to send credible neolo-

gisms when the dynamic reaches an equilibrium. In Appendix C, we analyze the 

outcomes of the neologism dynamic for the parameters corresponding to the four 

treatments in Cai & Wang (2006). We do so by taking both a pooling strategy 

and a naïve strategy as the initial conditions. Senders who pool send out the 

same message regardless of their type while naïve Senders simply reveal their 

type.21 

The neologism dynamic produces the following results. First, it converges to 

an outcome that is independent of the initial conditions. This is in contrast to a 

standard best-response dynamic (or a level-k analysis), where players play 

pooling equilibrium strategies forever if the pooling equilibrium is the initial 

condition while the dynamic may converge to another equilibrium if the initial 

condition has the Sender play a naïve strategy. Second, if b = 0.5, the neologism 

dynamic converges to the most informative equilibrium, which is neologism 

proof and therefore coincides with the ACDC equilibrium. Third, for higher 

values of b, the neologism dynamic converges to a cycle that includes the strate-

gies of the ACDC equilibrium and none of the other equilibria. Fourth, the 

higher b, the more ‘noisy’ the cycles are. We measure noise by taking the aver-

age variance of the actions implemented for each type over the course of the 

cycle. Fifth, more types deviate from the equilibrium the higher b. Finally, the 

Sender overcommunicates in the sense that in each iteration of the cycle, senders 

send out at least as many messages as in the most informative equilibrium and 

typically more. 

The outcomes of the neologism dynamic are consistent with both the ACDC 

predictions and the Cai & Wang (2006) results. First, the outcomes support 

                                     
21 Cai & Wang (2006) present results for a level-k analysis for b = 4 where they take a naïve 

Sender strategy as level-0. The analysis is quite similar to ours in the sense that up to level k = 
2, the level-k prediction coincides with the k+1-th iteration in our dynamic. Cai & Wang (2006) 
show that the pooling equilibrium coincides with level-2 strategies for both the Sender and the 
Receiver. Level-k organizes their data quite well in the sense that the majority of subjects could 
be classified as playing level-k strategies for k = 0,1,2. 
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ACDC as a selection criterion in that it successfully predicts which equilibrium 

is most likely to be observed. The dynamic converges to the ACDC equilibrium 

if the equilibrium is neologism proof and it converges to cycles that include the 

ACDC equilibrium if the equilibrium is not neologism proof. In addition, the 

dynamic does not converge to another equilibrium. The Cai & Wang (2006) 

results are in line with these observations as behavior observed in their experi-

ment is ‘closest’ to the ACDC equilibrium than to any other equilibrium. Sec-

ond, the outcomes of the neologism dynamic are consistent with the stability of 

the ACDC equilibrium as measured by the equilibrium’s ACD. In particular, the 

ACD of the ACDC equilibrium is increasing in b, which is in line with the 

observations that (1) more types deviate from the equilibrium if b increases, (2) 

there is only overcommunication for b > 0, and (3) the cycles become noisier for 

higher b. The Cai and Wang data exhibit similar patterns. 

5 Other Experimental Results 

The limited availability of experimental data on the CS model does not yet 

make it possible to judge the robustness of the predictions of ACDC. Here we 

discuss the experimental work on equilibrium selection in cheap talk games, in 

addition to that in the CS game, which we discussed in chapter 4. 

5.1. Discrete games 

Blume, DeJong, Kim & Sprinkle (2001) collect experimental evidence for other 

cheap talk games. We now turn our attention to how ACDC organizes the data 

in these experiments. 

Blume et al. (2001) provide an experimental analysis of 4 discrete cheap talk 

games, in which they compare the predictive power of refinements such as 

neologism proofness, influentiality, and ex-ante efficiency with PCI. They find 

that PCI is a reliable predictor of when communication takes place and that the 

equilibrium refinements sometimes but not always improve on PCI. In their 
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Games 1 and 3, the predictions of PCI and neologism proofness (and ACDC) 

are very much aligned, and borne out by the data. In their Game 2 (see Table 3) 

neologism proofness predicts complete separation while the finest partition 

consistent with PCI entails partial separation. The data are in line with separa-

tion, as a clear majority of 88% of the outcomes is consistent with the separat-

ing equilibrium. One could argue that this result does not contradict PCI, 

because PCI allows multiple patterns including separation (see their footnote 

10). As the authors note (in footnote 19), one needs to add neologism proofness 

to PCI to actually predict that separation happens. 

 

TABLE 3
REPRODUCTION OF GAMES 2 AND 4 OF BLUME ET AL. (2001) 

 1a  2a  3a  4a  5a  

1t  800, 800 100, 100 0, 0 500, 500 0, 400

2t  x, 100 y, 800 0, 0 500, 500 0, 400

3t  0, 0 0, 0 500, 800 0, 0 0, 400

Notes: All the three types 1 2 3{ , , }t t t  of the Sender are equally likely and the Receiver can 

implement one of the actions 1 5{ ,..., }.a a  Entry i,j represents ( , ), ( , ).S R
i j i jU t a U t a   Games 2 and 

4 are identical, except that x = 100, y = 300 in game 2, whereas x = 300, y = 100 in game 4. 
 

In Blume et al.’s Game 4 (Table 3), no equilibrium is neologism proof while PCI 

selects a unique equilibrium. This game has two equilibrium outcomes. Besides 

the pooling equilibrium where action 5a  is induced there is a partially separating 

equilibrium where types 1t  and  2t  send a common message that differs from 

the message of 3.t  Types 1t  and 2t  induce 4a  while type 3t  induces 3 .a  Full 

separation is not an equilibrium because 2t  prefers to mimic 1.t  None of the 

equilibria satisfies neologism proofness. PCI predicts meaningful communication 

because the finest partition consistent with PCI is given by { }1 2 3{ , }, { } .t t t  The 

partially separating equilibrium only has a credible neologism where 1t  deviates 

to 1.a  Thus, its ACD equals 
1 (800 500) 1

.
3 800 8

−
=  The pooling equilibrium admits 

the neologism where 1t  and 2t  deviate to 4a  and the credible neologism where 
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3t  deviates to 3 .a  Consequently, its ACD is 

1 (500 0) (500 0) (500 0) 7
.

3 800 500 500 8

⎛ ⎞− − − ⎟⎜ + + =⎟⎜ ⎟⎜⎝ ⎠
 So ACDC predicts that the partially 

separating equilibrium will be the most observed equilibrium outcome but that 

it will not be completely stable. 

In line with this prediction, Blume et al. find that 37% of the outcomes are 

consistent with the partially separating equilibrium but no outcome is consistent 

with the pooling equilibrium. Thus, of the two equilibria, the one with the 

lowest ACD performs best. Consistent with the ACD measures, much fewer 

outcomes are in line with the equilibrium selected by ACDC in Game 4 than in 

Game 2. In line with the fact that types 1t  have a credible neologism, they turn 

out to be the ones that are able to credibly identify themselves.22 

Our conclusion is that our ACDC concept improves the predictions of neolo-

gism proofness and that it does at least as well as PCI in explaining the data of 

Blume et al. (2001). The extra mileage for ACDC with respect to PCI comes 

from continuous games like the CS game and the veto-threat game which we 

discuss in the next subsection. PCI fails to predict any communication at all in 

these settings, while in accordance with ACDC subjects are able to communi-

cate meaningfully to a large extent. 

5.2. ACDC in a continuous veto-threat game 

In De Groot Ruiz, Offerman & Onderstal (2014), we test ACDC in fresh 

experiments. For this, we use games that belong to a class of veto-threat games 

introduced in De Groot Ruiz, Offerman & Onderstal (2012). These games are 

suitable to test ACDC, as they allow for a continuous manipulation of the size 

and frequency of credible deviations and can have a rich equilibrium set that is 

                                     
22 While across games, the ACDC equilibrium’s ACD is a good predictor of the relative like-

lihood of outcomes being consistent with the ACDC equilibrium, it is silent about what kind of 
out-of-equilibrium behavior to expect. Of course, this limitation holds true for any equilibrium 
refinement. 
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difficult to refine. In Appendix B, we show that ACDC, when adapted for veto-

threat games, selects a unique equilibrium in this class of games. 

We briefly discuss our results for four treatments (see Table 4). Each treat-

ment is a variation of the following game. The Sender’s type is drawn from the 

uniform distribution over integers in the interval [0,B]. The Sender sends a 

costless message {0,1,..., }m B∈  to the Receiver, who makes a proposal 

{0,1,..., }.a B∈  The Sender can then accept a or reject it, in which case the 

outcome is the disagreement point .δ  Payoffs for {0,1,..., }a B∈  are 

= − 2
3( ) 60RU a a  and ( , ) 60 .SU a t t a= − −  In treatments G(120), G(130) and 

G(210), δ δ= =( ) ( , ) 0.R SU U t  These treatments only differ in the boundary 

parameter B.  

Each of these treatments has a pooling equilibrium where the Receiver always 

proposes 45 and a partially separating equilibrium, where the Receiver proposes 

0 or 60. The only difference is that for B = 120, the partially separating equilib-

rium is the unique neologism proof equilibrium, whereas for the other treat-

ments neither equilibrium is neologism proof. For similar reasons as in the CS 

game, also neologism proofness, the recurrent mop, PCI and CMR do not select 

an equilibrium. The same holds true for announcement proofness because 

credible announcements coincide with credible neologisms in this game. Assum-

ing the recurrent mop would converge, neither equilibrium is stable and both are 

recurrent.23 CMR can only guarantee that the 0 type can send a credible mes-

sage (and is silent about what other types do). The only partition that is PCI is 

                                     
23 The deviation correspondence of the pooling equilibrium (the most interesting case), for 

instance, contains only message strategies with three messages (say ‘low’, ‘medium’ and ‘high’). 
In any Receiver strategy in this correspondence, the Receiver proposes 0 after ‘low’, 0 or 45 after 
‘medium’ and some higher action after ‘high’; furthermore, the correspondence will contain the 
strategy in which the Receiver proposes 45 after ‘medium.’ Hence, type t = 45 will separate and 
send ‘medium’ in any best response to a full-support strategy of the Receiver. Because the 
deviation correspondence only contains message strategies with three messages, it will not 
converge to either equilibrium. A similar reasoning holds for the separating equilibrium. 



 

29 
 

= < =0 10 .t t B 24 NITS selects the partially separating equilibrium for all B if 

one takes 0 as the lowest type. 25  

 

 TABLE 4
FOUR TREATMENTS FROM DE GROOT RUIZ, OFFERMAN & ONDERSTAL (2013)

Treatment ( )RU δ  ( )SU δ  B Equilibrium actions1 ACD2

G(120) 0 0 120 {45}, {0, 60}** 0 
G(130) 0 0 130 {45}, {0, 60}* 0.22 
G(210) 0 0 210 {45}, {0, 60}* 0.50 

G3Actions 0 30 120 {30}, 1 1{ , 60},a a +  
2 2{0, , 60}a a + ** 3,4 

0 

Notes: In each game, the Sender sends a message m, after which the Receiver proposes an 
action a. Then the Sender can accept a or reject a, in which case the outcome is the disagreement 
point δ. t was uniformly distributed on the integers in [0,B]. 2

3( ) 60RU x x= −  and 

( , ) 60SU x t t x= − − . 1An equilibrium has a * if it is ACDC and ** if it is neologism proof as 

well. 2The ACD of the ACDC equilibrium. 3 1 [0,30]a ∈  and 2 (0,30].a ∈  4 Only {0,30,90} is ACDC.  

 

ACDC selects the partially separating equilibrium in the three treatments 

and, in addition, predicts that the partially separating becomes less stable as B 

increases. In De Groot Ruiz, Offerman & Onderstal (2013), we find that the 

data supports the predictions of ACDC. As can be seen in Figure 2, the higher 

the ACD, the higher the prediction error of an equilibrium. In particular, we 

find that in each treatment the partially separating equilibrium performs signifi-

cantly better than the pooling equilibrium. In addition, we find that for B = 130 

the partially separating equilibrium performs very similar as when B = 120, 

supporting the notion than stability is a continuous characteristic. Finally, we 

find that the partially separating equilibrium performs significantly better for B 

= 120 or B = 130 than for B = 210. As in the CS game, SEPE selects the same 

                                     
24 The main reason is that the highest Sender-type of a partition-element always prefers the 

Receiver to believe that the upper boundary is higher than the true boundary (except for types 
= 0t  or t B= ). Finally, the ‘partition’ 0 and (0,B] is not PCI, as 0 (which is the best response 

if the Sender type is 0) is also a best response to some Receiver beliefs with support on the 
interval (0,1]. 

25 All types in [0,60] are lowest types according to Chen et al.’s definition. The pooling equi-
librium survives NITS relative to types in [22.5,105], whereas the separating equilibrium survives 
NITS relative to types in [0,30]. 
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equilibrium as ACDC, but fails to account for the fact that the performance of 

the prediction depends on the ACD. 

Finally, treatment G3Actions has B = 120, δ =( ) 0RU  and δ =( , ) 30.SU t  The 

corresponding game has a continuum of size-2 and size-3 equilibria. Except for 

SEPE, none of the earlier refinements selects a unique equilibrium. Even influ-

entiality (selecting the equilibrium with the maximum size) does thus not 

identify a unique equilibrium because there are several size-3 equilibria. Similar-

ly, NITS is not selective as one size-2 and all size-3 equilibria survive NITS. In 

sum, in De Groot Ruiz, Offerman & Onderstal (2013), we find that the ACD of 

an equilibrium predicts how well it does in comparison to other equilibria and 

that the ACDC equilibrium has the lowest prediction error.26 

                                     
26 In De Groot Ruiz, Offerman & Onderstal (2014), we show that a neologism dynamic ex-

plains some of the main features of the experimental data in a very similar way as in the Cai & 
Wang (2006) experiment. 

 

FIGURE 2 
The figure plots for each equilibrium in each treatment its theoretical ACD against its empir-

ical prediction error for the last 15 periods.  Let σ( )a t  be the equilibrium action of the Receiver 

given type t  and  the observed action for observation i. The average prediction error (for 

a set of n observations I) is then 
1

ˆ ( ) ( ).i i i
i I

a t a t
n

σ

∈

−∑  

ˆ ( )i ia t
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6 Conclusion 

ACDC generalizes refinements based on credible deviations, in particular neolo-

gism proofness, capturing the behaviorally relevant aspects of equilibrium 

stability in cheap talk games. ACDC is based on the intuition that the frequen-

cy and size of credible deviations affects equilibrium stability in a continuous 

rather than a binary manner. ACDC measures the (in)stability of cheap talk 

equilibria and determines which are most plausible. We showed that an ACDC 

equilibrium exists under general conditions and that it is unique in a large range 

of applications.  

Most importantly, the predictions of ACDC organize existing experi-

mental data well in the sense that (1) if observed behavior is in line with some 

equilibrium, it is mostly in line with the ACDC equilibrium, and (2) between 

games, behavior is more likely to be consistent with the ACDC equilibrium the 

lower its ACD. All in all, we believe that ACDC is an improvement of neologism 

proofness and that it is more successful in describing actual behavior across a 

large range of cheap talk games than other criteria. 

A limitation that ACDC shares with other equilibrium refinements is 

that it does not predict how experimental subjects behave ‘out of equilibrium’. 

In particular, it does not predict systematic overcommunication as observed in 

the experiments of Cai & Wang (2006) and Wang et al. (2010). 

In this paper, we have defined ACDC for simple Sender Receiver cheap 

talk games. An interesting avenue for future research is to generalize the concept 

to other settings, e.g., settings with multiple Senders or multiple Receivers, or 

with noisy information channels. 
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Appendix A 

Proof of Proposition 3  

The proof proceeds as follows. First, we obtain closed-form solutions for the 

ACD for all b. Second, we calculate the ACD for the specified values of b. 

 The ACD of equilibrium σ  in the CS game is equal to 

 

( ), ) ( ( ), )
( )

( ) ( )
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t S S

U a t t U a t t
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U t U t

σ σ
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Note that 2( 1)t b+ −  2( )t b> +  if and only if 1
2

t b< − . Suppose ( )a tσ  and 

( )a tσ�  are constant and ( ) 0SU t = on the interval [ , ].t t  Let 
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As noted in the main text, an equilibrium of size n  can have a neologism in the 

beginning, 0
na� , a neologism at the end n

na�  and at most 1n −  neologisms in the 

middle, , 1,..., 1n
ia i n= −� . The size-1 equilibrium has a neologism at the begin-

ning and at the end. The maximum size ( )n b  equilibrium has a neologism at the 

end and neologisms in the middle , ( ),..., 1n
ia i i b n= −� , where ( ) 1i b =  if 

22 ( ) 1bn b <  and ( ) 2i b =  if 22 ( ) 1bn b ≥ . Size- n  equilibria with 1 ( )n n b< <  

admit all neologisms specified above. Observe that 1 1n
n bτ − < − , such that 

( ) 0SU t =  except for the highest types of the highest neologism, such that 

( , , , , )h b a a t tσ σ�  can be used to calculate the contribution to the ACD for neolo-

gisms ( ) 1,..., 1i b n= − . For the highest neologism, the contribution to the ACD 

is equal to 
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( , , , , 1) ( )( 1) log[2 1].
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Let n
bσ  be the size-n  equilibrium of the game with bias parameter b. Then, 

the ACD of the pooling equilibrium is  

 
1 1 1 1

1 0 0( ) ( , , , 0, ) ( ,1).bACD h b a a h bσ τ= +�  

 

The ACD of the maximum-size equilibrium is 
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The ACD of a size-n  equilibrium with 1 ( )n n b< <  is equal to  

 
1

1 0 0 1
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For each 
1 2 1

, ,..., ,
10000 10000 4

b
⎧ ⎫⎪ ⎪⎪ ⎪∈ ⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

 one can calculate the (closed-form) value of 

( )n
bACD σ  for all 1 ( ),n n b≤ ≤  and verify that the ACD of the size-n  equilibri-

um in the CS game is decreasing in n. 
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Appendix B: ACDC in a Veto-Threat Games 

B.1. Equilibria and ACDC in veto-threat games 

Consider the following game. Nature draws the Sender type t from distribu-

tion f on T, where T is a compact metric space. The Sender then privately 

observes her type t and chooses a message .m M∈  After having observed the 

Sender’s message, the Receiver chooses an action ,a A∈  where A  is a compact 

metric space. After seeing the action, the Sender chooses between accepting 

( 1v = ) or rejecting ( 0v = ) the action. If she rejects, the outcome is the disa-

greement point .δ  If ,Aδ ∈  the game has an internal veto threat and otherwise 

it has an external veto threat. The outcome set is { }.X A δ= ∪  Let 

:RU X T× → \  be the utility function of the Receiver :SU X T× →\ that of 

the Sender. We assume both are bounded from above and below.  

A strategy for the Sender consists of a message strategy :T Mμ →  and an 

acceptance strategy : {0,1}.A Tν × → The strategy of the Receiver is an action 

strategy : M Aα → . Let SΣ  be the set of Sender strategies and RΣ  the set of 

Receiver strategies.  Let μ α ν{ , , }  be a strategy profile and Σ  the set of all 

strategy profiles. Define ( )ν ν νδ+= ⋅ ⋅ −( , ; ) ( , ) ( , )( , ) ( , ) 1R R Rx t xV U x t tt x tU  and 

( )ν ν νδ= ⋅ + ⋅ −( , ; ) ( , )( , ) ( , ) 1 .( , )S S SV Ux t x t xt U tx t  Finally, let the Receiver have 

prior beliefs β =0( () )t f t . A pure strategy perfect Bayesian equilibrium (equilib-

rium henceforth) σ  = μ α β{ , , }  is characterized by the following four condi-

tions: 
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α ν∈ ∈For each , ( ) argmax )( ),( ;St T m tm t V   

(6) ν βα ∈∈ ∈ ∫For each , arg max( ) ( , ; ) ( | )a A
R

T
m V a t t m dtm M   

 ν δ ν δ= > = <( , ) 1 if ( , ) ( , ) and ( , ) 0 if ( , ) ( , )S S S Sa t U a t U t a t U a t U t  

  

where ( | )t mβ  denotes the Receiver’s posterior beliefs, which is derived from μ  

and 0β  using Bayes’ rule wherever possible. 

Let ∗Σ  be the set of equilibria and †Σ  be the set of cautiously rationalizable 

strategy profiles. Define ( )( )
†{ , , }

( ) inf , ( ) ;S SV t V t t
α μ ν

α μ ν
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≡ and 

( )( )
†{ , , }
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≡  Then  
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if ( ), ( ( )); ( ).S SV t t V tγα μ ν >  If ( ), ( ( )); ( ),S SV t t V tγα μ ν =  then ( , ) 1,CD t σ ≡  

ACDC can be now be defined analogously to the case without a veto by the 

Sender. 

B.2. ACDC in a veto-threat game 

Here we show that ACDC selects a unique equilibrium in the class of veto-threat 

games introduced by De Groot Ruiz, Offerman & Onderstal (2012). The games 

studied experimentally in De Groot Ruiz, Offerman & Onderstal (2014) belong 

to this class of games. We assume the Sender’s type t  is uniformly distributed 

on the interval [0,1]. We model the player’s bargaining power as the payoff of 

the disagreement point ( )RU δ  and ( ),SU δ  where we assume ( , ) ( )S SU t Uδ δ=  

does not depend on t. RU  and SU  satisfy the following assumptions:  
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(8) RU  on \  is twice continuously differentiable, unimodal with a peak at 0 

and concave. 

(9)  ( , )SU x t  can be written as a function ( )f t x− , for all x in \ , t in [0,1], 

where f is continuously differentiable, symmetric, concave, strictly in-

creasing in −\  and for all y∈\ there is a 0z >  such that ( )f z y<  and 

( ) ;f z y− <  Finally, ( ) (0).SU fδ < 27 

 

In De Groot Ruiz, Offerman & Onderstal (2012), we show that only partition 

equilibria exist. Here we show that there is a unique ACDC equilibrium: 

 

Proposition 5 Under assumptions (8) and (9), the unique ACDC equilibrium 

is the maximum size equilibrium with the highest equilibrium action. 

 

For the proof of Proposition 5, we introduce some definitions and results from 

De Groot Ruiz, Offerman & Onderstal (2012) and derive two helpful lemmas. 

 

Observe that in this game, a neologism ,a N�  is credible relative to equilibrium 

σ∗ if and only if  

 

{ }( )argmax ( , ) 0 ( ) ( )S R R
aa P U a t t N U a U δ∈∈ ≥ ∈ −\� , and  

for all 1,...,k n= it holds that 1[ , ]k kt t t N−∈ ∩ ( , )SU ta⇒ � ( , )S
kU a t>  and 

1[ , ] \ ( , ) ( , )S S
k k kt t t N U a t U a t−∈ ⇒ ≤� . 

 

Lemma 1 If ,a N�  is a credible neologism relative to equilibrium σ∗, then N  

is an interval. 

                                     
27 Observe that (9) implies assumptions (A2)-(A5) in De Groot Ruiz, Offerman & Onderstal 

(2012). Our assumptions here are stricter. In particular, they require a uniform type distribution 
and a symmetric and concave payoff function for the Sender. 
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Proof. The proof is by contradiction. Suppose 1 2 30 1t t t≤ < < ≤ , 

1 3,t t N∈  and 2t N∉ . Suppose further that in equilibrium, type it obtains 

action ia , 1,2,3i = . The fact that the a type’s utility is strictly decreasing in 

the distance between t – a  implies 1 2 3a a a≤ ≤ . If 2a t≤�  then it must be the 

case that 2a a≤�  (otherwise type 2t  would prefer a�  over 2a ). As a consequence, 

3 3 2aa t a≤ ≤ =�  because type 3t  must prefer a�  over 3a  and 3a  over 2a . A 

contradiction is established, because the fact that the indifference points t – d  

and t + d are strictly increasing in t implies that type 2t  strictly prefers a�  over 

2a . This is in conflict with the definition of a credible neologism. Analogously, 

2a t>�  can be ruled out, so that N  is an interval. Q.E.D. 

 

From (9), it follows that there is a 0d >  such that for all t and ,a ∈ \  

( , ) ( )S SU a t U δ≥  if and only if [ , ].a t d t d∈ − +  Hence, t d−  and t d+  are the 

Sender’s indifference points as to whether she accepts action a. From Lemmas 2 

and 3 in De Groot Ruiz, Offerman & Onderstal (2012), it follows that in equi-

librium 

 

(10) 
1 0,a ≥  1k k kt d a t d− − < ≤ −  for all 2,...,k n= and 1k kt d a− + ≤  for 

3,..., .k n=  

  

We can now show that under (9), it holds that 

 

Lemma 2 In equilibrium, 1k k ka t dd a += = −+  for 2,..., 1.k n= −  

Proof. Due to the t being uniformly distributed and (9), the indifference 

points t d−  and  t d+  are uniformly distributed as well. This means that if 

the Receiver receives a message that identifies Sender types to be in the interval 

1[ , ]k kt t +  ( 0,..., 1k n= − ), the probability the Sender accepts an action is not 

higher for an action ka t d> +  than for action ,ka t d′ = +  while 
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( ) ( ).R RU a U a ′<  Hence, for the equilibrium action ka  it holds true that 

1k ka t d−≤ +  and by (10), this means 1k k ka t d t d−= + ≤ −  for 3,..., .k n=  Now, 

suppose that 1k kt d t d− + < −  for some 3,..., .k n=  This means that k ka t d< −  

and hence ,( ) 0.S
k kU a t <  Since 1( , ) ( , ),S S

k k k kU a t U a t+=  this implies, however, 

that 1 ,k ka t d+ > +  which for 3,..., 1k n= − is a contradiction with 1k ka t d−≤ +  

for 3,..., .k n=  Hence, 1k k ka t d t d− + = −=  for 3,..., 1.k n= −  Consequently, 

1k k ka t dd a ++ = = −  for 3,..., 1k n= − . 

Furthermore, from the discussion above we have that 2 3t a d= −  and that 

2 1a t d≤ + . In addition, from (10) it follows that 2 2 .a t d≤ −  Hence, a neces-

sary condition on 2a  is that ( )( )
1 22 1argmax ( ) ( ) .R R
t a t dda U a U a d tδ≤ ≤+ −∈ − + −

Analogously to the discussion in the proof of Proposition 2 in De Groot Ruiz, 

Offerman & Onderstal (2012), one can show that this implies that 2a  must be 

equal to 2 .t d−  As a result, 2 2 3 .a t dd a+ = = −  Q.E.D. 

 

Proof of Proposition 5 Suppose that the game has more than one equilib-

rium outcome. If 2 ,x d≤  then consider the equilibrium outcome σ∗  with 

1 0a = and 2a  such that ( )1
2 22argmax ( ) min{ ,1} .R

aa U a a d a∈∈ + −\  If 2 ,x d> let 

n  be the natural number for which 2 0x dn− ≤  and ( )2 1 0,x d n− − >  and 

consider the following 1 0;: aσ∗ = 1 0, 2 ( 2), 2,..., .ka a x d n k k n= = − − − =  We 

now show that σ∗  has the maximum equilibrium size and is the unique ACDC 

equilibrium outcome. 

 

From Lemma 4 in De Groot Ruiz, Offerman & Onderstal (2012) and (9), it 

follows that there exists an x ∈ \  such that 

 

(11) ( ) ( ) 2 ( ) 0 for all [0, ) andR R RU x U dU x x xδ− + ≥ ∈′
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( ) ( ) 2 ( ) 0 for all ( ,1 ].R R RU x U dU x x x dδ− + < ∈ −′
 

 

where a prime  denotes a derivative with respect to x. Let *a  denote the 

highest equilibrium action na  in .σ∗
 Using (11), it can be verified that σ∗  

constitutes the highest size equilibrium, analogously to the proof of Proposition 

3 in De Groot Ruiz, Offerman & Onderstal (2012). Similarly, it can be verified 

that the highest action a∗∗  in any other equilibrium σ∗∗  must be smaller than 

a∗ : 

 

1 .a a d∗∗ ∗≤ ≤ −  

 

If 1 ,a d∗∗ < −  σ∗∗  has at least one credible neologism: Types in the interval 

( ,1]τ ∗∗  are willing to send a credible neologism ,1 ,],(a τ∗∗ ∗∗�  where 

( )1
, and

2
a aτ∗∗ ∗∗ ∗∗= + �  

( )
,1( ]

argmax ( ) ( ) .
1

R R

a a d

a d
a U a U

τ
δ

τ∗∗ −

∗∗
∗∗

∗∗
∈

+ −
∈ −

−
�  

 

To prove that σ∗ is an ACDC equilibrium, we first show it has at most one 

credible neologism (claim 1) and this credible neologism, if it exists, maximizes 

τ ∗∗ and minimizes a a∗∗ ∗∗−�  (claim 2). 

In order to prove claim 1, suppose that σ∗  has another credible neologism. 

By Lemma 1, the set of types that send the credible neologism relative to 

equilibrium σ∗  is an interval. We can exclude neologisms that induce the Re-

ceiver to propose 0,a =  because 1 0a =  is already an equilibrium action. Hence, 

the neologism a�  (with supremum neologism type τ� ) is in between two equilib-

rium actions 1ka −  and ka . Due to Lemma 1, 1 .k ka a aτ− < < <� �  This implies that 

( , ) 0SU a τ ≤� � , because if ( , ) 0SU a τ >� � , action dτ −�  would be better for the 

( )′
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Receiver than a�  after receiving the neologism. Consequently, 

1( , ) ( , ) 0S S
kU a U aτ τ− < ≤�� � and ( , ) ( , ) 0.S S

kU a U aτ τ< ≤�� �  This means that an 0ε >  

exists such that a types in ( , )τ ε τ ε− +� �  receive 0 payoff in equilibrium. Since 

this is not the case in ,σ∗  σ∗  has no other neologisms. 

The proof of claim 2 proceeds as follows. Note that min{ ,1 }a a d∗∗ ∗∗= −� , 

where ( )argmax ( ) ( ) .
1

R R

a

a d
a U a U

τ
δ

τ

∗∗
∗∗

∗∗
∈

+ −
= −

−\
 We know ,a a∗∗ ∗∗>  because the 

solution to ( )argmax ( ) ( )
1

R R

a

a d t
U a U

t
δ

∈

+ −
−

−\
 is increasing in t  and a∗∗  is the 

solution for 1nt t −= , and a ∗∗  is the solution to the problem with 1nt a t∗∗
−≥ > . 

Moreover, 

( )( ) ( ) ( ) ( ) ( ) ( ) 0
2

R R R R R R a a
U a U U a a d U a U U a dδ τ δ

∗∗ ∗∗
∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

⎛ ⎞− ⎟⎜ ⎟− + + − = −′ ′+ + =⎜ ⎟⎜ ⎟⎜⎝ ⎠
implies that  

( )
2 2 .

( )

R

R

U a
a a d

U a

∗∗
∗∗ ∗∗

∗∗
− = −

′
−  

From the concavity of RU  it follows that ( )

( )

R

R

U a

U a′
 is increasing in a. Hence, 

a a∗∗ ∗∗−  is decreasing in .a∗∗  In particular, this implies that a a∗∗ ∗∗−�  is decreas-

ing in .a∗∗  Moreover, τ ∗∗

 is increasing in .a∗∗  

Finally, to show that σ∗  is an ACDC equilibrium, we show that it has the 

lowest ACD.  By Lemma 2, for equilibrium σ∗∗  it must then hold that 1 0a ∗∗ >  

or *.a a∗∗ <  If 1 0a ∗∗ > , then a neologism 0 0,[0, ]a τ�  exists with 0 1 .a a∗∗<� 28 

Suppose now that *.a a∗∗ <  If σ∗
 does not admit a credible neologism, it is 

                                     
28  If 1 2 ,a d∗∗ ≥ 0a d=�  and 0 1 0( , ) ( , ).S SU d U aτ τ∗∗=� � If 1 ,a d∗∗ ≤  0 0a =�  and 

0 0 0( , ) (0, ).S SU a Uτ τ=� � � If 1 2 ,d a d∗∗< < 0 0a dτ= +� �  and 0 0 1 0( , ) ( , ).S SU a U aτ τ∗∗=� � �  This has a 
solution, because 0 0 1 0( , ) ( , ) 0S SU d U aτ τ τ∗∗− − >� � �  for 0 0τ =�  and 

0 0 1 0( , ) ( , ) 0S SU d U aτ τ τ∗∗− − <� � �  for 0 1aτ ∗∗=� . 
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evident that 
* **( ) 0 ( ).ACD ACDσ σ= <  Hence, suppose that σ∗

 admits the 

credible neologism * *,[ ,1] .a τ�   

We can now compare the ACD of *σ  and **.σ  First, *( ) 0CD tσ =  for 

*[0, ).t τ∈  Second, we show that ** ** * *( , ) ( , ) ( , ) ( , )S S S SU a t U a t U a t U a t− > −� � for 

* **[ , ).t a dτ∈ +  Due to claim 2 ** ** * *a a a a− > −� �  and ** *.τ τ<  If ** *t a a≤ <� � , 

then ** *( , ) ( , )S SU a t U a t<  and ** *( , ) ( , )S SU a t U a t>� � , so that the result is immedi-

ate. Assume now that ** .a t<�  By (9), ( , )SU a t  is concave in a, such that for 

x y t< ≤  and , 0b c > it holds that: 

( , ) ( , )S SU y t U x t− ≤ ( , ) ( , )S SU y b t U x b t− − −  ( , ) ( , ).S SU y b t U x b c t< − − − −  

Hence, for * *[ , ]t aτ∈ �  we have that * *( , ) ( , )S SU a t U a t−� ≤ *( , ) ( , )S SU t t U a t−  ≤

** * **( , ) ( , )S SU a t U a t a t− − +� � < ** **( , ) ( , ).S SU a t U a t−�  (Observe that *t a− < 

* * ** **.)a a a a− < −� � Similarly, for * **( , ],t a a d∈ +�   * *( , ) ( , )S SU a t U a t−�  ≤

** * * **( , ) ( , )S SU a t U a a a t− − +� � � < ** **( , ) ( , ).S SU a t U a t−� As a consequence, 

** *( ) ( )CD t CD tσ σ> for ** **[ , ).t a dτ∈ + Finally, ** *( ) 1 ( )CD t CD tσ σ= ≥ for 

**[ ,1].t a d∈ +  Together, this implies that 

* ** *** ( )( ( ( ))) .t tACD E CD t E C ACD t Dσ σσ σ= >⎡ ⎤ ⎡ ⎤ =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

In sum, if **σ is different from *,σ  then either 0 0a ∗∗ >  or  *a a∗∗ <  and in 

both cases ( ) ( )ACD ACDσ σ∗∗ ∗> . Therefore, *σ  is the unique ACDC equilibri-

um. Q.E.D. 
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Appendix C: Neologism Dynamic 

C.1. Description dynamic 

In this section, we define the neologism dynamic. We assume that the type 

space T ⊂ \  contains a finite number of types and that the size of the message 

space M ⊂ \  is at least as large as the size of the type space. 

We start by describing the simple best response dynamic in pure strategies 

(without neologisms) on which the neologism dynamic is based. In each round 

0,1,2,...r =  of interaction, the Sender and the Receiver choose a strategy. The 

strategy of the Sender in round r  is then given by →:rm T M  and that of the 

Receiver by : ,ra M A→  where ( )rm t  denotes the message Sender type t  sends 

and ( )ra m  the Receiver’s action after receiving message m . In each round 

1,2,...,r =  the Sender best responds to the strategy of the Receiver in the 

previous round and the Receiver best responds to the strategy of the Sender in 

the same round. For the Sender, this means that 

1( ) arg max ( ( ), )S
r m M rm t U a m t∈ −∈ . If the strategies in round r  constitute an 

equilibrium, the Sender sends the same message as in round 1.r −  We make 

this assumption to ensure the existence of meaningful neologisms in the neolo-

gism dynamic. If the strategies in round 1r −  do not constitute an equilibrium 

and 1argmax ( ( ), )S
m M rU a m t∈ −  contains more than one message, the Sender sends 

the lowest optimal message.29 For the Receiver, best responding implies that 

( ) arg max ( , ) ([ )],|R r
r a A ta m E U a t mβ∈∈  where the Receiver’s belief ( )r mβ  regard-

ing the Sender’s type distribution given message m is derived using Bayes’ rule 

whenever possible. If the Sender does not use m in round ,r  the Receiver plays 

the lowest action induced by any message *m m>  used in round .r  If such an 

                                     
29 We use tie-breaking rules to keep the analysis simple.  
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action does not exist, the Receiver picks the highest action induced by any used 

message *m m<  in round .r  

The neologism dynamic differs from the best response dynamic in one crucial 

aspect: if the dynamic has reached an equilibrium in the previous round (i.e. if 

− ∈ −∈1 1( ) arg max ( ( ), )S
r m M rm t U a m t  for all t), then the Sender can send a credible 

neologism in round .r  When sending a neologism, the Sender will send out of 

the set of messages not used in round 1r −  that message that is closest to the 

action she intends to induce. If two of such messages exist, she will pick the 

higher of the two. If the Sender can send multiple credible neologisms, she will 

select a credible neologism that maximizes her utility given the Receiver’s best 

response to it. 

We restrict our analysis of the games studied in the Cai & Wang (2006) ex-

periment to two natural initial Sender strategies: a pooling strategy (where all 

Senders start with the same message) and a naïve strategy (where all Senders 

send a message equal to their own true type). Below, we provide for the experi-

mental parameters b=0.5, b=1.2, b=2 and b=4, (i) the attractors (steady states 

or cycles) to which the initial conditions converge, (ii) the first rounds of the 

dynamic until they converge to an attractor and (iii) the average variance of 

actions a Sender type induces in the attractor.  

C.2. b = 0.5 

As the separating equilibrium admits no credible neologisms, it is a steady 

state of the neologism dynamic. (The average variance of Receiver actions 

Sender type induces is zero in a steady state.) Note that the profile where the 

Sender plays a naïve strategy is also the separating equilibrium: 

 

b = 0.5, naïve initial conditions 
Round  Strategy Sender Strategy Receiver  
  mr(1) mr(3) mr(5) mr(7) mr(9) ar(1) ar(3) ar(5) ar(7) ar(9) Observation 
r=0 1 3 5 7 9 1 3 5 7 9 Naïve / separating equilibrium 
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Hence, the dynamic converges to the separating equilibrium from naïve initial 

conditions in a trivial way.  

As can be seen below, the dynamic converges to the separating equilibrium 

from initial pooling conditions. In round 1, Sender types 1, 3, 7, and 9 can send 

a credible neologism inducing an action equal to their type. 

 

b = 0.5, pooling initial conditions 
 Round Strategy Sender Strategy Receiver  
  mr(1) mr(3) mr(5) mr(7) mr(9) ar(1) ar(3) ar(5) ar(7) ar(9) Observation 
r=0 5 5 5 5 5 5 5 5 5 5 Pooling equilibrium 
r=1 1 3 5 7 9 1 3 5 7 9 Naïve / separating equilibrium 

C.3. b = 1.2 

For b=1.2, the dynamic has as an attractor the following 4-cycle that includes 

the most informative equilibrium: 

 

b = 1.2, attractor 
 Round Strategy Sender Strategy Receiver  
  mr(1) mr(3) mr(5) mr(7) mr(9) ar(1) ar(3) ar(5) ar(7) ar(9) Observation 
r 3 3 7 7 7 2 2 7 7 7 Most informative equilibrium 
r+1 3 5 7 9 9 1 1 3 5 8   
r+2 5 7 7 9 9 1 1 1 4 8   
r+3 1 7 9 9 9 1 3 3 3 7   
r+4 3 3 9 9 9 2 2 7 7 7 Most informative equilibrium 
 

To illustrate the dynamic, we will briefly explain this attractor. In round r, the 

Sender starts playing according to the most informative equilibrium and the 

Receiver responds with an equilibrium strategy. In round r+1, Sender type 1 

and 5 best respond to the Receiver’s strategy in r by sending m=3 and m=7 

respectively. In contrast, types 3, 7, and 9 can send credible neologisms inducing 

a=3 for type 3 and a=8 for types 7 and 9. To send this neologism they use the 

highest unused message closest to the action they want to induce, which are 

m=5 and m=9 respectively. The Receiver knows that t=1 sends m=3, so he best 

responds to m=3 by playing a=1. The other actions specified follow in a similar 
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way. (According to our specification, he plays a=1 if the unused message m=1 

would be sent.) 

Since the strategies played in round r+1 do not constitute an equilibri-

um, no Sender can send a credible neologism in r+2 and they all best respond 

to the Receiver’s strategy in r+1. Finally, in round r+4, the dynamic is back to 

the most informative equilibrium (although the message strategy differs some-

what). If continued, the dynamic would effectively go on in this 4-cycle. 

As the tables below show, the dynamic converges from both the pooling 

and the naïve initial conditions to this attractor: 

 

b = 1.2, pooling initial conditions 
  Strategy Sender Strategy Receiver  
  mr(1) mr(3) mr(5) mr(7) mr(9) ar(1) ar(3) ar(5) ar(7) ar(9) Observation 
r=0 5 5 5 5 5 5 5 5 5 5 Pooling equilibrium 
r=1 1 5 7 9 9 1 3 3 5 8   
r=2 3 7 7 9 9 1 1 4 4 8   
r=3 1 5 9 9 9 1 3 3 7 7   
r=4 3 3 7 7 7 2 2 7 7 7 Most informative equilibrium 
 

b = 1.2, naïve initial conditions 
  Strategy Sender Strategy Receiver  
  mr(1) mr(3) mr(5) mr(7) mr(9) ar(1) ar(3) ar(5) ar(7) ar(9) Observation 
r=0 1 3 5 7 9 1 3 5 7 9 Naïve strategies 
r=1 3 5 7 9 9 1 1 3 5 8   
r=2 5 7 7 9 9 1 1 1 4 8   
r=3 1 7 9 9 9 1 1 1 3 7   
r=4 7 7 9 9 9 2 2 2 2 7 Most informative equilibrium 
 

Below we show the actions, the variance of the Receiver actions each Sender 

type induces, and the average of the variance over all Sender types in the 

attractor: 

b = 1.2, Actions and average variance in attractor 
Round a(m(1)) a(m(2)) a(m(3)) a(m(4)) a(m(5)) Average 

r 2 2 7 7 7 
r+1 1 3 5 8 8 
r+2 1 4 4 8 8 
r+3 1 3 7 7 7 
Var 3/16 1/2 27/16 1/4 1/4 23/40 
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C.3. b = 2 

Also for b=2, the dynamic has a 4-cycle that includes the most informative 

equilibrium as an attractor: 

 

b = 2, attractor 
  Strategy Sender Strategy Receiver  
Round mr(1) mr(3) mr(5) mr(7) mr(9) ar(1) ar(3) ar(5) ar(7) ar(9) Observation 
r 1 5 5 5 5 1 6 6 6 6 Most informative equilibrium 
r+1 1 5 7 9 9 1 3 3 5 8   
r+2 3 7 9 9 9 1 1 1 3 7   
r+3 7 7 9 9 9 2 2 2 2 7   
r+4 1 9 9 9 9 1 6 6 6 6 Most informative equilibrium 
 

The dynamic converges from both the pooling and the naïve initial conditions to 

this attractor: 

 

b = 2, pooling initial conditions 
  Strategy Sender Strategy Receiver  
Round mr(1) mr(3) mr(5) mr(7) mr(9) ar(1) ar(3) ar(5) ar(7) ar(9) Observation 
r=0 5 5 5 5 5 5 5 5 5 5 Pooling equilibrium 
r=1 5 5 7 7 7 2 2 2 7 7   
r=2 1 7 7 7 7 1 6 6 6 6 Most informative equilibrium 

 

b = 2, naïve initial conditions 
  Strategy Sender Strategy Receiver  
Round mr(1) mr(3) mr(5) mr(7) mr(9) ar(1) ar(3) ar(5) ar(7) ar(9) Observation 
r=0 1 3 5 7 9 1 3 5 7 9 Naïve strategies 
r=1 3 5 7 9 9 1 1 3 5 8   
r=2 5 7 9 9 9 1 1 1 3 7   
r=3 7 9 9 9 9 1 1 1 1 6 Most informative equilibrium 
 

Below we show the actions and the average variance of the actions in the attrac-

tor: 

b = 2, Actions and average variance in attractor 

Round a(m(1)) a(m(2)) a(m(3)) a(m(4)) a(m(5)) Average 
r 1 6 6 6 6 
r+1 1 3 5 8 8 
r+2 1 3 7 7 7 
r+3 2 2 7 7 7 
Var 3/16 9/4 11/16 1/2 1/2 33/40 
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C.3. b = 4 

For b = 4, the dynamic has as an attractor the following 2-cycle that includes 

the pooling equilibrium (which is the unique and thus also the most informative 

equilibrium): 

 

b = 4, attractor 
  Strategy Sender Strategy Receiver  
Round mr(1) mr(3) mr(5) mr(7) mr(9) ar(1) ar(3) ar(5) ar(7) ar(9) Observation 
r 5 5 5 5 5 5 5 5 5 5 Most informative equilibrium 
r+1 5 7 7 7 7 1 1 1 6 6   
r+2 7 7 7 7 7 5 5 5 5 5 Most informative equilibrium 
 

The dynamic converges to the attractor from initial pooling conditions but also 

from initial naïve conditions: 

 

b = 4, naïve initial conditions 
  Strategy Sender Strategy Receiver  
Round mr(1) mr(3) mr(5) mr(7) mr(9) ar(1) ar(3) ar(5) ar(7) ar(9) Observation 
r=0 1 3 5 7 9 1 3 5 7 9 Naïve strategies 
r=1 5 7 9 9 9 1 1 1 3 7   
r=2 7 9 9 9 9 1 1 1 1 6   
r=3 9 9 9 9 9 5 5 5 5 5 Most informative equilibrium 
 

Below we show the actions and the average variance of the actions in the attrac-

tor: 

 

b = 4 Actions and average variance in attractor 

Round a(m(1)) a(m(2)) a(m(3)) a(m(4)) a(m(5)) Average 
r 5 5 5 5 5 
r+1 1 6 6 6 6 
Var 4 1/4 1/4 1/4 1/4 1 
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