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Abstract

In the literature, there exist several models where a cooperative TU-game is enriched with

a hierarchical structure on the player set that is represented by a directed graph or digraph.

In this paper we consider the games under precedence constraints introduced by Faigle and

Kern (1992) who also introduce a generalization of the Shapley value for such games. They

characterized this solution by efficiency, linearity, the null player property and an axiom

called hierarchical strength which states that in a unanimity game the payoffs are allocated

among the players in the unanimity coalition proportional to their hierarchical strength in

the corresponding coalition. The hierarchical strength of a player (node) with respect to a

coalition in an acyclic digraph is the number of admissible permutations where this player

is the last of that coalition to enter, and where the admissible permutations are those in

which successors in the digraph enter before predecessors.

In this paper we introduce and axiomatize a new solution for games under precedence

constraints, the so-called hierarchical solution. Unlike the precedence Shapley value, this

new solution satisfies the desirable axiom of irrelevant player independence which estab-

lishes that the payoffs assigned to relevant players are not affected by the presence of

irrelevant players. This hierarchical solution is defined in a similar spirit as the precedence

Shapley value but belongs to the class of precedence power solutions being solutions that

allocate the dividend of a coalition proportionally to a power measure for acyclic digraphs.

The hierarchical solution allocates proportionally to the hierarchical measure. We give an

axiomatization of this power measure on the class of acyclic digraphs. In addition we ex-

tend the hierarchical measure to regular set systems. Finally we consider the subclasses of

acyclic digraphs, consisting of forests and sink forests and consider the normalized version

of the hierarchical measure on these subclasses as well as several other power measures.

Keywords: Cooperative TU-game, acyclic digraph, hierarchical strength, irrelevant

player, power measure, regular set system, rooted and sink trees.

JEL code: C71



1 Introduction

Faigle and Kern (1992) introduced games under precedence constraints as cooperative TU-

games where the player set is endowed with a precedence relation. This precedence relation

is represented by a partial order (i.e. reflexive, antisymmetric and transitive relation) on the

player set. Equivalently it can be represented by an acyclic directed graph. Players enter

to form the ‘grand coalition’ consisting of all players according to some permutation on

the player set. Given an acyclic digraph, a permutation of the players is called admissible,

if players enter after their successors in the digraph. Consequently, a coalition of players

is considered feasible, if for every player in the coalition all of its successors in the digraph

are also present in the coalition. The absolute hierarchical strength of a player i, given a

feasible coalition S, is now simply the number of admissible permutations in D where i

enters after the players in S \{i}. The normalized hierarchical strength of a player i, given

a feasible coalition S, is obtained by dividing the absolute hierarchical strength by the total

number of permutations that are admissible in digraph D. Faigle and Kern (1992) use the

hierarchical strength to axiomatically define the so-called precedence Shapley value. The

axiomatization uses the axioms of efficiency, the null player property (together presented by

Faigle and Kern (1992) as the carrier axiom) and linearity, combined with an axiom called

hierarchical strength, which replaces the ‘standard’ symmetry axiom. This axiom states

that in a unanimity game under precedence constraints dividend is distributed among the

players in the unanimity coalition proportionally to their normalized hierarchical strength

in the unanimity coalition.

A player is called irrelevant in a game under precedence constraints if it is a null

player and all its superiors in the precedence constraint are also null players, where a

player is a null player if its marginal contribution in every admissible permutation is zero.

Irrelevant player independence is subsequently defined as the property that states that

the payoff to relevant players (i.e. players that are not irrelevant) is not affected by the

presence of irrelevant players. We consider this a desirable property for solutions for games

under precedence constraints. We show that the precedence Shapley value does not satisfy

this property. Therefore we introduce the hierarchical solution which has the property that

the payoffs to relevant players are not affected by the presence of irrelevant players. Like

the precedence Shapley value, this new solution for games under precedence constraints

satisfies the axioms of efficiency, linearity and the null player property. In addition it uses

an alternative for the hierarchical strength axiom. Whereas the precedence Shapley value

allocates the dividend of a coalition proportionally to the hierarchical strength applied to

the full digraph, the new hierarchical solution allocates this dividend proportionally to the

hierarchical strength applied to the subgraph on the unanimity coalition.

We introduce weight functions for digraphs which assign to every acyclic digraph
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and every feasible coalition within that digraph, a weight to the players within that feasible

coalition. Both the absolute as well as the normalized hierarchical strength are examples of

weight functions. The class of so-called weighted precedence solutions consists of solutions

that allocate the dividend of a coalition proportionally to some weight function. Both

the precedence Shapley value as well as the hierarchical solution are weighted precedence

solutions.

We call a weight function subgraph-invariant if applied to a feasible coalition it

depends only on the subgraph on that coalition. The hierarchical solution is obtained

by applying a subgraph-invariant weight function. We show that for all solutions that are

obtained by applying a subgraph-invariant weight function, the payoff for relevant players is

not affected by the presence of irrelevant players. Moreover, these solutions can be obtained

by allocating the dividend of a feasible coalition proportionally to some power measure for

acyclic digraphs being functions that assign values to the players in an acyclic digraph that

can be interpreted as the ‘strength’ or ‘influence’ of these players in the digraph.1 We refer

to such solutions as precedence power solutions. Our approach of allocating the dividend

of a feasible coalition proportionally to some power measure for acyclic digraphs is similar

to that of van den Brink, van der Laan and Pruzhansky (2011) for (communication) graph

games, generalizing the approach in Borm, Owen and Tijs (1992) to the Myerson value

(Myerson (1977)) and position value.

The hierarchical solution is the precedence power solution that allocates dividend

proportionally to the hierarchical measure being the power measure that assigns to any

player in the digraph the number of admissible permutations, where it is preceded in

the permutation by all other players. In other words, for any digraph the hierarchical

measure is given by the hierarchical strength applied to the grand coalition. We give an

axiomatization of the hierarchical measure.

In the literature, the precedence Shapley value has been extended to games asso-

ciated with combinatorial structures more general than a digraph. For example, Bilbao

and Edelman (2000) consider games on convex geometries and Bilbao and Ordoñez (2008)

consider games on a class of augmenting systems. Convex geometries have been shown to

be contained in the class of so-called regular set systems considered by Lange and Grabisch

(2009), who also consider an extension of the precedence Shapley value to games on regular

set systems. A set of admissible permutations can be generated from these set systems

1Examples of power measures are the ones given by Gould (1987), White and Borgatti (1994), the

β-measure of van den Brink and Gilles (2000) and its reflexive version in van den Brink and Borm (2002),

the λ-measure of Borm, van den Brink and Slikker (2002), the positional power measure of Herings, van

der Laan and Talman (2005) or the centrality measures in del Pozo, Manuel, González-Arangüena and

Owen (2011).
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similar to how this is done for digraphs. We consider an extension of the hierarchical

measure on the class of regular set systems and proceed to give an axiomatization.

The hierarchical measure can be seen to rank players based on a number of per-

mutations of these players. An example where we also encounter ranking of players based

on permutations comes from social choice theory. The permutations in this case are the

preferences of the voters on a number of alternatives they can choose from and the players

are the alternatives. It turns out that the hierarchical measure is similar to the plurality

scoring rule for social choice situations. By considering other scoring rules, we can define

new solutions for games under precedence constraints.

Finally, we consider the hierarchical measure on the classes of forests and sink

forests, which are subclasses of acyclic digraphs. On these classes we consider the normal-

ized version of the hierarchical measure. We consider the application of a number of power

measures to river games with multiple springs.

The paper is organized as follows. Section 2 contains preliminaries. In Section 3, we

consider the irrelevant player property, show that the precedence Shapley value does not

satisfy this property and introduce the hierarchical solution that does satisfy this property.

We also axiomatize the hierarchical measure as power measure for digraphs which is the

power measure on which the hierarchical solution is based. In Section 3 we generalize

the hierarchical measure and solution to games on regular set systems and provide an

axiomatization. Section 4 considers the normalized hierarchical strength for forests and

sink forests. The solutions for sink forest are applied to river games. Finally, Section 5

contains concluding remarks.

2 Preliminaries

2.1 TU-games

A situation in which a finite set of players N ⊂ IN can generate certain payoffs by co-

operation can be described by a cooperative game with transferable utility (or simply a

TU-game), being a pair (N, v) where v : 2N → IR is a characteristic function on N satis-

fying v(∅) = 0. For any coalition S ⊆ N , v(S) ∈ IR is the worth of coalition S, i.e. the

members of coalition S can obtain a total payoff of v(S) by agreeing to cooperate. We

denote the collection of all characteristic functions on player set N by GN .

A payoff vector for game (N, v) is an |N |-dimensional vector x ∈ IRN assigning a

payoff xi ∈ IR to any player i ∈ N . A (single-valued) solution for TU-games is a function

that assigns a payoff vector to every TU-game. One of the most widely used solutions for

3



TU-games is the Shapley value (Shapley (1953a)), given by

Shi(N, v) =
1

|N |!
∑

π∈Π(N)

mπ
i (N, v), for all i ∈ N,

where Π(N) is the collection of all permutations π : N → N on N , and for every permuta-

tion π ∈ Π(N),

mπ
i (N, v) = v({j ∈ N | π(j) ≤ π(i)})− v({j ∈ N | π(j) < π(i)}), (2.1)

is the marginal contribution of player i to the players that are ranked before him in the

order π.

For each T ⊆ N , T 6= ∅, the unanimity game (N, uT ) is given by uT (S) = 1 if T ⊆ S,

and uT (S) = 0 otherwise. It is well-known that the unanimity games form a basis for GN .

For every v ∈ GN it holds that v =
∑

T⊆N

T 6=∅
∆v(T )uT , where ∆v(T ) =

∑
S⊆T (−1)|T |−|S|v(S)

are the Harsanyi dividends , see Harsanyi (1959).

2.2 Digraphs, precedence constraints and games under prece-

dence constraints

An irreflexive directed graph or irreflexive digraph is a pair (N,D) where N is the set of

nodes and D ⊆ {(i, j) | i, j ∈ N, i 6= j} is an (irreflexive) binary relation on N consisting of

ordered pairs called directed links or arcs. Since we assume irreflexivity throughout the full

paper, we refer to these just as digraphs. Since the nodes will represent players, we often

refer to the nodes as players. For i ∈ N , the nodes in FD(i) := {j ∈ N | (i, j) ∈ D} are

called the followers or successors of i in D, and the nodes in PD(i) := {j ∈ N | (j, i) ∈ D}
are called the predecessors of i in D. Further, by F̂D(i) we denote the set of successors of i

in the transitive closure of D i.e., j ∈ F̂D(i) if and only if there exists a sequence of players

(h1, . . . , ht) such that h1 = i, hk+1 ∈ FD(hk) for all 1 ≤ k ≤ t − 1, and ht = j. We refer

to the players in F̂D(i) as the subordinates of i in D, and to the players in the set P̂D(i) =

{j ∈ N | i ∈ F̂D(j)} consisting of all predecessors of i in the transitive closure of D, as i’s

superiors . The digraph (N,D) is called acyclic if i 6∈ F̂D(i) for all i ∈ N . We denote the

collection of all acyclic digraphs by D. For S ⊆ N and (N,D) ∈ D, the digraph (S,D(S))

is given by D(S) = {(i, j) ∈ D | {i, j} ⊆ S}. By TOP (N,D) = {i ∈ N | PD(i) = ∅} we

denote the set of ‘top players’ in (N,D), i.e. the set of players without predecessors.

Faigle and Kern (1992) consider situations where cooperation between players is

restricted by a partial order on the player set. They interpret this partial order as a

precedence relation. The partial order can be represented by an acyclic digraph. A coalition

is feasible, if for any player in the coalition all of its successors in the digraph are also present
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in the coalition. The set Φp(N,D) of feasible coalitions according to digraph (N,D) ∈ D
is thus given by

Φp(N,D) = {S ⊆ N | FD(i) ⊆ S for all i ∈ S}.

Faigle and Kern (1992) consider cooperative games, where for acyclic digraph (N,D) ∈
D the domain of the characteristic function is given by the set Φp(N,D).2 A TU-game

under precedence constraints is a triple (N, v,D), where N ⊆ N is a finite set of players,

(N,D) ∈ D is an acyclic digraph, and v : Φp(N,D) → IR is a characteristic function, that

assigns to every set S in Φp(N,D) a worth v(S), where v(∅) = 0.

We denote the class of all games under precedence constraints by GPC , and we

denote the class of games under precedence constraints on graph (N,D) ∈ D by G(N,D)
PC .

The game under precedence constraints obtained from (N, v,D) ∈ GPC by considering only

feasible coalition S and its subsets is denoted by (S, vS, D(S)), where vS(T ) = v(T ) for all

feasible coalitions T ⊆ S. We refer to (S, vS, D(S)) as the subgame on S of (N, v,D). For

(N, v,D), (N,w,D) ∈ G(N,D)
PC , the sum game (N, v+w,D) is defined by (v+w)(S) = v(S)+

w(S), and for c ∈ IR, the game (N, cv,D) ∈ G(N,D)
PC by (cv)(S) = cv(S) for S ∈ Φp(N,D).

A permutation π ∈ Π(N) is called admissible in acyclic digraph (N,D) if π(i) > π(j)

whenever (i, j) ∈ D, i.e. successors enter before their predecessors in the digraph. The set

of admissible permutations ΠD(N) in D is denoted by

ΠD(N) = {π ∈ Π(N) | π(i) > π(j) if (i, j) ∈ D}. (2.2)

Note that it holds that the set of admissible permutations in D is the same as that of its

transitive closure tr(D): ΠD(N) = Πtr(D)(N).

The precedence marginal vector mπ(N, v,D) ∈ IRN , associated with the game under

precedence constraints (N, v,D) and permutation π ∈ ΠD(N), is given by

mπ
i (N, v,D) = mπ(N, v) = v({j ∈ N | π(j) ≤ π(i)})− v({j ∈ N | π(j) < π(i)}), i ∈ N.

(2.3)

Recall from Section 2.1 that the Shapley value assigns to the players the average over

all marginal vectors associated with all permutations of the player set N . The precedence

Shapley value H of Faigle and Kern (1992) is the solution on GPC given by

Hi(N, v,D) =
1

|ΠD(N)|
∑

π∈ΠD(N)

mπ
i (N, v,D), for all i ∈ N,

2This is different from games with a permission structure as in Gilles, Owen and van den Brink (1992)

which also is a triple (N, v,D), but where the characteristic function v is still defined on the domain

2N . Moreover, in the conjunctive approach to these games, a coalition is feasible if for any player in the

coalition all of its predecessors in the digraph are present.
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and assigns to the players in N the average over all precedence marginal vectors of game

under precedence constraints (N, v,D). For (N, v,D) ∈ GPC , all permutations in Π(N) are

admissible when D = ∅. In that case the domain of characteristic function v is given by

2N , and thus is a classical characteristic function of a TU-game. Thus, when D = ∅, the
precedence Shapley value of (N, v,D) yields the Shapley value of (N, v).

Faigle and Kern (1992) give an axiomatization of the precedence Shapley value using

the following axioms. The first three axioms are straightforward adaptations of axioms for

TU-game solutions.3 A player i ∈ N is a null player in game under precedence constraints

(N, v,D), if for every π ∈ ΠD(N) it holds that mπ
i (N, v,D) = 0.

Efficiency For each game (N, v,D) ∈ GPC it holds that
∑

i∈N fi(N, v,D) = v(N).

Linearity For every pair of games (N, v,D) and (N,w,D) ∈ G(N,D)
PC it holds that f(N, v+

w,D) = f(N, v,D) + f(N,w,D), and for (N, v,D) ∈ G(N,D)
PC and c ∈ IR it holds that

f(N, cv,D) = cf(N, v,D).

Null player property For each (N, v,D) ∈ GPC , if i ∈ N is a null player in (N, v,D),

then fi(N, v,D) = 0.

Besides these three axioms, they introduce an axiom that is based on the hierarchical

strength of players. First, for i ∈ S ∈ Φp(N,D) the set of permutations Πi
D(N, S) is defined

by

Πi
D(N, S) = {π ∈ ΠD(N) | π(i) > π(j) for all j ∈ S \ {i}}, (2.4)

being the collection of those permutations in ΠD(N) where i enters after the players in

S \ {i}. Note that the collection {Πi
D(N, S)}i∈S is a partition of ΠD(N).

The absolute hierarchical strength is the function h that assigns to every (N,D) ∈ D
and coalition S ∈ Φp(N,D) the vector h(N,D, S) ∈ IRS, where hi(N,D, S) = |Πi

D(N, S)|
is the number of permutations in ΠD(N) where i ∈ S enters after the players in S \ {i}.

The normalized hierarchical strength is the function h that assigns to every (N,D) ∈
D and a coalition S ∈ Φp(N,D) the vector h(N,D, S) ∈ IRS, where hi(N,D, S) =

|Πi
D(N,S)|

|ΠD(N)|

is the fraction of permutations in ΠD(N) where i ∈ S enters after the players in S \ {i}.4
Note that

∑
i∈S

hi(N,D, S) = 1 for all S ∈ Φp(N,D).

3We remark that, similar to Shapley (1953a), Faigle and Kern (1992) combine efficiency and the null

player property into a carrier axiom.
4Both the absolute as well as the normalized hierarchical strength assign a value to a player i ∈ N ,

given (N,D) ∈ DN and coalition S ∈ Φp(N,D) and are therefore more correctly denoted by hi((N,D), S)

and hi((N,D), S) respectively. For convenience however we will refer to these functions as hi(N,D, S) and

hi(N,D, S), respectively, throughout this paper.
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Unanimity games under precedence constraints are defined similar to classical una-

nimity TU-games. For each T ∈ Φp(N,D), T 6= ∅, the unanimity game under precedence

constraints (N, uT , D) ∈ GPC is given by uT (S) = 1 if T ⊆ S, and uT (S) = 0 otherwise,

S ∈ Φp(N,D).5

Faigle and Kern (1992) also consider the dividend of a coalition S ∈ Φp(N,D) in

game under precedence constraints (N, v,D), ∆D
v (S) = v(S)−∑T⊂S,T∈Φp(N,D),T 6=∅∆

D
v (T ).

For every (N, v,D) ∈ GPC , Faigle and Kern (1992) show that the characteristic

function in (N, v,D) can be written as a linear combination of the characteristic functions

of unanimity game under precedence constraints (N, uT , D):

v =
∑

T∈Φp(N,D)

T 6=∅

∆D
v (T )uT . (2.5)

The axiom of hierarchical strength of a solution for games under precedence con-

straints states that in unanimity games under precedence constraints, the earnings are

distributed among the players in the unanimity coalition proportionally to their normal-

ized hierarchical strength in that coalition. Obviously, this is equivalent to distributing the

dividends proportionally to the absolute hierarchical strength of the players.

Hierarchical strength For every (N,D) ∈ D, every S ∈ Φp(N,D) and every i, j ∈ S, it

holds that hi(N,D, S)fj(N, uS, D) = hj(N,D, S)fi(N, uS, D).

Theorem 2.1 (Faigle and Kern, 1992)

A solution on GPC is equal to the precedence Shapley value H if and only if it satisfies

efficiency, linearity, the null player property and hierarchical strength.

Alternatively, the precedence Shapley value can be defined as the solution that allo-

cates the dividend of a coalition S ∈ Φp(N,D) proportionally to the hierarchical strength

h(N,D, S) of the players in S:

Hi(N, v,D) =
∑

S∈Φp(N,D)

i∈S

hi(N,D, S)∑
j∈S hj(N,D, S)

∆D
v (S) for all i ∈ N.

3 Solutions for games under precedence constraints

and power measures for acyclic digraphs

3.1 Irrelevant player independence

For a classical TU-game (N, v), player i ∈ N being a null player in v implies that ∆v(S) = 0

for all coalitions S ⊆ N with i ∈ S. However, for a game under precedence constraints

5Note that, different from classical TU-games, the unanimity game (called simple game by Faigle and

Kern) uT is only defined on the set Φp(N,D).
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(N, v,D), player i ∈ N being a null player does not imply that ∆v(S) = 0 for all coalitions

S ∈ Φp(N,D) with i ∈ S. We illustrate this with an example.

Example 3.1 Consider the game under precedence constraints (N, v,D), where N =

{1, 2}, v = u{1,2} is the unanimity game on players 1,2 and D is given by {(1, 2)}. The

set of feasible coalitions is given by Φp(N,D) = {∅, {2}, {1, 2}}. The set of admissible

permutations is given by ΠD(N) = {(2, 1)}. Therefore we only need to consider the prece-

dence marginal vector m(2,1)(N, v,D), to decide which players are null players. We obtain

m(2,1)(N, v,D) = (1, 0) and therefore player 2 is a null player. The dividends of (N, v,D)

are given by ∆D
v ({2}) = 0,∆D

v ({1, 2}) = 1. We find that even though player 2 is a null

player in (N, v,D), not all feasible coalitions that it is contained in have 0 dividend.

The example shows that the reason why coalitions with null players might have

nonzero dividend is that a null player might have predecessors in the digraph that are

not null players. Consider the example of a manufacturer of some good, where we can

distinguish between agents that perform manual labor at an early stage in the production

process, and management that is in charge of distribution and sales of the good. The

manual labor produces a good, but this in itself does not generate any worth. The benefit

is realized when selling the good.

The following proposition shows that coalitions containing a null player, but not

any of this player’s predecessors in the digraph, always have zero dividend.

Proposition 3.2 Consider game under precedence constraints (N, v,D). If coalition S ∈
Φp(N,D) contains a null player i and S ⊆ N \ PD(i), then ∆D

v (S) = 0.

Proof

Consider a feasible coalition S containing null player i and no predeccesors of i. Let

H(S) = {j | j ∈ S and j /∈ F̂D(i)} be the set of players in S that are not subordinates of

player i in D. We perform induction on |H(S)|.
If |H(S)| = 0, then the only feasible subset of S containing player i is S itself.

Therefore v(S)−v(S\{i}) = ∆D
v (S). Since i is a null player, it holds that v(S)−v(S\{i}) =

0 = ∆D
v (S).

Proceeding by induction, assume that ∆D
v (T ) = 0, when 0 ≤ |H(T )| < |H(S)|.

Since |H(S)| > 0 it holds that S is no longer the only feasible subset of S containing player

i. Let K(S) = {T ∈ Φp(N,D) | i ∈ T and T ⊂ S}. It now holds that v(S)− v(S \ {i}) =∑
T∈K(S)

∆D
v (T ) + ∆D

v (S). Since |H(T )| < |H(S)| for T ∈ K(S), by induction we have

∆D
v (T ) = 0 for all T ∈ K(S). Since i is a null player, it holds that v(S)− v(S \ {i}) = 0 =

∆D
v (S).

✷
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Player i ∈ N is called an irrelevant player in game under precedence constraints

(N, v,D) if i is a null player, and any j ∈ P̂D(i) is also a null player (this implies that any

j ∈ P̂D(i) is also irrelevant). Call a player i ∈ N relevant if it is not an irrelevant player.

We have the following proposition.

Proposition 3.3 Player i ∈ N is an irrelevant player in game under precedence con-

straints (N, v,D) if and only if ∆D
v (S) = 0 for every coalition S ∈ Φp(N,D) with i ∈ S.

Proof

Only if

For S ⊆ N , define PD(S) =
⋃

i∈S PD(i). For a coalition S, let P 1
D(S) = PD(S) and

P k
D(S) = PD(P

k−1
D (S)), k = 1, . . . . For an irrelevant player i ∈ N , let κ(i) be the smallest

integer such that P
κ(i)
D ({i}) = ∅. Let S ∈ Φp(N,D) such that i ∈ S. We show by induction

on κ(i) that ∆D
v (S) = 0.

If κ(i) = 1, then player i has no predecessors in (N,D). In that case S ⊆ N =

N \ PD(i) for any coalition S ∈ Φp(N,D) such that i ∈ S. Therefore by Proposition 3.2

∆D
v (S) = 0 for S ∈ Φp(N,D) such that i ∈ S.

Proceeding by induction on κ(i), assume that for any irrelevant player j such that

κ(j) < κ(i) it holds that ∆D
v (S) = 0 for all coalitions S ∈ Φp(N,D), j ∈ S. We already

know that ∆D
v (S) = 0 for S such that S ∩ P̂D(i) 6= ∅, by the fact that predecessors

of irrelevant players are themselves also irrelevant and κ(j) < κ(i) for any j ∈ P̂D(i).

Therefore we only need to consider those feasible coalitions S ∈ Φp(N,D) such that S ∩
P̂D(i) = ∅. For these coalitions it holds that S ⊆ N \ PD(i). Therefore by Proposition 3.2,

∆D
v (S) = 0.

If

Suppose that i is not an irrelevant player in (N, v,D). If i is not a null player in (N, v,D),

then there exists a coalition S ∈ Φp(N,D), i ∈ S such that S \ {i} ∈ Φp(N,D) and

v(S)− v(S \ {i}) 6= 0. We also have v(S)− v(S \ {i}) = ∑
T⊆S,i∈T,T∈Φp(N,D)

∆D
v (T ). It follows

that there exists at least one set S ∈ Φp(N,D), i ∈ S such that ∆D
v (S) 6= 0 and we obtain

a contradiction. So, i is a null player in (N, v,D).

If j ∈ P̂D(i) is not a null player, we can reason in a similar way to obtain that there

exists at least one set S ∈ Φp(N,D), j ∈ S such that ∆D
v (S) 6= 0. Since i is a subordinate

of j in D, i must also be in S ∈ Φp(N,D) and we obtain a contradiction.

✷
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Let Irr(N, v,D) be the set of irrelevant players in game under precedence constraints

(N, v,D). Irrelevant player independence states that removal of irrelevant players from the

game, does not affect the payoff to relevant players.

Irrelevant player independence Let N ′ = N\Irr(N, v,D). For every (N, v,D) ∈ GPC ,

it holds that fi(N, v,D) = fi(N
′, vN ′ , D(N ′)) for i ∈ N ′.

For a collection of sets F ⊆ 2N let FS = {T ∈ F | T ⊆ S} be the collection of

subsets of S in F . It can be seen that, for N ′ = N \Irr(N, v,D), it holds that Φp
N ′(N,D) =

Φp(N ′, D(N ′)), i.e. the collection of feasible subsets of coalition N ′ obtained from graph

(N,D) is equal to the collection of feasible sets obtained from graph (N ′, D(N ′)). (Note

that this does not have to be the case for all subsets of N). This means that removing

irrelevant players from the game does not have an effect on the ability of relevant players

to cooperate with each other.

We consider irrelevant player independence a desirable property for a solution for

games under precedence constraints to satisfy. Since irrelevant players are null players,

they do not make any contribution to their subordinates in the digraph. Moreover, their

superiors are also null players, and thus they also do not make a contribution through

players that need them to be present in any admissible permutation. Therefore they

should not be able to affect the payoffs of those players that do make a contribution in the

game. The precedence Shapley value does not satisfy irrelevant player independence, as

illustrated by the following example.

Example 3.4 Consider the (N, v,D) ∈ GPC, where N = {1, 2, 3}, v = u{1,2} and D =

{(3, 1)}. The set of admissible permutations is given by ΠD(N) = {(2, 1, 3), (1, 2, 3), (1, 3, 2)}.
Player 3 is an irrelevant player in (N, v,D). The precedence Shapley value allocates the div-

idend ∆D
v ({1, 2}) 6= 0, among the players 1 and 2 proportionally to the hierarchical strength

with player 3 obtaining 0 payoff. Since h(N,D, {1, 2}) = (1, 2), the payoffs according to

the precedence Shapley value are H(N, u{1,2}, D) = (1
3
, 2
3
, 0).

Next consider (N ′, u{1,2}, D
′) ∈ GPC, where N ′ = N \ {3} and D′ = ∅. The set

of admissible permutations is given by ΠD′(N ′) = {(1, 2), (2, 1)}. Now, the precedence

Shapley value of players 1 and 2 is allocated proportionally to the hierarchical strength

h(N ′, D′, {1, 2}) = (1, 1), and therefore H(N ′, u{1,2}, D
′) = (1

2
, 1
2
).

The presence of irrelevant player 3 changes the payoffs of players 1 and 2 according

to the precedence Shapley value from (1
2
, 1
2
) to (1

3
, 2
3
).

It can be shown that for games (Nm, u{1,2}, Dm), where Nm = {1, . . . , m} and

Dm = {(3, 1), (4, 3), . . . , (m,m−1)}, the precedence Shapley value is H1(Nm, u{1,2}, Dm) =
1
m
, H2(Nm, u{1,2}, Dm) = m−1

m
and Hi(Nm, u{1,2}, Dm) = 0 for i ∈ Nm \ {1, 2} and so

10



limm→∞ H1(Nm, u{1,2}, Dm) = 0 and limm→∞ H2(Nm, u{1,2}, Dm) = 1. We find that the

fact that player 1 has many irrelevant players as superiors in the digraph, is detrimental

to its payoff, even though, for different values of m, player 1 is present in exactly the same

feasible coalitions that contain only relevant players.

3.2 The hierarchical solution for games under precedence con-

straints

Next, we consider the solution for games under precedence constraints that is obtained by

replacing hierarchical strength in Theorem 2.1 by the axioms of irrelevant player indepen-

dence and weak hierarchical strength. Weak hierarchical strength is a weaker version of

the hierarchical strength axiom in that it only requires the equality for unanimity games

of the grand coalition. This axiom can be interpreted as follows. If unanimity among all

players must be reached before any non-zero worth can be generated, we might consider

the players equals with respect to the game. Therefore, worth allocation should depend

only on the strength of the players in the digraph. The strength of each player in the

digraph is measured by the hierarchical strength.

Weak hierarchical strength For every (N,D) ∈ D and every i, j ∈ N , it holds that

hi(N,D,N)fj(N, uN , D) = hj(N,D,N)fi(N, uN , D).

We further note that the null player property can be replaced by the following

weaker property on irrelevant players.6

Irrelevant player property For each (N, v,D) ∈ GPC , if i ∈ N is an irrelevant player in

(N, v,D), then fi(N, v,D) = 0.

We show that there is a unique solution for games under precedence constraints that

satisfies efficiency, linearity, the irrelevant player property, irrelevant player independence,

and weak hierarchical strength.

Theorem 3.5 There is a unique solution f on GPC that satisfies efficiency, linearity, the

irrelevant player property, irrelevant player independence, and weak hierarchical strength.

Proof

Since f satisfies linearity it is sufficient to consider uniqueness of f on unanimity games

under precedence constraints. For the unanimity game under precedence constraints

6It is straightforward to show that the null player property can also be replaced by the irrelevant player

property in the axiomatization of the precedence Shapley value.
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(N, uS, D) on some coalition S ∈ Φp(N,D), the set of irrelevant players is given by N \ S
(since S ∈ Φp(N,D) implies that F̂D(S) ⊆ S). By the irrelevant player property these

players are assigned a 0 payoff by f . By irrelevant player independence for the players in

S, it holds that fi(N, uS, D) = fi(S, uS, D) for all i ∈ S.7

From efficiency it follows that

∑

k∈S

fk(S, uS, D) = uS(S) = 1. (3.6)

Now consider any player i ∈ S. If |S| = 1, then efficiency determines fi(S, uS, D). There-

fore, suppose that |S| ≥ 2. Since (S, uS, D) is a unanimity game on the grand coalition S,

we can apply weak hierarchical strength to player i and any player k ∈ S \ {i} to obtain

that

hi(S,D, S)fk(S, uS, D) = hk(S,D, S)fi(S, uS, D). (3.7)

We distinguish the following two cases:

(i) Suppose that hi(S,D, S) = 0.

Since
∑

j∈S hj(S,D, S) = 1, there exists at least one l ∈ S\{i} such that hl(S,D, S) 6=
0. It follows from Equation (3.7) applied to players i and l that fi(S, uS, D) = 0.

(ii) Suppose that hi(S,D, S) > 0.

For k ∈ S \ {i} it follows from Equation (3.7) that

fk(S, uS, D) =
hk(S,D, S)

hi(S,D, S)
fi(S, uS, D).

By substituting this expression in Equation (3.6) we obtain

∑

k∈S

hk(S,D, S)

hi(S,D, S)
fi(S, uS, D) = 1

Since hk(S,D, S) is known for k ∈ S we find that fi(S, uS, D) is uniquely determined.

✷

Next we define the hierarchical solution H̃ for games under precedence constraints.

7For convenience we write the subgame on S by (S, uS , D) instead of (S, uS |S , D(S)).
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Definition 3.6 The hierarchical solution H̃ is the solution on GPC given by

H̃i(N, v,D) =
∑

S∈Φp(N,D)

i∈S

hi(S,D(S), S)∑
j∈S hj(S,D(S), S)

∆D
v (S), i ∈ N.

This hierarchical solution allocates the dividend of every feasible coalition over the

players in that coalition proportional to the hierarchical strength in the subgraph on that

coalition. Next, we provide an example which calculates the hierarchical solution and the

precedence Shapley value highlighting that in general both solutions are different.

Example 3.7 Consider the game under precedence constraints (N, v,D) with N = {1, 2, 3, 4} ,
v = u{1,2,4} and D = {(3, 1) , (3, 2) , (4, 2)}. The dividends of v are given by ∆D

v ({1, 2, 4}) =
1 and ∆D

v (S) = 0, otherwise. The set of admissible permutations is

ΠD (N) = {(1, 2, 3, 4) , (1, 2, 4, 3) , (2, 1, 3, 4) , (2, 1, 4, 3) , (2, 4, 1, 3)} .

In this case, for S = {1, 2, 4} ∈ Φp(N,D), we have

h1 (N,D, S) = 1, h2 (N,D, S) = 0, h4 (N,D, S) = 4,

yielding the precedence Shapley value H (N, v,D) =
(
1
5
, 0, 0, 4

5

)
.

The set of admissible permutations on subgraph (S,D (S)) is given by

ΠD(S) (S) = {(1, 2, 4) , (2, 1, 4) , (2, 4, 1)} .

Therefore, h1 (S,D(S), S) = 1, h2 (S,D(S), S) = 0, h4 (S,D(S), S) = 2, yielding the hier-

archical solution H̃ (N, v,D) =
(
1
3
, 0, 0, 2

3

)
.

Figure 1: Digraphs (N,D) and (S,D(S))

It is straightforward to show that the hierarchical solution satisfies the axioms of

Theorem 3.5 and thus is characterized by these axioms. Therefore, we obtain the following

characterization.

Theorem 3.8 A solution on GPC is equal to the hierarchical solution H̃ if and only if it

satisfies efficiency, linearity, the irrelevant player property, irrelevant player independence,

and weak hierarchical strength.
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3.3 Weighted precedence solutions for games under precedence

constraints

Consider a game under precedence constraints (N, v,D). Both the precedence Shapley

valueH as well as the hierarchical solution H̃ allocate the dividend ∆D
v (S) of a coalition S ∈

Φp(N,D) among the players in S. The precedence Shapley value allocates proportionally to

the hierarchical strength h(N,D, S), while the hierarchical solution allocates proportionally

to the hierarchical strength h(S,D(S), S). To make clear the difference, we introduce the

following notion.

Definition 3.9 A weight function is a function w that assigns to every digraph (N,D) ∈ D
and S ∈ Φp(N,D) a vector w(N,D, S) ∈ IRS, where

∑
i∈S wi(N,D, S) > 0.

We note that both the absolute as well as the normalized hierarchical strength

are weight functions. A weight function w is called subgraph-invariant if w(N,D, S) =

w(S,D(S), S) for all (N,D) ∈ D and S ∈ Φp(N,D). The weight vector assigned to a

digraph (N,D) ∈ D and S ∈ Φp(N,D) by a subgraph-invariant weight function depends

only on the subgraph on S. Let the collection of all subgraph-invariant weight functions

be denoted by W I .

Next we consider the class of solutions that for any game (N, v,D) allocate the

dividend of a coalition S ∈ Φp(N,D) according to w(N,D, S) for some weight function w.

We will refer to solutions in this class as weighted precedence solutions .

Definition 3.10 For a game under precedence constraints (N, v,D) and weight function

w, the weighted precedence solution is the solution fw given by

fw
i (N, v,D) =

∑

S∈Φp(N,D)

i∈S

wi(N,D, S)∑
j∈S wj(N,D, S)

∆D
v (S) for all i ∈ N.

The precedence Shapley value H is the weighted precedence solution fh, where h

is the absolute (or normalized) hierarchical strength. The hierarchical solution H̃ is the

weighted precedence solution f h̃, where h̃ is the weight function given by

h̃(N,D, S) = h(S,D(S), S) for (N,D) ∈ D and S ∈ Φp(N,D),

being the weight function that assigns to every coalition S in a digraph its hierarchical

strength in the subgraph on coalition S. For these solutions, dividend allocation of a

feasible coalition depends only on the subgraph on that coalition.

Proposition 3.11 Every weighted precedence solution obtained from some subgraph-invariant

weight function satisfies irrelevant player independence.
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Proof

Consider a game under precedence constraints (N, v,D) and solution fw obtained from a

subgraph-invariant weight function w. Let N ′ = N \ Irr(N, v,D). By Proposition 3.3, it

holds that ∆D
v (S) = 0 if S ∩ Irr(N, v,D) 6= ∅ and from the expression of dividends given

by Faigle and Kern (1992) it follows that ∆D
v (S) = ∆D

vN′
(S) for S ∈ Φp

N ′(N,D).

For a player i ∈ N ′, it holds that fw
i (N, v,D) =

∑
S∈Φp(N,D)

i∈S

wi(S,D(S),S)∑
j∈S wj(S,D(S),S)

∆D
v (S) =

∑
S∈Φ

p

N′ (N,D)

i∈S

wi(S,D(S),S)∑
j∈S wj(S,D(S),S)

∆vD
N′
(S), and fw

i (N
′, vN ′ , D(N ′)) =

∑
S∈Φp(N′,D(N′))

i∈S

wi(S,D(N ′)(S),S)∑
j∈S wj(S,D(N ′)(S),S)

∆
D(N ′)
vN′ (S). For all coalitions S ∈ Φp(N ′, D(N ′)) = Φp

N ′(N,D)

it holds that D(S) = D(N ′)(S), and therefore wi(S,D(S), S) =

wi(S,D(N ′)(S), S) for all i ∈ S. Hence, we conclude that fw
i (N, v,D) = fw

i (N
′, vN ′, D(N ′)).

✷

3.4 Power measures for digraphs and precedence power solutions

for games under precedence constraints

A power measure for acyclic digraphs is a function p, that to every acyclic digraph (N,D) ∈
D assigns a vector p(N,D) ∈ IRN to the players in N . For a player i ∈ N , pi(N,D) is

a measure of its ‘power’ or ‘influence’ in (N,D). We call a power measure p positive if∑
j∈N pj(N,D) > 0 for all (N,D) ∈ D. In this paper we consider only positive power

measures. Let the collection of all positive power measures be denoted by P .

Let t : W I → P be the function that assigns to every subgraph-invariant weight

function w ∈ W I the power measure p ∈ P that for every acyclic digraph (N,D) ∈ D is

given by p(N,D) = w(N,D,N).

Proposition 3.12 The function t is a bijection.

Proof

We show that t is both injective and surjective.

(i) t is injective.

Let p = t(w1) = t(w2). Since both w1 and w2 are subgraph-invariant, it holds that

w1(N,D, S) = w1(S,D(S), S) and w2(N,D, S) = w2(S,D(S), S). Since p(S,D(S)) =

w1(S,D(S), S) and p(S,D(S)) = w2(S,D(S), S), we have w1(N,D, S) = w1(S,D(S), S) =

p(S,D(S)) = w2(S,D(S), S) = w2(N,D, S).

(ii) t is surjective.

For any power measure p ∈ P , consider the weight function w ∈ W I given by

w(N,D, S) = p(S,D(S)). Clearly it holds that t(w) = p.
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✷

For positive power measure p, we define the p-hierarchical solution as the solution

that allocates the dividend of a coalition S ∈ Φp(N,D) among the players in S propor-

tionally to p(S,D(S)) according to some positive power measure p.

Definition 3.13 For positive power measure p, the p-hierarchical solution is the solution

on GPC given by

Hp
i (N, v,D) =

∑

S∈Φp(N,D)

i∈S

pi(S,D(S))∑
j∈S pj(S,D(S))

∆D
v (S) for all i ∈ N.

We will refer to the class consisting of all p-hierarchical solutions as the class of

precedence power solutions. It turns out that these are exactly the weighted precedence

solutions obtained from a subgraph-invariant weight function.

Proposition 3.14 The collection of weighted precedence solutions obtained from a sub-

graph-invariant weight function is equivalent to the collection of precedence power solutions.

Proof

Consider function t from Proposition 3.12. From Definition 3.10 and Definition 3.13 we

have that fw = H t(w). The proposition then follows from bijectivity of t.

✷

From Proposition 3.11 and 3.14 we obtain the following corollary.

Corollary 3.15 Every precedence power solution for games under precedence constraints

satisfies irrelevant player independence.

In order to axiomatize the p-hierarchical solution we introduce the p-strength axiom. This

axiom has an interpretation similar to that of weak hierarchical strength from Theorem

3.5. If unanimity among all players must be reached to generate any non-zero worth, we

might consider the players equals with respect to the game. Therefore, worth allocation

should only depend on the strength of players in the digraph. The p-hierarchical solution

uses the power measure p to measure the strength of each player in the digraph.

p-strength For every (N,D) ∈ D and every i, j ∈ N , it holds that

pi(N,D)fj(N, uN , D) = pj(N,D)fi(N, uN , D).

The p-hierarchical solution is axiomatized by replacing in Theorem 3.5 weak hierarchical

strength by p-strength.
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Theorem 3.16 A solution for games under precedence constraints is equal to the p-hierarchical

solution Hp if and only if it satisfies efficiency, linearity, the irrelevant player property,

irrelevant player independence and p-strength.

Proof

It is straightforward to show thatHp satisfies efficiency, linearity, the irrelevant player prop-

erty and p-strength. Hp satisfying irrelevant player independence follows from Corollary

3.15

The proof of uniqueness follows similar as in Theorem 3.5.

✷

3.5 The hierarchical measure for digraphs

Above we found that the hierarchical solution H̃ is equivalent to the weighted precedence

solution f h̃, where h̃ is the subgraph-invariant weight function given by h̃(N,D, S) =

h(S,D(S), S) for (N,D) ∈ D and S ∈ Φp(N,D). Proposition 3.14 implies that there exists

a power measure p such that Hp = f h̃ = H̃.8 This is the following power measure.

Definition 3.17 The hierarchical measure is the power measure on D given by

ηi(N,D) = h̃i(N,D,N) = hi(N,D,N) = |Πi
D(N)| for all i ∈ N.

Since H̃ = Hη, from here on we will denote the hierarchical solution by Hη. Note that η

is defined for any N ⊂ IN, and thus also for all S ⊂ N .

Faigle and Kern (1992) only use the hierarchical strength as a tool to axiomatize

the precedence Shapley value H . No motivation is given about the reason why the hier-

archical strength is used, instead of any other measure. Although other motivations for

the precedence Shapley value are given, here we motivate the use of power measure η by

giving an axiomatization of this power measure on the class of acyclic digraphs. Therefore,

we introduce several axioms that can be satisfied by a generic power measure p for acyclic

digraphs.

The first axiom, 1-normalization, states that if digraph (N,D) contains only one

player then this player has power one. This property is satisfied by many power measures

in the literature.

1-Normalization For every (N,D) ∈ D with N = {i}, it holds that pi(N,D) = 1.

8For the hierarchical strength h itself, we cannot find such a corresponding power measure. This follows

from the precedence Shapley value not satisfying irrelevant player independence.
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The second axiom, the non-top property, states that players that are not top players

in the graph have zero power. The digraph is interpreted as a hierarchical structure, where

the only players that can enter as last player, and therefore are not depending on players

that always enter after them, are players without predecessors. This property is also

satisfied by, for example the λ-measure of Borm, van den Brink and Slikker (2002).

Non-top property For every (N,D) ∈ D and i ∈ N such that PD(i) 6= ∅, it holds that
pi(N,D) = 0.

The third axiom is independence of successors and states that the power of a player

does not depend on its successors. This property reflects that the power of a player does

not depend on players it dominates, but more on the players that it is dominated by.

For a player i ∈ N , let outD(i) := {(k, l) ∈ D | k = i} be the set of outgoing arcs

from i in digraph D.

Independence of successors For every (N,D) ∈ D it holds that pi(N,D) = pi(N,D \
outD(i)).

Finally, the isolated player property states that the power of an isolated player (i.e.

a player having no successors nor predecessors) is equal to the sum of the powers of all

other players in the subgraph without this isolated player. Since isolated players do not

have any predecessors, these players might be considered to interact freely with any of the

other players in the graph. Since isolated players also do not have any successors, it might

be said that their power in the graph comes only from this interaction with other players.

The isolated player property reflects that the power of an isolated player depends on the

combined strength of the relations it is able to have with any of the other players, where

the strength of each relation depends on the powers of the other players in the subgraph

without the isolated player.

Isolated player property For every (N,D) ∈ D and i ∈ N such that FD(i)∪PD(i) = ∅,
it holds that pi(N,D) =

∑
j∈N\{i} pj(N \ {i}, D−i).

The four previous axioms characterize the hierarchical measure on acyclic digraphs.9

Now consider (N,D) ∈ D. For any admissible permutation π ∈ ΠD(N) and S ⊆ N

let πS ∈ Π(S) be such that πS(i) < πS(j) if π(i) < π(j), i, j ∈ S, i.e. it is the permutation

on players in coalition S obtained by considering the relative order of these players in π.

9Note that for (N,D) ∈ D and i ∈ N such that FD(i) ∪ PD(i) = ∅ (and so i is an isolated player), it

holds that D−i = D. Therefore in the definition of the isolated player property it does not matter whether

we use D−i or D.
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Furthermore, for 1 ≤ i ≤ |N |, let πi be such that |{k ∈ N | π(k) ≤ πi}| = i, i.e. it is the

player preceded by i− 1 players in permutation π.

In order to characterize the hierarchical measure by these four axioms, we use the

following proposition.

Proposition 3.18 Consider an acyclic digraph (N,D) ∈ D. Let P = {P1, . . . , Pm} be

a partition of N such that for every pair k, l ∈ {1, . . . , m}, k 6= l, there do not exist

i ∈ Pk, j ∈ Pl such that either (i, j) ∈ D or (j, i) ∈ D. Then π ∈ ΠD(N), if and only if for

every k ∈ {1, . . . , m} it holds that πPk
∈ ΠD(Pk)(Pk).

This follows from the fact that the set of admissible permutations of an acyclic

digraph (N,D) is determined only by successors entering before predecessors. Successors

are guaranteed to enter before predecessors for those permutations π of N , where for any

partition of (N,D) into subgraphs that have no arcs between them, the relative orders in

π of players in those subgraphs are admissible permutations of those subgraphs.

Theorem 3.19 A power measure for acyclic digraphs is equal to the hierarchical measure η

if and only if it satisfies 1-normalization, the non-top property, independence of successors

and the isolated player property.

Proof

Consider acyclic digraph (N,D). It is straightforward to show that the hierarchical measure

η satisfies 1-normalization since the only permutation on N = {i} is (i).

Since j ∈ PD(i) implies that π(i) < π(j) for all π ∈ ΠD(N), there is no π ∈ ΠD(N)

such that π(i) = n, and therefore ηi(N,D) = 0, showing that η satisfies the non-top

property.

Suppose that j ∈ FD(i). Since ΠD(N) ⊂ ΠD\{(i,j)}(N) and π ∈ ΠD\{(i,j)}(N)\ΠD(N)

implies that π(j) > π(i), it holds that ηi(N,D) = ηi(N,D \{(i, j)}). Repeated application

for all arcs in outD(i) shows that η satisfies independence of successors.

For an isolated player i ∈ N there does not exist j ∈ N \ {i} such that (i, j) ∈ D

or (j, i) ∈ D. By Proposition 3.18 it therefore holds that π ∈ ΠD(N) if and only if

πN\{i} ∈ ΠD−i
(N \ {i}). The number of admissible permutations in Πi

D(N) is therefore

equal to the number of possible relative orders πN\{i} of the players in N \ {i}. It follows
that |Πi

D(N)| = |ΠD−i
(N \ {i})|. Furthermore by definition of the hierarchical measure it

holds that |ΠD−i
(N \ {i})| =∑j∈N\{i} ηj(N \ {i}, D−i). Therefore ηi(N,D) = |Πi

D(N)| =
|ΠD−i

(N \ {i})| = ∑
j∈N\{i} ηj(N \ {i}, D−i) showing that η satisfies the isolated player

property.

The proof of uniqueness is given as follows. Let p be a positive power measure

satisfying the axioms. We perform induction on |N |. If |N | = 1 then pi({i}, D) = 1 by
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1-normalization. Proceeding by induction, assume that p(N ′, D′) is uniquely determined

whenever |N ′| < |N |, and consider (N,D) ∈ D. If PD(i) 6= ∅ then fi(N,D) = 0 by

the non-top property. Therefore, suppose that PD(i) = ∅. Then, pi(N,D) = pi(N,D \
outD(i)) = pi(N,D−i) =

∑
j∈N\{i} pj(N \ {i}, D−i), where the first equality follows from

independence of successors and the last equality follows from the isolated player property.

By the induction hypothesis, pj(N \ {i}, D−i), j ∈ N \ {i}, are known, and thus pi(N,D)

is uniquely determined.

✷

We show logical independence by the following alternative power measures.

1. The power measure that is given by pi(N,D) = 0 for all (N,D) ∈ D and i ∈ N

satisfies the non-top property, independence of successors and the isolated player

property. It does not satisfy 1-normalization.

2. If D = ∅ then |ΠD(N)| = |N |!. In 1
|N |

of these permutations player i ∈ N is the last

player. Ignoring the digraph D and assigning to every player the value equal to the

number of permutations of N where it is last yields the power measure that is given

by pi(N,D) = (|N | − 1)! for all (N,D) ∈ D and i ∈ N . This power measure satisfies

1-normalization, independence of successors and the isolated player property. It does

not satisfy the non-top property.

3. The power measure given by pi(N,D) = (|TOP (N,D)| − 1)! if PD(i) = ∅, and

pi(N,D) = 0 if PD(i) 6= ∅, satisfies 1-normalization, the non-top property and the

isolated player property. It does not satisfy independence of successors.

4. The power measure given by pi(N,D) = 1 if PD(i) = ∅, and pi(N,D) = 0 if PD(i) 6= ∅,
satisfies 1-normalization, the non-top property and independence of successors. It

does not satisfy the isolated player property.

4 Regular set systems and the hierarchical measure

4.1 Chains and regular set systems

In the literature, the precedence Shapley value has been extended to games associated with

combinatorial structures more general than a digraph. For example, Bilbao and Edelman

(2000) consider games on convex geometries, Algaba, Bilbao, van den Brink, and Jiménez-

Losada (2003, 2004) consider games on antimatroids, and Bilbao and Ordoñez (2009)

20



consider games on augmenting systems where the grand coalition is feasible. Convex ge-

ometries have been shown to be contained in the class of so-called regular set systems

considered by Lange and Grabisch (2009), who also consider an extension of the prece-

dence Shapley value to games on regular set systems. A set of admissible permutations is

generated by considering the so-called chains of feasible sets.

Consider a feasible set system F ⊆ 2N for which ∅, N ∈ F . A chain in set system

F from S ∈ F to T ∈ F , S ⊂ T , is an ordered collection C = (C0, ..., Ck) of feasible sets,

such that C0 = S, Ck = T and Ci ⊂ Ci+1 for i ∈ {0, . . . , k − 1}. A chain C = (C0, ..., Ck)

is maximal, when there exists no set S ∈ F such that for some i ∈ {0, . . . , k − 1} it holds

that Ci ⊂ S ⊂ Ci+1. The length l(C) of a chain C is defined as the number of sets that

it contains. Let the collection of all maximal chains from ∅ to N be denoted by CN
F . For

a chain C = (C0, ..., Ck), when S = Ci for some i ∈ {0, . . . , k}, we will say that set S is

on chain C. From here on, when we refer to maximal chains, we will mean the maximal

chains from ∅ to N .

Example 4.1 Let N = {1, 2, 3, 4, 5} and let

F = {∅, {1}, {1, 2}, {1, 2, 3, 4}, {2}, {2, 3}, {2, 3, 4}, {1, 2, 3, 4, 5}}.
The collection of maximal chains CN

F is given by {C1, C2, C3}, where
C1 = (∅, {1}, {1, 2}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}), C2 = (∅, {2}, {2, 3}, {2, 3, 4}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}),
and C3 = (∅, {2}, {1, 2}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}). Note that l(C1) = l(C3) = 5, while

l(C2) = 6.

In this section we consider the hierarchical measure on regular set systems which

are introduced by Honda and Grabisch (2006).

Definition 4.2 A set system F ⊆ 2N is a regular set system if it satisfies the following

axioms:

(feasible empty set) ∅ ∈ F ,

(feasible grand coalition) N ∈ F ,

(regularity property) for every maximal chain C ∈ CN
F it holds that l(C) = |N |+ 1.

Regularity of F implies that |Ck \ Ck−1| = 1 for all k ∈ {1, . . . , n} and C =

(C0, C1, . . . , Cn) ∈ CN
F . Note that the set system F in Example 4.1 is not regular since

l(c1) = l(c3) < |N | + 1. We obtain the following proposition with respect to regular set

systems.

Proposition 4.3 Let F ⊆ 2N be such that ∅, N ∈ F . Then F is a regular set system if and

only if for all S, T ∈ F with S ⊂ T there exists at least one maximal chain C = (C0, . . . , Cn)

containing coalitions S and T .
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Proof

Only if: It follows directly from the regularity property.

If: Suppose that F is not a regular set system. Then there exists a maximal chain

C ∈ CN
F such that l (C) < |N | + 1, i.e., there exists C = (C0, . . . , Ck) ∈ CN

F with k < n.

Therefore, there must exist Ch and Ch+1, h ∈ {0, . . . , k − 1}, on C such that Ch ⊂ Ch+1,

|Ch+1| ≥ |Ch| + 2, and there is no S ∈ F , Ch ⊂ S ⊂ Ch+1. Hence, we conclude that any

chain containing Ch, Ch+1 ∈ F has at most n elements which is a contradiction with the

hypothesis. ✷

Honda and Grabisch (2006) show that all convex geometries are regular set systems, while

Grabisch (2013) shows that augmenting systems F satisfying N ∈ F are regular set sys-

tems.

Definition 4.4 A set system F ⊆ 2N is an augmenting system if it satisfies the following

axioms:

(feasible empty set) ∅ ∈ F ,

(union stability) S, T ∈ F with S ∩ T 6= ∅, implies that S ∪ T ∈ F ,

(augmentation) for S, T ∈ F with S ⊂ T, there exists i ∈ T \ S such that S ∪ {i} ∈ F .

Note that in general, augmenting systems are not regular set systems, since N

need not be feasible, see also Bilbao (2003). Moreover, in general, convex geometries

and augmenting systems containing the grand coalition are proper subsets of the class of

regular set systems. Normalized antimatroids are particular cases of augmenting systems

containing the grand coalition, and therefore, normalized antimatroids are also particular

cases of regular set systems.

Example 4.5 Consider the regular set system (N,F) given by N = {1, 2, 3, 4, 5} and

F = {∅, {1} , {1, 2} , {1, 2, 5} , {1, 2, 5, 3} , {4} , {4, 2} , {4, 2, 3} , {4, 2, 3, 5} , N} .

There are two maximal chains with 6 elements:

C1 : ∅ ⊂ {1} ⊂ {1, 2} ⊂ {1, 2, 5} ⊂ {1, 2, 5, 3} ⊂ N,

C2 : ∅ ⊂ {4} ⊂ {4, 2} ⊂ {4, 2, 3} ⊂ {4, 2, 3, 5} ⊂ N.

However, this regular set system is not a convex geometry since {1, 2} , {4, 2} ∈ F and

{1, 2} ∩ {4, 2} = {2} /∈ F . Moreover, this set system is also not an augmenting system

since it does not satisfy union stability because {1, 2} , {4, 2} ∈ F with {1, 2} ∩ {4, 2} 6= ∅,
but {1, 2} ∪ {4, 2} = {1, 2, 4} /∈ F .
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Figure 2: Regular Set System (N,F)

For a regular set system F ⊆ 2N we can generate admissible permutations of the

players in N by considering the maximal chains in CN
F . The set of admissible permutations

ΠF(N) associated with a regular set system F is given by

ΠF =



π ∈ Π(N)

∣∣∣∣∣∣
(∅, {π1},

2⋃

i=1

{πi}, ...,
|N |−1⋃

i=1

{πi}, N) ∈ CN
F



 , (4.8)

where πi is the player that is at position i in permutation π.

Note that for any feasible set system F ⊆ 2N the set of admissible permutations

ΠF maps F to the set of permutations on N . We find that this mapping is injective, but

not surjective.

Proposition 4.6 For every two regular set systems E and F with ΠE = ΠF , we have

E = F .

Proof

Suppose ΠE = ΠF . Suppose without loss of generality that S ∈ E . We show that then also

S ∈ F . Since for every regular set system it holds that every feasible set is on a maximal

chain, coalition S is on some maximal chain C in CN
E . Let π ∈ ΠE be the permutation

corresponding to this chain. Since also π ∈ ΠF the chain C must also be a chain in F and

therefore S ∈ F .

✷

Not every collection of permutations can be the set of admissible permutations in some

regular set system. In other words, there exist subsets Π ⊂ Π(N) for which there is no

regular set system F such that ΠF = Π. We illustrate this with the following example.
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Example 4.7 Consider N = {1, 2, 3} and Π = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. If Π is the set

of admissible permutations of some regular set system F then it must hold that the set of

maximal chains CN
F from ∅ to N is given by (∅, {1}, {1, 2}, {1, 2, 3}), (∅, {2}, {2, 3}, {1, 2, 3}),

(∅, {3}, {1, 3}, {1, 2, 3}). The set system F is then given by the union of the sets on these

chains and therefore F = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. However in that

case the ordered collection (∅, {3}, {2, 3}, {1, 2, 3}) is also a chain in F and it must hold

that (3, 2, 1) ∈ ΠF . Since (3, 2, 1) is not in Π it holds that Π cannot be generated as the set

of admissible permutations from the chains of some regular set system.

4.2 The hierarchical measure for regular set systems

In this subsection we will study the hierarchical measure in the context of regular set

systems. We will denote the class of all regular set systems by R. For any coalition T in

a regular set system F , the set of coalitions in F that are a subset of T is a regular set

system on T .

Proposition 4.8 If F is a regular set system on N and T ∈ F , then FT = {S ∈ F | S ⊆ T}
is a regular set system on T .

Proof

Obviously, ∅, T ∈ FT . Suppose that FT is not a regular set system on T . Then there exists

a maximal chain CT ∈ CT
FT

such that l (CT ) < t+1, with t = |T |. Since T ∈ FT , there exists

CT = (C0, . . . , Cr) with r < t and Cr = T . Since T,N ∈ F , T ⊂ N and as F is a regular set

system, there exists a maximal chain C∗ =
(
C∗

0 , . . . , C
∗
t , C

∗
t+1 . . . , C

∗
n

)
∈ CN

F ,with C∗
t = T .

Consider the chain C ′ =
(
C0, . . . , Cr, C

∗
t+1 . . . , C

∗
n

)
. Notice that C ′ ∈ CN

F but l (C ′) < n+1

which is a contradiction with F being a regular set system on N .

✷

A power measure p for regular set systems is a function that assigns to every regular

set system (N,F) ∈ R a vector p(N,F) ∈ IRN , where pi(N,F) measures the ‘power’ or

‘influence’ of player i in (N,F). We call a power measure p positive if
∑

j∈N pj(N,F) > 0

for all (N,F) ∈ R. In this paper we consider only positive power measures.

For i ∈ N , the set of permutations Πi
F(N) is defined by

Πi
F(N) = {π ∈ ΠF (N) | π(i) > π(j) for all j ∈ N \ {i}}. (4.9)

being the collection of permutations in ΠF(N) where i is preceded by the players in N \{i}.
The hierarchical measure η assigns to a player i the number of admissible permuta-

tions of regular set system (N,F) such that player i is preceded by the players in N \ {i}.
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Definition 4.9 The hierarchical measure is the power measure η on R given by

ηi(N,F) =
∣∣Πi

F(N)
∣∣ for all i ∈ N.

We use the following axioms to characterize the hierarchical measure on regular set

systems. First, chain efficiency states that the sum of the power scores of the players is

exactly equal to the number of maximal chains.

Chain efficiency For every (N,F) ∈ R it holds that
∑

i∈N pi(N,F) = |CN
F |.

The second axiom is similar to the non-top property for acyclic digraphs.

Non-tail property For (N,F) ∈ R, if for every maximal chain C = (C0, ..., C|N |−1, C|N |) ∈
CN

F , it holds that C|N | \ C|N |−1 6= {i}, then pi(N,F) = 0.

The third axiom states that the only chains that affect the power of a player are

the maximal chains where it is the last player.

Independence of irrelevant chains For (N,F), (N,F ′) ∈ R such that Πi
F(N) = Πi

F ′(N),

we have pi(N,F) = pi(N,F ′).

Now let F i = {S ∈ F | there is a chain C = (C0, ..., C|N |−1, C|N |) in CN
F , such that

S = Ck for some k ∈ {1, . . . , |N |}, and C|N | \ C|N |−1 = {i}} being the set system that

is obtained from (N,F) by removing exactly the sets that are not on any maximal chain

where i only occurs in set N .

Proposition 4.10 If F ⊆ 2N is a regular set system with Πi
F (N) 6= ∅, then F i is also a

regular set system.

Proof

Since ∅, N ∈ F i we only have to consider whether F i satisfies the regularity property.

Suppose that there exists a maximal chain C ∈ CN
F i such that l(C) < |N | + 1. Let

(C0, ..., Ck) be this chain. It holds that C is also a chain from ∅ to N in set system F . In

F every maximal chain has length |N |+ 1. Therefore chain C is not maximal in F . This

means that for some m ∈ {0, . . . , k − 1} there exists S ∈ F such that Cm ⊂ S ⊂ Cm+1.

We distinguish two cases:

(i) Suppose that Cm+1 = N .

In that case it holds that |Cm| = l for some l < |N | − 1. From the fact that Cm ∈ F i

it follows that there exists a maximal chain C ′ = (C ′
0, C

′
1, . . . , C

′
n) ∈ CN

F such that

Cm = C ′
l and C ′

|N | \C ′
|N |−1 = {i}. Now consider the set C ′

l+1. It holds that C
′
l+1 ∈ F i

and C ′
l+1 6= N by l < |N |−1. Since Cm = C ′

l ⊂ C ′
l+1 ⊂ N it must hold that C /∈ CN

F i

and we obtain a contradiction.
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(ii) Suppose that Cm+1 6= N .

Since i /∈ Cm+1, we also have i /∈ S. Now let |Cm+1| = p. By Proposition 4.3 there

exists a chain C ′ ∈ CN
F such that both S and Cm+1 are on C ′. From the fact that

Cm+1 ∈ F i it follows that there exists a chain C ′′ ∈ CN
F such that Cm+1 = C ′′

p and

C ′′
|N | \ C ′′

|N |−1 = {i}. From C ′ and C ′′ we construct a chain C ′′′ ∈ CN
F such that

C ′′′
|N | \ C ′′′

|N |−1 = {i} and S is on C ′′′ as follows: let C ′′′
j = C ′

j for j < p, C ′′′
p =

C ′′
p = C ′

p = Cm+1 and C ′′′
j = C ′′

j for j > p. It follows that S ∈ F i and we obtain a

contradiction with C ∈ CN
F .

✷

Let CN
F |i ⊆ CN

F be the collection of those maximal chains C ∈ CN
F such that i /∈ Ck for

k ∈ {1, . . . , |N |−1}, i.e. it is the collection of those maximal chains generating admissible

permutations where player i is preceded by the other players in N .

Proposition 4.11 If F is a regular set system on N and i ∈ N then CN
F |i = CN

F i.

The proof follows straightforwardly from F i containing exactly the sets in F that are on

chains in CN
F |i.

Theorem 4.12 A power measure on R is equal to the hierarchical measure η if and only

if it satisfies chain efficiency, the non-tail property and independence of irrelevant chains.

Proof

It is straightforward to show that the hierarchical measure satisfies these axioms.

The proof of uniqueness is given as follows.

Let p be a positive power measure satisfying the axioms. Let (N,F) ∈ R and i ∈ N .

If for every maximal chain C = (C0, ..., Cn−1, C|N |) ∈ CN
F , it holds that C|N | \C|N |−1 6= {i},

then by the non-tail property pi(N,F) = 0. Now assume that C|N | \ C|N |−1 = {i} for

at least one maximal chain in CN
F . We consider the regular set system F i. The non-tail

property implies that pj(N,F i) = 0 for all j ∈ N \ {i}. Then chain efficiency implies that

pi(N,F i) = |F i|. Since CN
F |i = CN

F i we can apply independence of irrelevant chains to

determine that pi(N,F) = pi(N,F i) = |CN
F i| is uniquely determined. ✷

We show logical independence by the following alternative power measures.

1. The power measure that is given by pi(N,F) = 0, i ∈ N , satisfies the non-tail

property and independence of irrelevant chains. It does not satisfy chain efficiency.
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2. Consider the following power measure p. If |N | = 1, then p(N,F) = η(N,F). If

|N | > 1 and players 1, 2 ∈ N , then p1(N,F) = η1(N,F)−1, p2(N,F) = η2(N,F)+1

and pi(N,F) = ηi(N,F) for i ∈ N \ {1, 2}. This power measure satisfies chain

efficiency and independence of irrelevant chains. It does not satisfy the non-tail

property.

3. Let E = {i ∈ N | CN
F |i = ∅} be the set of those players that are never the last player

in a maximal chain. The power measure that is given by pi(N,F) = 0 for i ∈ E

and pi(N,F) =
|CN

F |

|N\E|
otherwise satisfies chain efficiency and the non-tail property. It

does not satisfy independence of irrelevant chains.

A different axiomatization of the hierarchical measure for regular set systems is

obtained by replacing the non-tail property by non-negativity.

Non-negativity For every (N,F) ∈ R it holds that pi(N,F) ≥ 0 for all i ∈ N .

A power measure on R that satisfies chain efficiency, non-negativity and indepen-

dence of irrelevant chains also satisfies the non-tail property.

Theorem 4.13 Let p be a power measure on R that satisfies chain efficiency, non-negativity

and independence of irrelevant chains. Then p also satisfies the non-tail property.

Proof

For regular set system (N,F) let µF = |CN
F | be the total number of maximal chains. By

independence of irrelevant chains, for every i ∈ N there exists a number ci ∈ IR such that

for every regular set system (N,F) in R with CN
F |i = ∅, it holds that pi(N,F) = ci. For

arbitrary i ∈ N it holds that CN
F i |j = ∅ for j ∈ N \ {i}, and therefore pj(N,F i) = cj .

By chain efficiency we therefore have pi(N,F i) = µF i −∑j∈N\{i} cj. Let E = {i ∈ N |
CN

F |i = ∅} be the set of those players that are never the last player in a maximal chain.

By independence of irrelevant chains, we also have pi(N,F) = pi(N,F i) for i ∈ N \E, and

thus pi(N,F) = µF i −∑j∈N\{i} cj. By chain efficiency we have µF =
∑

j∈N pj(N,F) =∑
j∈E cj +

∑
j∈N\E[µFj −∑k∈N\{j} ck] =

∑
j∈N\E µFj − (|N \E| − 1)

∑
j∈N cj . Since µF =∑

j∈N\E µFj it holds that (|N \ E| − 1)
∑

j∈N cj = 0. By non-negativity we therefore have

that cj = 0 for j ∈ N . It follows that p satisfies the non-tail property.

✷

From Theorems 4.12 and 4.13 we obtain the following corollary.

Corollary 4.14 A power measure on R is equal to the hierarchical measure η if and only

if it satisfies chain efficiency, non-negativity and independence of irrelevant chains.
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Finally, we remark that the hierarchical measure or any other positive power measure for

regular set systems can be used to define a solution for games on a regular set system or

regular games, introduced by Lange and Grabisch (2009). These regular games are triples

(N, v,F) where v : F → IR with v(∅) = 0, and F ⊆ 2N a regular set system. New

solutions for these regular games, based on power measures, can be obtained similar to the

p-hierarchical solutions for games under precedence constraints.

4.3 The Plurality and Borda measure

Note that in order to calculate the hierarchical measure for regular set systems, it is

sufficient to know the set of admissible permutations. Instead of generating admissible

permutations from some feasible set system, any set of permutations on the set of players

can be used as the set of admissible permutations. The hierarchical measure can be seen

to rank players based on these permutations. An example where we encounter the ranking

of players from permutations comes from social choice theory.10 The ‘permutations of the

players’ in this case are the preferences of the voters on the alternatives they can choose

from if they all have a different preference ordering. Here the absolute hierarchical measure

can be seen as the plurality scoring rule that assigns an alternative a score of 1 for any

permutation where it enters last (i.e. where it is the most preferred alternative).

The other way around, we can apply social choice theory to define new power

measures for acyclic digraphs. A social choice situation is described by a triple (V,N, p)

where V is the set of voters, N is the set of alternatives and p = (pk)k∈V is a preference

profile. A preference profile p = (pk)k∈V consists of a preference relation pk for every voter

k ∈ V , being a weak order on the set of alternatives N . We denote the collection of all social

choice situations by S.11 Two main questions social choice theory tries to answer for each

social choice situation are (i) what can be considered the ‘socially best’ alternatives, and

(ii) how to aggregate the individual preferences into one ‘social preference relation’. The

first question is dealt with by considering so-called social choice functions which assign to

every social choice situation a subset of the alternatives that can be considered the ‘social

choice’. The second is dealt with by considering social welfare functions which assign to

every social choice situation a preference relation on the set of alternatives. A specific class

of social choice functions and social welfare functions are those based on a scoring method

being a function σ : S → ⋃
K⊆N

IRK such that σ(V,N, p) ∈ IRN for every (V,N, p) ∈ S,
which assigns a real number, its score, to every alternative in a social choice situation.

As the social choice one can simply take the alternatives with the highest score, and one

can define a social preference profile simply by ordering the alternatives in non-increasing

10For a survey of various scoring methods we refer to Laslier (1997).
11For the application we describe in this section the set of voters must be variable.
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order of their score. Given scoring method σ, in this paper we consider the social welfare

function that assigns to social choice situation (V,N, p) the weak order �σ given by i �σ j

if and only if σi(V,N, p) ≥ σj(V,N, P ), where i �σ j can be interpreted as ‘i is at least as

good as j’.12

Famous ranking methods are based on the plurality score and the Borda score.

The plurality score of an alternative is simply the number of preference relations in the

preference profile where it is ranked highest, i.e. σplur
i (V,N, p) = #{k ∈ V | i pk j for all

j ∈ N}.
Now, given a regular set system, we can consider the set of all admissible permu-

tations (derived from the chains) as a preference profile with the nodes (players) as the

alternatives. It does not matter what the set of voters is in this application, as long as

there as many voters as maximal chains. Then we can define the plurality measure of player

i ∈ N in regular set system F as σ̂plur
i (N,F) = σplur

i (V,N, pF), where (V,N, pF) is the social

choice situation derived from F with V = CN
F and for every k = (∅, C1, C2, . . . , Cn) ∈ CN

F ,

the preference profile pk is given by i pk j if and only if i ∈ Cl ⇒ j ∈ Cl. Obviously, since

the plurality score just counts the number of preference profiles in which an alternative is

ranked highest, applied in this way the plurality score of a player in a regular set system

is the number of chains in which it enters last, i.e. its score according to the hierarchical

measure. This gives an alternative definition of the hierarchical measure.

Proposition 4.15 If F ⊆ 2N is a regular set system then η(N,F) = σ̂plur(N,F).

A main disadvantage of the plurality ranking method is that it only looks at the

best alternative for every voter, but does not take into account the rest of the preference

profile. For example, an alternative that is second best for every voter might be a ‘good’

social choice, but it will have the lowest plurality score (zero). Alternatively, one can use

the Borda score which assigns for every voter |N |−1 points to the best alternative, |N |−2

points to the second best alternative, and so on to zero points for the worst alternative,

i.e. σBorda
i (V,N, p) =

∑
k∈V (#{j ∈ N | i pk j} − 1).13 The Borda measure of player i ∈ N

in regular set system F ⊆ 2N is defined as σ̂Borda(N,F) = σBorda
i (V,N, pF).

Example 4.16 Consider the digraph (N,D) on N = {1, 2, 3, 4, 5, 6} given by

D = {(1, 2), (2, 3), (3, 4), (4, 5), (6, 5)}.
12Although �σ is a preference relation, just as pk, k ∈ V , we use a different notation to stress that �σ

represents the social preference.
13Both the plurality score as well as the Borda score are special cases of the class of scoring methods

where for a fixed set of r alternatives scoring numbers sr, r ∈ {1, . . . , n} with sr ≥ sl if r < l, are given,

and for every voter the best alternative gets s1 points, the second best alternative gets s2 points, and so

on.
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The admissible permutations are (5, 4, 3, 2, 1, 6), (5, 4, 3, 2, 6, 1), (5, 4, 3, 6, 2, 1), (5, 4, 6, 3, 2, 1)

and (5, 6, 4, 3, 2, 1). So, the plurality score of the corresponing regular set system F is

σ̂plur(N,F) = (4, 0, 0, 0, 0, 1) being the absolute hierarchical strength. The Borda score

gives σ̂Borda(N,F) = (4, 3, 2, 1, 0, 5) + (5, 3, 2, 1, 0, 4) + (5, 4, 2, 1, 0, 3) + (5, 4, 3, 1, 0, 2) +

(5, 4, 3, 2, 0, 1) = (24, 18, 12, 6, 0, 15). So, according to hierarchical strength player 6 is the

second ranked player (and in fact is, besides player 1, the only player who has a positive

score). But according to the Borda strength, player 2 (who gets zero in the hierarchical

strength) has a higher Borda score than player 6.

Other scoring methods from social choice theory (or multiple criteria decision mak-

ing) can also be applied.

5 The normalized hierarchical measure for forests and

sink forests

The normalized hierarchical measure η assigns to a player i the fraction of permutations

in ΠD(N) where i enters after the players in N \ {i}.

Definition 5.1 The normalized hierarchical measure η is the power measure on D given

by

ηi(N,D) =
ηi(N,D)∑

j∈N ηj(N,D)
for all i ∈ N.

In this section we consider the normalized hierarchical measure η for two special

classes of digraphs, namely rooted trees and sink trees. A digraph (N,D) is a rooted tree

if and only if there is an i0 ∈ N such that (i) PD(i0) = ∅, (ii) F̂D(i0) = N \ {i0}, and (iii)

|PD(i)| = 1 for all i ∈ N \ {i0}. Player i0 is called the root of the tree. A digraph (N,D) is

a sink tree if the digraph (N,D−) with D− = {(i, j) ∈ N ×N : (j, i) ∈ D} is a rooted tree.

In other words, a digraph (N,D) is a sink tree if and only if there is an is ∈ N such that

(i) FD(is) = ∅, (ii) P̂D(is) = N \ {is}, and (iii) |FD(i)| = 1 for all i ∈ N \ {is}. Player is is
called the sink of the tree. A digraph (N,D) is a line graph, when it is both a rooted tree

and a sink tree. Rooted trees and sink trees are often encountered in the economic and

OR literature, for example, in the literature on cooperative river water allocation games

initiated by Ambec and Sprumont (2002) and in polluted river problems in Dong, Ni and

Wang (2012).

A component in a directed graph is a set of players that is maximally connected in

the underlying undirected graph. Two players i, j ∈ N are connected in (N,D) ∈ D if there

exists a sequence of players (i1, . . . , im) such that i1 = i, im = j and {(ik, ik+1), (ik+1, ik)}∩
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D 6= ∅ for all k = 1, . . . , m − 1. A set of players S ⊆ N is connected in (N,D) ∈ D if

every two players i, j ∈ S are connected in (S,D(S)). A subset K of N is a component

in (N,D) if the digraph (K,D(K)) is maximally connected, i.e., (K,D(K)) is connected

and, for every j ∈ N \K, the digraph (K ∪ {j}, D(K ∪ {j})) is not connected. We denote

the set of all components in (N,D) by CD(N).

5.1 An axiomatization of the normalized hierarchical measure

for forests

Next, we consider the classes of digraphs where every component is a rooted tree, also

known as a forest. We denote the set of forest digraphs by DR. From the axioms discussed

in subsection 3.5, the normalized hierarchical measure satisfies the non-top property and

1-normalization. It satisfies an even stronger version of 1-normalization that normalizes

the total power of all players to one for every digraph. Note that this property also holds

on the class of all acyclic digraphs, although we will use it only on forests and sink forests.

Normalization For every (N,D) ∈ DR, it holds that
∑

i∈N pi(N,D) = 1.

The normalized hierarchical measure satisfies the even stronger property that the

cumulative power of the players in any one component is equal to the fraction of players

in that component, i.e. when a component contains |K| players this cumulative power is

equal to |K|
|N |

.

Component normalization For every (N,D) ∈ DR, if K ∈ CD(N), we have
∑

i∈K pi(N,D) = |K|
|N |

.

Note that component normalization implies normalization. In the axiomatization

of the normalized hierarchical measure that follows, we will use component normalization.

Before we continue with the axiomatization we state the following propositions.

Proposition 5.2 Consider a digraph (N,D) ∈ D and let K ∈ CD(N). Now let per-

mutation π′ ∈ ΠD(K)(K) and permutation π′′ ∈ ΠD(N\K)(N \ K). The total number of

permutations π ∈ ΠD(N) such that πK = π′ and πN\K = π′′ is given by
(
|N |
|K|

)
.

Proof

Consider the vector x = (x1, . . . , x|N\K|+1) ∈ N
|N\K|+1, where x1 is the number of players

in K that precede player π′′
1 in permutation π, x|N\K|+1 is the number of players in K

that are preceded by player π′′
|N\K| in permutation π and finally (if |N \ K| > 1) for

1 < i < |N \K| + 1, xi is the number of players in K that are preceded by player π′′
i−1 in
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permutation π, but precede player π′′
i . The number of permutations π satisfying πK = π′

and πN\K = π′′ is now equal to the number of solutions to x1+ . . .+x|N\K|+1 = |K|, where
0 ≤ xi ≤ |K| for i ∈ {1, . . . , |N \K|+1}. From combinatorics we obtain that this number

is equal to
(
|N |
|K|

)
.

✷

Next we consider the fraction of these permutations, where a player from K enters

last.

Proposition 5.3 Consider a digraph (N,D) ∈ D and let K ∈ CD(N). Now let permuta-

tion π′ ∈ ΠD(K)(K) and permutation π′′ ∈ ΠD(N\K)(N \K). The fraction of permutations

π ∈ ΠD(N) such that πK = π′ and πN\K = π′′, and where π|N | ∈ K is given by |K|
|N |

.

Proof

From Proposition 5.2 we obtain that the total number of permutations π ∈ ΠD(N) such

that πK = π′ and πN\K = π′′ is given by
(
|N |
|K|

)
. To calculate the number of permutations

with a player from K at the end, we can use a combinatorial argument similar to that from

the proof of Proposition 5.2. Since the position of one of the players in K is now fixed

(after any of the players in N \K), we only have to know the number of ways to position

the other |K| − 1 players in K relative to those in N \K to fully determine π(i) for any

player i ∈ N . Following the proof of Proposition 5.2, the total number of permutations

such that a player from K is at the end is therefore given by the number of solutions to

x1 + . . . + x|N\K|+1 = |K| − 1, where 0 ≤ xi ≤ |K| − 1 for i ∈ {1, . . . , |N \K| + 1}. This

number is equal to
(
|N |−1
|K|−1

)
. Therefore the fraction of permutations π ∈ ΠD(N) such that

πK = π′ and πN\K = π′′, and where a player from K enters last is given by
(|N|−1
|K|−1)
(|N|
|K|)

= |K|
|N |

✷

For any specific pair of permutations π′ ∈ ΠD(K)(K) and π′′ ∈ ΠD(N\K)(N \K), by

Proposition 5.3 we know that the fraction of permutations in ΠD(N) such that πK = π′

and πN\K = π′′ and where a player from component K enters last is given by |K|
|N |

. At the

same time by Proposition 3.18, we know that for any permutation π ∈ ΠD(N), there exist

π′ ∈ ΠD(K)(K) and π′′ ∈ ΠD(N\K)(N \K) such that πK = π′ and πN\K = π′′. The following

proposition therefore follows immediately from these Propositions.

Proposition 5.4 Consider a digraph (N,D) ∈ D and let K ∈ CD(N). The number of

permutations π ∈ ΠD(N), such that π ∈ Πi
D(N) for some i ∈ K, is given by |K|

|N |
.

Next we provide an axiomatization of the normalized hierarchical measure for forest

digraphs. The non-top property used in this axiomatization is adapted in a straightforward
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way from the class of all acyclic digraphs to the class of forests DR, meaning that players

with predecessors are assigned 0 power.

Theorem 5.5 A power measure on DR is equal to the normalized hierarchical measure η

if and only if it satisfies component normalization and the non-top property.

Proof

The normalized hierarchical measure η satisfying component normalization follows straight-

forwardly from Proposition 5.4. The non-top property follows immediately from the abso-

lute hierarchical measure η satisfying the non-top property.

The proof of uniqueness is given as follows. Let p be a power measure satisfying the axioms.

In a forest the top players in TOP (N,D) are the roots of the components. The non-top

property implies that pi(N,D) = 0 for all i ∈ N \ TOP (N,D). Since every component

has a unique root, component normalization then uniquely determines the values for the

players in TOP (N,D). ✷

We show logical independence by the following alternative power measures.

1. The absolute hierarchical measure η satisfies the non-top property on DR. It does

not satisfy component normalization on DR.

2. The power measure that is given by pi(N,D) = 1
|N |

for all (N,D) ∈ D and i ∈ N

satisfies component normalization on DR. It does not satisfy the non-top property

on DR.

In the above axiomatization we used component normalization instead of the weaker

normalization. Another weak version of component normalization requires only that the

cumulative power of any one component is assigned proportionally to the number of players

in that component.

Component comparability For every pair of components K,K ′ ∈ CD(N) of (N,D) ∈
DR, we have

∑
i∈K pi(N,D)∑
i∈K′ pi(N,D)

= |K|
|K ′|

.

It is straightforward to see that normalization and component comparability to-

gether are equivalent to component normalization.

Proposition 5.6 A power measure satisfies component normalization if and only if it

satisfies normalization and component comparability.

Therefore, in the above axiomatization (and also in the one from the next subsec-

tion) it is possible to replace component normalization by normalization and component

comparability.
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5.2 An axiomatization of the normalized hierarchical measure

for sink forests

Next, we consider the normalized hierarchical measure on the class of sink forests, being

digraphs where every component is a sink tree, also known as a sink forest. We denote the

set of sink forests by DS.

The axioms of component normalization and the non-top property from Theorem

5.5 are adapted in a straightforward way to the class of sink forests DS, meaning that the

cumulative power of the players in any one component is equal to the fraction of players

in that component, respectively, that players with predecessors are assigned zero power.

Together these axioms are not sufficient to axiomatize the normalized hierarchical measure

on the class of sink forests. Therefore, in addition we consider equal dependence on bottom

players which states that if within any component deleting the player who has no successors

(and thus is a subordinate of all other players in this component) from the digraph does

not change the power ratios of the top players in that component (who now might belong

to different components). We will refer to a player without sucessors as a bottom player.

Equal dependence on bottom players For every (N,D) ∈ DS, K ∈ CD(N) such that

|TOP (K,D(K))| ≥ 2, i, j ∈ TOP (K,D(K)), i 6= j, and h ∈ K such that FD(h) = ∅
(and therefore P̂D(h) = K \ {h}), it holds that pi(N,D)

pj(N,D)
=

pi(N\{h},D−h)

pj(N\{h},D−h)
.

Note that (N\{h}, D−h) is a sink forest if (N,D) is a sink forest and P̂D(h) = K\{h}
for some K ∈ CD(N).

Theorem 5.7 A power measure on DS is equal to the normalized hierarchical measure η if

and only if it satisfies component normalization, the non-top property and equal dependence

on bottom players.

Proof

The normalized hierarchical measure η satisfying component normalization follows from

Proposition 5.4. The normalized hierarchical measure η satisfying the non-top property

follows immediately from the absolute hierarchical measure η satisfying the non-top prop-

erty.

To show that the normalized hierarchical measure η satisfies equal dependence on

bottom players. Let K ∈ CD(N), i, j ∈ TOP (K,D(K)), i 6= j, and h ∈ K such that

FD(h) = ∅ (and so P̂D(h) = K \ {h}). Equal dependence on bottom players is satisfied if

the ratio of the admissible permutations in (N \ {h}, D−h) where i is the last to enter, and

those where j is the last to enter, is the same as in (N,D).
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Obviously, ifK is a component in (N,D), i, j ∈ TOP (K,D(K)) and h ∈ K such that

FD(h) = ∅ and P̂D(h) = K \ {h}, then every permutation admissible in D has h entering

before any other player in K. But then, the permutations admissible in (N \{h}, D−h) are

exactly those admissible in (N,D) but without player h (and all players entering after h

move one position to the front). Hence, the ratios of the normalized hierarchical strength

within each component does not change, i.e. fi(N,D)
fj(N,D)

=
fi(N\{h},D−h)

fj(N\{h},D−h)
, showing that h satisfies

equal dependence of bottom players.

The proof of uniqueness is given as follows. Let p be a positive power measure satisfying

the axioms, and let K be a component in (N,D). We perform induction on |K|. If |K| = 1

then pi({i}, D) = 1
|N |

by component normalization. Proceeding by induction, assume that

pi(N,D′) is uniquely determined for all i ∈ K ′ whenever |K ′| < |K|, with pi(N,D) > 0 if

PD(i) = ∅. By component normalization, it holds that
∑

i∈K pi(N,D) = |K|
|N |

. If PD(i) 6= ∅
then pi(N,D) = 0 follows from the non-top property. Therefore,

∑
i∈TOP (K,D(K)) pi(N,D) =

|K|
|N |

. By equal dependence on bottom players, pi(N,D)
pj(N,D)

= pi(N\{h},D−h)
pj(N\{h},D−h)

, for all i, j ∈ TOP (K,D(K))

and h ∈ K such that FD(h) = ∅ (and therefore P̂D(h) = K \ {h}). (Note that every com-

ponent in a sink forest has exactly one such a player h.) Since pi(N \ {h}, D−h)pj(N \
{h}, D−h) > 0 by the induction hypothesis, this implies that the values pi(N,D), i ∈
TOP (K,D(K)), are uniquely determined. ✷

We show logical independence by the following alternative power measures.

1. The absolute hierarchical measure η satisfies the non-top property and equal depen-

dence on bottom players on DS. It does not satisfy component normalization on

DS.

2. The power measure that is given by pi(N,D) = 1
|N |

for all (N,D) ∈ D and i ∈ N

satisfies component normalization and equal dependence on bottom players on DS.

It does not satisfy the non-top property on DS.

3. Let Ki be the component in (N,D) containing player i. Let ω assign to every digraph

the exogenously given vector of weights ω(N,D) ∈ IRN
++, where ωi(N,D) > 0, i ∈ N .

The weighted hierarchical measure hω given by

ηωi (N,D) = ωi(N,D)∑
j∈TOP (Ki,D(Ki))

ωj(N,D)

∑
j∈TOP (Ki,D(Ki))

ηj(N,D) if PD(i) = ∅, and
pi(N,D) = 0 if PD(i) 6= ∅, satisfies component normalization and the non-top prop-

erty on DS. It does not satisfy equal dependence on bottom players on DS.
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5.2.1 Alternative normalizations and power measures for sink forests

In the literature on power measures it has been shown that just applying a different nor-

malization can have an important impact.14 In this subsection we consider two alternative

versions of component normalization, and show that together with the non-top property

and equal dependence on bottom players, these characterize other power measures for sink

forests. The first alternative to component normalization requires that the cumulative

power of the players in a component is the same for each component.

Component normalization 2 Let (N,D) ∈ DS. For K ∈ CD(N), it holds that
∑

i∈K pi(N,D) = 1
|CD(N)|

.

The second alternative requires that the cumulative power of the players in a com-

ponent is equal to the share of top players in that component.

Component normalization 3 Let (N,D) ∈ DS. For K ∈ CD(N), it holds that
∑

i∈K pi(N,D) = |TOP (K,D(K))|
|TOP (N,D)|

.

Next, we show what power measures for sink forests are characterized by replacing

component normalization in Theorem 5.7 by one of the above two alternatives.15

Theorem 5.8 (i) A power measure for sink forests satisfies component normalization 2,

the non-top property and equal dependence on bottom players if and only if it is the power

measure p2 given by

p2(N,D) =

{
1

|CD(N)|
∏

j∈F̂D(i)
|PD(j)|

if PD(i) = ∅
0 otherwise.

(ii) A power measure for sink forests satisfies component normalization 3, the non-

top property and equal dependence on bottom players if and only if it is the power measure

p3 given by

p3(N,D) =

{
1

|TOP (N,D)|
if PD(i) = ∅

0 otherwise.

14For example, van den Brink and Gilles (2000) provide axiomatizations of the outdegree (score) and β-

measures that differ only in the normalization that is used, implying that a different normalization can lead

to a different ranking of, for example, teams in a sports competition. In van den Brink, Rusinowska and

Steffen (2012) axiomatizations of a power and satisfaction score in a (voting) model with opinion leaders

are given differing only in the normalization that is applied.
15We can also define the axioms of component normalization 2 and component normalization 3 on the

class of forest digraphs. It is straightforward to show that together with the non-top property both axioms

characterize the solution that assigns a power of pi(N,D) = 1
|CD(N)| =

|TOP (K,D(K))|
|TOP (N,D)| = 1

|TOP (N,D)| if i ∈ N

is a top player and pi(N,D) = 0 otherwise.
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Proof

It is straightforward to verify that the power measures p2 and p3 satisfy the corresponding

axioms. Uniqueness follows as in the proof of Theorem 5.7, replacing component normal-

ization by component normalization 2 and component normalization 3, respectively. ✷

Together with the non-top property and equal dependence on bottom players, com-

ponent normalization 2 yields the power measure p2 where the power ratio between two

top players equals the product of the number of predecessors of each of their subordinates.

Considering a ‘flow’ argument, this power measure can be described as follows. Suppose

you start a random walk at the sink and walk through the network along the arcs to one

of the top players. At every non-top player you select one of the arcs to its predecessors

with equal probability and continue your walk along this arc. In that case p2 describes the

probability of ending up at each top player.16

Together with the non-top property and equal dependence on bottom players, com-

ponent normalization 3 yields the power measure p3 that distributes the power equally over

the top players in the digraph.

Example 5.9 Consider the sink tree (N,D) with N = {1, 2, 3, 4, 5} andD = {(1, 3), (2, 3),
(3, 5), (4, 5)}. Then the normalized hierarchical measure η(N,D), p2(N,D) and p3(N,D),

respectively, are given by

η(N,D) = (
3

8
,
3

8
, 0,

1

4
, 0),

p2(N,D) = (
1

4
,
1

4
, 0,

1

2
, 0), and

p3(N,D) = (
1

3
,
1

3
, 0,

1

3
, 0).

5.2.2 An application of power measures for sink forests to river games

We end this section by applying the hierarchical strength and the other power measures

discussed in this section to the river games mentioned before. These games are introduced

by Ambec and Sprumont (2002) for rivers with a single spring and a single source. They

consider river water allocation problems (N, e, b) where agents are located along a single-

stream river from upstream to downstream. There is a nonnegative water inflow ei ≥ 0 at

the territory of every agent i ∈ N . Every agent is assumed to have quasi-linear preferences

16Alternatively, suppose that a unit of water flows from the sink to the top players in such a way that

at each non-top player the water stream splits into multiple streams of equal amounts, for every arc to a

predecessor. Then p2 describes the expected amount of water that arrives at the top players.
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over river water and money, where the benefit of consuming an amount of water is given

by a differentiable, strictly increasing, and strictly concave benefit function bi : IR+ → IR,

where bi(xi) is the benefit of agent i of consuming an amount xi of water. An allocation of

the river water among the agents is efficient when it maximizes the total sum of benefits.

Every water allocation and transfer schedule yields a welfare distribution, where the utility

of an agent is equal to its benefit from water consumption plus its monetary transfer, which

can be negative. Ambec and Sprumont (2002) derive a cooperative river game where the

worth of every connected coalition equals the welfare to these agents when they optimally

allocate (i.e. maximizing the sum of their individual benefits) the water inflow in their own

territories among each other (under the condition that water can be sent from upstream to

downstream agents but not the other way around). As solution they suggest and axiomatize

their downstream incremental solution which requires the (unique) optimal allocation of

water over the agents and monetary transfers such that the resulting welfare distribution

is given by the marginal vector of the river game where agents enter from upstream to

downstream. As noted by van den Brink, van der Laan and Vasil’ev (2007) this means

that all the surplus of cooperation of a connected coalition is allocated to the downstream

agent in the coalition. As alternative, van den Brink, van der Laan and Vasil’ev (2007) and

Ambec and Ehlers (2008) proposed the upstream incremental solution which requires the

(unique) optimal allocation of water over the agents and monetary transfers such that the

resulting welfare distribution is given by the marginal vector of the river game where agents

enter from downstream to upstream, and thus the surplus of cooperation is allocated to

the upstream agents.

Khmelnitskaya (2010) and van den Brink, van der Laan and Moes (2012) consider

the more general river structures where there can be mutliple springs, but still a single

source.17 Whereas it is straightforward to generalize the downstream incremental solution

to multiple spring rivers (since the marginal vector corresponding to any permutation where

upstream agents enter before their downstream neighbors is the same), it is less obvious

how to generalize the upstream incremental solution to multiple spring rivers. This section

offers three possibilities by considering the weighted hierarchical solution corresponding to

the hierarchical strength and the power measures p2 and p3.

In van den Brink, van der Laan and Moes (2012) a class of solutions for mutliple

spring rivers that contains the downstream and the three upstream incremental solutions

considered here is axiomatized. This is the class of weighted hierarchical solutions, being

convex combinations of the so-called hierarchical outcomes introduced by Demange (2004),

see also Béal, Rémila and Solal (2010). To every player i ∈ N is assigned a hierarchical

17Khmelnitskaya (2010) also considers rivers with a single spring but multiple sinks, whereas van den

Brink, van der Laan and Moes (2012), like Ambec and Ehlers (2008), allow for more general benefit

functions where the agents can be satiable.
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outcome being the marginal vector where agent h enters before agent j if j is on the (unique)

path from i to h. All marginal vectors corresponding to a permutation that satisfies this

condition with respect to player i are the same, and it is called the hierarchical outcome

corresponding to player i. A solution is a weighted hierarchical solution if there exist

weights αi ≥ 0, i ∈ N , satisfying
∑

i∈N αi = 1, such that for every river problem (N, e, b),

it assigns the corresponding convex combination of the hierarchical outcomes. Clearly,

we obtain the downstream incremental solution by giving weight one to the (unique) most

downstream agent and weight zero to all other agents. By taking any of the weight systems

given by the hierarchical strength or power measures p2 or p3 of this section where, by the

non-top property only the springs can have a nonzero weight, we obtain generalizations of

the upstream incremental solution. Although a theoretical analysis is beyond the scope of

this paper, we illustrate these three upstream incremental type solutions with an example.18

Example 5.10 Consider the river problem (N, e, b,D) with N = {1, 2, 3, 4, 5} digraph D

as given in Example 5.9, e1 = e2 = e4 = 1, e3 = e5 = 0, b5(x5) =
√
x5 and bi(xi) = 0

for all i ∈ {1, 2, 3, 4}.19 The associated river game is the game (N, v) given by v({4, 5}) =
v({1, 3, 5}) = v({2, 3, 5}) = v({1, 4, 5}) = v({2, 4, 5}) = v({3, 4, 5}) = v({1, 2, 4, 5}) =

1, v({1, 2, 3, 5}) = v({1, 3, 4, 5}) = v({2, 3, 4, 5}) =
√
2, v({1, 2, 3, 4, 5}) =

√
3 and v(S) =

0 otherwise. The three hierarchical outcomes ti, where i ∈ TOP (N,D) is a top player, are

given by

t1(N, v,D) =
(√

3−
√
2, 0,

√
2− 1, 0, 1

)
,

t2(N, v,D) =
(
0,
√
3−

√
2,
√
2− 1, 0, 1

)
and

t4(N, v,D) =
(
0, 0, 0,

√
3−

√
2,
√
2
)
.

By Example 5.9, we have η(N,D) = (3
8
, 3
8
, 0, 1

4
, 0), p2(N,D) = (1

4
, 1
4
, 0, 1

2
, 0) and p3(N,D) =

(1
3
, 1
3
, 0, 1

3
, 0). This yields the following weighted hierarchical outcomes according to η, p2 and

p3:

wη(N, v,D) =
3

8
t1(N, v,D) +

3

8
t2(N, v,D) +

1

4
t4(N, v,D)

=

(
3
(√

3−
√
2
)

8
,
3
(√

3−
√
2
)

8
,
3
(√

2− 1
)

4
,

(√
3−

√
2
)

4
,

(
3 +

√
2
)

4

)
,

18We refer to the literature for formal definitions of hierarchical outcomes and river games. In the

example we give the associated games to illustrate the use of power measures to define solutions for river

problems.
19Although these benefit functions do not satisfy the assumptions of Ambec and Sprumont (2002), we

use them for illustration.
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wp2(N, v,D) =
1

4
t1(N, v,D) +

1

4
t2(N, v,D) +

1

2
t4(N, v,D)

=

((√
3−

√
2
)

4
,

(√
3−

√
2
)

4
,

(√
2− 1

)

2
,

(√
3−

√
2
)

2
,

(
1 +

√
2
)

2

)
and

wp3(N, v,D) =
1

3
(t1(N, v,D) + t2(N, v,D) + t4(N, v,D))

=

((√
3−

√
2
)

3
,

(√
3−

√
2
)

3
,
2
(√

2− 1
)

3
,

(√
3−

√
2
)

3
,

(
2 +

√
2
)

3

)
.

✷

Instead of applying the weights to define such upstream incremental type solutions, we

could also apply the power measures as weights to define Harsanyi solutions (see Vasil’ev

and van der Laan (2001), also called sharing values by Derks, Haller and Peters (2000)),

including the weighted Shapley values (see Shapley (1953b) and Kalai and Samet (1987))

for river games.20

Example 5.11 Consider the river problem from Example 5.10. The dividends of the river

game are given by: ∆v({4, 5}) = ∆v({1, 3, 5}) = ∆v({2, 3, 5}) = 1, ∆v({1, 2, 3, 5}) =

∆v({1, 3, 4, 5}) = ∆v({2, 3, 4, 5}) =
√
2−2, ∆v({1, 2, 3, 4, 5}) =

√
3−3

√
2+3 and ∆v(S) =

0 otherwise.

The Harsanyi solution (or sharing value) associated to a sharing system ω = [ωT ]T∈2N\{∅}

such that for every T ∈ 2N \ {∅}, ωT ∈ IRT
+,
∑

i∈T ωT
i = 1, allocates the dividend of any

coalition proportional to the weights of the players in the coalition. Applying the three

power measures discussed in this section, we obtain the following welfare distributions.

Allocating dividends according to the normalized hierarchical measure yields welfare

distribution H̃η given by

H̃η
1 (N, v,D) = H̃η

2 (N, v,D) = 1 +
1

2

(√
2− 2

)
+

2

3

(√
2− 2

)
+

3

8

(√
3− 3

√
2 + 3

)

=
3

8

√
3 +

1

24

√
2− 5

24

and

H̃η
4 (N, v,D) = 1 +

1

3

(√
2− 2

)
+

1

3

(√
2− 2

)
+

1

4

(√
3− 3

√
2 + 3

)

=
1

4

√
3− 1

12

√
2 +

5

12
.

20Similar as with the previous example, we refer to the literature for the definitions of weighted Shapley

values and in the example we just illustrate the application of power measures to define weighted Shapley

values for river problems.
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For those coalitions S, such that player 3 and/or player 5 is a top player of (S,D(S)),

it holds that ∆v(S) = 0. For coalitions S such that ∆v(S) 6= 0, it holds that players 3 and

5 are not top players of (S,D(S)). Therefore their power is zero and these players obtain

zero payoff. We have H̃η
3 (N, v,D) = H̃η

5 (N, v,D) = 0 (the same holds for power measures

p2 and p3).

For power measure p2 we obtain welfare distribution

H̃p2

1 (N, v,D) = H̃p2

2 (N, v,D) = 1 +
1

2

(√
2− 2

)
+

1

2

(√
2− 2

)
+

1

4

(√
3− 3

√
2 + 3

)

=
1

4

√
3 +

1

4

√
2− 1

4

and

H̃p2

4 (N, v,D) = 1 +
1

2

(√
2− 2

)
+

1

2

(√
2− 2

)
+

1

2

(√
3− 3

√
2 + 3

)

=
1

2

√
3− 1

2

√
2 +

1

2
.

with H̃p2

3 (N, v,D) = H̃p2

5 (N, v,D) = 0.

Finally, power measure p3 always assigns equal power to the springs, so we obtain

the following welfare distribution

H̃p3

1 (N, v,D) = H̃p3

2 (N, v,D) = H̃p3

4 (N, v,D) =

= 1 +
1

2

(√
2− 2

)
+

1

2

(√
2− 2

)
+

1

3

(√
3− 3

√
2 + 3

)
=

1

3

√
3

and H̃p3

3 (N, v,D) = H̃p3

5 (N, v,D) = 0.

6 Concluding remarks

We showed that the precedence Shapley value for games under precedence constraints of

Faigle and Kern (1992) does not satisfy irrelevant player independence. We introduced a

class of solutions for games under precedence constraints that do satisfy irrelevant player

independence. The solutions in this class allocate dividend according to power measures

for acyclic digraphs. We introduced the hierarchical measure as a power measure for

acyclic digraphs inspired by the hierarchical strength. We analyzed this measure from

an axiomatic point of view. We also generalized the hierarchical measure to regular set

systems. This wider class of structures allows for more applications. Score rankings are

considered in defining new solutions for games under precedence constraints. We also

defined the normalized hierarchical measure and axiomatized it on the class of forests of

rooted trees and forests of sink trees. On forests of sink trees we obtained different power

measures, by using alternative versions of component normalization. Finally, we considered

the application of these measures on forests of sink trees to water allocation problems.
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Appendix: Normalization and component comparabil-

ity

In this appendix we show that in the axiomatizations in Section 4 of the normalized hi-

erarchical measure on forests and sink forests it is not possible to weaken component

normalization to either normalization or component comparability.

First, we show logical independence of the axioms of Theorem 5.5 if we replace component

normalization by normalization and component comparability.

1. The hierarchical measure η satisfies the non-top property and component compara-

bility on DR. It does not satisfy normalization on DR.

2. The power measure that is given by pi(N,D) = 1
|CD(N)|

if PD(i) = ∅, and pi(N,D) = 0

if PD(i) 6= ∅, satisfies normalization and the non-top property on DR. It does not

satisfy component comparability on DR.

3. The power measure that is given by pi(N,D) = 1
|N |

for all (N,D) ∈ D and i ∈ N

satisfies normalization and component comparability on DR. It does not satisfy the

non-top property on DR.

Second, we show logical independence of the axioms of Theorem 5.7 if we replace component

normalization by normalization and component comparability.

1. The hierarchical measure η satisfies component comparability, the non-top property

and equal dependence on bottom players on DS. It does not satisfy normalization

on DS.

2. The power measure that is given by pi(N,D) = 1
|TOP (K,D(K))|·|CD(N)|

if PD(i) = ∅, and
pi(N,D) = 0 if PD(i) 6= ∅, satisfies normalization, the non-top property and equal

dependence on bottom players on DS. It does not satisfy component comparability

on DS.

3. The power measure that is given by pi(N,D) = 1
|N |

for all (N,D) ∈ DS and i ∈ N

satisfies normalization, component comparability and equal dependence on bottom

playerson DS. It does not satisfy the non-top property on DS.
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4. Let Ki be the component in (N,D) containing player i. Let ω assign to every digraph

the exogenously given vector of weights ω(N,D) ∈ IRN
++, where ωi(N,D) > 0, i ∈ N .

The weighted hierarchical measure ηω given by

ηωi (N,D) = ωi(N,D)∑
j∈TOP (Ki,D(Ki))

ωj

∑
j∈TOP (Ki,D(Ki))

ηj(N,D) if PD(i) = ∅, and ηωi (N,D) =

0 if PD(i) 6= ∅, satisfies normalization, component comparability and the non-top

property on DS. It does not satisfy equal dependence on bottom players on DS.
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