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Abstract

Parameter estimates of structural economic models are often difficult to inter-
pret at the light of the underlying economic theory. Bayesian methods have
become increasingly popular as a tool for conducting inference on structural
models since priors offer a way to exert control over the estimation results. This
paper proposes a penalized indirect inference estimator that allows researchers
to obtain economically meaningful parameter estimates in a frequentist setting.
The asymptotic properties of the estimator are established for both correctly
and incorrectly specified models. A Monte Carlo study reveals the role of the
penalty function in shaping the finite sample distribution of the estimator. The
advantages of using this estimator are highlighted in the empirical study of a
state-of-the-art dynamic stochastic general equilibrium model.
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1 Introduction

In economics, it is often difficult to reconcile the estimates obtained for parameters
of structural models with the underlying economic theory. This problem is especially
evident when employing frequentist estimation techniques that leave the researcher
unable to exert some control over the estimator, at least within the parameter space
bounds. Such problems are well known in the dynamic stochastic general equilibrium
(DSGE) literature. Canova and Sala (2009) show that identification problems are
pervasive in New Keynesian DSGE models; see also Ma (2002), Beyer and Farmer
(2004), Nason and Smith (2008). Model misspecification also leads to difficulties since
parameter estimates are biased and multiple pseudo-true parameters may exist.

In the case of DSGE models, the problem of model misspecification and the chal-
lenge posed by parameters that are unidentified, or only weakly identified, has lead to
the widespread adoption of Bayesian methods. The introduction of priors in Bayesian
estimation allows the researcher to exert control over the estimation procedure, in the
effort to obtain economically meaningful parameter estimates, by including informa-
tion that is not contained in the data sample.

For example, An and Schorfheide (2007) point out that “Any estimation and eval-
uation method is confronted with the following challenges: potential model misspecifi-
cation and possible lack of identification of parameters of interest.” and that Bayesian
methods become useful since “prior distributions can be used to incorporate additional
information into the parameter estimation.”. Similarly, Fernandez-Villaverde (2010)
defends the use of additional structure in estimation since “Pre-sample information
is often amazingly rich and considerably useful and not taking advantage of it is an
unforgivable omission”. He further concludes that “Yes, our inference would have
depended heavily on the prior, but why is this situation any worse than not being able
to say anything of consequence?”.

This paper provides a frequentist tool for incorporating pre-sample information in
estimation. The added structure is provided by a penalty function that plays a role
that is similar to that played by the prior in Bayesian estimation. Penalized estima-
tion is not new in the frequentist literature. On the contrary, the basic idea of adding
penalties to well known estimation criteria such as least squares, maximum likelihood
or the method of moments has been present for a long time in many statistical ap-
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plications; see e.g. Tibshirani (1996) and Zou (2006) and Liao (2013).1 This paper
‘brings’ the use of penalties to a simulation-based estimation setting, which allows us
to estimate complex, high-dimensional, nonlinear dynamic models with unobserved
variables, like DSGE models. In particular, we introduce a penalty in the criterion
function of the indirect inference (II) estimator proposed by Gourieroux et al. (1993)
and Smith (1993). We believe that, compared to Bayesian estimators, the penalized
indirect inference (PII) estimator offers a number of important advantages.

First, while Bayesian estimation can only rely on the likelihood function, the PII
estimator allows for a wide range of criterion functions. Specifically, the PII estima-
tor encompasses both limited information estimation methods, such as the simulated
method of moments of Duffie and Singleton (1990) and Lee and Ingram (1991), as well
as likelihood-based full information estimation methods, such as the efficient method
of Gallant and Tauchen (1996). Popular indirect inference criteria include moment
matching, matching VAR parameters, and matching impulse response functions at
certain periods; see e.g. Christiano et al. (2005), Ruge-Murcia (2007) and Dupor et al.
(2009) for examples of these different approaches. The ability to choose among dif-
ferent criteria is a crucial advantage for estimation of potentially misspecified models.
Indeed, Fukac and Pagan (2010) argue for the use of limited information estimation
techniques in DSGE models since the maximum likelihood (ML) estimator requires
the entire probabilistic structure of the model to be well specified, rather than just
a few features of interest. Furthermore, ML estimators may have poor robustness
properties; see e.g. the seminal work of Huber (1967, 1974).

Second, unlike the prior in Bayesian methods, the penalty function is not restricted
to being a density. The penalty function can take a wide range of forms and thus it is
easy to incorporate various forms of prior information in a flexible way. As we shall
see, the asymptotic properties of PII estimators can be established under very mild
regularity conditions on the nature of the penalty function.

Third, the influence of the penalty is allowed to vanish asymptotically at any
pre-specified rate. Depending on this rate, the penalty may or may not influence
the asymptotic distribution of the estimator. These considerations are in stark con-
trast with Bayesian estimation where the influence of the prior is always vanishing

1In some sense, penalized estimation also plays a crucial role in many non-parametric; semi-
parametric and semi-nonparametric estimation methods; see e.g. Chen (2007), Dalalyan et al. (2006),
Green (1996).
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asymptotically at a rate that is not controlled by the researcher.
The remainder of the article is organized as follows. Section 2 introduces the PII

estimator. Section 3 establishes its asymptotic properties. Section 4 analyses finite-
sample properties by means of a Monte Carlo exercise. Section 5 applies the new PII
estimator to a state-of-the-art New-Keynesian DSGE model considered in Smets and
Wouters (2007). Section 6 concludes.

2 The Penalized Indirect Inference Estimator

Following Gourieroux et al. (1993), we let β̂T denote a q-dimensional vector of aux-
iliary statistics describing the sample of observed data x1, ...,xT . Similarly, β̃T,S(θ)
is the vector of auxiliary statistics that describes the artificial data simulated from
the structural model of interest. The structural model is parameterized by the p-
dimensional vector θ ∈ Θ ⊆ Rp. The auxiliary statistics vector β̃T,S(θ) is defined as
an average of S vectors β̃T,S(θ) obtained from S streams {x̃1,s, ..., x̃T,s}Ss=1 of simulated
data,

β̃T,S(θ) = 1
S

S∑
s=1
β̃T,s(θ).

The penalized indirect inference (PII) estimator θ̂T,S is then defined as,

θ̂T,S ∈ arg min
θ∈Θ

(
β̂T − β̃T,S(θ)

)′
Ω
(
β̂T − β̃T,S(θ)

)
+ πT (θ) ,

where πT : Θ → [0,∞) is a penalty function that depends on sample size T ; and
Ω is a weighting matrix. Note that the additive nature of the penalty can be easily
generalized. In particular, the theory considered here extends naturally to the case
of a multiplicative penalty function by means of a log transformation.

Consider the case of a scalar parameter θ = θ ∈ [0, 1]. A trivially simple example
of a penalty function is given by,

πT (θ) = 1
T

(
θ − 1

2

)2
.

This quadratic penalty function penalizes deviations of θ̂T from the ‘central’ point
1/2 of the parameter space [0, 1]. This penalty function vanishes at speed T asymp-
totically uniformly in the parameter space [0, 1] since supθ∈[0,1] πT (θ) = O(T−1) as
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T →∞.
Section 2 provides simple examples of penalty functions for parameters in R and

R2. Penalty (b) is similar to that in (a) but uses its explosive behavior near θ = 1
to effectively restrict the parameter space from above to values θ < 1. Numerical
optimization routines, which specify the admissible range for parameters or set the
value of the objective function to a very large number (when parameters reach ’un-
reasonable’ values), do exactly the same thing: introduce a penalty to restrict the
parameter space (see e.g. Gorodnichenko and Ng, 2010). While penalty (c) disap-
proves of estimates near zero, penalty (d) excludes the region near zero altogether.
Penalty (e) shows how to center the estimates at the point θ∗ = (1, 1); and penalty
(f) shows how to introduce ‘soft’ cross-restrictions in the parameter space that pe-
nalize deviations from the relation θ1 = aθ2 for some a ∈ R and θ = (θ1, θ2) ∈ R2.
Darker shades represent lower values for the penalty (closer to zero), whereas lighter
shades indicate larger values for the penalty. Naturally, these considerations extend
to arbitrary dimensions.

Figure 1: This figure presents examples of penalty functions in R and R2. Penalty (a) and (b) center the parameter
estimate at the point θ∗ = 0.5. Penalties (c) and (d) penalize values close to zero. Finally, penalties (e) and (f) show
how to center the estimates at the point in R2.

Penalty functions πT that vanish asymptotically, are interesting when the re-
searcher wishes to impose penalties only for small sample sizes. This can be desirable
when the estimator θ̂T,S has poor finite sample properties. Poor finite sample behav-
ior of θ̂T,S can occur, for example, when the structural parameter is weakly identified
in small samples. This is often the case in structural economic models; see Canova
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and Sala (2009) for an analysis of a new-Keynesian model where parameters are iden-
tified but only weakly so. As we shall see, under appropriate conditions, when πT

vanishes asymptotically at an appropriate speed one can still obtain consistency of
θ̂T,S to the true parameter θ0.

3 Asymptotic Properties

In this section, it is convenient to divide PII estimators into two main classes: those
with penalty function that vanishes as T →∞, and those for which penalty function
does not vanish. For PII estimators featuring penalty functions that do not vanish
asymptotically, we establish the convergence of θ̂T,S as T → ∞ to a pseudo-true
parameter θ∗0 that minimizes the limit criterion function. For PII estimators with
penalty functions that vanish asymptotically, we establish the convergence of θ̂T,S to
the true parameter θ0 as T →∞.

The class of PII estimators with vanishing penalty functions can be further cate-
gorized according the rate at which the penalty function vanishes. In general, if the
penalty function vanishes sufficiently fast, then the finite sample distribution of the
the PII estimator is affected by the penalty, but the asymptotic distribution is not.
If the penalty vanishes at a slow rate, then the asymptotic distribution of the PII
estimator is also affected.

3.1 Existence and Consistency

Let Θ and B denote the structural parameter space, and auxiliary parameter space,
respectively. Below, given a topological space (A, TA), we let B(A) denote the Borel
σ-algebra generated by the topology TA of A.

Assumption 1. (Θ,B(Θ)) and (B,B(B)) are measurable spaces and Θ is compact.

In order to ensure the existence and measurability of the PII estimator we assume
also that the penalty function πT is continuous in θ ∈ Θ for every T and that the
auxiliary estimator β̃T,S is almost surely (a.s.) continuous in θ for every S and T .

Assumption 2. πT ∈ C(Θ,R) and β̃T,S ∈ C(Θ,B) a.s. ∀ (T, S) ∈ N× N.
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The following theorem establishes the existence and B(Θ)/F -measurability of the
PII estimator where F denotes the σ-algebra in the underlying complete probability
space of interest (E ,F ,P).2

Theorem 1. Let Assumptions Assumptions 1 and 2 hold. Then there exists an
B(Θ)/F-measurable map θ̂T,S : E → Θ satisfying

θ̂T,S ∈ arg min
θ∈Θ

(
β̂T − β̃T,S(θ)

)′
Ω
(
β̂T − β̃T,S(θ)

)
+ πT (θ) ∀ (T, S) ∈ N2.

Following Gourieroux et al. (1993) we obtain the consistency of the PII estimator
θ̂T,S by building on the consistency of the auxiliary estimators. This is established in
the following assumption.

Assumption 3. ‖β̂T−b0‖
a.s.−→ 0 and supθ∈Θ ‖β̃T,S(θ)−b(θ)‖ a.s.−→ 0 as T →∞ ∀ S ∈

N,

where b : Θ → B is the binding function. The PII estimator requires further
that the penalty function converge asymptotically to a well defined limit function
π : Θ→ [0,∞).

Assumption 4. supθ∈Θ ‖πT (θ)− π(θ)‖ a.s.−→ 0 as T →∞.

Finally, we follow the extremum estimation literature in assuming the identifiable
uniqueness of the pseudo-true parameter of interest; see e.g. White (1999). In other
words, we assume that there exists a well separated unique minimizer of the limit
criterion function. Under an axiom of correct specification this assumption can be
substituted by the usual injectivity of the binding function; see e.g. Gourieroux et
al. (1993).

Assumption 5. There exists a unique point θ∗0 ∈ Θ that minimizes the limit criterion
function; i.e.

(
b0 − b(θ∗0)

)′
Ω
(
b0 − b(θ∗0)

)
+ π(θ∗0) <

(
b0 − b(θ)

)′
Ω
(
b0 − b(θ)

)
+ π(θ) ∀ θ ∈ Θ.

The following theorem establishes the consistency of the PII estimator w.r.t. the
pseudo-true parameter θ∗0 that provides the best approximation of the structural
model to the DGP as judged by the limit indirect inference criterion.

2An implicit assumption is maintained that the auxiliary estimators are well defined random
variables.
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Theorem 2. Let Assumptions 1 to 5 hold. Then θ̂T,S a.s.−→ θ∗0 as T →∞ ∀ S ∈ N.

As pointed out above, under an axiom of correct specification, the consistency
of the PII estimator θ̂T,S w.r.t. the true parameter θ0 can be obtained using the
injectivity of the binding function instead of the assumed uniqueness in Assumption 5.
The following assumption imposes the correct specification of the structural model
by assuming that there exists a point θ0 ∈ Θ such that b0 = b(θ0) and ensures
identification of the true parameter θ0 by imposing the injectivity of the binding
function b : Θ→ B.

Assumption 6. ∃θ0 ∈ Θ such that b0 = b(θ0) and b : Θ→ B is injective.

Consistency w.r.t. the true parameter θ0 can now be obtained as long as the
penalty function behaves appropriately. Assumption 7 below considers three different
cases of interest.

Assumption 7. The penalty function πT satisfies one of the following conditions

(i) πT (θ0) = 0 ∀ T ∈ N ; or

(ii) πT (θ0) = o(1) as T →∞; or

(iii) supθ∈Θ ‖πT (θ)‖ = o(1) as T →∞.

Condition (i) in Assumption 7 describes the case where the penalty is well cen-
tered; i.e. the case where the penalty has a minimum precisely at θ0 ∈ Θ. Note that
the condition allows for several minima, or even a continuum of minima containing
in a region of Θ containing θ0. As we shall see, this case offers a good benchmark to
analyze the various properties of the penalized estimator. Condition (ii) in Assump-
tion 6 considers the more general case where the penalty function may be incorrectly
centered on small samples but is nonetheless asymptotically correct. Clearly, condi-
tion (i) is just a special case of condition (ii). Finally, condition (iii) considers the
case where the criterion vanishes asymptotically uniformly on the parameter space.

The following theorem establishes the consistency of the PII estimator w.r.t. the
true parameter θ0.

Theorem 3. Let Assumptions 1 to 4, 6 and 7 hold. Then θ̂T,S a.s.−→ θ0 as T →
∞ ∀ S ∈ N.
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3.2 Asymptotic Normality

Following Gourieroux et al. (1993) we obtain the asymptotic normality of the PII
estimator by building on the asymptotic normality of the auxiliary estimators.

Assumption 8 ensures several important ingredients used for obtaining asymptotic
normality of II estimators. First, it imposes typical smoothness assumptions on the
auxiliary estimators. Second, it assumes the asymptotic normality of the auxiliary
estimators. Third, it ensures that the second derivative of the auxiliary estimators
converges uniformly over Θ. These conditions are further complemented by similar
smoothness and convergence requirements on the penalty function. We denote the
asymptotic variance of β̂T by Σ and note that the asymptotic variance of β̃T,S is
given by S−1Σ for any S ∈ N. In Assumption 8, and throughout, we let ∇i denote
the i-th derivative operator.

Assumption 8. The following smoothness conditions hold a.s. ∀ (T, S) ∈ N× N:

(i) β̃T,S ∈ C2(Θ,B);

(ii) πT ∈ C2(Θ,R).

The auxiliary estimators are asymptotically normal for every S ∈ N:

(iii)
√
T (β̂T − b0) d→ N(0,Σ) as T →∞;

(iv)
√
T
(
β̃T,S(θ0)− b(θ0)

)
d→ N(0, S−1Σ) as T →∞.

The second derivatives of both the auxiliary estimators and the penalty function con-
verge uniformly to some deterministic limit for every S ∈ N:

(v) supθ∈Θ ‖∇2β̃T,S(θ)−∇2b(θ)‖ a.s.−→ 0 as T →∞;

(vi) supθ∈Θ ‖∇2πT (θ)−∇2π(θ)‖ a.s.−→ 0 as T →∞.

The asymptotic variance Σ in Assumption 8 can be estimated in different ways
depending on the nature of auxiliary statistics. Gourieroux et al. (1993) consider the
case of extremum estimators

β̂T = arg min
β∈B

`T (β)
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where `T denotes a random criterion that depends on observed data. The asymptotic
variance Σ is thus naturally obtained from the classical expansion

√
T (β̂T − b0) =

(
∇2`T (β∗T )

)−1√
T∇`T (b0)

where ∇2`T (β∗T ) denotes the Hessian of `T evaluated (row-wise) at some point β∗T
between β̂T and b0 and

√
T∇`T (b0) is the scaled Jacobian. Typically, application

of a CLT to the scaled Jacobian yields
√
T∇`T (b0) d→ N(0, I(b0)−1) and, together

with the uniform convergence of the Hessian to some limit deterministic matrix J ;
i.e. supβ ‖∇2`T (β∗T )−J‖ a.s.−→ 0, we obtain the usual extremum estimation result (see
e.g. White (1994))

√
T (β̂T − b0) d→ N(0,Σ) as T →∞ with Σ = J(b0)I(b0)−1J(b0).

The relation between the two asymptotic variances stated in Assumption 8 can also
be easily understood in this setting by noting that S−1Σ is the asymptotic variance
obtained for the estimator

β̃T,S(θ0) = 1
S

S∑
i=1
β̃T,i(θ0) where β̃T,i(θ0) = arg max

β∈B
˜̀
T (β;θ0)

where ˜̀T (β;θ0) denotes the counterpart of `T (β) obtained from data simulated under
the structural parameter vector θ0 ∈ Θ.

The asymptotic normality of the PII estimator requires also that the penalty
function converges in an appropriate manner to some limit. Assumption 9 states
alternative conditions that render the PII estimator asymptotically normal. Each
condition yields a different limit result in terms of asymptotic bias and asymptotic
variance.

Assumption 9. The penalty function satisfies one of the following conditions:

(i) ∇πT (θ0) = o(T− 1
2 ) and ∇2π(θ0) = o(1) as T →∞;

(ii) ∇πT (θ0) = O(T− 1
2 ) and ∇2π(θ0) = o(1) as T →∞;

(iii) ∇πT (θ0) = o(T− 1
2 ) and ∇2π(θ0) = O(1) as T →∞;

(iv) ∇πT (θ0) = O(T− 1
2 ) and ∇2π(θ0) = O(1) as T →∞.
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The role of Assumption 9 can be easily understood by analyzing an expansion of
the PII estimator. Consider, for simplicity, the case of scalar parameters θ = θ and
β = β, then it is easy to show that

√
T (θ̂T,S − θ0) =

∇β̃T,S(θ0)
√
T
(
β̂T − β̃T,S(θ0)

)
− 1

2

√
T∇πT (θ0)

∇β̃T,S(θ0)2 + 1
2∇2πT (θ0) + oa.s.(1)

.

Compared to the standard II estimator, there are two additional terms in this
expansion that relate to the penalty function. These are the scaled derivative of the
penalty function 1

2

√
T∇πT (θ0), and the term 1

2∇
2πT (θ0), which is proportional to

the second derivative of the penalty function. Statistical inference on θ0 can thus be
affected by both the slope and curvature of the penalty function at θ0, even when the
penalty function vanishes asymptotically. In particular, note that when the curvature
vanishes asymptotically, ∇2πT (θ0) = o(1), and the slope vanishes sufficiently fast,
∇πT (θ0) = o(T− 1

2 ), then we recover the asymptotic distribution of the standard
indirect inference estimator since

√
T (θ̂T,S − θ0) =

∇β̃T,S(θ0)
√
T
(
β̂T − β̃T,S(θ0)

)
+ oa.s.(1)

∇β̃T,S(θ0)2 + oa.s.(1)
.

In contrast, if the curvature of the penalty function at θ0 does not vanish asymp-
totically, but instead converges to some constant ∇2πT (θ0) = O(1) as T → ∞, then
the asymptotic variance of the penalized indirect inference estimator will be differ-
ent from that of the standard indirect inference estimator. If the limit curvature
is positive at θ0, then the asymptotic variance of the PII estimator will be smaller
than that of the unpenalized II estimator. If the limit curvature is negative, then the
asymptotic variance of the PII estimator will be larger. Note that if the penalty’s
curvature ∇2πT (θ0) converges to a negative value that cancels out with the quadratic
term ∇β̃T,S(θ0)2 as T →∞

∇β̃T,S(θ0)2 + 1
2∇

2πT (θ0) = oa.s.(1),

then, the PII criterion is asymptotically flat at θ0 and, as a result, the
√
T (θ̂T,S − θ0)

diverges. Inversely, if the curvature diverges, then
√
T (θ̂T,S − θ0) a.s.−→ 0.

Similarly, if the penalty’s slope at θ0 does not vanish fast enough, i.e. if
√
T∇πT (θ0)
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converges to a constant, so that ∇πT (θ0) = O(T− 1
2 ), then an asymptotic bias is

introduced and asymptotic distribution of the PII estimator differs from that of the
standard II estimator. If the scaled slope

√
T∇πT (θ0) diverges, then

√
T (θ̂T,S − θ0)

diverges a.s. as T →∞.
Table 1 shows the four different limiting cases for which a non-degenerate limiting

distribution is well defined. These are the cases considered in Assumption 9.
Table 1: Different limit cases for the asymptotic distribution of the PII estimator.

∇πT (θ0) = o(T− 1
2 ) ∇πT (θ0) = O(T− 1

2 )

∇2πT (θ0) = o(1) Standard II
Asymptotics

Asymptotic Bias

∇2πT (θ0) = O(1) Different Asymptotic
Variance

Asymptotic Bias
+

Different Asymptotic
Variance

Theorem 4 establishes the asymptotic normality of the PII estimator θ̂T,S, and
describes its asymptotic mean and variance, under the four different limit cases de-
scribed by Assumption 9. For notational simplicity, Theorem 4 adopts the notation

A := ∂b(θ0)
∂θ

′

Ω
∂b(θ0)
∂θ′

, B := ∂b(θ0)
∂θ

′

ΩΣΩ
∂b(θ0)
∂θ′

,

and Π = lim
T→∞

√
T∇πT (θ0) under Assumption 9(ii) and 9(iv).

Theorem 4. Let Assumptions 1 to 4 and 6 to 9 hold. Then
√
T
(
θ̂T,S − θ0

)
d→

N(µ,W ) ∀ S ∈ N as T →∞ for some p× 1 vector µ and p× p matrix W .

1. If Assumption 9(i) holds then:

µ = 0 and W =
(

1 + 1
S

)
A−1BA−1 .

2. If Assumption Assumption 9(ii) holds then:

µ = −1
2A
−1Π and W =

(
1 + 1

S

)
A−1BA−1 .
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3. If Assumption Assumption 9(iii) holds then:

µ = 0 and W =
(

1 + 1
S

)(
A+ 1

2∇
2π(θ0)

)−1
B
(
A+ 1

2∇
2π(θ0)

)−1
.

4. If Assumption Assumption 9(iv) holds then:

µ = −1
2

(
A+1

2∇
2π(θ0)

)−1
Π

and W =
(

1 + 1
S

)(
A+ 1

2∇
2π(θ0)

)−1
B
(
A+ 1

2∇
2π(θ0)

)−1
.

Understanding the limit behavior of the PII estimator is useful since it reveals
how statistical inference may be influenced by the introduction of the penalty. Fur-
thermore, it can help provide some guidance for the construction of penalties that
are asymptotically innocuous from an inferential perspective. For example, when θ0

is believed to be only weakly identified in small samples, and the penalty is only
designed to give some additional ‘finite sample structure’ to the estimation problem,
then one may legitimately wish to construct penalties that are void of any asymptotic
inferential influence. Theorem 4 provides us with the necessary tools for constructing
such penalties.

4 Finite Sample Behavior

This section provides a Monte Carlo analysis of the finite sample behavior of the PII
estimator θ̂T,S. In particular, it shows how the penalty function can be used to obtain
several desirable properties for the estimator.

We consider a the following prototypical RBC model

maxEt
∞∑
t=0

βt
(
c1−ψ
t − 1
1− ψ

)
,

kt+1 = (1− δ)kt + exp(zt)kαt − ct ,

zt = ρzt−1 + εt , {εt} ∼ NID(0,Σ2) ,

where ct stands for consumption, kt denotes the capital stock, zt denotes total factor
productivity, εt is normal independently distributed (NID) productivity shock, and
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(ψ, δ, α, ρ, σ2) is a vector of structural parameters. According to this model, the
economic agent maximizes consumption over time subject to a capital accumulation
constraint. The economy is described by an AK-production function and the level of
technology follows a stationary AR(1) process with no drift. If ψ → 1, this model
has a log utility function and can be solved analytically. The following two equations
characterize the solution:

log kt = log(αβ) + α log kt−1 + zt−1

log ct = log(1− αβ) + α log kt + zt

Below we investigate the small sample behavior of the PII estimator by means of
a Monte Carlo study. In particular, we generate N = 1000 streams of data of length
T = 250 from this model under the ‘true’ parameter values: α = 0.33, β = 0.99,
δ = 0.023, ψ = 1.75, ρ = 0.95, σ = 0.0104. These are standard parameter values
taken from Heer and Maussner (2005). We also follow the literature in fixing σ2, ψ
and δ and focusing on the estimation (α, β, ρ). The binding function stacks variances
of the data normalized by the variance of the output and correlations of the elements
of the data vector.

Figure 2 compares the finite sample distribution of the II estimator (top row) and
the PII estimator (bottom row) under correct model specification. The PII estimator
imposes a quadratic penalty that centers the estimation of α at the value 0.33, and
centers the estimate of β at 0.9785. This penalty is also designed to explode as β → 1
so as to ensure that the estimate of β is bounded above by 1. The penalty is flat in
the parameter ρ.

Since the distribution of the II estimator of α is already reasonably well centered
at 0.33, the PII estimator has a similar distribution in terms of location. However,
as expected, the distribution of the PII estimator of α appears more concentrated at
the true value. Figure 2 also shows that the PII estimator is successful in producing
estimates of β that avoid the ’unacceptable’ values β ≥ 1. In contrast, the II estimator
avoids a large number of parameter estimates above 1, which are ‘impossible’ from an
economic perspective, and render the dynamic optimization problem underlying the
RBC model ill defined and invalid. The distribution of the ρ estimates are similar.

Figure 3 reveals the finite sample distribution of the II and PII estimators under
incorrect specification. This is done by generating the ‘observed data’ from our RBC
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Figure 2: Distribution of the estimates for the correctly specified model. Note: This figure shows the distribution of
the estimates across 1000 replications for II and PII estimators. The sample size is T = 250. α is the elasticity of
capital in production function, β is the discount rate and ρ is the persistency of technological progress.

model with a CRRA utility function with ψ = 2, but attempting to estimate our RBC
model with log utility function obtained by setting ψ → 1. Despite all other features
of the model remaining intact, Figure 3 shows that even this small misspecification
in the utility function leads to considerable problems for the classical II estimator.
In particular, the distribution of the II estimator (in the top row), reveals that (i)
the estimates of α become incomprehensible low, implying marginal productivities of
capital that are hard to justify from an economic stand point; and (ii) the estimates
of β become simply unacceptable from an economic theoretic stand point. It is
simply impossible for an economist to justify point estimates of β that are close to
zero. In comparison, the PII estimates of both α and β are ‘shifted’ towards more
‘acceptable’ values. Just as in a Bayesian setting, the degree to which the point
estimates are shifted to acceptable values will depend on the relative strength of the
penalty. The PII estimate of ρ is also affected in this case although the estimate of ρ
is not penalized.

In Bayesian econometrics, the effect of the prior vanishes as the sample size in-
creases, as the sample information contained in the likelihood function becomes in-
creasingly dominating in large samples. In Section 3 we have noted that a similar
structure can be imposed in the context of PII estimation by considering penalties
whose effect vanishes asymptotically. In particular, Theorem 4 highlighted that the
penalty may play an important role in shaping the asymptotic distribution. As such,
it is important to understand the influence that the penalty may have in hypothesis
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Figure 3: Distribution of the estimates for the incorrectly specified model: CRRA utility with ψ = 2 instead of log
utility. Note: This figure shows the distribution of the estimates across 1000 replications for Indirect inference (II)
and Penalized Indirect Inference(PII). The sample size is T = 250. α is the elasticity of kapital in production function,
β is the discount rate and ρ is the persistency of technological progress.

testing and parameter inference when conducting statistical inference based on the
asymptotic distribution of the estimator.

Figure 4 investigates the effect of the vanishing rate of the penalty function on
the finite-sample and asymptotic distributions of the PII estimator. The sample sizes
are T = 100, 250, 500 and 1000. For simplicity, we focus on estimating the parameter
α0 = 0.33 while fixing the remaining parameters to their true values. In particular,
we focus on testing the null hypothesis H0 : α = 0.33 at the 5% level.

We impose a quadratic penalty function of the form

πT (α) = bT
(
α− (α0 + aT )

)2
α0 ,

where {aT} and {bT} are vanishing sequences. For illustrative purposes we consider
two alternative rates for the sequences:

• A slow-vanishing penalty where bT = O(1) and aT = O(T−1/2);

• A fast-vanishing penalty where bT = O(T− 1
4 ) and ∼ aT = O(T−1/2).

Note that since the first and second derivatives of the penalty function are given by

∇πT (θ0) := ∂πT (α0)
∂α

= 2bT
(
α− (α0 + aT )

)∣∣∣∣
α0

= 2bTaT ,

and ∇2πT (θ0) := ∂2πT (α0)
∂α2 = 2bT ,
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it follows that the fast-vanishing penalty satisfies Assumption 9(i) with ∇πT (θ0) =
O(T−1/2) and ∇2πT (θ0) = O(1), while the slow-vanishing penalty satisfies Assump-
tion 9(iv) with ∇πT (θ0) = O(T−3/4) and ∇2πT (θ0) = O(T−1/4).
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Figure 4: Corrections to the distributions. Note: This figure shows the distribution of the standardized Penalized
Indirect Inference(PII) estimator with fast and slow penalties and their corrected versions across 1000 replications.
The sample sizes are 100, 250, 500 and 1000.

As expected, the two bottom rows of Figure 4 show that the fast vanishing penalty
changes the location and scale of the finite-sample distribution of PII estimator, but
leaves the asymptotic distribution unchanged. Indeed, for T = 100 (left column), the
density of the (standardized) PII estimator contrasts significantly with the ‘corrected’
distribution (in red) that is obtained using Theorem 4 to ‘eliminate’ the effect of the
penalty. For the larger sample size of T = 1000, this discrepancy with respect to the
corrected distribution is no longer identifiable by visual inspection of the graph. In
contrast, the top two rows of Figure 4 show that the slow-vanishing penalty affects
not only the small sample distribution of the PII estimator, but also, its asymptotic
distribution. This is in accordance to Theorem 4, which predicts an asymptotic
location and scale effect of penalties satisfying ∇πT (θ0) = O(T−1/2) and ∇2πT (θ0) =
O(1).

Table 2 provides more detailed insight into the tail behavior of the distribution of
the PII estimator under the slow vanishing penalty. In particular, it reports rejection
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frequencies, under the null, for a Wald test of nominal size of 5%, that relies on
the asymptotic distributions derived in Theorem 4. The column labeled II, reports
rejection frequencies for the II estimator using the standard II asymptotic distribution
derived in Theorem 4(i). The columns under ‘Slow PII’ report rejection frequencies
for the PII estimator featuring a slow vanishing penalty. For the PII estimator, we
report rejection frequencies using both the standard asymptotic distribution derived
in Theorem 4(i), as well as, the distribution derived in Theorem 4(iv). As expected,
the rejection frequencies are closer to their nominal value of 5% when using the
distribution derived in derived in Theorem 4(iv).

Table 2: Rejection frequencies for PII under the null

T II Slow PII
Theo. 4(i) Theo. 4(i) Theo. 4(iv)

100 0.023 1.000 0.023
250 0.030 1.000 0.031
500 0.036 0.983 0.037
1000 0.037 0.844 0.038

Note: This table reports rejection frequencies for II and
PII estimators with fast and slow penalties, at a nomi-
nal size of 5%.

5 Econometric Analysis of a DSGE Model

In this section, we consider the model of Smets and Wouters (2007), from now on
denoted SW for brevity, and use their data set to estimate the parameters of the
model using II and PII estimators.

The SW model is a medium-scale monetary business cycle model that allows for
‘sticky’ prices and ‘sticky’ wages. As pointed out by the authors, the model ac-
commodates “for backward inflation indexation, habit formation in consumption and
investment adjustment costs that create hump-shaped responses of aggregate demand,
and variable capital utilization and fixed costs in production”.

The stochastic dynamics are driven by seven orthogonal structural shocks: total
factor productivity shocks; risk premium shocks and investment-specific technology
shocks, which affect the intertemporal margin; wage and price mark-upshocks, which
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influence the intratemporal margin; and two policy shocks: exogenous spending and
monetary policy shocks.

The source of the original data is the U.S. Department of Commerce, Bureau of
Economic Analysis. We take the data from the supplementary materials of SW. The
interested reader could find the details on the data composition in those materials.
The vector of the observed time series consists of output, consumption, investment,
real wages, hours worked, inflation, and the interest rate. The first four series are
taken in the first differences following SW, whereas the last three are in levels. The
sample size is T = 230. We use the Anderson and Moore (1985) algorithm to solve
the model.

We consider two different sets of auxiliary statistics for the II and PII estimation
of the model: (i) the vector of autocovariances of the data up to the order 1, as
proposed, e.g., by Gorodnichenko and Ng, 2010; and (ii) the vector that stacks the
autocorrelations of the data up to the order 1 and the ratios of the variances to the
variance of the output, as suggested, e.g., by Dave and Dejong, 2007.

For simplicity, we introduce a simple quadratic penalty function for our PII esti-
mator,

πT (θ) = bT (θ − θSW )′ (θ − θSW )

where θ is the stacked vector of the parameters of interest, θSW is the vector of
the posterior modes of SW. The parameter bT ≥ 0 determines the curvature of the
penalty function.

5.1 Penalty Sensitivity Analysis

In the first part of this study, we estimate only four parameters of the model: persis-
tence of technology shocks ρa; investment adjustment cost φ; external habit formation
in consumption λ; and Calvo’s probability of wage adjustment ξw. All remaining pa-
rameters fixed to the posterior modes obtained in SW. Figure 5 reports the estimates
obtained by the PII estimator. Despite the identical structure of the penalty function
for every parameter, the results suggest that parameter estimates react on changes
in the curvature of the penalty differently. Figure 5 suggests that the estimate of φ
is quite sensitive to the penalty. This occurs despite the absolute value of φ being
larger than those of the remaining parameters. The parameters λ and ξw demonstrate
a similar sensitivity to the penalty. Namely, gradual deviation from the penalty min-
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imizer as the strength of the penalty decreases. ρa is close to 1 for all considered
curvature values. This parameter is thus less sensitive to alternative specifications of
our quadratic penalty. Figure 5 also shows that the estimates of λ, ξw and ρa should
move away from the posterior modes in SW if the objective is to match the vector of
autocovariances of the data as close as possible. Indeed, note that for bT = 0, the PII
estimates are considerably different from those reported in SW (dashed lines).
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Figure 5: Estimated values of different parameters depending on the penalty strength. Note: This figure shows the
estimated values of various parameters of Smets and Wouters (2007) model for Penalized Indirect Inference estimator.
ρa is persistence in technology shocks, φ is investment adjustment cost, λ is habit formation, ξw is wage adjustment
probability. Penalty function is the same for all parameters: πT (θ) = bT (θ − θSW )′ (θ − θSW ); bT varies from 0 to
100.
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5.2 Estimation Results

In this section we report the estimation for the full p = 34 parameters of the model.3

Table 3 reports the obtained parameter estimates. To speed-up computations we
calculate the autocovariance matrix implied by the model using the approach dis-
cussed in Gorodnichenko and Ng (2010). In particular, the moments are computed
analytically making use of the VAR structure of the reduced form and the fact that
all the (filtered) variables assumed to be weakly stationary. To take into account the
different scales of the variables, we adjust the curvature of the penalties for every
parameter, leaving the functional form of the penalty function fixed,

πT (θ) = bT w
′κ(θ),

where w is a p × 1 vector of weights; κ(θ) is a p × 1 vector, such that κi(θ) =
(θi − θi,SW )2. The weight of φ is normalized to 1, and the remainder weights are set
relative to that of φ according to the relative magnitude of each parameter. Specifi-
cally, we let the elements of w be defined as the ratios of the squares of the posterior
modes of SW to the square of φ,

wi =
θ2
i,SW

φ2
SW

.

We find that a large number of parameters are considerably sensitive to the specifica-
tion of the penalty function. A detailed analysis of this sensitivity can be found in a
supplementary appendix, which is available upon request. Given the high-dimensional
parameter vector, we also find that the point estimate of the II estimator exhibits
considerable sensitivity to the choice of initial parameter in the optimization of the
criterion function. The PII criterion function has fewer local minima. Hence the
estimates are more robust. Tables 5 and 6 in Appendix B provide a detailed analysis
of the sensitivity of the estimates to starting values.

Overall, the parameter estimates obtained by the II and PII estimators are con-
siderably different, and they are also quite far from the posterior modes obtained by
SW. The II estimator provides the largest estimate of γ. The estimate of 1.5% for

3SW claim that certain parameters are not identified, so their values are calibrated: (i) the
depreciation rate δ is fixed at 0.025; (ii) the exogenous spending-GDP ratio gy is set at 18 percent;
(iii) the steady-state mark-up in the labor market λw is given the value of 1.5; (iv) and the curvature
parameters of the Kimball aggregators in the goods and labor market (ε, and εs) are both set at 10.
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this parameter, which determines the steady-state growth rate, is quite far from the
values usually reported in the literature. In contrast, the SW and PII estimators
deliver similar estimates of 0.4% and 0.3%, respectively. The II estimator is also
alone in suggesting almost no serial correlation in the markup shock (values of ρp and
µp are close to zero). In contrast, both the SW and PII estimators report positive
and persistent values. Interestingly, despite the smallest estimate of φ, the II point
estimate of ψ is very close to 1, implying that it is extremely costly to change the
utilization of capital. As a result, despite that a more responsive supply side of the
capital market, utilization of capital is less responsive to shocks for the model im-
plied by II estimates. In contrast, the II and PII estimates of ρa are quite similar,
suggesting that total factor productivity might have a unit root. The posterior mode
of SW is 0.95 and implies considerably different dynamic behavior for productivity.
The estimate of the share of capital in production α decreases by 46% from the SW’s
value 0.190 to the PII estimate 0.101.

In general, estimates of the parameters with asterisk differ considerably between
the II and PII. As expected, the penalty function keeps the PII estimates close to the
posterior mode values reported by SW. It is possible that the ‘loose’ II estimates of
the non-identified parameters influence the estimation of the remaining parameters.
Cogley (2001) reports similar findings estimating a misspecified DSGE model: a unit-
root autoregressive TFP process is estimated with the stationarity restriction on the
persistence parameter, as a consequence, the GMM estimate of the variance of the
error term increases above the true value.

Table 4 reports the moments implied by the model under the parameters estimated
by the different methods. It also displays the values obtained for a number of criteria
that describe the ability of the model to match the first order autocovariance of the
observed data. In particular, PII obj fun is the value of the PII criterion function;
II obj fun is the value of the PII criterion without penalty, i.e. it denotes the sum of
the squared differences of all the elements; maxnorm stands for the maximal absolute
difference element by element; and SAV is the sum of the absolute values of all the
elements.

It is interesting how SW provide a poor approximation to the covariance between
hours worked, the real interest rate, as well as the autocovariance between the real
wage and the real interest rate. Naturally, if the goal of the researcher is to match
certain moments, then a likelihood-based estimator is not necessarily a good choice.
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Table 3: Parameter estimates of Smets and Wouters (2007) model

SW II PII SW II PII
γ∗ 1.004 1.015 1.003 ρw 0.820 0.918 0.723
σC 1.390 1.727 1.306 µw 0.620 0.688 0.633
σ∗l 1.920 2.131 1.409 ρr 0.290 0.673 0.298
λ 0.710 0.630 0.717 ρa 0.950 0.997 0.997
β∗ 0.990 0.966 0.983 ρb 0.180 0.585 0.177
φ∗ 5.480 2.001 6.164 ρ∗p 0.740 0.001 0.885
φp 1.610 1.454 1.488 µ∗p 0.590 0.013 0.750
α 0.190 0.141 0.101 ρ∗i 0.640 0.634 0.636
ψ 0.540 1.000 0.637 ρ∗g 0.910 0.985 0.757
ι∗p 0.220 0.202 0.267 ρ∗ga 0.390 0.302 0.438
ξ∗p 0.650 0.702 0.708 var∗a 0.450 0.256 0.347
ι∗w 0.590 0.079 0.442 var∗b 0.240 0.000 0.246
ξ∗w 0.730 0.728 0.912 var∗g 0.240 0.198 0.254
ρ∗ 0.810 0.686 0.618 var∗i 0.140 0.245 0.150
r∗π 2.030 1.692 2.800 var∗r 0.450 0.531 0.439
r∗y 0.080 0.116 0.091 var∗p 0.520 0.990 0.435
r∆y 0.220 0.131 0.213 var∗w 0.240 0.155 0.269

Note: SW denotes posterior modes from Smets and
Wouters (2007). II is the Indirect Inference estimator with-
out penalties. PII is the Penalized Indirect inference es-
timator with quadratic loss penalties centered around the
posterior modes from SW. The data suggest less informa-
tion on the parameters with asterisk, so penalty function
has a positive curvature for them.

The large value of the objective function for the II is expected as this estimator does
not take the penalty function into account. As a result, it is more likely to move
away from SW estimates, than PII. The higher value of SSD for PII compared to II is
arguably limited. Both II and PII improve a lot in comparison with SW. Neither of
the estimators capture the variation in output var(∆yt) well, suggesting that it is not
the penalty function that explains the poor matching. In any case, both the II and
PII estimator improve considerably on SW. On the contrary, the II estimator matches
var(Πt) better than PII and SW. This is due to the large estimate of variance of the
price mark-up shock.

5.3 Policy Implications

Impulse response functions (IRF) provide important tools for governments and cen-
tral banks to conduct macroeconomic policy analysis. In this section we study the
IRFs implied by the different estimators for the model of SW. Figures 6 and 7 high-

23



Table 4: Moments match for different estimators

Data SW II PII
var(∆ct) 0.71 0.70 0.73 0.91
var(∆yt) 1.03 0.19 0.54 0.54
var(∆it) 6.82 4.32 6.33 6.28
var(∆wt) 0.39 0.38 0.44 0.32
var(lt) 8.42 2.86 8.41 8.39
var(Πt) 0.45 0.17 0.43 0.20
var(rt) 0.75 0.21 0.54 0.55
cov(lt, rt) -1.06 -0.06 -1.10 -1.16
cov(wt, rt−1) -1.02 0.01 -0.98 -1.03

PII obj fun — 78.95 641.31 3.59
II obj fun — 78.95 2.75 3.59
maxnorm — 5.56 0.60 0.77
SAV — 32.68 9.80 11.86

Note: A few selected moments and fit measures
implied by SW, II and PII parameter estimates.

light the difference between the impulse responses of key macroeconomic variables to
technology and government spending shocks.

Figure 6 reveals that the magnitude of the responses of output, consumption,
inflation and wages is significantly smaller for SW than for II or PII. This can be
due to the fact that the persistence parameter of the technological shock ρa reported
by SW is considerably smaller than that obtained by II or PII. The speed at which
output converges back to equilibrium is also substantially faster for SW compared
to the II or PII estimators. Similarly, the consumption responses implied by all
approaches are qualitatively similar, but the response implied by SW is noticeably
different quantitatively.

Figure 7 shows that the different estimation methods also predict different IRFs
for government spending shocks. In particular, it highlights that the penalty function
is crucial for obtaining a sizable reaction of aggregate investment to this kind of shock.
Indeed, under the II estimates, investment is essentially non responsive. This is due
to the large estimated value of ψ, which implies that government spending crowds out
consumption. Similarly, the IRF for hours worked predicted by II differs substantially
from that obtained under SW and PII.

A supplementary appendix containing a more thorough analysis of the IRFs im-
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plied by different shocks is available upon request. For example, we find that, in
response to the risk premium shock, the II estimates produce an IRF that different
from that implied by SW and the PII estimator. In particular, it is more persistent
and its magnitude is larger in the short-run. Overall, the IRFs implied by the II
estimator are often an outlier.
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Figure 6: Estimated impulse responses functions to a technology shock. Note: This figure shows impulse response
functions of various parameters of Smets and Wouters (2007) model based on different estimators.

5.4 Summary of empirical findings

Our results suggest that the PII estimator is capable of estimating a state-of-the-art
DSGE model. Both the II and PII estimators are able to produce match well the
observed sample moments. However, the estimates produced by the II estimator are
less robust than those of the PII estimator as they are more dependent on the initial
values of the parameters; see Appendix B. Furthermore, the usual II estimator fails
to provide estimates that are not convincing from an economic point of view. For
example, the demand for capital implied by the II estimator becomes inelastic. As a
result, aggregate investment does not react to a government spending shock.
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Figure 7: Estimated impulse responses functions to a government spending shock. Note: This figure shows impulse
response functions of various parameters of Smets and Wouters (2007) model based on different estimators.

The Bayesian posterior mode estimates reported in Smets and Wouters (2007)
produce responses that are acceptable to macroeconomists. However, they are not
appealing from a moment matching point of view. In particular, they underestimate
variances of consumption, investment and inflation, missing the negative covariance
between the real interest rate and hours worked.

The PII estimator can be used to combine the positive aspects of each of the
estimation methods discussed above. Specifically, the PII estimator is able to: (i)
be considerably more robust than the II estimator in terms of criterion optimization;
(ii) match well the observed sample moments; and (iii) produce parameter estimates
that are compatible with economic theory and evidence.

6 Final Remarks

This paper proposed an indirect inference estimator that offers a way for the researcher
to add information not included in the sample of data, and in this way, exert control
over the estimator and obtain parameter estimates that are sensible from an economic
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perspective. The estimator was obtained by introducing a penalty in the indirect
inference objective function. The penalty may vanish asymptotically or not. The
asymptotic properties of the penalized indirect inference estimator were established
for both correctly and incorrectly specified models.

A Monte Carlo study revealed the role of the penalty function in shaping the
finite sample distribution of the estimator. The Monte Carlo study also illustrated
how the penalized indirect inference estimator may be useful in dealing with problems
of parameter identification and model misspecification. Finally, the empirical appli-
cation suggested that this estimator can be used for obtaining economically relevant
estimates of the parameters of a state-of-the-art dynamic general equilibrium model.

The theory developed in this paper can be further extended by investigating gen-
eral classes of penalties. For example, one may consider penalties that depend not
only on the sample size and the structural parameters, but also, one the number of
simulations or the values of the auxiliary statistics.
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A Proofs

Proof of Theorem 1
Note first that the criterion function

QT,S(θ) :=
(
β̂T − β̃T,S(θ)

)′Ω(β̂T − β̃T,S(θ)
)

+ πT (θ)

is a.s. continuous in θ ∈ Θ by continuity of the criterion in β̃T,S(θ) and πT (θ) and the a.s. continuity
of β̃T,S(θ) in θ ∈ Θ and continuity of πT (θ) in θ ∈ Θ stated in Assumption 2. Furthermore, the
criterion is B(R)/F-measurable for every θ ∈ Θ since it is continuous in β̂T and β̃T,S(θ) and both
β̂T and β̃T,S(θ) are B(B)/F-measurable for every θ ∈ Θ. The measurability of θ̂T follows from
(White, 1994, Theorem 2.11) or (Gallant and White, 1988, Lemma 2.1, Theorem 2.2).

Proof of Theorem 2
Following a classical consistency argument (found, e.g., in White, 1994, Theorem 3.4 or Theo-
rem 3.3 in Gallant and White, 1988), we obtain θ̂T

a.s.−→ θ∗0 from the uniform convergence of the
criterion function QT,S(θ) :=

(
β̂T − β̃T,S(θ)

)′Ω(β̂T − β̃T,S(θ)
)

+ πT (θ) to the limit Q∞(θ) :=(
b0 − b(θ)

)′Ω(b0 − b(θ)
)

+ π(θ) as T →∞,

sup
θ∈Θ
|QT,S(θ)−Q∞(θ)| a.s.−→ 0 ∀ S ∈ N as T →∞ (1)
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and the identifiable uniqueness of the maximizer θ0 ∈ Θ introduced in White (1994),

sup
θ∈Θ:‖θ−θ0‖>ε

Q∞(θ) < Q∞(θ0) ∀ ε > 0. (2)

The uniform convergence of the criterion in (eq. (1)) follows from the uniform convergence of
the auxiliary statistics β̂T and β̃T,S(θ) in Assumption 3 and the uniform convergence of πT (θ) in
Assumption 4,

sup
θ∈Θ
|QT,S(θ)−Q∞(θ)| = sup

θ∈Θ

∣∣∣(β̂T − β̃T,S(θ)
)′Ω(β̂T − β̃T,S(θ)

)
+ πT (θ)

−
(
b0 − b(θ)

)′Ω(b0 − b(θ)
)
− π(θ)

∣∣∣
≤ sup

θ∈Θ

∣∣∣(β̂T − β̃T,S(θ)
)′Ω(β̂T − β̃T,S(θ)

)
−
(
b0 − b(θ)

)′Ω(b0 − b(θ)
)∣∣∣

+ sup
θ∈Θ

∣∣∣πT (θ)− π(θ)
∣∣∣

= oa.s.(1) + oa.s.(1) = oa.s.(1),

where supθ∈Θ

∣∣∣(β̂T − β̃T,S(θ)
)′Ω(β̂T − β̃T,S(θ)

)
−
(
b0 − b(θ)

)′Ω(b0 − b(θ)
)∣∣∣ = oa.s.(1) follows by

Assumption 3 and supθ∈Θ
∣∣πT (θ)− π(θ)

∣∣ = o(1) holds by Assumption 4.
The identifiable uniqueness of θ∗0 (see, e.g., White, 1994) follows from the assumed uniqueness

of θ∗0 in Assumption 5, the continuity of the limit criterion Q∞ on Θ (implied by the uniform
convergence of {QT } and the Arzella-Ascolli Theorem) and the compactness of Θ.

Proof of Theorem 3
We follow again the classical argument found e.g. in (White, 1994, Theorem 3.4) or Theorem 3.3 in
Gallant and White (1988).

The uniform convergence of the criterion function

sup
θ∈Θ
|QT,S(θ)−Q∞(θ)| a.s.−→ 0 ∀ S ∈ N as T →∞ (3)

is again implied by Assumptions 1 to 4, by the same argument as in the Proof of Theorem 2.
The identifiable uniqueness of the maximizer θ0 ∈ Θ follows from the continuity of the limit

criterion Q∞ on Θ and, compactness of Θ and the uniqueness of θ0 as a maximizer of Q∞,
i.e. Q∞(θ0) < Q∞(θ) ∀ θ ∈ Θ. The compactness of Θ is directly assumed. The continuity of
Q∞ is obtained by the same argument as in the proof of Theorem 2. The uniqueness of θ0 follows
from Assumptions 6 and 7. In particular, note that Assumption 6 ensures that θ0 minimizes the
quadratic term

(
b0 − b(θ)

)′Ω(b0 − b(θ)
)

=
(
b(θ0)− b(θ)

)′Ω(b(θ0)− b(θ)
)

by setting it to zero. Assumption 7 (i) and (ii) ensure that the limit penalty π : Θ → [0,∞) has a
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minimum at θ0. As a result Q∞ is uniquely minimized at θ0. Finally, under Assumption 7 (iii), the
penalty vanishes uniformly from limit criterion, and hence

Q∞(θ) =
(
b0 − b(θ)

)′Ω(b0 − b(θ)
)

and the uniqueness of θ0 follows from Assumption 6.

Proof of Theorem 4
Following Gourieroux et al. (1993), we note that the first order condition for the PII estimator θ̂T,S
is given by

−2∂β̃T (θ̂T,S)
∂θ

′

Ω
(
β̂T − β̃T,S(θ̂T,S)

)
+∇πT (θ̂T,S) = 0

where 0 denotes a vector of zeros. Application of a mean value theorem at θ0 yields

0 = − 2∂β̃T (θ0)
∂θ

′

Ω
(
β̂T − β̃T,S(θ0)

)
+∇πT (θ0)

+
[

2
∂β̃T (θ∗T,S)

∂θ

′

Ω
∂β̃T (θ∗T,S)

∂θ
− 2

∂2β̃T (θ∗T,S)
∂θ∂θ′

′

Ω
(
β̂T − β̃T,S(θ∗T,S)

)
+∇2πT (θ∗T,S)

]
(θ̂T − θ0)

and hence,

√
T (θ̂T,S − θ0) =

[
∂β̃T (θ∗T,S)

∂θ

′

Ω
∂β̃T (θ∗T,S)

∂θ
−
∂2β̃T (θ∗T,S)
∂θ∂θ′

′

Ω
(
β̂T − β̃T,S(θ∗T,S)

)
+ 1

2∇
2πT (θ∗T,S)

]−1

×

(
∂β̃T (θ0)
∂θ

′

Ω
√
T
(
β̂T − β̃T,S(θ0)

)
− 1

2
√
T∇πT (θ0)

)
.

The consistency of θ̂T and the uniform convergence of ∇2β̃T,S as T →∞ ensures that

−
∂2β̃T (θ∗T,S)
∂θ∂θ′

′

Ω
(
β̂T − β̃T,S(θ∗T,S)

)
= oa.s.(1) as T →∞.

Furthermore, the uniform convergence of ∇β̃T,S and ∇2πT ensures also that

∂β̃T (θ∗T,S)
∂θ

′

Ω
∂β̃T (θ∗T,S)

∂θ
− ∂β̃T (θ0)

∂θ

′

Ω∂β̃T (θ0)
∂θ

= oa.s.(1) as T →∞ ,

and ∇2πT (θ∗T,S)−∇2πT (θ0) = o(1) as T →∞.
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As a result, we can re-write the expression for
√
T (θ̂T,S − θ0) as

√
T (θ̂T,S − θ0) =

[
∂β̃T (θ0)
∂θ

′

Ω∂β̃T (θ0)
∂θ

+ 1
2∇

2πT (θ0)
]−1

×

(
∂β̃T (θ0)
∂θ

′

Ω
√
T
(
β̂T − β̃T,S(θ0)

)
− 1

2
√
T∇πT (θ0)

)
.

The expressions for µ and W now follow immediately from the fact that Assumption 8(iii) and
(iv) imply for every S ∈ N, and as T →∞, the weak convergence

√
T
(
β̂T − β̃T,S(θ0)

)
=
√
T
(
β̂T − b(θ0)

)
−
√
T
(
β̃T,S(θ0)− b(θ0)

)
d→ N

(
0, (1 + S−1)Σ

)
.
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B Robustness of Estimation Results

The following Tables report the means and the standard deviations of the Penalized II and II
estimators across 1000 replications. For all parameters with asterisk, the PII has smaller standard
deviation, for example, the standard deviation of σl is 44 times larger for II estimators compared
with PII. The mean values of all estimators differ from the values reported in Table 3: for example
the mean of ιw, the degree of wage indexation in labor markets, estimated by II is larger by a factor
of 7.50. However, the mean deviation from the value in Table 3: is more than 20% smaller for PII
estimators. Given that the values of some parameters do not vary much across the replications, but
their mean is different from the value reported in Table 3; it seems that the values in Tables 5 and 6
govern more information and more credible, whereas conclusions regarding relative performance of
the estimators drawn from Table 3 could be misleading.

Table 5: Estimators sensitiviy to the starting values

SW II PenII SW II PenII
γ∗ 1.004 1.009 1.004 ι∗p 0.220 0.325 0.243

0.033 0.003 0.188 0.106
σC 1.390 1.887 1.780 ξ∗p 0.650 0.693 0.671

0.586 0.663 0.171 0.097
σ∗l 1.920 1.916 1.917 ι∗w 0.590 0.596 0.573

1.295 0.029 0.253 0.071
λ 0.710 0.571 0.622 ξ∗w 0.730 0.823 0.806

0.096 0.107 0.162 0.118
β∗ 0.990 0.961 0.975 ρ∗ 0.810 0.722 0.803

0.047 0.023 0.183 0.068
φ∗ 5.480 2.788 5.479 r∗π 2.030 1.809 2.025

1.971 0.012 0.584 0.034
φp 1.610 1.386 1.433 r∗y 0.080 0.114 0.090

0.182 0.218 0.048 0.041
α 0.190 0.148 0.103 r∆y 0.220 0.111 0.106

0.088 0.066 0.089 0.062
ψ∗ 0.540 0.880 0.549 ρw 0.820 0.704 0.695

0.205 0.067 0.219 0.233
Note: This table reports estimators sensitivity to the starting
values that drawn randomly in the interval between the poste-
rior mode and the prior mean reported in Smets and Wouters
(2007). SW denotes posterior modes from Smets and Wouters
(2007). II is the Indirect Inference estimator without penalties.
PII is the Penalized Indirect inference estimator with quadratic
loss penalties centered around SW. We report means and the
standard deviations of the estimates across 1000 replications.
The data suggest less information on the parameters with as-
terisk, so penalty function has a positive curvature for them.
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Table 6: Estimators sensitiviy to the starting values

SW II PenII SW II PenII
µw 0.620 0.571 0.545 ρ∗ga 0.390 0.430 0.383

0.198 0.231 0.234 0.070
ρr 0.290 0.461 0.376 var∗a 0.450 0.267 0.333

0.184 0.190 0.272 0.115
ρa 0.950 0.602 0.516 var∗b 0.240 0.157 0.152

0.319 0.403 0.150 0.079
ρb 0.180 0.462 0.277 var∗g 0.240 0.166 0.154

0.299 0.235 0.159 0.078
ρ∗p 0.740 0.549 0.745 var∗i 0.140 0.117 0.098

0.279 0.097 0.105 0.061
µ∗p 0.590 0.491 0.551 var∗r 0.450 0.261 0.330

0.270 0.074 0.280 0.119
ρ∗i 0.640 0.514 0.646 var∗p 0.520 0.355 0.392

0.180 0.059 0.437 0.137
ρ∗g 0.910 0.778 0.905 var∗w 0.240 0.188 0.152

0.215 0.088 0.198 0.078
Note: This table reports estimators sensitivity to the starting val-
ues that drawn randomly in the interval between the posterior
mode and the prior mean reported in Smets and Wouters (2007).
SW denotes posterior modes from Smets and Wouters (2007).
II is the Indirect Inference estimator without penalties. PII is
the Penalized Indirect inference estimator with quadratic loss
penalties centered around SW. We report means and the stan-
dard deviations of the estimates across 1000 replications. The
data suggest less information on the parameters with asterisk, so
penalty function has a positive curvature for them.
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