
Azam, Kazim; Lucas, Andre

Working Paper

Mixed Density based Copula Likelihood

Tinbergen Institute Discussion Paper, No. 15-003/IV/DSF84

Provided in Cooperation with:
Tinbergen Institute, Amsterdam and Rotterdam

Suggested Citation: Azam, Kazim; Lucas, Andre (2015) : Mixed Density based Copula
Likelihood, Tinbergen Institute Discussion Paper, No. 15-003/IV/DSF84, Tinbergen Institute,
Amsterdam and Rotterdam

This Version is available at:
http://hdl.handle.net/10419/107872

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
http://hdl.handle.net/10419/107872
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


                                   
 

Duisenberg school of finance - Tinbergen Institute Discussion Paper 
 

 
 

 
 

 

TI 15-003 / IV/ DSF084
 
Mixed Density based Copula Likelihood 
 
 
 

 Kazim Azam
André Lucas* 
 
 
 
 

* Tinbergen Institute, the Netherlands. 
 
 
 
 
 
Faculty of Economics and Business Administration, VU University Amsterdam, the Netherlands. 
 



 
Tinbergen Institute is the graduate school and research institute in economics of Erasmus University 
Rotterdam, the University of Amsterdam and VU University Amsterdam. 
 
More TI discussion papers can be downloaded at http://www.tinbergen.nl 
 
Tinbergen  Institute has two locations: 
 
Tinbergen Institute Amsterdam 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 525 1600 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
Fax: +31(0)10 408 9031 
 

Duisenberg school of finance is a collaboration of the Dutch financial sector and universities, with the 
ambition to support innovative research and offer top quality academic education in core areas of 
finance. 

DSF research papers can be downloaded at: http://www.dsf.nl/ 
 
Duisenberg school of finance 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 525 8579 
 
 



Mixed Density based Copula Likelihood

Kazim Azam∗

VU University Amsterdam

Andre Lucas

VU University Amsterdam

This version: January 7, 2015

Abstract

We consider a new copula method for mixed marginals of discrete and continuous ran-

dom variables. Unlike the Bayesian methods in the literature , we use maximum likelihood

estimation based on closed-form copula functions. We show with a simulation that our

methodology performs similar to the method of Hoff (2007) for mixed data, but is consid-

erably simpler to estimate. We extend to a time series setting, where the parameters are

allowed to vary over time. In an empirical application using data from the 2013 Household

Finance Survey, we show how the copula dependence between income (continuous) and

discrete household characteristics varies across groups who were affected differently by the

recent economic crisis.
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1 Introduction

Recently copula models have gained popularity in various fields. They offer a simple and

neat environment to specify joint behaviour among random variables. The decomposition of

the joint distribution through a copula function implies that the marginal characteristics of

the random variables can be specified separately from the dependence structure. There is a

vast array different copula functions, each of which can capture different, possibly complex

dependence structures (asymmetric, tail dependence, etc.), see Joe (1997) for a detailed review

of copula functions, or Nelsen (2007) for their theoretical properties. Copula models are used in

wide variety of applications, such as Embrechts et al. (2002) Value-at-Risk analysis in finance to

Munkin and Trivedi (1999) health utilization data application. Cherubini et al. (2004) present

various financial applications using copula models, and provide a thorough survey of the copula

literature. Trivedi and Zimmer (2006) similarly cover various aspects of discrete copulas and

review their use in microeconometrics. literature.

This paper proposes a new technique to allow the dependence structure between discrete

and continuous random variables to be specified through copula functions. The novelty of

our approach is that the methodology does not require computationally intensive Bayesian

routines, unlike some other proposals in the literature. As a second contribution, we show how

to extend the model to a time series setting with time-varying marginals and possibly time-

varying dependence structure as well. It it is the first time in literature that a joint analysis

among random variables of different types is conducted through simple likelihood evaluation.

Due to the mixture of different marginals, the copula likelihood function does not take the

standard density form nor the form of a probability mass function, but rather a mix of both.

We refer to this mixed expression as the mixed copula density.

With a few exceptions, the copula literature either deals with having all random variables

in a multivariate system belonging to continuous distributions or all to discrete distributions.

According to Sklar (1959)’s theorem, a copula is uniquely identified if the marginal distributions

are all continuous. For discrete marginals the copula is not unique and can only be defined

on the range of the discrete marginal distributions. Despite the non-uniqueness, empirical

researchers typically still look for parsimonious copula functions that describe the data at

2



hand, even though such copulas may also be defined outside the range of the discrete marginal

distributions.

Recently there has been an interest in allowing a mixture of discrete and continuous random

variables in a multivariate analysis. Pitt et al. (2006) propose a multivariate gaussian copula

with mixed type marginals. The data in their case is generated through a continuous copula

function, but for the discrete margins the appropriate coordinates from the copula draw are

projected onto the range of the marginal distributions. During the estimation, these coordinates

are considered latent and are integrated out. Smith and Khaled (2012) extend the previous

methodology to the case of an arbitrary copula function. Both papers use Markov Chain Monte

Carlo (MCMC) techniques. Hoff (2007) proposes a semi-parametric multivariate gaussian cop-

ula, where the marginal distributions are left unspecified. The only information he uses from the

observed data to estimate the multivariate copula consists of the order statistics. The method,

however, suffers from large posterior correlation, and hence requires intensive computations to

obtain an independent posterior sample for inference. Our mixed copula likelihood function, by

contrast, separates the impact of each type of random variable (discrete/continuous) in a simple

and elegant way. The method is easy to implement and similar to the case of only discrete or

only continuous marginals, and can be readily estimated through maximum likelihood.

We extend our method to the time series context. In time series, it is often important to allow

parameters to vary over time. Therefore, Patton (2006) proposes a conditional copula approach

where the copula parameters vary over time using average pairwise differences between the past

marginal probabilities integral transforms. Rodriguez (2007) also considers time-varying copula

parameters, but uses a Markov switching model. Our dynamic mixed density copula model also

allows the parameters (both of the marginal and the copula) to change over time. Using the

generalized autoregressive score approach of Creal et al. (2013). The approach is observation

driven in the classification of Cox (1981) and results in a closed form expression for the likelihood

function. The approach has been applied successfully in for example Creal et al. (2013), Lucas

et al. (2014), Harvey and Luati (2014). Blasques et al. (2014) establish a number of information

theoretical optimality properties for models with generalized autoregressive score dynamics.

We present an extensive simulation to show how our mixed density approach can consistently
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and efficiently estimate the copula parameters. We benchmark our results against the approach

of Hoff (2007) and the most commonly employed Pearson correlation measure. Over various

sample sizes, we show how our method produces similar result to Hoff’s method and yet does not

require the computational burden of a Bayesian approach. The standard pearson correlations,

by contrast, produce large biases for the correlation estimates, especially for low count discrete

data. Such biases persist through various sample sizes.

To illustrate our technique empirically, we employ a real data example based on the U.S.

household finance survey data. We observe a number of key variables related to household

wealth and income, such as the number of vehicles a household has (count), whether the house

is owned (binary), if the household had any form of credit request turned down (binary),

and the income (continuous). The multivariate analysis will be conducted over two different

groups: households who ended up in bankruptcy, and stable households with no bankruptcy.

The dependence structure varies across these groups.

The remainder of the paper is set up as follows: In Section 2 we introduce the mixed density

copula and the time-varying extension. In Section 3 we present a detailed simulation study,

where we compare our method to number of relevant benchmarks. In Section 4, we present an

empirical application to household finance data. Section 5 concludes.

2 Copula Setup

Let Y = (Y1, . . . , Yp) be a p-dimensional random variable. Following Sklar’s (1959) theorem,

the distribution function H of Y can be decomposed into the marginal distributions Fi of Yi

for i = 1, . . . , p, and a Copula C. The copula fully captures the dependence between Yi and Yj

for i 6= j. Formally, we have

H(y1, . . . , yp; β1, . . . , βp, θ) = C(F1(y1; β1), . . . , Fp(yp; βp); θ),

where βi is a parameter vector describing the ith marginal distribution, and θ is a parameter

vector describing the shape of the copula. The copula satisfies C : [0, 1]p 7→ [0, 1] and can be

seen as a distribution function on a p-dimensional hypercube. Define the probability integral
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transforms Ui = Fi(Yi; βi) for i = 1, . . . , p, then

C(u1, . . . , up; θ) = P(U1 ≤ u1, . . . , Up ≤ up).

As mentioned in the introduction, there is a large number of copula families available in the

literature; see for example Nelsen (2007) for a detailed overview.

The domain of the copula function is RanF1 × · · · × RanFp, where RanFi denotes the

range of the marginal distribution functions Fi. If all the elements of Y are continuous with a

well-behaved density function, the domain of C is the entire p-dimensional hypercube. In that

case, the copula density can be defined as

c(u1, . . . , up; θ) =
∂pC(u1, . . . , up; θ)

∂u1 · · · ∂up
.

If, on the other hand, all elements of Y are discretely valued as integer counts, the copula has

no density but rather has a probability mass function, which is given by

c(u1, . . . , up; θ) =
∑
s1=0,1

. . .
∑
sp=0,1

(−1)s1+...+spC(F1(y1 − s1; β1), . . . , F1(yp − sp; βp); θ). (2.1)

Evaluating the copula mass function requires 2p evaluations of the copula function. For discrete

marginals, the copula is not unique. This implies there can be several copula functions that

describe exactly the same dependence structure. For more details about the discrete copula

characteristics, we refer to Genest and Nes̆lehová (2007).

2.1 Mixed Copula Density

Our main interest in this paper lies in the case we have a mix of discrete and continuously

valued responses. Using this mixed data set-up, we propose a way to specify a copula function

for the dependence structure and subsequently generalize it to a time series setting. If data

are a mix of discrete and continuous variables, the copula does not have full support on the

p-dimensional hypercube. On the other hand, the domain is more than a finite set of points,

as would be the case if all the data were discretely valued.

Let p ≥ 2, and let k denote the number of discrete random variables, with 0 < k < p. The

number of continuous random variables therefore equals p − k. Without loss of generality, let
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F1, . . . , Fk be the discrete marginals. Given the discrete nature of part of the observations, the

copula C is still not unique. The range in this case is given by

(RanF1 × · · · × RanFk)× [0, 1]p−k.

As a result, we neither have a proper copula density nor a copula probability mass function.

Rather, we have a mix of both, which we call the mixed copula density from now on. There will

be continuous segments of the copula along the dimension of the continuous elements Fi(Yi) for

i = k + 1, . . . , p. These continuous segments are clearly separated in dimensions 1, . . . , k due

to the discrete nature of the first k coordinates.

This is best understood by a simple bivariate simulation example. Consider a setting where

Y1 follows a Poisson distribution, whereas Y2 is normally distributed. We link Y1 and Y2

through a Clayton copula structure. The result is shown in Figure 1. We use a value θ = 6

for the Clayton copula parameter, which corresponds to a Kendall’s τ rank correlation of

approximately 0.75. There are 9 different vertical segments in the figure, corresponding to

the 9 distinct realizations for Y1 in the simulations. The Clayton copula particularly results in

strong dependence in the lower tail. This is clear from the fact that the spread of the probability

integral transforms U2 of the continuously valued normal random variable Y2 are much tighter

for small values of U1 than for large values.

To define our mixed copula density, we first differentiate the joint copula distribution with

respect to the continuous coordinates. We obtain the conditional copula function of the first k

coordinates given the value of the last p− k coordinates,

H1,...,k|k+1,...,p (y1, . . . , yk|yk+1, . . . , yp) =
∂p−kC(F1(y1), . . . , Fp(yp))

∂Fk+1(yk+1) · · ·Fp(yp)
·

p∏
j=k+1

fj(yj). (2.2)

The availability of closed-form expressions for the derivatives in (2.2) for most copula families

makes helps to speed up the subsequent computations needed for our model. Using the condi-

tional copula in (2.2), we compute the probability mass function for the discrete parts of the

copula using equation (2.1). We assume that the discrete data takes integer values and obtain
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Figure 1: Clayton copula scatter

the mixed copula density

h(y1, . . . , yp; β1, . . . , βp, θ) =

p∏
j=k+1

fj(yj; βj)·

∑
s1=0,1

. . .
∑
sk=0,1

(−1)s1+...+skH1,...,k|k+1,...,p (y1 − s1, . . . , yk − sk|yk+1, . . . , yp) .

Computing the mixed copula density is invariant to whether one first takes derivatives and

then computes the discrete changes, or the other way around. Unlike the case for a completely

discrete copula, the number of times the (conditional) copula distribution needs to be evaluated

is reduced to 2k + 1. We present two mixed density copula examples in Appendix A, namely

for a Gaussian and a Clayton copula. Estimation of the copula parameter θ and the marginal

parameters βi, i = 1, . . . , p, now proceeds as is standard in the literature, either through

Inference for Margins (IFM) or using 1-step estimation by maximum likelihood.

2.2 Dynamic Mixed Copula Density

So far, our model was formulated as a static model. In many settings of interest, however,

the parameters of the marginal distribution, the copula, or both, may vary over time. For
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example, economic and financial time series often exhibit different characteristics over time, such

as changing means or variances, changing correlations or dependence structures, or changing

(default) probabilities.

We follow the generalized autoregressive score approach of Creal et al. (2013) and Harvey

(2013) to allow the parameters to vary over time. Score driven models possess information the-

oretic optimality properties as argued by Blasques et al. (2014). Intuitively, they increase the

local fit of the model by decreasing the Kullback-Leibler divergence based on the most recent

observation that has become available, and the current estimates of the time varying param-

eters. Score driven models are observation driven in the terminology of Cox (1981). As such,

estimating the static parameters that describe the dynamics in such models is straightforward

using maximum likelihood, as a closed-form expression is available for the likelihood function.

The expression for the likelihood builds directly on the standard prediction error decomposi-

tion, which can be also be obtained in a framework with both discrete and continuous random

variables.

Using copulas in a dynamic context requires a few changes to our previous set-up. Patton

(2006) showed that the copula set-up may also be used in a dynamic setting if one specifies the

copula as a time-varying conditional copula, and the marginals as conditional marginals. The

conditioning sets for the marginals has to coincide with that of the copula for the framework

to apply. Patton’s copula dynamics are driven by past average distances between the pairwise

probability integral transforms |ui,t−uj,t| at time t, for i 6= j. Rodriguez (2007) specifies similar

copula dynamics, whereas Creal et al. (2011) and Lucas et al. (2014) specify score based copula

dynamics for purely continuously valued random variables.

To introduce the parameter dynamics for the dynamic mixed copula density model, define

the parameter vector ft = (β1,t, . . . , βp,t, θt). We allow both the copula and marginal parameters

to vary over time and write the mixed copula density as h(yt; ft). The score based updating

scheme of Creal et al. (2013) for δt is given by

ft+1 = ω + Ast +B ft, (2.3)

st = St · ∇t = St ·
∂ log h(yt|ft)

∂ft
, (2.4)

where ω is a const parameter vector, A and B are fixed parameter matrices of appropriate
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dimensions, and St is a positive semi-definite scaling matrix that may depend on ft and on

past data. Further dynamics can be specified in (2.3) by including more lags of st or ft on the

right-hand side of (2.3); see Creal et al. (2013). Also, further parsimony can be imposed by

restricting the parameter matrices A and B to be diagonal or even scalar.

For continuous responses, updating the time varying parameter by the scaled score st of the

predictive likelihood has information theoretic optimality properties; see Blasques et al. (2014).

Though only one part of our measurements consists of continuous responses, whereas the other

part consists of discrete responses, a similar argument can be made in the present context.

For most copula models the score ∇t is easy to compute. In Appendix B we present the

score based derivations for the Gaussian and Clayton copula with normal and Poisson based

marginals. For the scaling St, Creal et al. (2013) provide a number of choices. In this paper,

we opt for unit scaling (St = I). This avoids the need for computationally time-consuming

numerical integration procedures to compute the information matrices with respect to the

copula parameters for every time t.

2.3 Estimation

Estimation of our score driven time-varying parameter model is straightforward. We can

either estimate the whole model in 1-step where the parameters of the marginals and the

copula are estimated jointly. Alternatively, we can use a 2-step approach, where the marginal

parameters are estimated first, and the copula parameters are estimated in a second step using

the probability integral transforms from the first step. This latter method is also referred to as

the Inference for Margins method (IFM).

For the constant copula case, we can proceed with IFM. This is known to produce consistent

and asymptotically efficient results. First, we estimate the parameters of suitable marginal

distributions as

β̂IFMj = arg max
βj

n∑
t=1

log fj(yj,t; βj). (2.5)

All β̂IFMi for i = 1, . . . , p, are the ML estimators for the marginal parameters. Conditional

on the estimates from the first step, the copula parameter vector θ can then be estimated by
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maximum likelihood as

θ̂ = arg max
θ

n∑
t=1

log

[ ∑
s1=0,1

. . .
∑
sp=0,1

(−1)s1+...+spC(F1(y1,t− s1; β̂IFM1 ), . . . , Fp(yt,p− sp; β̂IFMp ))

]
.

(2.6)

Alternatively, the estimation steps in (2.5) and (2.6) can be integrated into a 1-step full maxi-

mum likelihood (ML) procedure.

For p > 2, IFM makes the estimation problem simpler and computationally less intensive

than full ML. In particular, IFM helps to simplify the estimation problem in high dimensions p.

Joe (1997) discusses that both the 1-step ML and 2-step IFM are asymptotically the same for a

multivariate Gaussian copula with normal margins. This equivalence does not hold in general for

all copulas. The IFM estimator for both the marginals and the copula parameters is consistent

and asymptotically normal under appropriate regularity conditions. The computation of the

covariance matrix, however, can be quite cumbersome. Joe (1997) advises the Jackknife and

other such related techniques. This, combined with the fact that the IFM approach is difficult to

implement for dynamic marginal distributions leads us to use the 1-step approach for estimation

purposes.

Given that we adopt a 1-step estimation methodology, estimating the static parameters in

our time-varying mixed copula density model is straightforward. The appropriate estimators

are defined as

(ω̂, Â, B̂) = arg max
ω,A,B

n∑
t=1

log h(yt; ft), (2.7)

where ft follows the recursion in equation (2.3). We estimate the covariance matrix of the

parameters using the numerical Hessian computed at the optimum.

3 Simulation

3.1 Constant Gaussian Copula

To investigate the adequacy of our new dynamic mixed copula density framework, we pro-

ceed in two steps. First, we investigate the adequacy of the approach in the static setting.
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Second, we consider the effect of dynamic parameters. We use a similar simulation set-up as in

Azam (2014).

We opt for two benchmark methodologies. First, we use the standard Pearson correlations

between the observed yi series. Second, we consider the recent Bayesian method of Hoff (2007)

as an alternative to our approach. Hoff proposes a multivariate Gaussian copula to estimate the

correlation among random variables of mixed type (binary, ordered and continuous variables)

and uses a sampling approach in a Bayesian set-up to estimate the parameters. Simulations in

Azam (2014) reveal that Hoff’s method outperforms a range of simpler alternatives in terms of

bias and mean squared error (MSE) for the copula parameters.

In our simulations we illustrate the performance of the different methods using a Gaussian

copula for a vector of three mixed measurements,

z ∼ N(0,Σ), Σ =


1.0 0.8 0.4

0.8 1.0 0.6

0.4 0.6 1.0

 , (3.1)

y1 = F−11 {Φ(z1)|1.5} ∼ Exponential (y1|λ1),

y2 = F−12 {Φ(z2)|6} ∼ Poisson (y2|λ2),

y3 = F−13 {Φ(z3)|0.6} ∼ Bernoulli (y2|p),

where Φ( · ) is the standard normal cumulative distribution function (cdf). We thus obtain

three different types of random variables: an exponential (continuous), a poisson (count),

and a bernoulli (binary) random variable. The method of Hoff (2007) is semiparametric in

that it treats all three marginals F1, F2, and F3) to be completely unknown. Through the

order statistics of the data yt = (y1,t, y2,t, y3,t), the unknown zt = (z1,t, z2,t, z3,t) are sampled.

Subsequently, the Gaussian copula parameters are sampled conditional upon zt. See Hoff (2007)

for further details.

To have comparable results across the two methodologies, we assume empirically distributed

marginals for our mixed copula density approach and do not try to unsettle any of the ties ob-

served in the ranks of the discrete data. The mixed Gaussian copula density is given in Appendix

A for the bivariate case, and the trivariate case needed in equation (3.1) is a straightforward

extension.
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Table 1: Bias results

The table contains the average bias of the estimates of the Gaussian

copula parameters for the trivariate system in equation (3.1) for

different sample sizes n. Averages are computed over 250 Monte Carlo

replications.

n = 25 n = 50 n = 100 n = 250 n = 500

Mixed Copula Density Approach

Σ[1,2] −0.0010 −0.0017 0.0029 −0.0010 0.0001

Σ[1,3] 0.0072 −0.0002 −0.0018 0.0064 −0.0007

Σ[2,3] −0.0015 0.0080 −0.0086 0.0066 0.0002

Hoff’s Method

Σ[1,2] −0.0747 −0.0466 −0.0268 −0.0168 −0.0010

Σ[1,3] −0.0270 −0.0166 −0.0116 0.0010 −0.0033

Σ[2,3] −0.0826 −0.0363 −0.0348 −0.0105 −0.0110

Pearson Correlations

Σ[1,2] −0.0585 −0.0600 −0.0558 −0.0597 −0.0595

Σ[1,3] −0.1244 −0.1243 −0.1235 −0.1201 −0.1254

Σ[2,3] −0.1381 −0.1311 −0.1416 −0.1303 −0.1363

Table 1 presents the average bias for all three different ways of computing the Gaussiana

copula parameters. The Pearson correlations at the bottom of the table obviously display the

largest biases. The biases do not decrease as the sample size grows. The bias in the Pearson

correlations is due to the fact that the observed data yt are very coarse measurements of the

unobserved zts. The measurement errors bias the Pearson correlation estimates towards zero.

As can be expected, the biases are largest for the dependence parameter between the Poisson

counts and the Bernoulli random variable (Σ[2,3]), followed by the dependence between the

continuous random variable y1 and the Bernoulli random variable y3 (Σ[1,3]). The bias for Σ[1,2]

is roughly half this size. Unsettling the ties in the data using an additional randomization step

does not change these results; see Azam (2014) for further details.

The biases in the mixed copula density approach appear smallest, and tend to go to zero as
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Table 2: Monte Carlo Means and Standard Deviation

The table contains the Monte Carlo averages of the Gaussian copula parame-

ters for the trivariate system in equation (3.1) for different sample sizes n, as

well as the Monte Carlo standard deviations of the estimates (in parentheses).

Averages are computed over 250 Monte Carlo replications.

True n = 25 n = 50 n = 100 n = 250 n = 500

Mixed Copula Density

Σ[1,2] 0.8 0.7991 0.7983 0.8029 0.7990 0.8001

(0.0855) (0.0855) (0.0399) (0.0217) (0.0167)

Σ[1,3] 0.4 0.4072 0.4072 0.3982 0.4046 0.3993

(0.2682) (0.2682) (0.1170) (0.0699) (0.0510)

Σ[2,3] 0.6 0.5985 0.5985 0.5914 0.6066 0.6003

(0.2105) (0.2105) (0.0911) (0.0580) (0.0420)

Hoff’s Method

Σ[1,2] 0.8 0.7253 0.7534 0.7732 0.7832 0.7910

(0.0958) (0.0630) (0.0408) (0.0217) (0.0165)

Σ[1,3] 0.4 0.3730 0.3834 0.3884 0.4009 0.3967

(0.2093) (0.1503) (0.1069) (0.0678) (0.0499)

Σ[2,3] 0.6 0.5174 0.5637 0.5652 0.5895 0.5890

(0.1783) (0.1346) (0.0861) (0.0560) (0.0410)

the sample size increases. The biases in Hoff’s method appear to be slightly larger than those

in the mixed copula density approach, but are also generally small and tending to zero as the

sample size increases.

Table 2 shows the actual estimates of the correlation parameters rather than the biases,

alongside with the Monte Carlo standard deviations of the estimates. Accounting for the

Monte Carlo variation, we see that the methods behave quite similarly, even though they are

based on entirely different paradigms. In particular, the mixed copula density approach does

not require an iterative sampling scheme for estimation, but directly proceeds by maximizing

the explicit expression for the likelihood function as given in equation (2.7). In this sense, it is
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computationally more straightforward. The similarity of the performance of the two approaches

is also evidenced in Appendix C, where we present kernel density plots for the estimates of both

methods.

3.2 Time-varying Mixed Copula Density

For our time-varying mixed copula density approach, we use a simulation set-up with a

bivariate Clayton copula. In this way, we can also study the performance of our method if

there is asymmetric tail dependence in the data. For simplicity, we only consider the case

of time variation in the copula parameter θt, while keeping the parameters of the marginal

distributions fixed (βi,t ≡ βi for i = 1, . . . , p). Experiments with both sets of parameters

time-varying yielded similar results.

First, we generate a bivariate time series (u1,t, u2,t) from a Clayton copula C(u1,t, u2,t;αt)

with time-varying dependence parameter αt
1),

C(u1,t, u2,t;αt) =
(
u−αt
1,t + u−αt

2,t − 1
)−1/αt

,

where

αt = 2 sin(4πt/n) + 3,

for t = 1, . . . , n. The sinusoid pattern results in prolonged periods of high and low dependence

in the data. We then transform u1,t into a Poisson count y1,t with intensity parameter 3 as

y1,t = F−11 (ut|3), where F1( · | 3) denotes the Poisson cdf with intensity parameter equal to 3.

Similarly, we transform u2,t into a normal random variable by setting y2,t = Φ−1(u2,t), where Φ

is the standard normal cdf.

The statistical model uses the generalized autoregressive score scheme in equation (2.3) as

explained in Section 2 to filter out the time-varying dependence parameter αt. To enforce that

the dependence parameter only takes positive values, we formulate the autoregressive score

scheme in terms of ft = logαt, such that αt is always positive, irrespective of the value of ft.

We use unit scaling (St = 1) and samples of size n = 200, 500, 1000, 2000.

1The copula parameter vector θ equals to α, for Clayton copula
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Given the time-variation of the copula, there is no obvious benchmark method to compare to.

A comparison would be further complicated if we would also allow for time-varying marginal

distributions. In that case, also the semiparametric first step in Hoff’s methodology would

break down, as it obtains the empirical estimates of the marginal distribution functions by

pooling all the data. Pooling the data is no longer appropriate if the marginal distributions are

time-varying.

We report the performance of the mixed copula density approach in terms of its ability to

capture the time-variation in the copula dependence parameter αt over repeated replications.

Figure 2 presents the results. The true copula parameter for each sample size is plotted as a

reference and ranges between 0 and 6, corresponding with a Kendall’s τ value between 0 and

0.75. For every sample size n and every time t, we plot the median estimate of θt over repeated

Monte Carlo samples, as well as the 5th and 95th percentile. As the sample size increases, the

median estimate of the time-varying dependence parameter gets closer and closer to its true

value. It clearly shows that the score based dynamic specification from Section 2 tracks the

unobserved dynamics in the dependence parameter quite well.

For small samples like n = 200 and n = 500, it is harder to accurately identify large

dependence parameters αt, much unlike lower values of the dependence parameter. This stems

from the fact that large values of αt correspond to independence. The method is thus more

suited to pick up episodes of strong dependence from the data, i.e., lower values of αt, as is to

be expected. This is in line with common findings for static archimedean copulas.

We also note that for lower values of αt, the score based parameter estimates take some

time to adjust to the lower (as well as the higher) values of αt. This is due to the observation

driven nature of the score based approach; see the classification of Cox (1981). The parameter

estimates of αt = exp(ft) as described in equation (2.3) react to past observations. This implies

that some observations are required to signal that the parameter αt has moved from its previous

values. The speed at which new information is incorporated is dictated by the parameters A

and B in (2.3), which are estimated from the data using maximum likelihood.
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Figure 2: Quantile plots from simulation
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Table 3: Summary Statistics

Financially Stable Bankrupted since 2008

Variable Mean Std. Dev. Min Max Mean Std. Dev. Min Max

Ln(Income) 11.350 1.193 8.0 15.1 10.874 0.650 8.2 12.9

Credit turned down (since 2008) 0.160 0.367 0 1 0.421 0.494 0 1

No. Vehicles Owned 1.970 1.269 0 10 1.850 1.193 0 10

Household Owns Home 0.665 0.472 0 1 0.507 0.500 0 1

4 Empirical illustration

For our static mixed density copula application, we consider data from the Survey on Con-

sumer Finances sponsored by the Federal Reserve Board and collected by the NORC at the

University of Chicago. We use the summary variables (SDA) as used in the Federal Reserve

Bulletin, which contain information about household demographics, assets, debts, methods of

payment, shopping patterns, income, net worth and expenditure. We restrict our analysis to

the cross-section interviewed during the most recent survey of 2013. We exclude all cases where

the household head is fully enrolled as a student, unemployed or retired.2 This process leaves

us with a sample of somewhat more than 20,000 households. We split the sample into two

groups, according to whether the households indicates that bankruptcy was declared over the

last five years, or not. This results in 765 households that experienced bankruptcy and 19,000

that did not. We randomly sample 4% from the 19,000 households to end up with 779 finan-

cially stable households that did not experience bankruptcy. The roughly equal sample sizes

between the two groups facilitates the comparison of the accuracy measures of the dependence

parameters. Table 3 reports descriptive statistics on some of the main variables describing the

average financial conditions of these two groups.

The variables chosen for our application span different aspects of household finance: net

income, house ownership status, total number of vehicles owned and whether access to a new

credit line was ever denied since 2008. We are interested in whether the correlations between

2We also exclude the top fifth percentile of the income distribution, as well as the households with a disabled

family member, where we expect special financial arrangements to be applicable.
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these variables are similar between the two groups of households. Different correlations between

these groups may be particularly interesting, as the interview period relates to the time of the

global financial crisis. Histograms of the four variables are provided in Appendix C. The

house ownership and credit turned down variables are both Bernoulli distributed. We assume

a Poisson distribution for the number of vehicles per household, and a Student’s t distribution

for the log of income. We choose a Gaussian specification for our mixed density copula and

estimate the dependence structure using IFM.

Table 4 reports the estimation results. We find that home ownership is negatively depen-

dent with the probability of being turned down for a credit line, but only significantly so for

financially solid households. The collateral value of real estate properties is apparently eroded

by earlier bankruptcy experiences of the same household. Home ownership is positively signif-

icantly dependent with income and with the number of vehicles owned. This holds for both

groups. Financially stable households with high income have a lower probability of being denied

a new credit line. Bankrupted households seem to be in a different situation. Their probability

of being denied a new credit line is positively dependent with both the number of vehicles

owned and the volume of their income. This might emerge from different spending habits: for

example a high number of vehicles in a bankrupted household might indicate a high tendency

to indebtedness. The different signs of the dependence coefficient between log income and being

turned down a loan might also point to an endogeneity concern: not only might higher income

lead to a lower probability of being turned down for a loan, it might also be the case that

having been turned down for a loan, the household has worked to improve its income towards

2013 in order to not be turned down when applying for a loan again.

5 Conclusion

Conducting a multivariate analysis among variables of different types (discrete and con-

tinuous) can be quite challenging within a maximum likelihood framework. There are only

a few possible methods typically based on a multivariate normal distribution. However, the

assumption for all the marginals to be normally distributed is not always suitable. As an al-

ternative, people often adopt a regression analysis, where a direction of causality is assumed
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Table 4: Gaussian copula dependence parameter estimates

Estimates are obtained using binary marginals for home ownership and being

turnd down a loan over the past 5 years, a Poisson marginal for the number of

vehicles owned, and a Student’s t marginal for the logarithm of income. The

estimates of the copula parameters are obtained using the static mixed copula

density approach described in Section 2 and the inference for margins (IFM)

estimation method.

Financially Stable Bankrupted since 2008

Home Turned Vehic. Home Turned Vehic.

own. down own. down

Turned down -0.2242 -0.0538

(.0491) (.051)

Vehic. 0.5698 0.0138 0.3873 0.1849

(.0370) (.0457) (.0473) (.0471)

ln(Inc) 0.6363 -0.2061 0.4666 0.2873 0.199 0.4167

(.0278) (.0432) (.0254) (.036) (.0387) (.0316)

ex-ante. Both approaches suffer from the inability to recover the full joint distribution from the

conditional distributions and the dependence structure. In this paper, we propesed a flexible

yet computationally simple copula based alternative. Unlike earlier proposals such as those of

Pitt et al. (2006), Smith and Khaled (2012) or Hoff (2007), our method is entirely classical

and uses straightforward maximum likelihood methods for esstimation rather than a Bayesian

sampling approach. The latter typically is computationally more expensive. Moreover, given

the explicit formulation of the likelihood function in our framework, our method does not suf-

fer from posterior correlations between the sampled dependence parameters, which typically

requires large posterior samples for conducting reliable inference.

As a second contribution, we formulated a framework for a completely dynamic extension

of the copula framework for mixed continuous and discrete data. The framework ollowed for

possibly time-varying marginal distributions as well as a time-varying dependence structure.
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Using the score driven dynamics of Creal et al. (2013), we retained the closed form expression

for the likelihood function, such that parameter estimation remained straightforward.

Using simulations, we showed that the new method was computationally fast and stable,

and that the results were at par or even better than those of a fully Bayesian semiparametric

set-up of Hoff (2007). Also, in a dynamic set-up the score based dynamic model was able to

accurately capture the unobserved dependence dynamics from the observed data. In such a

dynamic setting, no alternative framework exists as yet.

The good performance of the new method extended to empirical data. We presented a mul-

tivariate analysis for four variables of different types (discrete, count, continuous) and showed

how correlation among different financial indicators varied for households who did and did not

experience prior bankruptcy since the financial crisis.
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A Mixed Density Copula

The derivations will be presented for the case of a bivariate copula, where one marginal is of continuous

type and the other is of discrete type. Let H be the joint distribution for the random variables Y1 and Y2 with
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their respective margins F1 and F2, where F1 is a discrete type margin and F2 is continuous. The copula based

decomposition can then be stated a

H(y1, y2;β1, β2, θ) = C(F1(y1;β1), F2(y2;β2); θ),

where β1, β2 and θ are the parameter vectors (scaler) for the marginals F1 and F2 and the copula C respectively.

Taking the derivative in the direction of Y2 of the above equation would yield

H1|2(y1|y2;β1, β2, θ) = Cu|v(F1(y1;β1)|F2(y2;β2); θ)f2(y2;β2)

The copula input arguments are obtained through the standard probability integral transformations, u =

F1(y1;β1) and v = F2(y2;β2). f2(y2;β2) is the marginal density for the variable y2. We can now state the

mixed density as

h(y1, y2;β1, β2, θ) = f2(y2;β2)
[
c(F1(y1;β1)|F2(y2;β2); θ)− c(F1(y1 − 1;β1)|F2(y2;β2); θ)

]
.

The difference above can only be computed for y1 > 0 of course.

A.1 Gaussian Copula

For Gaussian copula the conditional CDF is given as

C1|2(u1|u2; ρ) = Φ

(
Φ−1(u1)− ρΦ−1(u2)√

1− ρ2

)
,

and the Gaussian mixed density is

c(u1, ud1, u2; ρ) = Φ

(
Φ−1(u1)− ρΦ−1(u2)√

1− ρ2

)
− Φ

(
Φ−1(ud1)− ρΦ−1(u2)√

1− ρ2

)
.

In the above equation u1 = F1(y1;β1) and ud1 = F1(y1 − 1;β1). ρ is the copula parameter defined over the

range [−1, 1].

A.2 Clayton Copula

For Clayton copula the conditional CDF is given as

C1|2(u1|u2;α) = u−1−α2 (u−α1 + u−α2 − 1)−1−1/α,

where α ∈ [1,∞). The mixed density is then given as

c(u1, ud1, u2;α) = u−1−α2 [(u−α1 + u−α2 − 1)−1−1/α − (ud−α1 + u−α2 − 1)−1−1/α],

Clayton copula captures any possible dependence in the joint left tail of the variables.
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B Time-varying Mixed Density

Here we present the formulations for having all parameters (marginals and copula) be Time-varying i.e.

θt, β1,t and β2,t. All the parameters are specified through Observation-Driven model, specifically through the

score of the joint density of the given parameter.

B.1 Time-varying Gaussian Copula

B.1.1 Copula paramater

For the Gaussian copula, there is only one parameter, the correlation which has to be allowed to vary with

time (ρt). The parameter ρt can be transformed on to the real-line through

ρt =
1− e−ηt
1 + e−ηt

,

where ηt ∈ [−∞,∞]. We specify the dynamics of ηt to be given by Observation driven model based on the score

of the joint likelihood. The Score for the Gaussian copula is given as

∇t =
∂ lnh(y1,t, y2,t; ρt, β1,t, β2,t)

∂ρt

∂ρt
∂ηt

,

∂ρt
∂ηt

= (1− ρ2t )/2.

Through the copula decomposition the joint density can be stated as

∇t =
∂ ln c(u1,t, ud1,t, u2,t; ρt, β1,t, β2,t)

∂ρt

∂ρt
∂ηt

,

=
1− λ2

2dt

{
ϕ(z1,t)

[
−Φ−1(u2,t)√

1− ρ2t
+

ρz1,t
1− ρ2

]
− ϕ(zd1,t)

[
−Φ−1(u2,t)√

1− ρ2t
+
ρzd1,t
1− ρ2

]}
,

where

dt = f2(y2,t;β2,t) c(u1,t, ud1,t, u2,t; ρt),

z1,t =
Φ−1(u1,t)− ρtΦ−1(u2,t)√

1− ρ2t
,

zd1,t =
Φ−1(ud1,t)− ρtΦ−1(u2,t)√

1− ρ2t
.
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B.1.2 Time-varying Poisson Marginal

Using a bivariate Gaussian copula, if one of the marginal distribution is Poisson, then the score with respect

to the poisson parameter (β1t = λt). Transforming λt on to the real-line through

λt = exp(ηt).

The score of the joint density is given as

∇t =
∂ ln c(u1,t, ud1,t, u2,t; ρt, λt, β2t)

∂λt

∂λt
∂ηt

,

=
λt
dt

{
ϕ(z1,t)

[
1

ϕ(Φ−1(u1,t))
√

1− ρ2t

∂F1(y1,t;λt)

∂λt

]
− ϕ(zd1,t)

[
1

ϕ(Φ−1(ud1,t))
√

1− ρ2t

∂F1(y1,t − 1;λt)

∂λt

]}
,

where

∂F1(y1,t;λt)

∂λt
= −λ

y1,t
t e−λt

y1,t!
.

B.1.3 Time-varying Normal Marginal

For having the continuous variable be normally distributed, we would need score with respect to two

parameters, β2t = [µt, σt]. The score with respect to the mean µt is

∇t =
∂ ln c(u1,t, ud1,t, u2,t; ρt, µt, σt, β1,t)

∂µt
+
∂ ln f2(u2,t;µt, σt)

∂µt
,

=
∂F2(y2,t;µt, σt)

∂µt

1

dt

{
ϕ(z1,t)

[
−ρt

ϕ(Φ−1(u1,t))
√

1− ρ2t

]
− ϕ(zd1,t)

[
−ρt

ϕ(Φ−1(ud1,t))
√

1− ρ2t

]}
,

where

∂F2(y2,t;µt, σt)

∂µt
=
−e−(−y2,t+µt)2/2σ2

t

√
2πσt

,

and with respect to σt we can transform σ on to the real-line through

σt = exp(ηt).

∇t =

[
∂ ln c(u1,t, ud1,t, u2,t; ρt, µt, σt, β1,t)

∂σt
+
∂ ln f2(u2,t;µt, σt)

∂σt

]
∂σt
∂ηt

,

=
∂F2(y2,t;µt, σt)

∂µt

σt
dt

{
ϕ(z1,t)

[
−ρt

ϕ(Φ−1(vt))
√

1− ρ2t

]
− ϕ(zd1,t)

[
−ρt

ϕ(Φ−1(u2,t))
√

1− ρ2t

]}
,

where

∂F2(y2,t;µt, σt)

∂σt
=
−e−(−y2,t+µt)2/2σ2

t

√
2πσ2

t

(y2,t − µt).
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B.2 Time-varying Clayton Copula

B.2.1 Copula parameter

Similar to the Gaussian copula, Clayton copula only has one parameter which measures the dependence

(αt). This can be transformed on to the real-line through

αt = ln(ηt).

The score of the Clayton copula is given as

∇t =
∂ lnh(y1,t, y2,t;αt, β1,t, β2t)

∂αt

∂αt
∂ηt

,

Through the copula decomposition the joint density can be stated as

∇t =
∂ ln c(u1,t, ud1,t, u2,t;αt, β1,t, β2,t)

∂αt

∂αt
∂ηt

,

=
−αt ln(u2,t) c(u2,t, ud1,t, u2,t;αt)

dt
+
αt u

−1−αt
2,t

dt

{
r
−1−1/αt
1,t

[(−αt − 1

αt

)(−u−αt1,t ln(u1,t)− u−αt2,t ln(u2,t)

r1,t

)
+

ln(r1,t)

α2
t

]
− rd−1−1/αt1,t

[(−αt − 1

αt

)(−ud−αt2,t ln(ud1,t)− u−αt2,t ln(u2,t)

rd1,t

)
+

ln(rd1,t)

α2
t

]}
,

where

dt = f2(y2,t;β2t) c(u1,t, ud1,t, u2,t;αt),

r1,t = u−αt1,t + u−αt2,t − 1,

rd1,t = ud−αt1,t + u−αt2,t − 1.

B.2.2 Time-varying Poisson Marginal

Using a bivariate Clayton copula, if one of the marginal distribution is Poisson, then the score with respect

to the poisson parameter (β1t = λt). Transforming λt on to the real-line through

λt = exp(ηt).

We can then write the score with respect to the mean λt as

∇t =
∂ ln c(u1,t, ud1,t, u2,t;αt, λt, β2,t)

∂λt

∂λt
∂ηt

=
(α2
t + αt)

dt
u
−1−α2,t

t

[
u−1−αt1,t r

−2−1/αt
1,t

∂F1(y1,t;λt)

∂λt
− ud−1−αt1,t rd

−2−1/αt
1,t

∂F1(y1,t − 1;λt)

∂λt

]
where

∂F1(y1,t;λt)

∂λt
= −λ

y1,t
t e−λt

y1,t!
.
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B.2.3 Time-varying Normal Marginal

With Clayton copula and having one margin be normally distributed, the score with respect to the marginal

parameters β2,t = [µt, σt] will be

∇t =
∂ ln c(u1,t, ud1,t, u2,t;αt, µt, σt, β1,t)

∂µt
+
∂ ln f2(u2,t;µt, σt)

∂µt
,

=
∂F2(y2,t;µt, σt)

∂µt

u−2−αt2,t

dt

{
(−1− αt)u−αt2,t

[
− r−2−1/αt1,t + rd

−2−1/αt
2,t

]
− (1 + αt)

[
r

−1−αt
αt

1,t − rd
−1−αt
αt

1,t

]}

where

∂F2(y2,t;µt, σt)

∂µt
=
−e−(−y2,t+µt)2/2σ2

t

√
2πσt

,

and with respect to σt we can transform σ on to the real-line through

σt = exp(ηt).

∇t =

[
∂ ln c(u1,t, ud1,t, u2,t;αt, µt, σt, β1,t)

∂σt
+
∂ ln f2(u2,t;µt, σt)

∂σt

]
∂σt
∂ηt

,

=
∂F2(y2,t;µt, σt)

∂σt

σt
dt
u−2−αt2,t

{
(−1− αt)u−αt2,t

[
− r−2−1/αt1,t + rd

−2−1/αt
1,t

]
− (1 + αt)

[
r

−1−αt
αt

1,t − rd
−1−αt
αt

1,t

]}

where

∂F2(y2,t;µt, σt)

∂σt
=
−e−(−y2,t+µt)2/2σ2

t

√
2πσ2

t

(y2,t − µt).
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C Kernel Density Plots

Figure 3: Hoff & Mixed Density estimates
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The Kernel density plots are presented for various samples;n=25,100 & 500
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Figure 4: Stable Household
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Figure 5: Bankrupt Household
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