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Laurent Callota,b,c, Johannes Tang Kristensenc,d
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cCREATES, Aarhus University.
dDepartment of Business and Economics, University of Southern Denmark.

Abstract

This paper proposes a parsimoniously time varying parameter vector autoregressive model
(with exogenous variables, VARX) and studies the properties of the Lasso and adaptive Lasso
as estimators of this model. The parameters of the model are assumed to follow parsimo-
nious random walks, where parsimony stems from the assumption that increments to the
parameters have a non-zero probability of being exactly equal to zero. By varying the degree
of parsimony our model can accommodate constant parameters, an unknown number of
structural breaks, or parameters with a high degree of variation. We characterize the finite
sample properties of the Lasso by deriving upper bounds on the estimation and prediction
errors that are valid with high probability; and asymptotically we show that these bounds tend
to zero with probability tending to one if the number of non zero increments grows slower
than

p
T .

By simulation experiments we investigate the properties of the Lasso and the adaptive
Lasso in settings where the parameters are stable, experience structural breaks, or follow a
parsimonious random walk. We use our model to investigate the monetary policy response
to inflation and business cycle fluctuations in the US by estimating a parsimoniously time
varying parameter Taylor rule. We document substantial changes in the policy response of
the Fed in the 1980s and since 2008.

JEL codes: C01, C13, C32, E52.

Keywords: Parsimony, time varying parameters, VAR, structural break, Lasso.

1. Introduction

This paper proposes a parsimoniously time-varying vector autoregressive model (with
exogenous variables, VARX). The parameters are assumed to follow a parsimonious random
walk, that is, a random walk with a positive probability that an increment is exactly equal
to zero. The parsimonious random walk allows the time varying parameters to be modelled
non parametrically, hence the parameters can follow a wide range of classical time varying
processes. We use the Lasso of Tibshirani (1996) to estimate the vector of increments to the
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parameters which is sparse under the parsimonious random walk assumption, and is high
dimensional in the sense of being at least as large as the sample size. For a general review of
the Lasso in high-dimensional settings see Bühlmann and Van De Geer (2011) and Belloni
and Chernozhukov (2011). We begin this introduction by contextualizing our model within
the time series econometrics literature, and then detail our contributions before turning to
the specifics of our model and estimation method.

There exists a substantial literature on time varying parameter models in every domain of
time series econometrics. Using a Bayesian approach, Koop and Korobilis (2013) estimate
large time varying-parameter VARs using forgetting factors to render the estimation of their
model computationally feasible, while Bitto and Frühwirth-Schnatter (2014) uses shrinkage
for the same purpose. Likelihood driven models such as state space models (Durbin and
Koopman, 2012), and more recently generalised autoregressive score models (Creal, Koopman,
and Lucas, 2013), are routinely used to allow the parameters to vary over time guided by the
data.

In the models discussed above the parameters do vary at every point in time; another
strand of literature investigates models with a finite number of changes in the parameters, or
a finite number of possible values the parameters may take over time. One example of such
models is regime switching models (see Hamilton (2008) for a review). These are typically
used in the empirical literature to model systems experiencing a succession of recessive and
expansive regimes, or any other finite number of regimes, with the probability of switching
between regimes being data dependent. Another example is the issue of structural breaks, i.e.
cases where the parameters experience a small and finite number of changes over time, for
instance in response to a policy change. The structural breaks literature is extensive, covering
a breadth of models and methods. From the perspective of this paper the most relevant part
is the treatment of linear regression models in e.g. Bai (1997) and Bai and Perron (1998), and
VAR models in e.g. Bai (2000) and Qu and Perron (2007). For a general review see Perron (2006).
The problem of structural breaks has also been addressed using shrinkage methods: In an
autoregressive setting Chan, Yau, and Zhang (2014) uses the group Lasso to estimate clusters
of parameters with identical values over time, and Qian and Su (2014) considers the problem
of estimating time series models with endogenous regressors and an unknown number of
breaks using the group fused Lasso.

Evidence of the importance of allowing for the parameters of a model to vary over time are
widespread in the literature. Of particular interest for our empirical application are Primiceri
(2005); Boivin and Giannoni (2006) who document that the monetary policy response to
inflation in the US changed in the 1980s with the arrival of Paul Volker has chairman of the
Federal Reserve Bank.

The contribution of this paper is to propose an estimator for VARX models with parsimo-
niously time-varying parameters, more precisely we would like to stress 3 novel aspects of
this paper.

i) In order to model the potential time variations of the parameters of the VARX in a flexible
way we propose the parsimonious random walk process. This process has two advantages.
First, by allowing the increments to be exactly equal to zero with some positive probability
it allows us to consider models with structural breaks or even constant parameters.
Second, by allowing the parameters to behave as a random walk it allows us to model
the path of the parameter vector in a non parametric way. In this paper we assume the
probability αT for an increment to be different from zero to depend on the sample length
T , specifically αT = T −a . In the case of a single variable this leads to an expected number
of non-zero increments E(s) = T 1−a .
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ii) We establish finite sample bounds on the `1 norm of estimation error and the `2 norm of
the prediction error of the Lasso, and show that they hold with high probability, building
on results from Kock and Callot (2014). We then turn to asymptotics and show that the
errors tend to zero with probability tending to one. We also establish similar results
for the adaptive Lasso of Zou (2006), and furthermore show under which conditions it
possesses the oracle property, that is, the conditions under which the adaptive Lasso
recovers the true model with probability tending to one. Asymptotic consistency of the
Lasso requires an upper bound on the number of breaks in the parameter path in the
form of the bound a > 1/2, implying that the number of non zero increments must grow
strictly slower than

p
T . We also highlight the trade-off between estimation efficiency

and number of breaks by showing that the speed of convergence of the estimator is in
the order of T 1−a−1/2. At one extreme where the number of breaks is constant, a = 1, the
Lasso is less efficient than OLS by a logarithmic factor, while at the other extreme where
a is close to 1/2 convergence is slow.

iii) To illustrate the relevance of our model we provide an application investigating the
monetary policy response to inflation in the US from 1954 to 2014. More specifically we
estimate a Taylor rule with inflation and output gap and find that the response to inflation
has been unstable from the mid-1970s to the mid-1980s and experienced a substantial
change in 2008, while the response to the output gap remained stable.

In the next section we formally introduce the model and our assumptions. Section 3
contains the finite sample and asymptotic theorems describing the behaviour of the Lasso.
The following section is dedicated to investigating the properties of our estimator in Monte
Carlo experiments. Finally we illustrate the practical relevance of the proposed model by
estimating a parsimoniously time varying Taylor rule for US monetary policy and document
substantial instability in the response of the Fed to inflation in the early 1980s and since 2008.

2. Model

We consider a VARX(p) model with parsimoniously time varying parameters including rx

exogenous variables X t , and p lags of the ry dependent variables Yt = [y1t , ..., yry t ]′. Without
loss of generality we assume that the variables have been demeaned. Since this model will be
estimated equation by equation, we restrict our focus to equation i , i = 1, ...,ry

yi t =β′
i t X t +

p∑
l=1

γ′i l t Yt−l +εi t

= ξ′i t Zt +εi t (1)

where Zt = [X ′
t ,Y ′

t−1, . . . ,Y ′
t−p ]′ is of dimension r ×1, r = rx +pry , and ξi t = [β′

i t ,γ′i 1t , . . . ,γ′i pt ]′.
In order to lighten up the notation we drop the equation subscript i henceforth, yt should be
understood has being any element of Yt .

In order to establish finite sample bounds on the performance of the Lasso we make use
of concentration inequalities on averages of products of the elements of the model. These
inequalities are valid if the tails of the entries are sub-exponential, to ensure this we need to
make a series of independence and Gaussianity assumptions.

Assumption 1 (Covariates and innovations). Assume that:

i) εt ∼N (0,σ2
ε) is a sequence of i .i .d innovation terms, σ2

ε <∞.
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ii) X t ∼N (0,Ω2
X ). For all k = 1, ...,rx , Var(Xkt ) =σ2

X k <∞.

iii) E(ε′X ) = 0.

The variances of the innovations εt and of the exogenous variables Xkt could be assumed
to be heteroskedastic; for our purpose we only require that these variables are sequences
of independent Gaussian random variables with finite variances. We also require yt to be a
Gaussian random variable with finite variance. The linearity of the model and assumption
1 ensures Gaussianity, but we need an extra assumption on the dynamics of the model to
ensure that the variances remain finite.

Define the parameter matrices of the full VARX(p):Γl t = [γ1l t , ...,γry l t ]′ and Bt = [β1t , ...,βrx t ]′,
which are of dimensions ry × ry and ry × rx respectively. We write the VARX(p) in companion
form:

Yt = Bt X t +
p∑

l=1
Γl t Yt−l +εt

Yt = At Y′
t−1 +Σt

where Yt =
[

Yt ,Yt−1, ...,Yt−p+1

]′
and Σt =

[
εt +Bt X t ,0, ...,0

]′ are matrices of dimensions pry ×
ry , and At is the companion matrix:

At =


Γ1t · · · · · · Γpt

Iry · · · · · · 0
. . .

...
...

0 · · · Iry 0

 .

Now further define the ry×Try selection matrix J = [Iry ,0, ...,0], and letΦ j t = J
(∏ j−1

k=0 At−k

)
J ′.

A standard results for VAR models with time varying coefficients, see for example (Lütkepohl,
2007, section 17.2.1), gives the covariance matrix of Yt :

E(Yt Y ′
t ) =

∞∑
j=0
Φ j t E(Σt− j )Φ′

j t .

We can now state our assumption on the dynamics of the VAR ensuring that the variance
of Yt is finite.

Assumption 2. (VAR dynamics) Let

Var
(
Yt

)= [
σ2

y1t , ...,σ2
yry t

]
= diag

 ∞∑
j=0
Φ j t E(Σt− j )Φ′

j t

 .

For some positive constant M <∞ and for all t = 1, ...,T and k = 1, ...,ry , we have σ2
yk t ≤ M.

We now turn our attention to the process driving the parameters. The structuring assump-
tions of this paper is that the change in the value of the parameter vector, ξt , for the r variables
of the model at time t , 1 ≤ t ≤ T is defined as the element-by-element product (noted ¯) of
two random variables ηt ∈Rr and ζtk = 0 or 1, k = 1, ...,r . If P (ζkt = 0) > 0, then the vector of
increments to the parameters (η1 ¯ζ1,η2 ¯ζ2, ...,ηT ¯ζT ) is sparse, and the sparsity of this
vector is controlled by P (ζkt = 0). At one extreme, when P (ζkt = 0) = 1, the parameter vector
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is stable, while at the other extreme, P (ζt = 0) = 0, it follows a random walk. When we are
between these two extremes we will refer to the process as a parsimonious random walk.
For a low probability of non-zero increments the parsimonious random walk can generate
parameter paths that are akin to those considered in the structural break literature, while for
a higher probability of non-zero increments the paths can be akin to regime switches or other
paths with a high degree of variation. The process is formally defined in assumption 3 below:

Assumption 3 (Parsimonious random walk). Assume that the parameters follow a parsimo-
nious random walk with ξ0 given.

ξt = ξt−1 +ζt ¯ηt .

ηt and ζt are vectors of length r with the following properties:

αT = T −a , 0 ≤ a <∞

ζ j t =
1, w.p. αT

0, w.p. 1−αT
j ∈ 1, ...,r

ηt =N (0,Ωη)

E(η′tηu) = 0if t 6= u

E(η′tζu) = 0 ∀t ,u ∈ 1, ...,T

We assume that αT = T −a to control the growth of the cardinality of the active set (the

number of non-zero variables) E(sT ) = rαT T =O
(
T 1−a

)
. We assume r to be fixed so that the

growth rate of the active set is entirely controlled by a.1 Consistency requirements for the
Lasso estimator will impose a tighter lower bound on a, implying an upper bound on the
speed with which the active set can grow. It is important to note that while assumption 3 puts
no further restrictions on the path of the parsimonious random walk, then we do rule out
paths that violate assumption 2, i.e. paths that cause the variance of Yt to be unbounded.

Continuing to the task of setting up the estimation problem we start by noting that by
multiplying the diagonalized matrix of covariates Z D by a selection matrix W ,

Z D =


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 · · · ZT

 ,W =


Ir 0 · · · 0
Ir Ir · · · 0
...

...
. . .

...
Ir Ir · · · Ir

 , Z DW =


Z1 0 · 0
Z2 Z2 · 0
...

...
. . .

...
ZT ZT · · · ZT

 ,

we are able to write our parsimoniously time-varying VARX model (1) as a simple regression
model

y = Z DW θ+ε

where the parameter vector θ′ = [ξ′0 + ζ′1 ¯ η′1,ζ′2 ¯ η′2, ...,ζ′T ¯ η′T ] has length r T , and y =
(y1, ..., yT )′, ε= (ε1, ...,εT )’. The matrix Z DW contains T observations for r T covariates con-
structed from the original r covariates. The first r elements of θ are the sum of the initial value
of the parsimonious random walk ξ0 and the first increment ζ1¯η1. The subsequent elements

1r could be made a function of time at the cost of a tighter upper bound on a.
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of θ are the increments of the parsimonious random walk ζt ¯ηt , t > 1 so that by cumulating
the entries of θ we can recover the full path of the parameters.

By assuming that the increments to the parsimonious random walk can be exactly equal
to zero we assume that the parameter vector θ is sparse since all but the first r element of θ
are the increments to the parsimonious random walk. This type of process requires a sparse
estimator; we choose to use the Lasso to estimate θ, and we discuss the properties of the
Lasso estimator in this setting in the next section.

2.1. Notation

Before proceeding further we introduce some notation. Let
[
σ2

1, ...,σ2
r T

]
= diag(Var(Z DW ))

and σ2
T = max

(
σ2
ε ,max1≤k≤r T σ

2
k

)
where σ2

ε is the variance of ε and σ2
k is the variance of the

k th column in Z DW . Define the active set ST as the set of indices corresponding to non-

zero parameters in θ, as ST =
{

j ∈ (1, ...,r T )|θ j 6= 0
}

and its cardinality |ST | = sT . To simplify

notation, when it is unambigious, we omit the subscript T . We note‖.‖`1 the `1 norm and
‖.‖ the `2 norm. The sign function is defined as sign(x) =−1 if x < 0, sign(x) = 0 if x = 0, and
sign(x) = 1 if x > 0.

3. Estimation

The Lasso estimator θ̂ minimizes the following convex objective function:

θ̂ = argminθ

(
1

T

∥∥∥y −Z DW θ
∥∥∥2 +2λT

∥∥θ∥∥
`1

)
. (2)

Because the objective function (2) is convex, finding the solution to (2) for a given value
of λT is an easy problem from a computational standpoint making the estimation of this
model fast. The properties of the penalty sequence λT and of the Lasso estimator θ̂ are
discussed below. Our model is high dimensional by construction, in the sense that the number
of parameters to estimate is at least as large as the sample size; the number of non-zero
parameters is of a smaller order than the sample size however. To investigate the properties of
the Lasso in this model we start by deriving some finite sample properties of the estimator
before considering the asymptotic behaviours of the estimation and prediction errors of the
Lasso. We also derive results regarding the Lasso’s variable selection properties.

This model has r T parameters and T observations so that when r ≥ 1 its Gram matrix

ΨT = (W ′Z D′
)(Z D W )

T is singular. In this setting the ordinary least squares estimator is infeasible,
but Bickel, Ritov, and Tsybakov (2009) shows that the Lasso can have attractive properties
as long as a weaker condition on the Gram matrix, the restricted eigenvalue condition, is
satisfied. Before assuming the restricted eigenvalue condition, we need to ensure that we are
working on a set of variables in which it is possible that the restricted eigenvalue of ΨT is
larger than 0.

Notice that when r > 1 the last r columns of Z DW are [0r , ...,0r , Z ′
T ]′ which are by construc-

tion linearly dependent. Let Wa be the ath column of W and define the set A = {a : W ′
aι≥ r }

where ι is a Tr ×1 vector of ones. Define the Gram matrixΨT A = W ′
A

Z D′
Z D WA

T .
While per construction the restricted eigenvalue condition cannot be satisfied onΨT it can

be onΨT,A . In practice this means that we rule out the possibility of a change in parameter
value from observation T − r +1 to the end of the sample. Note that for a model with r = 1,
A = {1, ...,Tr } so thatΨT,A =ΨT .
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Let κ2
T (s) be the smallest eigenvalue of the gramian matrix of any subset of variables with

cardinality smaller or equal to that of the active set:

κ2
T (s) = min

|S |≤s

 min
δ∈RnT \{0}

δ′ΨA δ∥∥δS

∥∥2 \
∥∥δS c

∥∥
`1

≤ 3
∥∥δS

∥∥
`1


 .

Note Ψ = E(ΨT ) the population covariance matrix and the corresponding restricted
eigenvalue κ2. We make the following assumption on the sample and population restricted
eigenvalue.

Assumption 4 (Sample and population restricted eigenvalue condition). Assume that:

i) κ2
T (s) > 0.

ii) There exists a constant c > 0 such that κ2 ≥ c.

Assumption 4 is the restricted eigenvalue condition, it is a standard assumption in the
high dimensional econometrics literature introduced by Bickel et al. (2009), and by Kock
and Callot (2014) in the case of high dimensional VARs. To simplify the notation we drop
the dependence on s and write the sample and population restricted eigenvalues κ2

T and κ2,
respectively.

Notice that the construction of A implies that we penalize the initial value of the parsi-
monious random walks, ξk0 where k = (1, ...,r ) together with the initial increments ηk1ζk1. In
doing so we make it possible for the initial value of the parsimonious random walk to be set
to zero by the Lasso and therefore, if all further increments are also set to zero, to exclude
altogether an irrelevant variable. Alternatively it is possible not to penalize ξ0 +η1 ¯ ζ1 in
which case, if all further increments are set to zero by the Lasso, the value of the parsimonious
random walk at any point in time is equal to the OLS estimator of y = ZΞ+ε. This also implies
that the estimate of the initial value is not biased towards zero. Choosing either alternative
has a negligible influence on the results below since it only involves the penalization (or lack
thereof) of a single parameter.

3.1. The Lasso

We can now state our first theorem on the estimation and prediction errors of the Lasso.

Theorem 1. For λT =
√

8ln(1+T )5 ln(1+r )2 ln(1+T−r+1)2 ln(r (T−r+1))σ4
T

T and some constant A > 0, and

under assumptions 1, 2, 3, and 4, and on a set with probability at least equal to 1−πB
T we have

the following inequalities:

1

T

∥∥∥Z DW (θ− θ̂)
∥∥∥2 ≤ 16sλ2

T

κ2
T

, (3)∥∥∥θ̂−θ∥∥∥
`1

≤ 16sλT

κ2
T

, (4)

with πB
T = 2(1+T )−1/A + (r (T − r +1))1−ln(1+T ).

The bounds given in theorem 1 hold on a set that has probability at least 1−πB
T for a

given value of λT . These bounds are valid for any value of the penalty parameter as long as
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∥∥∥T −1ε′Z DW
∥∥∥∞ ≤ λT /2 is satisfied; holding everything else constant the probability of this

inequality being satisfied decreases with λT .
The dependence on λT highlights the trade-off between selecting a larger value of λ to

increase the probability of
∥∥∥T −1ε′Z DW

∥∥∥∞ ≤λT /2 to be satisfied, and selecting a lower value

to reduce the upper bounds of the estimation and prediction errors. The bounds depend
linearly on the size of the active set so that more break points imply larger upper bounds.
They also depend indirectly on the variance of ηt ¯ζt through σ2

T which enters the expression
of λT .

If we assume that the smallest non zero increment is larger than the estimation error,
we can show that no relevant variables are rejected, or equivalently, no break point goes

undetected. Let θmi n = min j∈S

{
|θ j |

}
be the smallest non-zero parameter.

Corollary 1. If θmi n >
∥∥∥θ̂−θ∥∥∥

`1
then Ŝ

⋂
S =S .

The Lasso cannot surely distinguish between parameters that are smaller than the esti-
mation error and parameters that are truly zero. There is a risk of misclassification for small
non-zero parameters. Similar results are used in the literature to claim that the Lasso possess
the oracle property. This result is stated as a corollary as it requires an extra condition to be
met relative to theorem 1. We stress that even when the Lasso does not possess the oracle
property, the properties of the Lasso in terms of overall estimation error of the path of the
parameters are still valid. If the θmi n condition is violated the Lasso cannot surely detect
the precise location of every change point in the parsimonious random walk, but can still
approximate it well.

We now turn to an asymptotic setting to show consistency of our estimator and, impor-
tantly, to get a sense of the number of changes in the parsimonious random walks that our
estimator can handle in the form of a bound on the rate of growth of s. Theorem 2 below
provides an asymptotic counterpart to theorem 1.

Theorem 2. Let s ∈O (T 1−a) with a > 1
2 . Under assumptions 1, 2, 3, and 4, and as T →∞ we

have:

T −1
∥∥Z DW (θ− θ̂)

∥∥2→p 0 (5)∥∥∥θ̂−θ∥∥∥
`1
→p 0 (6)

with probability tending to 1.

Theorem 2 states that the prediction and estimation errors tend to zero in probability
provided the cardinality of the active set grows at a rate strictly slower than

p
T . This condition

on the rate of growth of the active set implies that the probability of a non-zero increment
αT = T −a tends to zero strictly faster than 1p

T
.

Theorem 2 also gives indication on the speed of convergence of the bounds. The speed

with which the estimation error tends to zero is dominated by the product sλT =O
(
T 1−a−1/2

)
so that for a small number of breaks (a large value of a), the convergence speed is slightly
slower than

p
T while it can get extremely slow for a close to 1/2. The prediction error is

dominated by sλ2
T =O

(
T 1−a−1

)
so that the speed of convergence is always greater than

p
T .

Were we to assume that the number of variables r grows over time at a sub-exponential

rate,r ∈ O (eT b
) with 0 < 5b < 1, the rate of growth of s would change to s ∈ O (T 1−a−b). This
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highlights the trade-off between the number of paths to estimate r and the number of non-
zero increments. It is the total number of non-zero parameters in θ that matters so that the
model can handle either a limited number of series with a lot of variation in the parameter
value, or a large number of variables with only occasional breaks. For completeness we state
an asymptotic counterpart to corollary 1.

Corollary 2. With probability tending to one, no relevant variables is excluded if there exists a
T0 ≥ 1 such that θmi n > 16s

qc2λT for all T ≥ T0.

Corollary 2 is similar to corollary 1 in that it gives a lower bound for the smallest non-zero
parameter above which no relevant variables are excluded. This bound tends to zero at the
same speed as the estimation error.

3.2. The adaptive Lasso

If we were to penalize more heavily the parameters that are truly equal to zero than those
that are different from it, instead of penalizing all parameters by λT , we could construct an
estimator that improves upon the Lasso. The adaptive Lasso of Zou (2006) is based on this idea,
using an initial estimator to construct adadptive penalties for each of the parameters. In this
setting we use the Lasso both as a screening device and as the initial estimator. The variables
that were excluded by the Lasso are not retained in the second stage. We note (Z DWŜ ) the

set of variables retained by the Lasso and θ̂Ŝ the corresponding set of estimated parameters,
and we construct the adaptive weights wl by taking the inverse of the absolute value of the
estimated parameters wl = 1

|θ̂Ŝ | . The adaptive Lasso objective function is thus given by:

θ̃ = argminθŜ

(
1

T

∥∥∥y − (Z DWŜ )θŜ

∥∥∥2 +2λT wl

∥∥∥θŜ

∥∥∥
`1

)
. (7)

The adaptive Lasso objective function is convex and hence fast to minimize, furthermore
since the initial estimator discards a large amount of irrelevant variables the adaptive Lasso
problem (7) is of much smaller size than (2).

We study the properties of the adaptive Lasso in our setting by, as in the case of the Lasso,
deriving finite sample inequalities before studying its asymptotic properties. We choose to
focus on the oracle property, the ability of the adaptive Lasso to recover the exact model
(sign(θ̃) = sign(θ)). Hence we work under assumptions ensuring that corollary 1 holds so
that no relevant variable is discarded in the initial step. We make use of the `1 bound on the
estimation error of the Lasso to derive the properties of the adaptive Lasso; we could use
other estimators to compute the adaptive weights and estimators with tighter `1 bounds on
the estimation error would results in tighter bounds for the adaptive Lasso.

Define φmin,S as the smallest eigenvalue of E
(

1
T Z DWS W ′

S
Z D ′)

, which is greater than 0

by assumption 4. We now give a finite sample probability and conditions for the adaptive
Lasso to be sign consistent.

Theorem 3. Let λT =
√

8ln(1+T )5 ln(1+r )2 ln(1+T−r+1)2 ln(r (T−r+1))σ4
T

T . Under assumptions 1, 2, 3,
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and 4, and assuming that θmin ≥ 2
∥∥∥θ̂−θ∥∥∥

`1
and

sKT

qφmin,S

(
1

2
+ 2

θmin

)∥∥∥θ̂−θ∥∥∥
`1

≤ 1 (8)

p
s

qφmin,S

(
λT

2
+ 2λT

θmin

)
≤ θmin (9)

with KT = ln(1+ r (T − r +1))2 ln(T )σ2
T . For some constant A > 0, on a set with probability at

least 1−πB
T −πC

T , with πB
T is as in theorem 1 and πC

T = 2T −1/A, we have sign(θ̃) = sign(θ).

The condition θmin ≥ 2
∥∥∥θ̂−θ∥∥∥

`1
ensures that the initial estimator has not discarded any

relevant variables, this condition is stronger than necessary, and indeed the 2 could be re-
placed by some q > 1 at the price of more involved notations. (8) illustrates the dependence

of the adaptive Lasso on the performance of the initial estimator in the form of
∥∥∥θ̂−θ∥∥∥

`1
, and

indeed (8) can be interpreted as a condition on the performance of the inital estimator. (9) is a
condition on θmin to ensure that no break is so small as to go unnoticed by the adaptive Lasso.

We now turn to an asymptotic counterpart to theorem 3, where we show that the probabil-
ity that the adaptive Lasso recovers the correct model tends to one.

Theorem 4. Under assumptions 1, 2, 3, and 4, assume that a > 1/2 and define aT = ln(1+
T )5/4 ln(1+T −r +1)1/2 ln(r (T −r +1))1/4T −a/4 and bT = ln(1+T )5/2 ln(1+T −r +1)3 ln(r (T −
r +1))1/2T 1−a/2. Let θmin ∈Ω(ln(T )max(aT ,bT )), then P (sign(β̃) = sign(β)) → 1.2

Theorem 4 states the conditions under which the adaptive Lasso possesses the oracle
property. The rate at which θmin is allowed to tend to 0 is bounded from below by function of
a, this restriction on the speed at which the smallest non-zero parameter may tend to zero
guarantees that no relevant variable will be excluded. The speed at which θmin tends to zero is
an increasing function of a, the fewer breaks in the model the faster θmin may tend to 0.

3.3. Penalty parameter selection

The theorems above give analytical expressions and rates of growth for the penalty param-
eter λT , but do not provide a practical way of selecting it. We suggest selecting the value of λT

that minimizes the Bayesian Information Criterion (BIC), given by:

B IC (λ) = T × log

(
ε̂′
λ
ε̂λ

T

)
+

∣∣∣Ŝλ

∣∣∣ log(T ).

BIC is a convenient way to select the penalty parameter since it is easily computable
making it fast to find the minimizer of the BIC among the sequence of values of λT selected
by the estimation algorithm. Let ŜB IC denote the set of variables selected by the BIC, then
theorem 2 in Kock (2014) shows that, in an autoregressive setting, choosing λT by BIC leads to

consistent variable selection in the sense that P
(
ŜB IC =S

)
→ 1.

2 f (T ) ∈ Ω(g (T )) means that there exists a constant c such that f (T ) ≥ cg (T ) for T ≥ T0 for a certain T0

onwards.
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3.4. Post Lasso OLS

By construction the Lasso will select an active set ŜT for which the smallest eigenvalue of
W ′

ŜT
Z D′

Z D WŜT

T is strictly positive, implying that the cardinality of the set of selected variables

s =
∣∣∣ŜT

∣∣∣ is smaller than the number of observations. Hence Z DWŜT
has rank s and the model

y = Z DWŜT
θ̇+ ε̇ can be estimated by ordinary least squared. This post Lasso OLS has several

desirable properties

i) The Lasso biases the estimated non-zero parameters towards zero, the post Lasso provides
unbiased and

p
T -consistent estimates of the variables selected by the Lasso. See Belloni,

Chernozhukov, et al. (2013) for a formal analysis of the post Lasso OLS.

ii) Standard errors can be computed for the non-zero parameters, however they do not
account for the uncertainty at the Lasso step.

iii) Belloni et al. (2013) and Kock and Callot (2014) documents by simulation that the post
Lasso OLS improves marginally on the Lasso in terms of estimation and prediction errors.

4. Monte Carlo

In this section we explore the empirical properties of our model using simulated data. We
compute 8 statistics for each estimator and experiment, and average them across iterations. A
first group of 4 statistics focus on variable selection, a second group of 4 focuses on estimation:

i) The number of breaks (non-zero parameters) estimated, noted # breaks.

ii) The number of variables incorrectly selected (false positive) noted FP.

iii) The number of variables correctly selected (true positive) noted TP.

iv) The number of breaks missed (false negative) noted FN.

v) The estimation error of the path of the parameter
∥∥∥θ̂−θ∥∥∥

`1
, noted `1 error.

vi) The prediction error
∥∥∥Z DW (θ̂−θ)

∥∥∥, noted `2 error.

vii) The root mean square error
∥∥ε̂∥∥ which, in a well specified model, converges towards the

variance of the innovations, noted RMSE.

viii) The size of the penalty parameter λ, noted λ.

We report tables with the 8 statistics enumerated above for a variety of experiments. We
also plots samples of true and estimated parameter path for different estimators to give a
sense of the location and amplitude of the breaks in the estimated paths relative to the true
parameter path. In these experiments we choose not to penalize the estimator of the initial
value.

The estimators we consider are the Lasso, the adaptive Lasso with the Lasso as initial esti-
mator, and the post Lasso OLS. The penalty parameter λT for both the Lasso and the adaptive
Lasso is selected by minimizing the BIC. The data generating process for the simulations is
y =βX +εwhere X is generated by drawing from a standard normal distribution, ε is Gaussian
with mean 0, variance 0.1 (except when specified otherwise), and is independent from X .
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All the computations are carried out using R and the parsimonious package which per-
mits easy replications of the simulations and empirical application below. The estimation
of these models is fast, each iteration takes in the order of 10−3 seconds in most cases and
around 0.5 second for the hardest model on commodity hardware.

4.1. Deterministic paths

T = 100 T = 1000

n2s ratio
σ2
ε

σ2
X

0.1 1 10 0.1 1 10

# breaks
DGP 0 0 0 0 0 0
Lasso 0.138 0.093 0.095 0.006 0.012 0.013
aLasso 0.121 0.086 0.088 0.006 0.011 0.012

`1 error
Lasso 0.153 0.272 0.483 0.083 0.147 0.264
aLasso - - - - - -
Post 0.157 0.28 0.498 0.083 0.148 0.266

`2 error
Lasso 0.028 0.088 0.279 0.008 0.026 0.083
aLasso - - - - - -
Post 0.031 0.097 0.308 0.008 0.026 0.084

RMSE
Lasso 0.311 0.985 3.108 0.316 0.998 3.158
aLasso - - - - - -
Post 0.311 0.984 3.106 0.316 0.998 3.158

λ
Lasso 0.023 0.073 0.228 0.008 0.026 0.083
aLasso - - - - - -

Table 1: Constant parameter, varying sample size: 10000 iterations. The adaptive Lasso results are not reported
since the Lasso often excludes every variables preventing us from estimating the adaptive Lasso.

We first consider the case of a single covariate with a constant parameter equal to 1.
For this experiment we consider 2 sample sizes, T = 100 and T = 1000, and 3 variances for
the residuals, σ2

ε = 0.1,1,10. This experiment allows us to investigate the behaviour of our
estimators in a setting with a constant parameter, and investigate the effect of modifying the
noise to signal (n2s) ratio on the estimators.

Table 1 reports the value of 5 out of the 8 statistics, the number of false positive and
negatives and true positives being uninformative in a setting with no breaks. Since the active
set of the initial estimator is often empty, no breaks are detected, the adaptive Lasso frequently
cannot be estimated so we do not report results for this estimator. This table reveals that
the Lasso incorrectly selects on average 0.1 breaks per models when T = 100 (0.01 when
T = 1000), implying that at least in the order of 90% of the models (99% for T = 1000) correctly
estimate a constant parameter. The number of breaks selected is not very sensitive to the
noise to signal ratio in contrast to the error measures. The RMSE is close to, but on average
smaller than, the standard error of the innovations (the true values are ≈ 0.316,1,≈ 3.16) for
T = 100; the RMSE is closer to its theoretical value when T = 1000. This under-evaluation of
the RMSE, overfitting, can be attributed to the spurious inclusions of breaks in the estimated
parameter path. The noise to signal ratio has a large influence on the `1 and `2 errors, they
both increase in proportion to the noise-to-signal ratio but fall when going from T = 100 to
T = 1000. Interestingly while the RMSE of the post Lasso OLS is identical or slightly smaller
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than that of the Lasso, it appears that the `1 and `2 errors of the post Lasso OLS are marginally
larger than those of the Lasso.

T=100 n2s=0.1 T=100 n2s=1 T=100 n2s=10
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Figure 1: Sample of 50 estimated paths and the true path.

Figure 1 plots 50 estimated paths for the Lasso and adaptive Lasso (note that when no
breaks were selected in the first step the adaptive Lasso is not estimated) highlighting that
the vast majority of the estimated paths are constant. This figure also shows that despite the
downward bias introduced by the Lasso, the estimated paths cluster around the true value,
with few instances of large estimation errors on both sides of the true value. Figure 1 also
reveals that when the Lasso incorrectly selects a break in the parameter path, it often selects
more than one, this is consistent with the selection of a low penalty parameter λ in these
iterations. This implies that the average number of breaks is an upper bound on the number
of estimated paths with non-constant parameters, in over 90% (T = 100) and 99% (T = 1000)
of the iterations the estimator correctly estimates a constant path. The adaptive Lasso tends
to reduces the number of irrelevant breaks selected by the Lasso but only marginally since the
breaks incorrectly retained are large.

We now turn to the case of deterministic breaks (structural breaks) in the parameters and
consider 3 types of experiments. In the first experiment we consider a single break in the
parameter path occurring at either 10%, 50%, or 90% of the sample. In the second series of
experiments a single break, located in the middle of the sample, varies in size, the size of
the break being either 0.1, 1, or 10. In the third series of experiments we vary the number
of structural breaks in the path. The parameter value switches between 0 and 1, this can be
seen as a minimalistic regime switching process. In these series of experiments we hold the
sample size constant (T = 100 throughout) as well as the variance of the innovations σ2

ε = 0.1
while the covariates are still drawn from a standard normal distribution. Notice that the first 4
blocks of rows of table 2 now show detailed variable selection statistics.

Across experiments, the Lasso selects on average models that are larger than the true
model, except in the case when the break size is 0.1. The adaptive Lasso further reduces the
model. As the results of the experiments on break locations and sizes illustrate, the (adaptive)
Lasso is not very sensitive to the location of the break point but is sensitive to its amplitude.
When the break is of size 10, the Lasso and adaptive Lasso detect a break in the correct location
in 99% and 87% of the iterations. These rates fall to below 2% when the break is of size 0.1.
The rate of rejection of relevant variables (false negative, FN) is similarly not very sensitive to
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Break Location Break Size Break Number
10% 50% 90% 0.1 1 10 XP1 XP2 XP3

# breaks
DGP 1 1 1 1 1 1 3 9 4
Lasso 3.66 3.315 3.386 0.322 3.325 3.901 8.397 19.45 10.45
aLasso 1.501 1.305 1.423 - 1.314 1.005 3.913 11.71 5.354

FP
Lasso 2.895 2.529 2.666 0.304 2.538 2.91 6.062 12.74 7.519
aLasso 0.882 0.673 0.808 - 0.682 0.131 1.987 5.968 2.858

TP
Lasso 0.765 0.786 0.72 0.017 0.787 0.991 2.335 6.71 2.931
aLasso 0.619 0.632 0.615 - 0.632 0.874 1.927 5.74 2.497

FN
Lasso 0.235 0.214 0.28 0.983 0.213 0.009 0.665 2.29 1.069
aLasso 0.381 0.368 0.385 - 0.368 0.126 1.073 3.26 1.503

`1 error
Lasso 0.249 0.256 0.248 0.22 0.256 0.285 0.333 0.439 0.353
aLasso 0.214 0.212 0.213 - 0.212 0.249 0.279 0.397 0.31
Post 0.262 0.253 0.254 0.234 0.252 0.27 0.343 0.501 0.383

`2 error
Lasso 0.088 0.079 0.087 0.056 0.079 0.089 0.123 0.187 0.145
aLasso 0.065 0.058 0.064 - 0.058 0.066 0.094 0.162 0.117
Post 0.08 0.073 0.078 0.062 0.073 0.074 0.113 0.18 0.136

RMSE
Lasso 0.31 0.309 0.31 0.313 0.309 0.313 0.306 0.3 0.307
aLasso 0.301 0.307 0.302 - 0.307 0.316 0.299 0.278 0.293
Post 0.303 0.304 0.303 0.312 0.303 0.304 0.29 0.264 0.286

λ
Lasso 0.017 0.023 0.017 0.027 0.023 0.028 0.013 0.007 0.009
aLasso 0.007 0.008 0.002 - 0.008 3.844 0.05 0.082 0.026

Table 2: Structural breaks experiments, T = 100, 10000 iterations. We do not report the adaptive Lasso estimator
for the experiment with a break of size 0.1 since the initial estimator often discard all variables.

the location of the break but is sensitive to its size, with FN < 1% when the break is of size 10
while FN ≈ 98% when it is of size 0.1.

The break size and location experiments also reveal that the Lasso is an efficient screening
device, out of 98 irrelevant variables the number of true negatives TN = 98−FP is greater that
95 for the Lasso. In these experiments the estimated models contain on average fewer than 4
variables (fewer than 2 for the adaptive Lasso); this set contains the true location of the break
in over 70% of the iterations in most settings.

The `1 and `2 errors are comparable across experiments, neither the location nor the
amplitude of the break seem to have a systematic impact on these measures. Both the adaptive
Lasso and the post Lasso OLS reduce the prediction and estimation errors in most experiments
but these improvements are marginal. The RMSE is stable across experiments and estimators,
being always close to its theoretical minimum of

p
0.1 ≈ 0.316.

The experiments varying the number of breaks, right columns of table 2, show that when
we increase the number of breaks in the model the active set is larger leading to a higher
number of false positive while keeping the number of true positive close, but inferior, to the
true number of breaks. In these settings the Lasso is not as efficient at discarding irrelevant
variables as it was in the previous, sparser, experiment; the adaptive Lasso is here a useful
second step since it further reduces the size of the active set and improves upon the Lasso on
all the error measures. However, this comes at the price of a slight decline in the true positive
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rate.

Break Location XP1 Break Location XP2 Break Location XP3
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Figure 2: Structural breaks, 10 estimated paths.

Figure 2 plots 10 estimated paths for each experiment. The top 3 panels illustrate the break
location experiments, the stability of the estimated paths away from the region of the break
is striking. The figure also reveals that some paths follow a gradual adjustment with several
breaks instead of a single one. The lower 3 panels show the break size experiments in which it
appears that when the break is small it is often ignored (bottom left panel), whereas a very
large break will be often detected and adjusted to in a single step even though evidence of
gradual adjustment for some paths persists.

4.2. Stochastic paths

We now turn to simulations with stochastic paths, the results are reported in table 3. The
sample size is T = 100 and the variance of the innovations is equal to 0.1 in every experiment.
The parameters follow parsimonious random walks as described by assumption 3. We vary
the degree of sparsity of the model by considering αT = 0.01,0.1,0.5, for αT = 0.01 we expect a
single break per path while when αT = 0.5 we expect 50 breaks. For convenience table 3 also
reports the value of a corresponding to the chosen values of αT and T , and in particular it
should be noted that αT = 0.5 goes beyond the requirement for consistency of the Lasso given
in theorem 2. We also consider 3 variances for the non zero increments: Var(η) = 0.1,1,10, for
a total of 9 experiments.

In the experiments with Var(η) = 0.1 the Lasso tends to select models that are sparser
than the DGP, and the Lasso only detects around 10% of the correct break locations. However
when Var(η) = 1 or Var(η) = 10 the selected models tend to be slightly larger than the true
models, and over 50% of the breaks are detected. In every experiment the adaptive Lasso
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Var(η) = 0.1 Var(η) = 1 Var(η) = 10
αT 0.01 0.1 0.5 0.01 0.1 0.5 0.01 0.1 0.5

a =− log(αT )
log(T ) 1 0.5 0.15 1 0.5 0.15 1 0.5 0.15

# breaks
DGP 0.981 9.912 49.59 0.998 9.952 49.46 0.995 9.922 49.41
Lasso 0.993 6.354 16.74 2.218 14.85 42.27 3.156 21.29 52.18
aLasso 0.566 3.303 9.425 0.982 7.405 26.04 1.05 8.95 30.08

FP
Lasso 0.828 4.628 6.293 1.723 9.95 15.58 2.384 13.73 17.3
aLasso 0.44 2.15 3.116 0.582 3.667 7.082 0.408 2.79 4.393

TP
Lasso 0.165 1.726 10.44 0.495 4.896 26.69 0.772 7.55 34.88
aLasso 0.126 1.153 6.308 0.4 3.738 18.95 0.642 6.16 25.69

FN
Lasso 0.816 8.186 39.15 0.503 5.056 22.77 0.223 2.372 14.54
aLasso 0.856 8.759 43.28 0.598 6.214 30.51 0.352 3.762 23.73

`1 error
Lasso 0.206 0.334 0.445 0.22 0.39 0.568 0.231 0.454 0.783
aLasso 0.241 0.331 0.453 0.237 0.373 0.576 0.237 0.415 0.792
Post 0.211 0.358 0.509 0.228 0.445 0.717 0.242 0.531 0.898

`2 error
Lasso 0.056 0.132 0.206 0.066 0.167 0.269 0.071 0.211 0.474
aLasso 0.076 0.131 0.21 0.075 0.156 0.271 0.073 0.185 0.471
Post 0.058 0.133 0.205 0.065 0.164 0.268 0.068 0.185 0.369

RMSE
Lasso 0.313 0.315 0.318 0.311 0.306 0.284 0.311 0.32 0.464
aLasso 0.305 0.308 0.31 0.305 0.301 0.283 0.312 0.324 0.473
Post 0.311 0.306 0.297 0.307 0.287 0.239 0.306 0.278 0.314

λ
Lasso 0.024 0.019 0.012 0.022 0.01 0.005 0.02 0.01 0.008
aLasso 0.003 0.017 0.059 0.016 0.076 0.225 0.363 1.618 3.218

Table 3: Parsimonious random walks, T = 100, 10000 iterations.

selects models that are substantially sparser than those selected by the Lasso, and in doing so
substantially decreases the number of true and false positives.

The `1 and `2 errors do increase with the variance of η and with the number of breaks,
and the adaptive Lasso and post Lasso OLS are not consistently better or worse than the Lasso
on these measures. The RMSE is remarkably close to, but below, its theoretical value (≈ 0.316)
for most experiments, with the exception of αT = 0.5 and Var(η) = 10. It is in most instances
lower for the adaptive Lasso and the post Lasso OLS.

Interestingly the chosen penalty parameter λ decreases while αT increases for the Lasso,
but increases with αT for the adaptive Lasso. This can be explained by the fact that the
number of potential parameters is constant for the Lasso, while it is increasing with αT for the
adaptive Lasso since the Lasso selects increasingly larger models. For the Lasso the selected
penalty parameter also decreases when Var(η) increases. The estimator selects a small penalty
parameter when the breaks to fit are larger; this larger penalty allows small parameters to
be retained in the estimated model explaining the increase in the number of parameters
retained.

Figure 3 provides complementary information on the dynamics of the selected models,
it displays a sample of 3 true and estimated parameter paths from each of the Monte Carlo
experiments in table 3. The left side panels of figure 3 display experiments where the variance
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Figure 3: Parsimonious random walks, 3 estimated paths.

of the innovations to the parameters is low. The Lasso tends to discard a large amount of small
breaks only adjusting to large, and persistent, changes in the parameter value. The estimated
paths are increasingly time varying when number of breaks increases (moving downward
in figure 3) but more stable than the true path. When the variance of the breaks increases
(moving rightwards in figure 3) the paths are increasingly close to the true path, displaying a
high degree of time variation when this is the case for the true path.

5. Empirical Application

In order to illustrate the proposed methodology we revisit a well-known monetary policy
problem, namely estimation of the Taylor (1993) rule. According to the Taylor rule the policy
rate of the central bank can be decomposed into two parts: a response to changes in the
inflation rate; and a response to deviations of output from its trend. Estimation of the Taylor
rule is also used by Hansen, Lunde, and Nason (2011) to illustrate the model confidence set
(MCS), and we choose to estimate one of the specifications included in the MCS. Specifically,
we consider the general Taylor rule:

Rt = (1−ρ)
[
γ+α1,tπt−1 +α2,tπt−2 +β1,t yt−1 +β2,t yt−2

]+ρRt−1 + vt

where Rt denotes the short-term nominal interest rate, πt is inflation, and yt is deviations
of output from its trend (i.e. the output gap). The parameters of main interest are the ones
associated with the inflation and output variables: The monetary policy response to real side
fluctuations is given by β1,t +β2,t ; likewise response to inflation is given by α1,t +α2,t . The
latter is of particular interest as the Taylor principle suggests that the response to inflation
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should exceed 1 such that a rise in inflation results in an even larger rise in the interest rate.
Compared with the specification used in Hansen et al. (2011), we let these key parameters be
time-varying, i.e. we assume they follow a parsimonious random walk, thus allowing us to
examine whether these responses have changed over time.

The model also contains the lagged interest rate, which, as discussed by Hansen et al.
(2011), can be interpreted as interest rate smoothing by the central bank, or alternatively as a
proxy for unobserved determinants of the interest rate. One could argue that the parameter
associated with lagged interest rate, ρ, could also be time-varying. However, this would
make it difficult to disentangle the time-varying nature of this smoothing parameter and the
parameters associated with inflation and output, and hence we assume that it is constant. We
report results for both the Lasso and the adaptive Lasso based on the methodology detailed
in the previous sections. In both cases the estimator of the initial value of the parsimonious
random walk is not penalized, and further, the penalty parameter, λ, is selected using the BIC.
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Figure 4: Plots of the data used for estimation of the Taylor rule. The variables are: Interest rate, Rt , inflation, πt ,
and output gap, yt . The vertical grey bars are the NBER recessions.

We use the same variables as Hansen et al. (2011), but for a longer timespan covering
1954:Q4–2014:Q2. For the dependent variable we use the Effective Fed Funds Rate aggregated
to quarterly frequency and measured at an annual rate, Reffr,t , and then define: Rt = 100×
log(1+Reffr,t /100). The inflation measure is based on the seasonally adjusted Implicit GDP
Deflator, Pt , with inflation defined as: πt = 400×log(Pt /Pt−1). Finally, the output gap measure
is based on Real GDP in Billions of Chained 2009 Dollars, Qt , where yt = logQt − trend Qt and
trend Qt is obtained by applying a one-sided Hodrick-Prescott filter to logQt . All data have
been obtained from the FRED database at the Federal Reserve Bank of St. Louis, and plots of
the variables are given in figure 4.

If we assume all parameters are constant, then the model can be estimated by OLS as in
Hansen et al. (2011). The resulting estimates are reported in table 4. Based on these results
we would conclude that only the first lags of inflation and output are significant (at a 10%
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Estimate Std. Error t-value p-value

γ -0.4448 1.5443 -0.2881 0.7733
ρ 0.9195 0.0280 32.8038 0.0000
α1 1.2751 0.7556 1.6876 0.0915
α2 0.4084 0.6933 0.5891 0.5558
β1 3.7687 1.8184 2.0725 0.0382
β2 -1.9420 1.3231 -1.4678 0.1422

Note: The standard errors are heteroskedasticity and
autocorrelation consistent.

Table 4: OLS estimation results for the Taylor rule equation under the assumption of constant parameters.

level) and that there are clear signs of interest rate smoothing (the lag of the interest rate is
significant). Further, the overall response towards deviation of inflation from its target,α1+α2,
is clearly greater than one, thus showing that the Taylor principle is satisfied.

How does this compare to the case where we allow for time-varying parameters? Consider
first figure 5 where we have plotted the time-varying estimates of α1,t , α2,t , as well as their
sum. These plots show show clear signs of changes over time in the response to inflation, in
several cases the estimates move outside the OLS confidence band.

The response to inflation is found to be stable from the beginning of the sample to the
start of the 1970s, and again from the mid 1980s until 2008, with a response α1,t +α2,t close to
2. However there is clear evidence of instability from the start of the 1970s to the start of the
1980s, in line with the findings of Primiceri (2005). A first period from 1974 to the end of the
1970s is characterized by a weak monetary policy response in the face of increasing inflation.
From the end of the 1970s response seems to follow a strong counter-cyclical pattern, with
a strong response to inflation outside of recessions and a weak response during the two
recessions of 1980 and 1983. From 2008 onwards the response to inflation drops to zero,
reflecting the fact that the Fed Funds Rate has been at its lower bound since then.

Figure 6 gives the same illustration for the parameters associated with the output gap
variables. The response to output gap is much more stable, and the variation is almost entirely
contained within the OLS confidence band. However the response to the output gap seems to
be higher from 1990 to 2008 than in the rest of the sample, this is particularly marked for the
adaptive Lasso estimate, which could indicate a stronger concern for output smoothing by
the Fed during that period. In general, though, there is little difference between the results
for the Lasso and the adaptive Lasso with the one exception that, compared to the adaptive
Lasso, the Lasso estimates are biased towards zero as we would expect. Further estimation
results can be found in table 5.

The main insight gained from this analysis, compared to OLS estimation, is thus the time-
varying nature of the central bank’s response towards deviations of inflation from its target.
In general, we have found that the large changes often coincide with the NBER recessions
and, interestingly, that the Taylor principle in many cases is not satisfied. This is especially
evident in the “double dip” recession of the early 1980s and the recent financial crisis. We
should of course note that we do not have confidence bands for the time-varying parameters.
Nonetheless, these results clearly illustrate the importance of taking structural instability
into account when analysing macroeconomic relationships such as the Taylor rule, and the
usefulness of our proposed methodology in this context.
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Avg. Est. Min. Est. Max. Est. # Breaks

Lasso aLasso Lasso aLasso Lasso aLasso Lasso aLasso

α1 0.5732 0.7994 -1.3475 -3.3082 3.5313 4.5103 38 18
α2 0.7263 1.0385 -1.6402 -2.7544 3.5938 6.0039 21 12
β1 1.9789 2.8825 0.8585 1.0341 2.1720 3.0699 3 1
β2 -0.9460 -1.4393 -1.7954 -2.0514 -0.4339 -0.7183 5 2

γ 0.5622 -0.8356
ρ 0.8579 0.8961

Note: As γ and ρ are not time-varying the reported average estimate is the actual estimate. Also, the
selected tuning parameters, λ, are 0.0091 and 0.2049 for the Lasso and adaptive Lasso, respectively.

Table 5: Lasso and adaptive Lasso estimation results for the Taylor rule equation.

6. Conclusion

This paper proposes the parsimoniously time-varying parameter VARX model, and inves-
tigates the properties of the Lasso as an estimator for this model. We propose a process for
the parameters, the parsimonious random walk, where the probability of an increment to the
random walk being equal to 0 is greater than 0. This process can accommodate time varying
paths that are constant, exhibit structural breaks, or a large number of changes.

We estimate the vector of increments to the parameters; because of the parsimonious
random walk assumption the vector of increments is sparse, and by construction it is high
dimensional. We derive bounds on the precision of the Lasso in finite samples and show
that the Lasso can estimate the vector of increments consistently as long as the number of
non-zero parameters increases strictly slower than

p
T . We establish oracle results for the

adaptive Lasso under the same assumptions. Because of the convexity of the Lasso’s objective
function, our estimator is computationally fast.

We apply our model to the estimation of a Taylor rule to investigate the US monetary
policy response to inflation from 1954 to 2014. We find evidence of substantial instability in
the policy response in the 1980s, which is consistent with previous research and historical
facts, and a long lasting change in the response since 2008, driven by the fact that the Fed
Funds Rate has essentially been zero since that time. The simulations and empirical results in
this paper can easily be replicated using the parsimonious package for R.

To further develop the parsimoniously time varying parameter model we see a few direc-
tions for future research. First, develop a inference framework for this model taking advantage
of the construction of the variables (Z DW ) to get an accurate estimator for the covariance
matrix. Second, expand the parsimoniously time varying approach to other time series models
such as stochastic volatility models, score driven models, and factor models.

Appendix A. Proofs

A.1. Proofs for the Lasso

The following lemma is similar to theorem 1 in Kock and Callot (2014) and provides
bounds on the prediction and estimation error without making use of the restricted eigenvalue
assumption.
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Lemma 1. Assuming that
∥∥∥T −1ε′Z DW

∥∥∥∞ ≤λT /2, then

T −1
∥∥Z DW θ−Z DW θ̂

∥∥2 +λT

∥∥∥θ− θ̂∥∥∥
`1

≤ 2λT

(∥∥∥θ− θ̂∥∥∥
`1
+∥∥θ∥∥

`1
−∥∥θ̂∥∥

`1

)
(A.1)

T −1
∥∥Z DW θ−Z DW θ̂

∥∥2 +λT

∥∥∥θ− θ̂∥∥∥
`1

≤ 4λT

(∥∥∥θS − θ̂S

∥∥∥
`1
∧∥∥θS

∥∥
`1

)
(A.2)∥∥∥θJ c − θ̂J c

∥∥∥
`1

≤ 3
∥∥∥θS − θ̂S

∥∥∥
`1

(A.3)

Proof. Since θ̂ is the minimizer of the objective function (2) we have:

T −1
∥∥y −Z DW θ̂

∥∥2 +2λT
∥∥θ̂∥∥

`1
≤ T −1

∥∥y −Z DW θ
∥∥2 +2λT

∥∥θ∥∥
`1

(A.4)

We can thus rewrite (A.1) as

T −1
∥∥Z DW (θ− θ̂)

∥∥2 + 2

T
ε′Z DW (θ− θ̂)+2λT

∥∥θ̂∥∥
`1

≤ 2λT
∥∥θ∥∥

`1

Using assumptions 1 and 2 we can write 2
T ε

′Z DW (θ − θ̂) ≤ 2
∥∥∥T −1ε′Z DW

∥∥∥∞

∥∥∥θ− θ̂∥∥∥
`1

≤
λT

∥∥∥θ− θ̂∥∥∥
`1

. We now have

T −1
∥∥Z DW (θ− θ̂)

∥∥2 ≤λT

∥∥∥θ− θ̂∥∥∥
`1
+2λT

(∥∥θ∥∥
`1
−∥∥θ̂∥∥

`1

)
so adding λT

∥∥∥θ̂−θ∥∥∥
`1

yields

T −1
∥∥Z DW (θ− θ̂)

∥∥2 +λT

∥∥∥θ̂−θ∥∥∥
`1

≤ 2λT

(∥∥∥θ− θ̂∥∥∥
`1
+∥∥θ∥∥

`1
−∥∥θ̂∥∥

`1

)
which is (A.1). Note that∥∥θ̂−θ∥∥

`1
+∥∥θ∥∥

`1
−∥∥θ̂∥∥

`1
=∥∥θ̂J −θJ

∥∥
`1
+∥∥θJ

∥∥
`1
−∥∥θ̂J

∥∥
`1

≤ 2
∥∥θ̂J −θJ

∥∥
`1

using continuity of the norm, and∥∥θ̂J −θJ
∥∥
`1
+∥∥θJ

∥∥
`1
−∥∥θ̂J

∥∥
`1

≤ 2
∥∥θJ

∥∥
`1

by sub-additivity of the norm. Using the two results above in (A.1) yields (A.2). Finally notice
that (A.2) gives

λT
∥∥θ̂−θ∥∥

`1
≤ 4λT

∥∥θ̂J −θJ
∥∥
`1

or equivalently ∥∥θ̂J c −θJ c
∥∥
`1

≤ 3
∥∥θ̂J −θJ

∥∥
`1

which establishes (A.3).
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Lemma 2. Let assumptions 1 and 2 be satisfied and define:

BT =
 max

1≤k≤r
max

1≤s≤T−r+1

∣∣∣∣∣ 1

T

T∑
t=s

εt Ztk

∣∣∣∣∣< λT

2

 .

Then, for λT =
√

8ln(1+T )5 ln(1+r )2 ln(r (T−r+1))σ4
T

T and some constant A > 0,

P
(
BT

)= P

({∥∥∥T −1ε′Z DW
∥∥∥∞ <λT /2

})
≥ 1−2(1+T )−1/A + (r (T − r +1))1−ln(1+T ).

Proof. For any LT > 0, and using sub-additivity of the probability measure,

P

 max
1≤k≤r

max
1≤s≤T−r+1

∣∣∣∣∣ 1

T

T∑
t=s

εt Ztk

∣∣∣∣∣≥ λT

2


= P

 r⋃
k=1

T−r+1⋃
s=1


∣∣∣∣∣ 1

T

T∑
t=s

εt Ztk

∣∣∣∣∣≥ λT

2




≤ P

 r⋃
k=1

T−r+1⋃
s=1


∣∣∣∣∣ 1

T

T∑
t=s

εt Ztk

∣∣∣∣∣≥ λT

2

∩
T⋂

t=1

r⋂
k=1

T−r+1⋂
s=1

{|εt Ztk | < LT
}+P

(
T⋂

t=1

r⋂
k=1

T−r+1⋂
s=1

{|εt Ztk | < LT
}c

)

≤
r∑

k=1

T−r+1∑
s=1

P

∣∣∣∣∣ 1

T

T∑
t=s

εt Ztk

∣∣∣∣∣≥ λT

2
,

T⋂
t=1

{|εt Ztk | < LT }

+P

(
max

1≤t≤T
max

1≤k≤r
max

1≤s≤T−r+1
|εt Ztk | ≥ LT

)

Using lemma 5 on the second term yields a first bound

P

(
max

1≤t≤T
max

1≤k≤r
max

1≤s≤T−r+1
|εt Ztk | ≥ LT

)
≤ 2exp

(
−LT

A ln(1+T ) ln(1+ r ) ln(1+T − r +1)σ2
T

)
.

Note that in the first term we are considering the probability of a sum of random vari-
ables on a set on which the summands are bounded by LT . Now consider the sequence{
εt Ztk1|εt Ztk |<LT

}
and the filtration FZ ,ε,t =σ

({
εi Zi , i = 1, ..., t

})
and the conditional expecta-

tion

E
(
εt Ztk1|εt Ztk |<LT |FZ ,ε,t−1

)= E

(
E

(
εt Ztk1|εt Ztk |<LT |σ

({
FZ ,ε,t−1, Ztk

})) |FZ ,ε,t−1

)

= E

(
Ztk E

(
εt1|εt Ztk |<LT |σ

({
FZ ,ε,t−1, Ztk

})) |FZ ,ε,t−1

)
.

If Ztk belongs to the set of lagged variables yi ,t−l i = 1, ...,ry , l = 1, ..., p,σ
({

FZ ,ε,t−1, Ztk
})=

FZ ,ε,t−1 making the equations above redundant. This is not the case when Ztk belongs to the
set of contemporaneous exogenous variables Xkt , k = 1, ...,rX .

Since Ztk is measurable onσ
({

FZ ,ε,t−1, Ztk
})

we use lemma 4 with f (εt , Ztk ) = εt1|εt Ztk |<LT
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such that for all v ∈R we get

E(εt1|εt v |<LT |σ({Fε,Z ,t−1,k , Ztk })) = E(εt1|εt |< LT
|v |
|σ({Fε,Z ,t−1,k , Ztk })) = 0.

This argument holds for v 6= 0, for the case where v = 0 the results follows from noting that
E (εt1|εt v |<LT |σ({Fε,Z ,t−1,k , Ztk })) = E (εt |σ({Fε,Z ,t−1,k , Ztk })) = 0. The sequence

{
εt Ztk1|εt Ztk |<LT

}
is a martingale difference sequence with bounded increments. We can thus apply the Azuma-
Hoeffding inequality to bound the first term.

r∑
k=1

T−r+1∑
s=1

P

∣∣∣∣∣ 1

T

T∑
t=s

εt Ztk

∣∣∣∣∣≥ λT

2
,

T⋂
t=1

{|εt Ztk | < LT }


≤ r (T − r +1)P

∣∣∣∣∣ 1

T

T∑
t=s

εt Ztk

∣∣∣∣∣≥ λT

2
,

T⋂
t=1

{|εt Ztk | < LT }


≤ r (T − r +1)exp

−λ2
T

4 T 2

2T LT


≤ r (T − r +1)exp

(
−Tλ2

T

8LT

)

Let LT = ln(1+T )2 ln(1+ r ) ln(1+T − r +1)σ2
T , and gather the bounds two bounds found

above,

P

(∥∥∥∥ 1

T
ε′Z DW

∥∥∥∥∞
≥ λT

2

)
≤ (r (T − r +1))1−ln(1+T ) +2(1+T )−1/A.

Proof of Theorem 1. On BT and under assumptions 1, 2, 3, and 4, we use equations (A.2) and
(A.3) from lemma 1 and Jensen’s inequality to get:

1

T

∥∥Z DW (θ̂−θ)
∥∥2 ≤ 4λT

∥∥θ̂S −θS

∥∥
`1

≤ 4λT
p

s
∥∥θ̂S −θS

∥∥≤ 4λT
p

s

∥∥Z DW (θ̂−θ)
∥∥

κT
p

T
.

Rearranging yields (3). We also get

∥∥θ̂−θ∥∥
`1

≤ 4
∥∥θ̂S −θS

∥∥
`1

≤ 4
p

s
∥∥θ̂S −θS

∥∥≤ 4
p

s

∥∥Z DW (θ̂−θ)
∥∥

κ2
T

p
T

≤ 16

κ2
T

sλT .

which is (4). Lemma 2 gives the probability of being on BT .

Proof of Corollary 1. To prove this result, assume that θ̂ j = 0 for j ∈ J , then |θmi n | ≤
∥∥∥θ̂−θ∥∥∥

`1
.

Hence if |θmi n | >
∥∥∥θ̂−θ∥∥∥

`1
no relevant variables are excluded.

Proof of Theorem 2. Observe that sλT → 0 implies that from some step T > T0 onward, λT < 1
so that sλ2

T → 0. Also note that P (BT ) → 1, hence if we show that sλT → 0 we can show that
the bounds of theorem 1 tend to zero.
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Let a > 1/2, then

s2λ2
T ∈O

(
T 2−2a ln(1+T )5 ln(1+ r )2 ln(r (T − r +1)))

T

)
∈O

(
ln(1+T )5 ln(r (T − r +1))T 1−2a

)
so that sλT → 0 and sλ2

T → 0.
It follows that

T −1
∥∥Z DW (θ− θ̂)

∥∥2 ≤ 16sλ2
T

κ2
T

→p 0, (A.5)∥∥∥θ̂−θ∥∥∥
`1

≤ 16sλT

κ2
T

→p 0, (A.6)

which proves (5) and (6).

Proof of Corollary 2. The proof of corollary 2 follows from the fact proven in corollary 1 that
on BT and if |θmi n | > 16sλT

qc2 , no relevant variables are excluded. Noticing that P (BT ) → 1

completes the proof.

Lemma 3. Let {Ui }, i = 1, ...,n, n <∞ be a sequence of independent Gaussian random variables
with mean zero and variances σ2

i <∞; define σ2 = maxi (σ2
i ). Then we have

i)
∏

i Ui has sub-exponential tails: P (|∏i Ui | > x) ≤ 2ne− x
2σ2 .

ii)
∑

Ui has sub-exponential tails: P (|∑i Ui | > x) ≤ 2ne− x
2nσ2 .

Proof. Since Ui is Gaussian with mean zero it has sub-exponential tails (see e.g. Billingsley
(1999), page 263) so that there exists constants K and C such that for every x > 0, P (|X | > x) ≤
K e−C x . Let i , j = 1, ...,n, i 6= j , we first prove i )

P

(
|∏

i
Ui | > x

)
≤∏

i
P

(
|Ui | > n

p
x
)

≤∏
i

2e
− x

2σ2
i

≤ 2ne− x
2σ2 .

We now prove i i )

P
(
|∑Ui | > x

)
≤∑

P
(|Ui | > x/n

)
≤∑

i
2e

− x
2nσ2

i

≤ 2ne− x
2nσ2 .

Lemma 4 ((6.8.14) in Hoffmann-Jørgensen (1994)). Let f :R×R→R be measurable such that
| f (U ,V )| is integrable and f (U , v) is integrable for PV almost all v ∈ R (here PV denotes the
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distribution of V ), and letφ(v) = E ( f (U , v)). If, for a sigma field G , V is measurable with respect
to G and U is independent of G , then we have

E( f (U ,V )|G ) =φ(V ) P-almost surely

Lemma 5 (Lemma 2 in Kock and Callot (2014)). Let assumptions 1 and 2 be satisfied. Then, for
some positive constant A and for any LT > 0,

P

(
max

1≤t≤T
max

1≤k≤r
|Zktεt | ≥ LT

)
≤ 2exp

(
−LT

A ln(1+T ) ln(1+ r )σ2
T

)
.

A.2. Proofs for the adaptive Lasso.

The proofs of lemma 6 and theorem 3 are very similar to those of lemma 11 and theorem 6
in Kock and Callot (2014), hence we only sketch these proof.

Lemma 6 (Lemma 11 in Kock and Callot (2014)). Let

CT =
 max

1≤i , j≤r (T−r+1)

∣∣∣∣∣ 1

T

T∑
t=1

(Z DWi )′(Z DW j )

∣∣∣∣∣< KT


for KT = ln(1+ r (T − r +1))2 ln(T )σ2

T . Then P
(
CT

)≥ 1−2T −1/A for some constant A > 0.

Proof. Proof of theorem 3 sign(θ̃) = sign(θ) if and only if the following two conditions are met.
First let i ∈S c∣∣∣∣∣∣Ψi ,Ŝ

(
ΨŜ ,Ŝ

)−1
(

(Z DWŜ )′ε
T

−λT sign(θi )wi

)
− (Z DWi )′ε

T

∣∣∣∣∣∣≤∣∣∣∣∣∣Ψi ,Ŝ

(
ΨŜ ,Ŝ

)−1
(

(Z DWŜ )′ε
T

−λT sign(θi )wi

)∣∣∣∣∣∣+
∣∣∣∣∣ (Z DWi )′ε

T

∣∣∣∣∣≤λT wi . (A.7)

The second condition is

sign

θŜ +
(
ΨŜ ,Ŝ

)−1
(

(Z DWŜ )′ε
T

−λT sign(θŜ )wŜ

)= sign(θS ). (A.8)

Theorem 6 in Kock and Callot (2014) shows that the left side of (A.7) can be bounded from
above by∣∣∣∣∣∣Ψi ,Ŝ

(
ΨŜ ,Ŝ

)−1
(

(Z DWŜ )′ε
T

−λT sign(θi )wi

)∣∣∣∣∣∣−
∣∣∣∣∣ (Z DWi )′ε

T

∣∣∣∣∣≤ sKT

qφmin,S

(
λT

2
+ 2λT

θmin

)
+ λT

2
,

and the right side of (A.7) s bounded from below by
∣∣λT wi

∣∣≥ λT∥∥∥θ̂−θ∥∥∥
`1

. We replace these bounds

in (A.7) and divide both sides by the right side bound to get (8).
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For the condition (A.8) to be verified it suffices to show that∥∥∥∥∥∥
(
ΨŜ ,Ŝ

)−1
(

(Z DWŜ )′ε
T

−λT sign(θŜ )wŜ

)∥∥∥∥∥∥
`∞

≤ θmin (A.9)

which Kock and Callot (2014) shows to be satisfied if (9) is satisfied.
Lemmas 6 and 2 provide the desired bound on P

(
BT

⋂
CT

)
which completes the proof.

Proof. Proof of theorem 4 To prove theorem 4 we have to prove that the conditions in theorem
3 are valid asymptotically. We work on the set BT ∩CT which we begin by showing holds with
probability 1, we then turn to the other conditions.

1. P (BT ∩CT ) → 1 which can be seen to hold from lemmas 6 and 2.

2. To show that θmin ≥ 2
∥∥∥θ̂−θ∥∥∥

`1
is asymptotically valid, recall that from (4):

∥∥∥θ̂−θ∥∥∥
`1

≤ 16sλT

κ2
T

∈Op

(
ln(1+T )5/2 ln(1+T − r +1)ln(r (T − r +1))1/2T 1/2−a

)
, and since θmin ∈Ω(

ln(T )aT
)

we have:∥∥∥θ̂−θ∥∥∥
`1

θmin
∈Op

(
ln(1+T )5/2 ln(1+T − r +1)ln(r (T − r +1))1/2T 1/2−a

ln(T ) ln(1+T )5/4 ln(1+T − r +1)1/2 ln(r (T − r +1))1/4T −a/4

)
= op (1)

so that θmin ≥ 2
∥∥∥θ̂−θ∥∥∥

`1
with probability 1.

3. Recall that by assumption 4, κ2
T and κ2 (and hence φmin,S ) is bounded from below

away from zero. To show that (8) holds asymptotically, we replace
∥∥∥θ̂−θ∥∥∥

`1
by its upper

bound from (4) and we are left to show that s2KTλT + s2KTλT
θmin

+ sλT → 0. Notice that

s2KTλT = bT → 0 which takes care of the first term. Regarding the second term: s2KTλT
θmin

=
1

ln(T ) → 0, and for the third term: sλT ∈Op (T 1/2−a) so that sλT → 0 if a > 1/2.

4. To show that (9) holds asymptotically we have to show that
p

sλT
θmin

+
p

sλT

θ2
min

→ 0. The first

term:

p
sλT

θmin
∈Op

(
ln(1+T )5/2 ln(1+T − r +1)ln(r (T − r +1))1/2T −a/2

ln(T ) ln(1+T )5/4 ln(1+T − r +1)1/2 ln(r (T − r +1))1/4T −a/4

)
∈Op

(
ln(1+T )5/4 ln(1+T − r +1)1/2 ln(r (T − r +1))1/4T −a/4 ln(T )−1

)
= op (1)

the second term:

p
sλT

θ2
min

∈Op

(
ln(1+T )5/2 ln(1+T − r +1)ln(r (T − r +1))1/2T −a/2

ln(T )2 ln(1+T )5/2 ln(1+T − r +1)ln(r (T − r +1))1/2T −a/2

)
∈Op

(
ln(T )−2

)
= op (1).

This completes the proof.
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