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Abstract. In this paper we consider modeling and forecasting of large realized covari-

ance matrices by penalized vector autoregressive models. We propose using Lasso-type

estimators to reduce the dimensionality to a manageable one and provide strong theoret-

ical performance guarantees on the forecast capability of our procedure. To be precise,

we show that we can forecast future realized covariance matrices almost as precisely as

if we had known the true driving dynamics of these in advance. We next investigate

the sources of these driving dynamics for the realized covariance matrices of the 30 Dow

Jones stocks and find that these dynamics are not stable as the data is aggregated from

the daily to the weekly and monthly frequency.

The theoretical performance guarantees on our forecasts are illustrated on the Dow

Jones index. In particular, we can beat our benchmark by a wide margin at the longer

forecast horizons. Finally, we investigate the economic value of our forecasts in a portfolio

selection exercise and find that in certain cases an investor is willing to pay a considerable

amount in order get access to our forecasts.

Keywords: Realized covariance; vector autoregression; shrinkage; Lasso; forecasting;

portfolio allocation.

JEL codes: C22

1. Introduction

This paper deals with modeling and forecasting large-dimensional time-varying realized

measures of covariance matrices of returns on financial assets. By realized measures of a
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covariance matrix we mean estimates based on ultra-high-frequency data as, for example,

the composite realized kernel of Lunde et al.Lunde et al. (20132013). We evaluate the proposed model in

terms of its forecasting performance in comparison to benchmark alternatives as well as in

terms of its economic value in a conditional mean-variance analysis to assess the value of

volatility forecasts to short-horizon investors as in Fleming, Kirby and Ostdiek(2001,2003).

Furthermore, our procedure is able to unveil the dynamics governing the evolution of the

covariance matrices and we use this property to investigate which sectors are instrumental

in driving these dynamics. This is extremely important since we can answer questions such

as: are certain sectors independent of other sectors? Are the variances of stocks mainly

described by their own past or are there spill over effects across stocks and sectors? Are the

covariances governed by the same dynamics as the variances? Finally, we also investigate

whether these dynamics change as the realized measures are aggregated from the daily to

the weekly and monthly level as one could expect the driving dynamics to differ from the

short to the long run.

Modern portfolio selection as well as risk management and empirical asset pricing mod-

els strongly rely on precise forecasts of the covariance matrix of the assets involved. For

instance, the traditional mean-variance approach of MarkowitzMarkowitz (19521952) requires the esti-

mation or modeling of all variances and covariances. The evolution of financial markets

has increased the number of assets, leading traditional approaches to be less suitable to

be used by practitioners. Typical multivariate ARCH-type models fail to deliver reliable

estimates due the curse of dimensionality and large computational burdens. Possible so-

lutions frequently used in practice are: (1) a weighted-average of past squared returns

as in the Riskmetrics methodology; (2) vast latent conditional covariance models, or (3)

the construction of factor models. In this paper we will take a different route and will

consider the estimation of vast vector autoregressive models for realized measures of co-

variance matrices as in Kock and CallotKock and Callot (20122012). To avoid the curse of dimensionality we

advocate the use of the Least Absolute Shrinkage and Selection Operator (Lasso) pro-

posed by TibshiraniTibshirani (19961996). An advantage of this approach is that it does not reduce

dimensionality by transforming variables, thus keeping the interpretability of the individ-

ual variables. Our paper is related to the work of Audrino and KnausAudrino and Knaus (20142014) who applied

the Lasso to univariate autoregressive models in order to forecast realized measures of

volatility.

The contributions of this paper are as follows. First, we put forward a methodology

to model and forecast large time-varying realized covariance matrices with a minimum

number of restrictions. Second, and as stressed already, our method can also shed light

on the drivers of the dynamics of these realized covariance matrices as the Lasso also

performs variable selection. Third, we derive an upper bound on the forecast error which

is valid even in finite samples. Fourth, we show how this bound translates into a bound

on the forecast error of the time-varying variance of a portfolio constructed from a large

number of assets. Fifth, we use our method to forecast the realized covariance matrices

at the daily, weekly, and monthly level of aggregation. Finally, we apply our methodology
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to the selection of a portfolio with mean-variance preferences to assess the economic value

of our forecasts.

Note that we do not consider the estimation of the covariance matrix in high dimen-

sions. There are several papers recently proposed in the literature to tackle this prob-

lem as, for example, Bickel and LevinaBickel and Levina (20082008), Levina et al.Levina et al. (20082008), Fan et al.Fan et al. (20082008),

Wang and ZouWang and Zou (20102010), Bai and ShiBai and Shi (20112011), Fan et al.Fan et al. (20112011), Fan et al.Fan et al. (20122012), Fan et al.Fan et al.

(2012a2012a), Hautsch et al.Hautsch et al. (20092009), Fan et al.Fan et al. (20132013), and Lunde et al.Lunde et al. (20132013) among many

others. Our goal is to build an econometric methodology which will be used to construct

dynamic models to forecast large covariance matrices estimated elsewhere. Even with

proper estimates of covariance matrices, modeling their dynamics and producing reliable

forecasts pose major challenges for researchers, especially in high dimensions where the

potential number of parameters to be estimated becomes intractable by standard time

series techniques.

In terms of forecasting (realized) covariance matrices, there are some papers related

to ours. However, none of them tackles the curse of dimensionality in a general manner.

For example, Bauer and VorkinkBauer and Vorkink (20112011) propose a multivariate version of the heteroge-

nous autoregressive (HAR) model put forward by CorsiCorsi (20092009). Their approach is based

on the log-matrix covariance specification of Chiu et al.Chiu et al. (19961996). However, their model is

only feasible for covariance matrices of low dimension. Furthermore, the parameters of

their model are not easily interpretable because of the log-matrix transformation, and

thus one can not investigate the main driving forces of the dynamics of the covariance

matrix as in our approach. Another example is Chiriac and VoevChiriac and Voev (20112011) who consider

a multivariate ARFIMA model to forecast realized measures of daily covariance matri-

ces. As in Bauer and VorkinkBauer and Vorkink (20112011), only small covariance matrices can be modelled.

Golosnoy et al.Golosnoy et al. (20122012) propose a Conditional Autoregressive Wishart (CAW) model for

the analysis of realized covariance matrices which is a dynamic generalization of the work

put forward by Gourieroux et al.Gourieroux et al. (20092009). As before, in their application the authors only

consider five different assets.

Using high-frequency data for portfolio selection has been considered by many authors.

The work of Fleming et al.Fleming et al. (20032003), which builds on Fleming et al.Fleming et al. (20012001), measures the

economic gains of using high-frequency data in the context of investment decisions. Their

results indicate that the economic value of switching from daily to intradaily returns to

estimate daily covariance matrices are substantial. They estimate that a risk-averse in-

vestor would be willing to pay 50 to 200 basis points per year to capture the observed

gains in portfolio performance. However, their analysis is restricted to small sets of

assets. Hautsch et al.Hautsch et al. (20112011) introduce the Multi-Scale Spectral Components (MSSC)

model, which is a kind of factor specification, for forecasting covariance matrices and they

show that high-frequency data models can translate into better portfolio allocation deci-

sions over longer investment horizons than previously believed. Although, these authors

consider the same problem as we do here, their modelling approach is quite different.
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The rest of the paper is organized as follows. Section 22 describes the problem setup,

defines notation, and briefly presents the Lasso and some key assumptions. In Section 33

we present some theoretical results. The data set and computational issues are discussed

in Section 44, variable selection and forecasting results are presented in Section 55, portfolio

selection using the forecasted covariance matrices is discussed in section 66. Finally, Section

77 concludes the paper. All proofs are deferred to the appendix.

2. Methodology

In this section we put forward our methodology and present a finite sample upper bound

on the forecast error of our procedure. But first we introduce the following notation which

will be used throughout the paper.

2.1. Notation. For any x ∈ Rm, ‖x‖ =
√∑m

i=1 x
2
i , ‖x‖`1 =

∑m
i=1 |xi| and ‖x‖`∞ =

max1≤i≤m |xi| denote `2, `1 and `∞ norms, respectively. When regarding the m×m matrix

A as a linear operator from Rm to Rm equipped with either the `1- or the `2-norm, ‖A‖
and‖A‖`1 denote the induced operator norms. ‖A‖∞ shall denote the maximum absolute

entry of A. For any two real numbers a and b, a ∨ b = max(a, b) and a ∧ b = min(a, b).

2.2. The econometric method. Let Σt denote the nT × nT population conditional

covariance matrix as of time t when conditioning on the σ-field σ({Σs : s < t}). Note

that the dimension nT of Σt is indexed by the sample size T . This reflects the fact

that nT may be large compared to T and hence standard asymptotics, which take the

dimension nT as a fixed number, may not accurately reflect the actual performance in

finite samples.

As is clear from the above, the entries of the conditional covariance matrix are poten-

tially a complicated function of past entries of the conditional covariance matrix. If we

allowed conditioning on the infinite past of the conditional covariance process, each entry

of Σt would be a function of infinitely many variables. Instead, we assume that Σt only

depends on the pT most recent values of Σt, namely Σt−1, ...,Σt−pT . As each of these

matrices has (nT + 1)nT/2 unique entries we still have that every entry of Σt can be a

function of nT
nT+1

2
pT variables. In the case of the Dow Jones Industrial Average (DJIA)

considered in this paper we have nT = 30, and assuming that pT = 10 lags suffice to

describe the dynamics of Σt, every entry of Σt can be a function of up to 4,650 variables.

This is the case for all the 465 unique entries of Σt
11. To make this manageable, we

shall assume that every entry of Σt is a linear function of it past, so that Σt follows a

VAR(pT ) process. This allows for rich dynamics as every entry of Σt can depend on sev-

eral thousand past entries, leading to equations with potentially many more parameters

than observations.

1Actually, we shall work with moels including up to 20 lags, thus having 9,300 variables per equation.
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Formally, define yt = vech Σt. We assume that yt follows a vector autoregression of

order pT , i.e.,

yt =

pT∑
i=1

Φiyt−i + εt, t = 1, ..., T(1)

where Φi, i = 1, ..., pT are the kT×kT dimensional parameter matrices with kT = nT (nT +

1)/2. Henceforth we suppress the dependence of nT , kT and pT on T to simplify notation.

Note that the number of parameters per equation, k, increases quadratically in n, as

does the number of equations. So even for conditional covariance matrices Σt of a mod-

erate dimension the number of parameters in (11) may be very large. Hence, standard

estimation techniques such as least squares may provide very imprecise parameter es-

timates or even be infeasible if the number of variables is greater than the number of

observations. To circumvent this problem, we use the Least Absolute Shrinkage and Se-

lection Operator (Lasso) of TibshiraniTibshirani (19961996) which is feasible even when the number of

parameters to be estimated is (much) larger than the sample size.

Even though each entry of Σt can in principle depend on every entry of the previous

p conditional covariance matrices it is reasonable to assume that the major stocks play

a more important role in describing the dynamics of Σt. Furthermore, it is likely that

the intrasectoral dynamics are stronger than the intersectoral ones. For these reasons the

Φi, i = 1, ..., p in 11 may contain many zeros, i.e. they are sparse matrices. It is exactly

in such a setting that we can establish performance guarantees on the Lasso. Thus, as

we shall see, the Lasso can be used to unveil and disentangle the potentially complex

dynamics of the sequence of realized covariance matrices.

It is convenient to write the model (11) in stacked form. To do so let Zt = (y′t−1, ..., y
′
t−p)

′

be the kp × 1 vector of explanatory variables at time t in each equation and X =

(ZT , ..., Z1)′ the T × kp matrix of covariates for each equation. Let yi = (yT,i, ..., y1,i)
′

be the T × 1 vector of observations on the ith variable (i = 1, ..., k) and εi = (εT,i, ..., ε1,i)
′

the corresponding vector of error terms. Finally, β∗i is the kp dimensional parameter vec-

tor of true parameters for equation i which also implicitly depends on T . Hence, we may

write (11) equivalently as

yi = Xβ∗i + εi, i = 1, ..., k(2)

such that each equation in (11) may be modeled separately. In our application modeling

the DJIA, every equation has 465 × p explanatory variables. However it is likely that

many of these variables are irrelevant in explaining the dynamics of yi, leading to many

entries of β∗i being equal to zero. For each i = 1, ..., k we denote by si = | {j : β∗i,j 6= 0} |
the number of non-zero entries in β∗i .

2.3. The Lasso. We next describe briefly how the Lasso can be used to estimate a system

of large equations as outlined above. The theoretical properties of the Lasso have been

studied extensively, see e.g. Zhao and YuZhao and Yu (20062006), Meinshausen and BühlmannMeinshausen and Bühlmann (20062006),

Bickel et al.Bickel et al. (20122012), Bühlmann and GeerBühlmann and Geer (20112011), and Kock and CallotKock and Callot (20122012) to mention
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just a few. It is known that it only selects the correct model asymptotically under rather

restrictive conditions on the dependence structure of the covariates. However, we shall see

that it can still serve as an effective screening device in these situations. Put differently, it

can remove many irrelevant covariates while keeping the relevant ones and estimating the

coefficients of these with high precision. We investigate the properties of the Lasso when

applied to each equation i = 1, ..., k separately. We also provide finite sample bounds on

the systemwise forecasting performance. The Lasso estimates β∗i in (22) by minimizing the

following objective function

L(βi) =
1

T
‖yi −Xβi‖2 + 2λT‖βi‖`1(3)

with respect to βi where λT is a sequence to be defined exactly below. (33) is basically the

least squares objective function plus an extra term penalizing parameters that are different

from zero. In practice λT is often chosen either by cross validation or using an information

criterion. An attractive feature of the Lasso is that it performs estimation and variable

selection simultaneously. This is useful in high-dimensional models as ours in particular,

as the number of specification tests to be carried out after the usual estimation step would

be daunting. Furthermore, it is not clear in which order these tests should be carried out

and one would inevitable have to resort to ad hoc procedures. Finally, the Lasso is a

convex minimization problem, resulting in fast estimation and variable selection. This is

a necessity for our high-dimensional problem where 30*31/2=465 equations with several

thousand variables in each equation have to be estimated for every forecast we make.

2.4. Forecasting with the Lasso. Once the parameter estimates β̂i have been obtained

for equation i, forecasting is simple and is done as usual in VAR models. The one-step

ahead forecast is given by

ŷi,T+1 = β̂′iZT .

Doing this for all i = 1, ..., k results in a forecast Σ̂T+1 of the matrix ΣT+1. Forecasts

at longer horizons are obtained by iterating forward the estimated VAR model, replacing

unknown future values of yi,t by their forecasts.

3. Theoretical Results

In this section we provide an upper bound on the maximal forecast error ‖Σ̂T+1 − ΣT+1‖∞.

As we will see next it is exactly such a bound which is required for providing a theoretical

upper bound on the errors of the variance forecasts of a portfolio of assets. To be precise,

let w ∈ Rn denote a set of portfolio weights. The true conditional variance of the portfolio

is given by

σ2
T+1 = w′ΣT+1w,
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while the forecasted variance is

σ̂2
T+1 = w′Σ̂T+1w.

How close are σ̂2
T+1 and σ2

T+1 to each other? In the presence of an upper bound on

the positions an investor may take in any given asset we can answer this question by

providing an upper bound on ‖Σ̂T+1 − ΣT+1‖∞. Thus, we need a precision guarantee for

the forecasts of the Lasso. In particular, assume that‖w‖`1 ≤ 1+c for some c ≥ 0. Here c

indicates the amount of short selling that is allowed. c = 0 corresponds to no short selling,

while for any c > 0 the maximum amount of short selling possible is c/2. For any fixed

vector of portfolio weights, the next theorem, of which a similar version may be found in

Fan et al.Fan et al. (2012b2012b), utilizes the short selling constraint to derive an upper bound on the

distance between the predicted portfolio variance and the actual portfolio variance.

Theorem 1. Assume that ‖w‖`1 ≤ 1 + c for some c ≥ 0. Then,∣∣σ̂2
T+1 − σ2

T+1

∣∣ ≤ ‖Σ̂T+1 − ΣT+1‖∞ (1 + c)2.

Theorem 11 reveals that in the presence of a restriction on the exposure of the portfolio,

an upper bound on ‖Σ̂T+1 − ΣT+1‖∞ implies an upper bound on the distance between

σ̂2
T+1 and σ2

T+1. It is sensible that a short-selling constraint is necessary in order to

establish such a bound since otherwise the investor could go infinitely long in the least

precisely forecasted stock. It is also worth noting that the bound in Theorem 11 is generic

in the sense that the forecast Σ̂T+1 does not need to come from a specific method. Any

matrix Σ̂T+1 can be plugged in.

We shall now give an upper bound on ‖Σ̂T+1 − ΣT+1‖∞ based on our VAR approach.

To this end, let σ2
i,y denote the variance of yt,i and σ2

i,ε the variance of εt,i, 1 ≤ i ≤ k.

Then define ηT = max1≤i≤k(σi,y ∨ σi,ε). Also, let s̄ = max(s1, ..., sk) denote the maximal

number of non-zero coefficients in any equation of the vector autoregression.

Theorem 2. Let λT =
√

8 ln(1 + T )5 ln(1 + k)4 ln(1 + p)2 ln(k2p)η4
T/T and 0 < q < 1.

Under regularity conditions made precise in the appendix, one has∥∥Σ̂T+1 − ΣT+1

∥∥
∞ ≤

√
2η2

T ln(k(p+ 1)) ln(T )
( 16

qκ2
s̄λT + 1

)
(4)

with high probability (the exact probability, as well as the definition of κ > 0, are given in

the appendix).

Theorem 22 gives an upper bound on the forecast error of Σ̂T+1 which is valid even in

finite samples. Recall that k = n(n+ 1)/2. Thus, for any size n of the covariance matrix,

Theorem 22 gives an upper bound on the forecast error of the Lasso. Clearly, the larger

the covariance matrix to be forecasted is, the larger this upper bound since there are more

elements which have to be forecasted. In order to gauge how precise the upper bound in

(44) is, it is instructive to compare it to the bound one could have obtained if the true

parameters had been known. If the true parameters Φi, i = 1, ..., p were known, one

would have the following upper bound on the forecast error:
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Lemma 1. Assume that Φi, i = 1, ..., p are known. Then, under regularity conditions

made precise in the appendix,∥∥Σ̂T+1 − ΣT+1

∥∥
∞ ≤

√
2σ2

T,ε ln(k) ln(T )

with high probability (the exact probability is given in the appendix).

Compared to the bound in Theorem 22 the bound in Lemma 11 has roughly removed

the term
√

2η2
T ln(k(p+ 1)) ln(T ) 16

qκ2
s̄λT which is the part of the upper bound stemming

from the estimation error of the parameters. The last part of the bound in Theorem 22

stems from the fact that the error terms in the model (11) are unknown such that we must

still bound their fluctuations with high probability. Even when the true parameters are

known, these unknown error terms are an unremovable source of forecast error. From an

asymptotic point of view one will usually requires that s̄λT → 0 since this is needed to

make the estimation error tend to zero in probability. In this case the bound in Theorem

22 is almost as good as the one in Lemma 11. Hence, our forecasts are almost as precise as if

we had known the true model from the outset even though we do not assume knowledge

of which variables are relevant, nor do we assume to know the values of the non-zero

parameters.

By combining Theorems 11 and 22 one may achieve the following upper bound on the

forecast error of σ̂2
T .

Corollary 1. Under the assumptions of Theorems 11 and 22 one has that∣∣σ̂2
T+1 − σ2

T+1

∣∣ ≤√2η2
T ln(k(p+ 1)) ln(T )

( 16

qκ2
s̄λT + 1

)
(1 + c)2

with high probability (the exact probability is given in the appendix).

Corollary 11 provides a finite sample upper bound on the error of the forecast of the

portfolio variance under a short selling constraint. As stressed previously, in the absence

of a short selling constraint, corresponding to c → ∞, the upper bound in the above

display tends to ∞ as in the worst case one could go infinitely long in the stock whose

volatility is forecasted the least precisely and offsetting this with a short position in, say,

the stock whose volatility is forecasted the most precisely. Note also that the bound in

Corollary 11 is actually valid uniformly over {w ∈ Rn :‖w‖`1 ≤ 1 + c}, i.e. all portfolios

with a short selling constraint of 1 + c. To be precise,

Corollary 2. Under the assumptions of Theorems 11 and 22 one has that

sup
w∈Rn:‖w‖`1≤1+c

∣∣σ̂2
T+1 − σ2

T+1

∣∣ ≤√2η2
T ln(k(p+ 1)) ln(T )

( 16

qκ2
s̄λT + 1

)
(1 + c)2

with high probability (the exact probability is given in the appendix).

As ŵ = arg minw∈Rn:‖w‖`1≤1+c,
∑n
i=1 wi=1 w

′Σ̂T+1w satisfies the conditions of Corollary 22

we have in particular that ŵ′Σ̂T+1ŵ and ŵ′ΣT+1ŵ are close to each other. This means that

the forecasted portfolio variance is not far from the actually realized portfolio variance

when using the weights ŵ.
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4. Data and implementation

In this section we discuss the data used in the empirical application as well as details

of the implementation of the estimation and forecasting strategies.

Data and Cleaning. The data consists of 30 stocks from the Dow Jones index from

2006 to 2012 with a total of 1474 daily observations22. The daily realized covariances are

constructed from 5 minutes returns. The stocks can be classified in 8 broad categories

highlighted in Table 11.

Basic Technology Consumer Consumer
Materials Cyclical Non-cyclical
2 4 3 7

Energy Financial Industrial Communication
2 3 5 4

Table 1. Number of stocks per category. 30 Dow Jones stocks.

Prior to any sort of estimation or forecasting, the data is transformed by taking the

logarithm of the variances ensuring that, after an exponential transformation, all variance

forecasts are strictly positive. The sample covered by our data set includes 16 out of the

20 largest intraday point swings of the Dow Jones industrial average, triggered by the

financial crisis of 2008 as well as flash-crashes in 2010 and 2011. These events lead to many

extreme values in the daily realized covariance matrices. In order to mitigate the effect of

these extreme observation we perform some light cleaning of the data prior to estimation.

To be precise, we flag for censoring every covariance matrix in which more than 25%

of the (unique) entries are more than 4 standard errors (of the series corresponding to

that entry) away from their sample average up to then. These matrices are replaced by

an average of the nearest five preceding and following non-flagged matrices. Using this

cleaning scheme, the flagged matrices are concentrated in October 2008. The flash crashes

of the 6th of May 2010 and the 9th of August 2011 are also flagged. In total, the number

of cleaned matrices is 20 which corresponds to a very small fraction (1.3%) of the total

sample size of 1474.

All forecasts are computed recursively for horizons greater than 1, and all forecast errors

are computed based on the de-transformed forecasts. We consider 3 levels of aggregation

of the data: daily, weekly, and monthly. The daily forecasts are computed using a rolling

window of 1000 observations leading to 455 forecasts. The first forecast is made on the

6th of February 2010. The weekly models are estimated using a rolling window of 263

observations resulting in 27 forecasts. The first weekly forecast is made for the first week

of 2011. All monthly models are estimated using a rolling window of 60 observations

resulting in 7 forecasts of which the first is made January 2011. We forecast with Vector

autoregressive (VAR) and random walk (No-Change) models. The estimators are either

2We are grateful to Asger Lunde for kindly providing us with the data.
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the Lasso, the adaptive Lasso (using the Lasso as initial estimator), or the post Lasso

OLS to be explained in more detail in the next section.

Implementation. All the computations are carried out using R and the lassovar pack-

age based on the glmnet algorithm which is an implementation of the coordinate descent

algorithm of Friedman et al.Friedman et al. (20102010). All the results are reproducible using the supple-

mentary material provided.

The models are estimated equation by equation, the penalty parameter is chosen by

minimizing the Bayesian Information Criterion (BIC). The BIC for equation i and penalty

parameter λ is

BICi(λ) = T × log
(
ε̂′λ,iε̂λ,i

)
+

kp∑
j=1

1

(
β̂λij 6= 0

)
log(T ).

where ε̂λ,i is the estimated vector of error terms corresponding to a penalty of λ. The

results of the Lasso are compared to the ones of the adaptive Lasso. Letting J(β̂i) =

{j ∈ Rkp : β̂i,j 6= 0} denote the indices of the coefficients in the i’th equation deemed zero

by the Lasso, the adaptive Lasso estimates β∗i by minimizing the following objective

function

L̃(βi) =
1

T

∥∥∥yi −XJ(β̂i)
βi,J(β̂i)

∥∥∥2

+ 2λT
∑

j∈J(β̂i)

|βi,j|
|β̂i,j|

, i = 1, ..., k(5)

If the first stage Lasso estimator classifies a parameter as zero it is not included in the

second step, resulting in a problem of a much smaller size. If β∗i,j = 0 then β̂i,j is likely to

be small by equation 99 (in the appendix) and consistency of the Lasso. Hence, 1/β̂i,j is

large and the penalty on βi,j is large. Conversely, if β∗i,j 6= 0, β̂i,j is not too close to zero

and the penalty is small.

We also consider a post Lasso least squares estimation (Belloni and ChernozhukovBelloni and Chernozhukov

(20132013)), that is, estimating the model by OLS after using the Lasso for variable selection.

This post Lasso OLS has the benefit of not being subject to the bias introduced in the

Lasso estimates due to penalization. Kock and CallotKock and Callot (20122012) shows that the post Lasso

estimator reduces the estimation and forecast error in a VAR framework.

5. Driving dynamics and forecasts

This section reports our empirical findings. We begin by studying the dynamic behavior

of the sequence of realized covariance matrices by investigating which variables drive

the dynamics of the realized covariance matrices. In particular, we investigate whether

intrasectoral dependencies are stronger than intersectoral ones, and whether some stocks

are important in explaining the volatility of a large fraction of the stocks in the Dow

Jones index. We also investigate how the dynamics of the realized covariance matrices

differ across levels of aggregation of the data (daily, weekly, monthly). We address these

questions next.
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5.1. Driving dynamics of the realized covariance matrix. The results in this section

are based on a VAR(1) estimated by the Lasso. Thus, each of the 465 equations to

be estimated has 465 variables (plus a constant). Table 22 reports the average (across

estimation windows) fraction of variables from a given category (in rows) selected in

equations for stocks belonging to a given category (in columns) at the daily frequency.

Thus, the numbers are always between zero and one. As an example, 75% of the lagged

variances from the Basic Materials sector are included when modeling variances of the

Basic Materials sector while only 17% of the lagged variances of stocks belonging to

the Consumer, Non-cyclical sector are included when modeling variances of the Basic

Materials sector. The numbers are broken down into variance and covariance terms in

order to see whether diagonal and off-diagonal terms have different driving dynamics.

There are 30 variance equations and 435 covariance equations. While it is easy to assign

variances and covariances between two variables from the same category to that category,

assigning categories to covariance terms involving variables from two different sectors

requires a subjective choice. We have chosen to assign a covariance between two variables

from different sectors to both sectors. Hence, such inter-sectoral covariance terms enter as

explanatory variables in two rows in Table 22. For that reason, the off-diagonal explanatory

variables have to be interpreted with a lot of care and we will mainly focus on the diagonal

terms.

The selected models in Table 22 for the variance terms (diagonal equations) are quite

sparse. When explaining the dynamics of the variance equations, lags of variance terms

are much more important than lags of covariance terms. Actually, the most important

dynamics for 7 out of 8 sectors are the intra sectoral ones. The Industrial and Energy

sectors are particularly dependent on their own past as they always use all lagged variances

from their respective categories to explain themselves. The financial sector is also driven

strongly by its own past at the daily level of aggregation.

The bottom panel of Table 22 investigates the driving forces of the covariance terms. As

mentioned already, these should be interpreted with a bit more care than the diagonal

forces and we shall thus be brief in our comments. For 6 out of eight sectors it is lagged

variances of that sector which are chosen most often in order to explain the dynamics of

the corresponding sector. However, the off-diagonal terms are now chosen more often than

above. Furthermore, the fraction of times the off-diagonal terms are chosen is naturally

lower than the corresponding number for the diagonal terms as there are many more

off-diagonal terms.

To complement the selection frequencies in Table 22 and to give a sense of the total

number of parameters selected per equation, Figure 11 plots the average number of variables

selected in the variance as well as the covariance equations over time for the VAR(1) and

VAR(20) estimated by the Lasso. Consider first the VAR(1). The dimensions of the

diagonal equations are remarkably stable, changing by only a couple of units throughout

the sample. Furthermore, the diagonal equations are quite sparse only including between

11 and 13 variables out of a possible 465. The off-diagonal equations are less sparse and
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Consumer, Cyclical
Technology
Energy
Industrial
Communications
Financial
Consumer, Non-cyclical
Basic Materials

Variance Equations

L
ag

ge
d

va
ri

an
ce

Basic Materials 0.75 0.40 0.14 0.52 0.23 0.35 0.57 0.39
Consumer, Non-cyclical 0.17 0.48 0.37 0.37 0.24 0.20 0.26 0.32
Financial 0.00 0.42 0.99 0.24 0.64 0.20 0.12 0.48
Communications 0.32 0.23 0.10 0.57 0.19 0.14 0.27 0.19
Industrial 0.00 0.19 0.28 0.16 1.00 0.08 0.07 0.18
Energy 0.58 0.45 0.46 0.33 0.02 1.00 0.38 0.55
Technology 0.34 0.19 0.09 0.24 0.02 0.05 0.63 0.12
Consumer, Cyclical 0.34 0.54 0.35 0.29 0.30 0.20 0.31 0.70

L
ag

ge
d

co
va

ri
an

ce

Basic Materials 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.01
Consumer, Non-cyclical 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Financial 0.00 0.01 0.02 0.00 0.00 0.00 0.01 0.00
Communications 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Industrial 0.02 0.01 0.01 0.02 0.03 0.00 0.03 0.02
Energy 0.01 0.03 0.01 0.03 0.01 0.01 0.02 0.03
Technology 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00
Consumer, Cyclical 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Covariance Equations

L
ag

ge
d

va
ri

an
ce

Basic Materials 0.81 0.27 0.10 0.24 0.24 0.93 0.26 0.29
Consumer, Non-cyclical 0.48 0.71 0.56 0.32 0.28 0.35 0.36 0.41
Financial 0.13 0.25 0.64 0.16 0.06 0.32 0.15 0.17
Communications 0.62 0.57 0.54 0.65 0.51 0.70 0.61 0.58
Industrial 0.13 0.13 0.18 0.18 0.34 0.08 0.10 0.07
Energy 0.12 0.08 0.21 0.06 0.03 0.56 0.11 0.12
Technology 0.74 0.49 0.51 0.52 0.43 0.34 0.82 0.53
Consumer, Cyclical 0.14 0.52 0.55 0.37 0.37 0.51 0.29 0.90

L
ag

ge
d

co
va

ri
an

ce

Basic Materials 0.09 0.12 0.12 0.11 0.09 0.12 0.09 0.11
Consumer, Non-cyclical 0.04 0.05 0.05 0.04 0.03 0.05 0.04 0.03
Financial 0.11 0.14 0.18 0.11 0.07 0.10 0.10 0.10
Communications 0.07 0.09 0.09 0.11 0.04 0.10 0.08 0.08
Industrial 0.17 0.14 0.15 0.14 0.24 0.11 0.14 0.15
Energy 0.16 0.16 0.16 0.15 0.10 0.24 0.15 0.16
Technology 0.08 0.07 0.09 0.08 0.05 0.07 0.08 0.06
Consumer, Cyclical 0.05 0.05 0.05 0.06 0.04 0.08 0.05 0.06

Table 2. Fraction of variables selected from each sector (in row) when
modeling variables from the sector in the columns. The numbers are aver-
ages across all the equations belonging to the sector in the row and averages
across the number of estimations. The model is a VAR(1) estimated by the
Lasso at the daily level of aggregation. The upper panel considers the dy-
namics of the variances while the bottom panel considers the dynamics of
the covariances.
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Figure 1. Average Equation size of the VAR(1) and VAR(20) estimated
by the Lasso on censored data with 90% confidence intervals. A separate
count is included for the variances (diagonal terms) and the covariances
(off-diagonal terms).

their dimension, while being stable most of the time, drop around two of the periods of

high volatility in May 2010 and August 2011. To be precise, the first sharp decrease in

the model size at the beginning of the plot is at May 6, 2010 and is due to the flash

crash on that day resulting in a clear structural break in the model. The second decrease

happens around August 2011 and takes place in another period of extreme volatility. It

is of interest that the variance equations are less affected by these two extreme periods.

The dimensions of the VAR(20) (right panels) are at most twice as large as those of

the VAR(1) despite the twenty-fold increase in the number of potential covariates. The

development of the model sizes for the variances and the covariances are very similar to

the ones found for the VAR(1). The drop in the size of the equations for the covariances

actually becomes even clearer.

In the left panels of Figure 22 we investigate how the `2 forecast error of the one-step

ahead forecasts behaves throughout the sample, and in particular how it reacts to the

periods of extreme volatility. As can be expected from the development of the model

sizes over time described above the forecast errors of the covariances react much stronger

to the periods of extreme volatility than the forecast errors of the variances. The right

panels of Figure 22 explain the decrease in the model size of the covariance equations from

a modelling point of view: the decrease in the model size is associated with an increase in

the penalty parameter λ which determines the amount of shrinkage. This finding is valid

for the VAR(1) as well as the VAR(20).

We also investigated the model sizes when the VAR(1) was estimated on the uncensored

data set. Interestingly, the variance equations were hardly affected by this. On the other
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Figure 2. `2 norm of the 1 step ahead forecast error (left panel) and av-
erage penalty parameter (right panel) selected by BIC. A separate measure
is included for the variance equations (diagonal terms) and the covariance
equations (off-diagonal terms).

hand, the model sizes were now around 130 for the covariance equations with an even

sharper drop of around 30 around the flash crash on May 6, 2010.

Turning to the weekly horizon, the upper panel of Table 33 reveals that the variances

are still mainly explained by lags of their own past even though the pattern is slightly

less pronounced. Furthermore, as opposed to the daily level of aggregation, no sector

includes all of its own past. The off-diagonal terms still do not play much of a role in

explaining the dynamics of the diagonal terms. As is revealed from the bottom panel of

Table 33, a higher fraction of diagonal than off-diagonal variables is chosen when modeling

covariances. This is in accordance with Table 22. At this frequency the variances of from

the Energy and Financial sectors are frequently retained to explain the volatility in other

sectors.

Table 44 reports the selection frequencies at the monthly level of aggregation. A remark-

able fact is that the diagonal pattern for the explanatory variables of the variances has

now disappeared almost entirely. The dynamics of the variance equations are now gov-

erned mainly by the financial sector and the energy sector, which we interpret as implying

that these sectors are driving the long run volatility of the Dow Jones index.

To sum up, as the level of aggregation of the data is increased, the diagonal pattern

becomes less and less clear. At the daily level of aggregation the variances were to a high

degree explained by their own past such that the intrasectoral dynamics were dominant.

At the monthly horizon the intersectoral dynamics are more pronounced and the volatility

in the sample is driven by the financial and energy sectors. The weekly level of aggregation

strikes a middle ground between these two extremes.
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Consumer, Cyclical
Technology
Energy
Industrial
Communications
Financial
Consumer, Non-cyclical
Basic Materials

Variance Equations

L
ag

ge
d

va
ri

an
ce

Basic Materials 0.75 0.13 0.08 0.35 0.08 0.00 0.41 0.19
Consumer, Non-cyclical 0.12 0.43 0.08 0.15 0.04 0.00 0.02 0.08
Financial 0.17 0.54 0.78 0.33 0.66 0.19 0.18 0.51
Communications 0.26 0.08 0.04 0.27 0.04 0.00 0.08 0.04
Industrial 0.00 0.00 0.00 0.00 0.69 0.00 0.01 0.00
Energy 0.47 0.20 0.19 0.20 0.00 0.81 0.31 0.32
Technology 0.22 0.17 0.01 0.07 0.00 0.02 0.55 0.00
Consumer, Cyclical 0.19 0.32 0.06 0.20 0.25 0.06 0.23 0.64

L
ag

ge
d

co
va

ri
an

ce

Basic Materials 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Consumer, Non-cyclical 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Financial 0.00 0.01 0.02 0.01 0.00 0.00 0.01 0.00
Communications 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Industrial 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00
Energy 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01
Technology 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
Consumer, Cyclical 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Covariance Equations

L
ag

ge
d

va
ri

an
ce

Basic Materials 0.43 0.12 0.09 0.11 0.11 0.27 0.13 0.07
Consumer, Non-cyclical 0.07 0.26 0.07 0.10 0.03 0.17 0.08 0.08
Financial 0.12 0.33 0.79 0.20 0.06 0.46 0.16 0.23
Communications 0.23 0.17 0.10 0.28 0.17 0.14 0.24 0.18
Industrial 0.04 0.01 0.00 0.02 0.02 0.00 0.03 0.00
Energy 0.25 0.14 0.31 0.04 0.02 0.38 0.18 0.17
Technology 0.29 0.14 0.06 0.12 0.10 0.07 0.36 0.16
Consumer, Cyclical 0.24 0.26 0.18 0.15 0.37 0.29 0.18 0.51

L
ag

ge
d

co
va

ri
an

ce

Basic Materials 0.06 0.05 0.03 0.07 0.05 0.06 0.05 0.04
Consumer, Non-cyclical 0.03 0.05 0.04 0.04 0.04 0.04 0.04 0.04
Financial 0.06 0.07 0.10 0.07 0.04 0.05 0.05 0.06
Communications 0.04 0.04 0.05 0.06 0.04 0.05 0.05 0.04
Industrial 0.06 0.05 0.05 0.07 0.14 0.04 0.05 0.05
Energy 0.04 0.05 0.03 0.05 0.04 0.10 0.07 0.05
Technology 0.03 0.02 0.03 0.03 0.02 0.03 0.05 0.02
Consumer, Cyclical 0.03 0.03 0.03 0.03 0.02 0.03 0.04 0.04

Table 3. Fraction of variables selection from each sector (in rows) when
modeling variables from the sector in the columns. The numbers are aver-
ages across all the equations belonging to the sector in the row and averages
across the number of estimations. The model is a VAR(1) estimated by the
Lasso at the weekly level of aggregation. The upper panel considers the
dynamics of the variances while the bottom panel considers the dynamics
of the covariances.
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Consumer, Cyclical
Technology
Energy
Industrial
Communications
Financial
Consumer, Non-cyclical
Basic Materials

Variance Equations

L
ag

ge
d

va
ri

an
ce

Basic Materials 0.10 0.19 0.21 0.30 0.48 0.06 0.27 0.34
Consumer, Non-cyclical 0.00 0.10 0.01 0.01 0.06 0.00 0.00 0.02
Financial 0.00 0.52 0.65 0.40 0.68 0.10 0.10 0.35
Communications 0.14 0.14 0.09 0.19 0.19 0.08 0.17 0.15
Industrial 0.00 0.03 0.01 0.01 0.00 0.04 0.16 0.05
Energy 0.57 0.35 0.28 0.31 0.10 0.61 0.41 0.37
Technology 0.12 0.06 0.00 0.04 0.03 0.01 0.23 0.01
Consumer, Cyclical 0.01 0.06 0.09 0.13 0.08 0.02 0.11 0.09

L
ag

ge
d

co
va

ri
an

ce

Basic Materials 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Consumer, Non-cyclical 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Financial 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00
Communications 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.01
Industrial 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Energy 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.01
Technology 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.01
Consumer, Cyclical 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Covariance Equations

L
ag

ge
d

va
ri

an
ce

Basic Materials 0.69 0.89 0.94 0.78 0.75 0.90 0.75 0.77
Consumer, Non-cyclical 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00
Financial 0.18 0.35 0.49 0.26 0.09 0.10 0.14 0.24
Communications 0.29 0.40 0.42 0.34 0.29 0.41 0.35 0.39
Industrial 0.39 0.13 0.11 0.05 0.05 0.38 0.26 0.15
Energy 0.62 0.63 0.61 0.52 0.17 0.70 0.63 0.57
Technology 0.05 0.01 0.02 0.01 0.02 0.02 0.05 0.00
Consumer, Cyclical 0.42 0.45 0.50 0.42 0.38 0.44 0.40 0.37

L
ag

ge
d

co
va

ri
an

ce

Basic Materials 0.01 0.01 0.02 0.01 0.00 0.03 0.01 0.01
Consumer, Non-cyclical 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Financial 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00
Communications 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05
Industrial 0.02 0.03 0.05 0.03 0.01 0.07 0.03 0.03
Energy 0.02 0.02 0.02 0.02 0.03 0.05 0.02 0.02
Technology 0.04 0.06 0.06 0.06 0.03 0.05 0.04 0.04
Consumer, Cyclical 0.02 0.03 0.04 0.02 0.02 0.04 0.02 0.02

Table 4. Fraction of variables selection from each sector (in rows) when
modeling variables from the sector in the columns. The numbers are aver-
ages across all the equations belonging to the sector in the row and averages
across the number of estimations. The model is a VAR(1) estimated by the
Lasso at the monthly level of aggregation. The upper panel considers the
dynamics of the variances while the bottom panel considers the dynamics
of the covariances.
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Finally, it can be observed from the bottom panel of Table 44 that the basic materials

sector is completely dominant in explaining the dynamics of the covariance terms irre-

spective of the which sector these are related to. This is rather surprising in light of the

fact that the basic materials sector did not play any particular role for the variance terms.
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Figure 3. Selection frequency of the stocks in the columns. At each point
in time on the x-axis we calculate the selection frequence across the 30
variance equations of each of the stocks on the y-axis. The results are based
on a VAR(1) model estimated by the Lasso at the daily level of aggregation.

Figure 33 investigates the dynamics of the thirty variance equations in more detail at the

daily level of aggregation. To be precise, it indicates in what fraction of the 30 equations

the lagged variance of the the stock indicated on the y-axis is chosen as an explanatory

variable at each point in time on the x-axis. The first thing that can be noticed is the

relative stability of the selected variables over the 455 forecasts: the selection frequency

of each variable varies very little over time.

From Figure 33 it is also seen that the variance of IBM is the one which is most often

chosen by the Lasso for explaining the dynamics of the realized variances. Actually,

IBM is chosen in almost 80 percent of the equations on average. On the other hand,
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UTX (United Technologies Corporation) is the stock whose variance is least important

in explaining the realized variances. More precisely, lagged variances of IBM are chosen

between seven and eight times as often as those of UTX.
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Figure 4. For the variance for each of the four stocks Alcoa (AA), IBM,
JP Morgan (JPM), and Coca Cola (KO), the figure contains the variances
(indicated on the y-axis) selected into the equation describing their dynam-
ics at each point in time on the x-axis. The results are based on a VAR(1)
model estimated by the Lasso at the daily level of aggregation.

To shed even further light on the findings in Table 22 we also consider the variable selec-

tion pattern for 4 individual stocks in more detail. Figure 44 contains the results for Alcoa,

IBM, JPM Morgan, and Coca-Cola which belong to the Basic Materials, Technology, Fi-

nancial and Consumer (non-cyclical) sectors, respectively. For each of these 4 stocks, we

indicate in the corresponding plot whether the lagged variance of the stock indicated on

the y-axis is selected in the model estimated at the date given on the x-axis.

Overall, the variable selection pattern is stable over time, with many lagged variances

being either selected or left out throughout the entire sample. A common feature for the
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four stocks is that a relatively sparse set of variables describes their dynamics33. All stocks

except Coca-Cola always include their own lagged variance – a fact which is in line with

the findings in Table 22. Furthermore, with a few exceptions, this pattern also emerges

when investigating the corresponding plots for the 26 remaining Dow Jones stocks.

5.2. Forecasts. In this section we forecast the realized covariance matrices using various

VAR models. We are particularly interested in how the forecast precision varies over

different degrees of aggregation of the data. We consider the daily, weekly, and monthly

level of aggregation and estimate the VAR model by the Lasso, the adaptive Lasso as

well as the post-Lasso. Furthermore, we investigate the effect of allowing for greater time

series dependence in the covariance matrices by including more lags in the model.

Let êT+h denote vech
(
Σ̂T+h − ΣT+h

)
where Σ̂T+h denotes the forecast of ΣT+h as of

time T at horizon h ≥ 1. Thus, êT+h is the vector of forecast error at horizon h. Let the

times of the first and last forecast be denoted by T1 and Tn, respectively. Then, in order

to gauge the precision of the procedures above we consider the following measures.

(1) Average `2-forecast error (`2): 1
Tn−T1+1

∑Tn
T=T1

‖êT+h‖. We shall employ this mea-

sure for the whole matrix, the variances, or the covariance terms. When it is

employed for the whole matrix it corresponds to the average forecast error in the

Frobenius norm.

(2) Average median absolute forecast error (AMedAFE): 1
Tn−T1+1

∑Tn
T=T1

median
(
êT+h

)
.

This measure is considered for the whole matrix, the variances, and the covari-

ances. It is more robust to outliers than the `2-norm.

(3) Average maximal absolute forecast error (AMaxAFE): 1
Tn−T1+1

∑Tn
T=T1

max
(
êT+h

)
.

This measure is considered for the whole matrix, the variances, and the covari-

ances. As the maximal forecast error plays a crucial role in Theorems 11 and 22 it

is of interest to investigate this quantity for different procedures.

The forecasted covariance matrices produced by our models are in general not posi-

tive definite, except for the no change forecasts. Furthermore, certain matrices are ill-

conditioned, which renders the estimation of portfolio weights unstable or even infeasible

in Section 66. To overcome the ill-conditioning and ensure that the forecasted covariance

matrices are positive definite, we regularize the forecasted covariance matrices by eigen-

value cleaning. We apply eigenvalue cleaning to every matrix that has eigenvalues strictly

smaller than 0 or a condition number greater than 10nT as in Hautsch et al.Hautsch et al. (20092009).

Write the spectral decomposition of the forecasted covariance matrix Σ̂t = V̂ ′t Λ̂tV̂t where

V̂t is the matrix of eigenvectors and Λ̂t a diagonal matrix with the N eigenvalues λ̂it on its

diagonal. Let λmpt = min{λ̂it|λ̂it > 0}, replace all the λ̂it < λmpt by λmpt and define the

diagonal matrix Λ̃t with the cleaned eigenvalues on its diagonal. The regularized forecast

matrix Σ̃t = V̂ ′t Λ̃tV̂t is by construction positive definite.

3Here it should be kept in mind that we only focus on which lagged variances are chosen for explaining the
the variances. Had we also investigated how often covariance terms were chosen, the fraction of variables
included would have been even lower as can also concluded from Table 22.
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AMedAFE AMaxAFE `2
Model h A D O A D O A D O

No-Change 1 0.33 0.57 0.33 3.53 3.53 1.47 11.22 5.98 9.22
Censored 5 0.46 0.79 0.45 4.51 4.51 1.91 15.02 7.89 12.41

20 0.58 0.98 0.57 5.12 5.12 2.22 18.05 9.25 15.17

No-Change 1 0.36 0.65 0.35 6.1 6.1 2.34 14.91 9.37 10.83
Uncensored 5 0.55 0.96 0.53 7.23 7.23 2.87 19.89 11.74 15.19

20 0.66 1.16 0.65 7.85 7.85 3.18 22.93 13.1 17.94

VAR(1), Lasso 1 0.37 0.61 0.37 3.34 3.32 1.72 11.98 5.93 10.21
5 0.44 0.73 0.43 3.77 3.64 2.25 14.25 6.82 12.27

20 0.69 0.96 0.68 4.37 4.03 3.16 19.98 8.11 18.07

VAR(1), Lasso 1 0.34 0.55 0.33 3.08 3.04 1.76 11.26 5.4 9.72
Post Lasso OLS 5 0.45 0.73 0.44 3.8 3.68 2.23 14.39 6.87 12.36

20 0.61 0.93 0.6 4.34 4.09 2.94 18.55 8.06 16.43

VAR(1), adaptive Lasso 1 0.37 0.62 0.37 3.46 3.44 1.81 12.21 6.07 10.4
Initial estimator: Lasso 5 0.44 0.74 0.44 3.88 3.78 2.32 14.49 6.93 12.52

20 0.62 0.98 0.61 4.45 4.18 3.13 19.44 8.38 17.3

VAR(1), Lasso 1 0.38 0.61 0.37 3.34 3.32 1.74 12.04 5.93 10.27
Not regularized 5 0.45 0.73 0.44 3.83 3.63 2.32 14.35 6.81 12.38

20 0.69 0.95 0.68 4.54 4 3.34 20.01 8.04 18.12

VAR(20), Lasso 1 0.35 0.57 0.35 3.19 3.16 1.62 11.35 5.59 9.66
5 0.41 0.65 0.4 3.54 3.46 2.01 13.09 6.28 11.25

20 0.54 0.84 0.53 4.03 3.87 2.56 16.29 7.44 14.3

VAR(20), Lasso 1 0.33 0.52 0.32 3.01 2.92 1.76 10.88 5.09 9.44
Post Lasso OLS 5 0.42 0.66 0.41 3.56 3.48 2.1 13.43 6.31 11.65

20 0.49 0.79 0.47 4.02 3.9 2.38 15.29 7.27 13.25

VAR(20), adaptive Lasso 1 0.36 0.59 0.35 3.45 3.44 1.61 11.76 5.98 9.89
Initial estimator: Lasso 5 0.43 0.69 0.42 3.75 3.72 2.01 13.62 6.66 11.65

20 0.58 0.93 0.57 4.16 4.04 2.68 17.49 8.03 15.33

Table 5. The table contains the measures of forecast precision discussed
in the main text at the daily level of aggregation. The forecast horizons
are h=1, 5 and 20 days ahead. A: Measure applied on all elements of the
matrix. D: Measure applied on all diagonal (variances) elements of the
matrix. O: Measure applied on all off-diagonal (covariances) elements of
the matrix.

All the forecast errors analyzed in the tables below are computed from the regularized

forecasts. For comparison purpose we also report results on unregularized forecasts from

a VAR(1) estimated by Lasso, highlighted in red in the tables.

Table 55 contains the forecast results for the daily level of aggregation. We will mainly

focus on the extent to which it is possible to beat the no-change (random walk) forecasts

as these can be challenging benchmarks in particular at short horizons. In order to

reassess the importance of filtering the data prior to forecasting we have also included

no-change forecasts for the censored as well as the uncensored series. As can be seen, the

forecast errors are uniformly larger for the uncensored data irrespective of which measure
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of precision one uses. This is of course not surprising as the uncensored data contains

some big spikes which entail big changes in the data and thus lower the precision of the

no-change forecasts.

It is quiet interesting that no matter which model or estimation method is used for

forecasting, the variances seem to be harder to forecast than the covariances. This can

be witnessed from the larger median and maximal average forecast error of the forecasts

of the variances. Keeping in mind that there are only 30 variances to be forecasted, as

opposed to 435 covariances, this is also confirmed by the fact that the `2-forecast error is

not much lower for the variances than for the covariances. We believe this is an important

and new finding.

Furthermore, it is encouraging that it does not make a big difference whether one

estimates the VAR models by the Lasso, post-Lasso or the adaptive Lasso. The post-

Lasso might be slightly more precise at the daily level of aggregation and thus we shall

focus mainly on that for now.

At all forecast horizons, the post-Lasso has a lower median forecast error for the vari-

ances than the no-change forecasts. On the other hand, it is less precise than these when

it comes to forecasting the covariances. The overall median forecast error should be in-

terpreted with care as there are many more covariance terms than variances. Therefore,

the overall median mainly reflects the median forecast error of the off-diagonal terms of

the covariance matrix, as can also be witnessed by the relative closeness of these two

numbers in Table 55. When considering the maximal forecast error, the VAR(1) estimated

by the post-Lasso greatly outperforms the no-change forecasts for the diagonal terms. In

fact, it is around 25 percent more precise when forecasting 20 days ahead. The no-change

forecasts are still more precise when it comes to the forecast precision of the covariances.

Figure 11 showed that the models for the covariance terms were in general much larger

than those for the variances in a VAR(1). This indicates that the the Lasso tries to

compensate for some unexplained dynamics by including many variables. In order to

better capture the dynamics of the off-diagonal terms we also experimented with gradually

including more lags. Thus, Table 55 also contains the results for VAR(20) models. As was

the case for the VAR(1) models, the post-Lasso again seems to be the dominant estimation

procedure. However, and more importantly, it now provides more precise forecasts of the

covariance terms than the no-change forecasts. Furthermore, this does not come at the

price of worse forecasts for the variances. In fact, these forecasts also become more precise.

The median forecast error is now as good as the one for the no-change forecasts overall,

for both the diagonal terms as well as the off-diagonal terms. On the other hand, the

maximal forecast error for the covariances, while improved, still remains slightly above

the one for the no-change forecasts. The `2-forecast errors are lower than the ones from

the no-change forecasts.

Table 66 contains the forecast errors at the weekly level of aggregation. It confirms the

finding for the daily forecast that the variances are harder to forecast than the covariances.
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AMedAFE AMaxAFE `2
Model h A D O A D O A D O

No-Change 1 0.11 0.29 0.11 1.62 1.62 0.53 4.49 2.97 3.2
10 0.59 1 0.58 4.54 4.54 1.86 16.83 8.35 14.36
26 0.96 1.46 0.94 7.26 7.26 3.26 27.44 13.05 24

VAR(1), Lasso 1 0.16 0.31 0.15 1.58 1.58 0.81 5.49 3.01 4.49
10 0.62 0.96 0.6 4.5 4.32 2.36 17.43 7.97 15.4
26 0.69 1.15 0.68 6.47 6.37 2.79 21.45 10.85 18.23

VAR(1), Lasso 1 0.15 0.26 0.14 1.46 1.41 1.01 5.25 2.69 4.43
Post Lasso OLS 10 0.69 1.17 0.68 5.11 4.86 2.81 21.01 9.28 18.38

26 Inf Inf Inf Inf Inf Inf Inf Inf Inf

VAR(1), adaptive Lasso 1 0.15 0.32 0.15 1.66 1.66 0.78 5.54 3.13 4.46
Initial estimator: Lasso 10 0.65 0.96 0.64 4.65 4.3 2.58 18.51 7.99 16.51

26 0.7 1.14 0.69 6.47 6.3 2.91 21.6 10.79 18.41

VAR(1), Lasso 1 0.16 0.31 0.15 1.59 1.59 0.82 5.51 3.02 4.51
Not regularized 10 0.62 0.96 0.6 4.5 4.32 2.37 17.44 7.98 15.4

26 0.69 1.16 0.68 6.73 6.55 2.9 21.59 11.04 18.26

VAR(5), Lasso 1 0.15 0.3 0.14 1.52 1.52 0.82 5.25 2.93 4.26
10 0.62 0.95 0.61 4.37 4.34 2.05 17.2 7.9 15.16
26 0.7 1.15 0.68 6.56 6.48 2.69 21.57 10.96 18.27

VAR(5), Lasso 1 0.13 0.26 0.12 1.44 1.39 0.98 4.97 2.64 4.17
Post Lasso OLS 10 0.59 0.91 0.58 4.52 4.41 2.49 17.09 7.88 15.09

26 0.78 1.27 0.76 7.4 7.29 3.3 24.42 12.34 20.86

VAR(5), adaptive Lasso 1 0.15 0.32 0.14 1.66 1.65 0.83 5.39 3.11 4.29
Initial estimator: Lasso 10 0.64 0.96 0.63 4.42 4.23 2.33 17.97 7.87 16

26 0.7 1.15 0.69 6.54 6.41 2.79 21.66 10.93 18.38

Table 6. The table contains the measures of forecast precision discussed
in the main text at the weekly level of aggregation. The forecast horizons
are h=1, 10 and 26 weeks ahead. A: Measure applied on all elements of
the matrix. D: Measure applied on all diagonal (variances) elements of the
matrix. O: Measure applied on all off-diagonal (covariances) elements of
the matrix.

Furthermore, this seems to be the case whether we consider median or maximal absolute

forecasts errors.

Turning to the VAR(1) models, the plain Lasso seems to yield the most precise forecasts.

It has a slightly lower median forecast error for the variances than the no-change forecasts

and is much more precise when forecasting the covariances 26 periods ahead. This is also

seen from the `2-forecast errors which are around 25 percent lower for the Lasso than for

the no-change forecasts.

In contrast to the daily level of aggregation, there no longer seems to be any benefit

from adding lags. Neither the forecasts of the variances nor the forecasts of the covariances

improve for any of the estimation procedures when including five lags instead of one.

Finally, Table 77 confirms that the variances are harder to forecast than the covariances

even at the monthly level of aggregation. Of the three VAR(1) models, the adaptive Lasso
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AMedAFE AMAaxFE `2
Model h A D O A D O A D O

No-Change 1 0.11 0.22 0.1 1.28 1.28 0.67 4.34 2.56 3.38
2 0.44 0.71 0.43 2.99 2.99 1.33 12.16 5.8 10.6
6 0.87 1.29 0.86 6.15 6.15 2.84 24.49 11.34 21.64

VAR(1), Lasso 1 0.18 0.23 0.18 1.22 0.99 1.05 5.53 2.16 5.03
2 0.65 0.78 0.65 3.5 3.26 2.35 17.38 6.14 16.18
6 0.81 1.12 0.8 5.91 5.58 2.92 24.03 9.95 21.26

VAR(1), Lasso 1 0.29 0.33 0.29 1.82 1.36 1.74 9.03 2.99 8.45
Post Lasso OLS 2 0.7 0.87 0.69 3.87 3.61 2.59 19.35 6.92 17.93

6 1.14 2.17 1.13 8.09 7.54 6.57 39.24 16.92 34.51

VAR(1), adaptive Lasso 1 0.15 0.23 0.15 1.13 1.06 0.89 5 2.2 4.45
Initial estimator: Lasso 2 0.53 0.79 0.52 3.44 3.25 1.88 14.61 6.16 13.22

6 0.74 1.1 0.73 5.57 5.5 2.53 21.53 9.82 18.9

VAR(1), Lasso 1 0.29 0.29 0.29 2.31 1.53 2.27 9.57 2.98 9.02
Not regularized 2 0.86 0.7 0.87 4.84 3.25 3.5 23.76 5.87 22.63

6 2.31 1.35 2.36 13.04 6.44 11.33 65.96 11.71 63.68

VAR(5), Lasso 1 0.14 0.25 0.14 1.05 0.99 0.89 4.75 2.12 4.24
2 0.44 0.73 0.43 3.26 3.26 1.5 12.41 5.87 10.88
6 0.73 1.12 0.71 6.09 6.09 2.66 21.31 10.28 18.48

VAR(5), Lasso 1 0.15 0.26 0.15 1.33 1.2 1.17 5.87 2.49 5.28
Post Lasso OLS 2 0.52 0.73 0.51 3.07 2.91 1.86 14.44 5.72 13.2

6 1.08 1.3 1.07 6.02 5.93 4.06 29.61 10.96 27.33

VAR(5), adaptive Lasso 1 0.13 0.23 0.13 1.15 1.04 0.95 4.71 2.1 4.18
Initial estimator: Lasso 2 0.45 0.73 0.44 3.32 3.32 1.55 12.69 5.93 11.17

6 0.67 1.08 0.66 5.93 5.93 2.32 19.9 10.06 16.9

Table 7. The table contains the measures of forecast precision discussed
in the main text at the monthly level of aggregation. The forecast horizons
are h=1, 2 and 6 months ahead. A: Measure applied on all elements of
the matrix. D: Measure applied on all diagonal (variances) elements of the
matrix. O: Measure applied on all off-diagonal (covariances) elements of
the matrix.

seems to deliver the most precise forecasts though the performances of all three models

are reasonably similar. At the monthly level of aggregation, it seems quite difficult to beat

the no-change forecasts with the 6-month horizon being an exception. Adding more lags

improves the precision of the forecasts slightly and the 6-month forecast are now much

more precise for the adaptive Lasso than for the no-change forecasts.

The forecast precision of the VAR models is in general improved by including more

lags, hinting at the presence of serial dependence, in particular at the daily level of

aggregation. The smaller performance gains obtained from including lags at the weekly

and monthly level of aggregation can partly be attributed to the fact that there are much

fewer observations at these levels of aggregation such that including more parameters

becomes much more costly. The particular version of the Lasso used to estimate the

VAR model does not seem overly important, which makes the procedure rather robust.
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Finally, the greatest gains in forecast precision are obtained at the longest forecast horizons

irrespective of the level of aggregation of the data.

6. Portfolio selection

In this section we use the forecasted covariance matrices to construct investment port-

folios. Our analysis is based on the framework developed in Fleming, Kirby, and Ostdiek

(2001,2003) (FKO, hereafter). We consider a risk-averse investor who uses conditional

mean-variance analysis to allocate resources across the n = 30 different firms that com-

pose the Dow Jones index. To be precise, the investor utility, at each point in time, is

given by

(6) U(rpt) =
(
1 + rpt

)
− γ

2(1 + γ)

(
1 + rpt

)2
,

where rpt is the portfolio return at time t and γ is the investor’s risk aversion coefficient.

The larger the value of γ, the more risk averse is the investor.

As in the previous sections we consider three different frequencies of observations: daily,

weekly and monthly. The portfolios are rebalanced in each time period as follows. Let

rt+1, µ̂t+1, and Σ̂t+1 denote, respectively, an n × 1 vector of observed stock returns at

time t + 1, the expected return at time t + 1 given data up to time t and the forecasted

conditional covariance matrix at time t + 1 based on information up to period t. Σ̂t+1 is

computed by the methods described earlier while µ̂t+1 is computed by a moving average

of N time periods, where N = 100 for daily data, N = 15 for weekly data, and N = 4 for

monthly data.

The investor’s problem at t = t0, . . . , T − 1 is to select a vector of weights for period

t + 1 based solely on information up to time t. The investor chooses the weights that

minimize the portfolio volatility, subject to a target expected return and several weight

constraints:

ω̂t+1 = arg min
ωt+1

ω′t+1Σ̂t+1ωt+1

s.t. ω′t+1µ̂t+1 = µtarget

n∑
i=1

ωit+1 = 1

n∑
i=1

|ωit+1|I(ωit < 0) ≤ 0.30

|ωit+1| ≤ 0.20,

(7)

where ωt+1 is an n×1 vector of portfolio weights on the stocks, µtarget is the target expected

rate of return from t to t+ 1 and I(·) is an indicator function.

The optimal weights, ω̂t+1, which solve the optimization problem described in (77) can be

viewed as a function of the target expected return µtarget, the conditional expected return

µ̂t+1 and the conditional covariance matrix forecast Σ̂t+1. We impose two additional

restrictions on the optimal weights. First, we allow the maximum leverage to be 30%
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(corresponding to c = 0.6 in Section 33). This yields much stabler portfolios. However,

the optimization problem does not have a closed form solution anymore and a numerical

constrained minimization routine must be used. Second, we restrict the maximum weights

on individual stocks to be 20%. This imposes diversification in the portfolio. The target

expected return is set to 10% per year. As all the stocks considered are very liquid, we

set the transactions cost to be 0.1%. Finally, note that we focus on portfolio optimization

based on the one-step ahead forecasts even though the Lasso based techniques actually

had their biggest advantages in the long-horizon forecasts. We do so since it is likely that

the investor will rebalance the portfolio at the same frequency he has chosen to aggregate

the data to. Thus, the one-step ahead forecasts seem most relevant in this context.

Results. Tables 88–1010 present several summary statistics. Overall, eight different fore-

casting models have been considered: six Lasso-based VARs and a benchmark based on

no-change forecasts. The tables display the following statistics.

(1) Average weight: 1
n(T−t0)

∑T
t=t0+1

∑n
i=1 ω̂it. This is the average weight across all

assets and all time periods.

(2) Max weight: maxt0+1≤t≤T max1≤i≤n(ω̂it) for t = t0 +1, . . . , T and = 1, . . . , N . This

is the maximum weight over all assets and all time periods.

(3) Min weight: mint0+1≤t≤T min1≤i≤n(ω̂it) for t = t0 + 1, . . . , T and = 1, . . . , N . This

is the minimum weight over all assets and all time periods.

(4) Average leverage: 1
n(T−t0)

∑T
t=t0+1

∑n
i=1 |ω̂it|I(ω̂it < 0). This is the average of neg-

ative weights (short positions) across all assets and all time periods.

(5) Proportion of leverage: 1
n(T−t0)

∑T
t=t0+1

∑n
i=1 I(ω̂it < 0). The proportion of leverage

is the fraction of negative weights computed for all assets and all time periods.

(6) Average turnover: 1
n(T−t0)

∑T
t=t0+1

∑n
i=1 |ω̂it − ω̂hold

it |, where ω̂hold
it = ω̂it−1

(1+rit−1)
1+rpt−1

.

The turnover measures the average change in the portfolio composition (portfolio

weights). ωhold
it , i = 1, . . . , n, are the weights of the hold portfolio. The hold

portfolio at period t+1 is defined as the portfolio resulted from keeping the stocks

from period t.

(7) Average return: µp = 1
(T−t0)

∑T
t=t0+1 rpt = 1

(T−t0)

∑T
t=t0+1 ω̂

′
trt. Note this is the

out-of-sample average portfolio return as at each period t the weights are selected

based only on information up to time t− 1.

(8) Accumulated return:
∏T

t=t0+1(1 + rpt). This is the accumulated portfolio return

over the out-of-sample period.

(9) Standard deviation: σp =

√
1

(T−t0)

∑T
t=t0+1

(
rpt − 1

(T−t0)

∑T
t=t0+1 rpt

)2

. This is the

portfolio return standard deviation over the out-of-sample period.

(10) Sharpe ratio: µp
σp

. The larger the Sharpe ratio, the better the portfolio as it delivers

higher ratios of return over risk.

(11) Average diversification ratio: 1
(T−t0)

∑T
t=t0+1

∑n
i=1 ω̂itσit
σpt

, where σpt = ω̂tΣtω̂
′
t. This

ratio is the portfolio’s weighted average the individual asset volatility (σit) to its

actual total volatility (σpt). In a well-diversified portfolio the total risk of such
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portfolio is often less than the weighted-average risk of its individual parts and

diversification arises when returns are not perfectly correlated.

(12) Economic value: the economic value is the value of ∆ such that, for different

portfolios p1 and p2, we have

T∑
t=t0+1

U(rp1t) =
T∑

t=t0+1

U(rp2t −∆).

The economic value represents the maximum return the investor would be willing

to sacrifice each time period in order to capture the performance gains associated

with switching to the second portfolio. In this comparison our benchmark, p1, will

always be no-change forecasts. We report the value of ∆ as an annualized basis

point fee, for three levels of relative risk aversion (γ = 1, 5, 10).

Table 88 contains the results at the daily frequency and several conclusions emerge.

First, the average return over the forecasting period is virtually the same for all models

considered. On the other hand, the accumulated return over the 445 trading days is much

higher than the one for the benchmark for four out of six Lasso based models. More

specifically, the VAR(1) plain Lasso is the model which delivers the highest accumulated

returns, 31.46%. It is followed by the VAR(20) estimated with adaptive Lasso, 28.21%.

The benchmark alternative has an accumulated return between 23.9%. These are big

differences, especially when considering that the annual target return (approximately 252

trading days) is 10%. In terms of standard deviation, all models have similar figures. One

possible reason for this is the imposition of the leverage and maximum weight constraints,

which restrict the exposition of the portfolio. The VAR(1) plain Lasso model is also the

Model VAR(1) VAR(20) No-Change

Estimator: Lasso Post Lasso adaLasso Lasso Post Lasso adaLasso
Statistic OLS Init: Lasso OLS Init: Lasso Censored

Average weight 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Max weight 0.20 0.20 0.20 0.20 0.20 0.20 0.20
Min weight -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20

Average leverage 0.27 0.26 0.27 0.28 0.27 0.27 0.27

Proportion of leverage 0.26 0.26 0.26 0.26 0.26 0.25 0.28
Average turnover 0.02 0.03 0.02 0.02 0.02 0.02 0.03

Average return (×10−4) 7.23 6.39 5.96 5.50 5.67 6.69 5.88

Accumulated return 31.5 26.7 24.1 21.5 22.5 28.2 23.9

Standard deviation 0.02 0.02 0.02 0.02 0.02 0.02 0.02
Sharpe ratio 0.05 0.04 0.04 0.04 0.04 0.04 0.04

Diversification ratio 1.50 1.50 1.50 1.50 1.50 1.50 1.51

Economic Value γ = 1
No-Change (censored) 3.36 1.27 0.10 -1.04 -0.59 1.94 –

Economic Value γ = 5

No-Change (censored) 2.90 1.10 -0.36 -1.38 -0.81 1.42 –

Economic Value γ = 10

No-Change (censored) 2.31 0.90 -0.92 -1.81 -1.08 0.77 –

Table 8. Statistics for the daily portfolios.
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Model VAR(1) VAR(5) No-Change

Estimator: Lasso Post Lasso adaLasso Lasso Post Lasso adaLasso

Statistic OLS Init: Lasso OLS Init: Lasso Uncensored
Average weight 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Max weight 0.19 0.20 0.19 0.19 0.20 0.18 0.19
Min weight -0.17 -0.20 -0.18 -0.19 -0.20 -0.20 -0.20

Average leverage 0.28 0.28 0.29 0.28 0.29 0.29 0.28

Proportion of leverage 0.22 0.24 0.21 0.20 0.23 0.21 0.23
Average turnover 0.02 0.02 0.02 0.02 0.03 0.02 0.02

Average return (×10−3) 2.01 2.57 2.60 2.51 2.44 3.22 2.75
Accumulated return 9.69 13.0 13.1 12.6 12.2 16.9 14.1

Standard deviation 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Sharpe ratio 0.09 0.12 0.12 0.12 0.12 0.16 0.13
Diversification ratio 1.44 1.44 1.42 1.42 1.44 1.41 1.50

Economic Value γ = 1

No-Change -17.5 -4.89 -4.33 -6.26 -7.83 12.5 –

Economic Value γ = 5

No-Change -19.3 -6.32 -6.03 -6.79 -8.46 13.0 –

Economic Value γ = 10

No-Change -21.6 -8.13 -8.16 -7.46 -9.25 13.7 –

Table 9. Statistics for the weekly portfolios.

one with the highest Sharpe ratio. In terms of diversification, all models perform in a

very similar way. In addition, all portfolios seem to have the same leverage. However,

the turnover of some the Lasso based models is lower than the corresponding turnover

for the benchmark portfolios which can be useful in the presence of large transaction

costs and explains some of the return differences. Finally, and more importantly, we also

report the annualized economic value of the Lasso based portfolios with respect to the

two no-change alternatives. The economic value is the amount, in terms, of annualized

returns, an investor will be willing to pay to move from the benchmark portfolio to the

Lasso based ones. As we can see from the table, the VAR(1) plain Lasso model delivers

a positive annualized economic value of up to 3.6%. Furthermore, the higher the risk

aversion of the investor, the lower the economic value of the Lasso based models. This is

in line with the previous results as the differences in terms of the standard deviations of

the portfolios are not big and most of the economic value comes from the differences in

the accumulated returns over the out-of-sample period.

From Table 99 we can highlight the following findings. First, the average return over the

forecasting period is virtually the same for all models considered. On the other hand, only

the model estimated by adaptive Lasso has an accumulated return over the 52 trading

weeks higher than the the benchmark (no-change) alternative. More specifically, the

VAR(5) adaptive Lasso is the model which delivers the highest accumulated returns and

the largest Sharpe ratio, 16.9% and 0.16, respectively. In terms of economic value, the

VAR(5) adaptive Lasso is the only model to beat the benchmark. Finally, it is interesting

to notice that reducing the frequency of rebalancing (from daily to weekly) reduces the

accumulated returns in a very significant way.
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Model VAR(1) VAR(5) No-Change

Estimator: Lasso Post Lasso adaLasso Lasso Post Lasso adaLasso

Statistic OLS Init: Lasso OLS Init: Lasso

Average weight 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Max weight 0.20 0.20 0.20 0.19 0.19 0.18 0.16
Min weight -0.18 -0.18 -0.18 -0.20 -0.19 -0.20 -0.14

Average leverage 0.29 0.28 0.29 0.30 0.29 0.30 0.11

Proportion of leverage 0.21 0.24 0.21 0.19 0.24 0.20 0.23
Average turnover 0.04 0.05 0.04 0.04 0.04 0.03 0.03

Average return (×10−3) 6.55 3.87 6.44 8.38 10.7 10.7 8.57
Accumulated return 7.74 3.93 7.52 9.96 13.2 13.1 10.4

Standard deviation 0.03 0.04 0.03 0.03 0.03 0.03 0.03

Sharpe ratio 0.25 0.10 0.22 0.27 0.39 0.37 0.34
Diversification ratio 1.42 1.44 1.44 1.46 1.41 1.47 1.48

Economic Value γ = 1

No-Change -40.4 -72.3 -42.9 -8.08 68.7 66.2 –

Economic Value γ = 5

No-Change -41.8 -81.3 -47.6 -20.7 60.2 52.3 –

Economic Value γ = 10

No-Change -43.7 -89.2 -53.5 -35.2 49.5 35.1 –

Table 10. Statistics for the monthly portfolios.

Table 1010 displays the results concerning the monthly rebalancing. The overall picture

is very similar to the weekly case.

7. Conclusions and Further Work

In this paper we considered modeling and forecasting of vast realized covariance ma-

trices. Our approach used the Lasso to reduce the vast dimensionality to a manageable

one. We established upper bounds on the forecast error of our procedure which almost

coincide with the one obtainable from an oracle procedure knowing the true model thus

providing strong theoretical performance guarantees.

Next, we investigated the driving dynamics of the covariance matrices. We found that

at the short horizon the dynamics were mainly intra-sectoral while at the longer horizons

the dynamics were often described by the energy and financial sector. A forecast exercise

revealed that our procedure outperforms our benchmark – a finding which is particularly

pronounced at the long forecast horizons.

Finally, we use our covariance matrix forecast in a portfolio selection problem in order

to assess the economic value of these forecasts. At the daily level of aggregation our Lasso

based forecast have an economic value of up to 3.6% per year.

8. Appendix

8.1. Notation. We shall use the following notation throughout the appendix. Let Ji =

{j : β∗i,j 6= 0} ⊆ {1, ..., kp} denote the set of non-zero parameters in equation i and si = |Ji|
its cardinality. s̄ = max {s1, ..., sk}.
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For any vector δ in Rn and a subset J ⊆ {1, ..., n} we shall let δJ denote the vector

consisting only of those elements of δ indexed by J .

Proof of Theorem 11. By the definition of σ2
t and σ̂2

t one has∣∣σ̂2
t − σ2

t

∣∣ =
∣∣∣w′(Σ̂t − Σt)w

∣∣∣ ≤∥∥∥(Σ̂t − Σt)w
∥∥∥
`∞
‖w‖`1

≤
∥∥Σ̂t − Σt

∥∥
∞‖w‖

2
`1
≤
∥∥Σ̂t − Σt

∥∥
∞ (1 + c)2

�

Before we proceed to proving Theorem 22 we need to introduce the so-called restricted

eigenvalue condition. To this end, let Γ = E(ZtZ
′
t) denote the population covariance

matrix of Zt. Note that Γ does not depend on t as we shall assume stationarity in Lemma

22 below. Then, we define

κ2
i = κ2

Γ(si) = min

{
δ′Γδ

‖δR‖2
: |R| ≤ si, δ ∈ Rkp \ {0} , ‖δRc‖`1 ≤ 3‖δR‖`1

}
(8)

In the sequel we shall assume that κ2
i is bounded away from zero for i = 1, ..., k. Note

that this is the case in particular if Γ has full rank which is a rather innocent assumption

as Γ is the population covariance matrix. For more details on the restricted eigenvalue

condition we refer to Kock and CallotKock and Callot (20122012).

Next, we recall the following result which is an extract of Theorem 2 in Kock and CallotKock and Callot

(20122012) and of vital importance in the proof of Theorem 22.

Lemma 2 (Theorem 2 in Kock and CallotKock and Callot (20122012)). Assume that κ2 := min1≤i≤k κ
2
i is

bounded away from zero and that εt ∼ Nk(0,Ω). All roots of |Ik −
∑p

j=1 Φjz
j| lie outside

the unit circle. Let λT =
√

8 ln(1 + T )5 ln(1 + k)4 ln(1 + p)2 ln(k2p)η4
T/T and 0 < q < 1.

Then with probability at least 1 − 2(k2p)1−ln(1+T ) − 2(1 + T )−1/A − πq(si) 44 the following

inequalities hold for all i = 1, ..., k for some positive constant A.∥∥β̂i − β∗i ∥∥`1 ≤ 16

qκ2
i

siλT(9)

Furthermore, all the above statements hold on one and the same set which has probability

at least 1− 2(k2p)1−ln(1+T ) − 2(1 + T )−1/A − πq(s̄).

Proof of Theorem 22. Since∥∥Σ̂T+1 − ΣT+1

∥∥
∞ =

∥∥vech Σ̂T+1 − vech ΣT+1

∥∥
∞ =‖ŷT+1 − yT+1‖`∞

we shall bound each entry of ŷT+1 − yT+1. By assumption

yT+1,i = Z ′T+1β
∗
i + εT+1,i

4πq(s) = 4k2p2 exp
(

−ζT
s2 log(T )(log(k2p2)+1)

)
+ 2(k2p2)1−log(T ) for ζ =

(1−q)2κ4
i

4·163(‖Γ‖
∑T

i=0‖F i‖)2 , F is the compan-

ion matrix of the VAR model. Under general condition, made clear in Kock and CallotKock and Callot (20122012), πq(s)
tends to zero.
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while

ŷT+1,i = Z ′T+1β̂i

such that∣∣yT+1,i − ŷT+1,i

∣∣ =
∣∣∣Z ′T+1(β∗i − β̂i) + εT+1,i

∣∣∣ ≤‖ZT+1‖`∞
∥∥β̂i − β∗i ∥∥`1 +

∣∣εT+1,i

∣∣
Using Lemma 22 this yields that∣∣yT+1,i − ŷT+1,i

∣∣ ≤‖ZT+1‖`∞
16

qκ2
i

siλT +
∣∣εT+1,i

∣∣ for all i = 1, ..., k

with probability at least 1−2(k2p)1−ln(1+T )−2(1+T )−1/A−πq(s̄). Next, note that by the

gaussianity of the covariates and error terms P (|yT−l,i| ≥ x) ≤ 2e−x
2/2η2T for all 1 ≤ i ≤ k

and 1 ≤ l ≤ p and P (|εT+1,i| ≥ x) ≤ 2e−x
2/2η2T for all 1 ≤ i ≤ k. This implies55

P (‖ZT+1‖`∞ ∨ max
1≤i≤k

|εT+1,i| ≥ L) ≤ 2kpe−L
2/2η2T + 2ke−L

2/2η2T = 2k(p+ 1)e−L
2/2η2T

Choosing L2 = 2η2
T ln(k(p+ 1)) ln(T ) yields

P (‖ZT+1‖`∞ ∨ max
1≤i≤k

|εT+1,i| ≥ L) ≤ 2[k(p+ 1)]1−ln(T )(10)

and so∣∣yT+1,i − ŷT+1,i

∣∣ ≤√2η2
T ln(k(p+ 1)) ln(T )

( 16

qκ2
i

siλT + 1
)

≤
√

2η2
T ln(k(p+ 1)) ln(T )

( 16

qκ2
s̄λT + 1

)
for all i = 1, . . . , k

with probability at least 1−2(k2p)1−ln(1+T )−2(1 +T )−1/A−πq(s̄)−2[k(p+ 1)]1−ln(T ). �

Proof of Lemma 11. When the Φi i = 1, ..., p is known
∥∥Σ̂T+1 − ΣT+1

∥∥
∞ =‖εT+1‖`∞ . Next,

for all 1 ≤ i ≤ n one has66 P (|εT+1,i| > L) ≤ e−L
2/σ2

T,ε . Hence,

P
(

max
1≤i≤k

|εT+1,i| > L
)
≤ ke−L

2/σ2
T,ε

such that choosing L2 = σ2
T,ε log(k) ln(T ) yields

P
(

max
1≤i≤k

|εT+1,i| ≥ L
)
≤ k1−ln(T )

Therefore, with probability at least 1−k1−ln(T ) one has
∥∥Σ̂T+1 − ΣT+1

∥∥
∞ ≤ σT,ε

√
ln(k) ln(T ).

�

Proof of Corollary 11. Combine Theorems 11 and 22. �

Proof of Corollary 22. Combine Theorems 11 and 22 noting that the former is valid uniformly

over {w ∈ Rn :‖w‖`1 ≤ 1 + c}. �

5The stationarity of yt and εt implies that η2
T is also an upper bound on the variance of εT+1,i for all

i = 1, ..., k.
6The stationarity of εt implies that σ2

T,ε can also be used as an upper bound on the variance of all entries
of εT+1.
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