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Abstract

We apply utility indi�erence pricing to solve a contingent claim problem, valuing a con-

nected pair of gas �elds where the underlying process is not standard Geometric Brownian

motion and the assumption of complete markets is not ful�lled. First, empirical data are

often characterized by time-varying volatility and fat tails; therefore we use Gaussian GAS

(Generalized AutoRegressive Score) and GARCH models, extending them to Student's t-

GARCH and t-GAS. Second, an important risk (reservoir size) is not hedgeable. Thus

markets are incomplete which also makes preference free pricing impossible and thus stan-

dard option pricing inapplicable. Therefore we parametrize the investor's risk preference and

use utility indi�erence pricing techniques. We use Lease Square Monte Carlo simulations

as a dimension reduction technique. Moreover, an investor often only has an approximate

idea of the true probabilistic model underlying variables, making model ambiguity a relevant

problem. We show empirically how model ambiguity a�ects project values, and importantly,

how option values change as model ambiguity gets resolved in later phases of the projects

considered. We show that traditional valuation approaches will consistently underestimate

the value of project �exibility and in general lead to overly conservative investment decisions

in the presence of time dependent stochastic structures.

Classi�cation-JEL: C61, D81, G1, G31, G34, Q40
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1 Introduction

Firms need project evaluation techniques for many purposes: capital budgeting assessment, risk

management, mergers and acquisitions (M&A) and so forth. The most popular and well-adopted

evaluation method over the past decades is the net present value (NPV) approach, for whose

calculations only one time discount rate and a series of future cash �ows are required. The

NPV approach is simple and straightforward, but to achieve that needs strong assumptions and

therefore su�ers from rigidity and in�exibility. Problems arise when investors believe that they may

bene�t from the �exibilities embedded in the projects: within a NPV framework, there is no way of

quantifying the bene�ts of such �exibilities. As a consequence, NPV structurally underestimates

the value of projects with �exible investment opportunities.

Real option valuation (ROV), which quanti�es the value of embedded �exibilities through

option pricing techniques, is a more appropriate tool for projects with �exibilities, for instance, a

not-to-exceed value for M&A activities. Before applying any option evaluation methods, additional

analytical procedures need to be carefully executed. The investor �rst has to reformulate the

development plan into a strategic one, which exploits all the inherent managerial �exibilities

embedded in the investment project. Next, in order to determine an optimal investment strategy,

the investor has to consider mainly three aspects: the dynamics of the underlying asset returns,

the constraints on the investment strategy, and the value of the investor's strategy. Each aspect

a�ects the �nal decisions signi�cantly and has to be carefully taken into consideration.

Volatile Volatility The volatility of underlying processes obviously matters for option pricing

problems. Van Wijnbergen and Zhao [2013] show in an earlier application of ROV to an energy

elated project that a Gaussian GARCH speci�cation outperforms one which assumes constant

variance in modeling the dynamics of the underlying asset returns, in this case gas prices. They

also show that switching from constant variance to Gaussian GARCH has a dramatic impact on
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option values, so modeling the structure of volatility matters. In this paper, we again consider

GARCH models but also a more general volatility modeling approach, Generalized Autoregressive

Score (GAS) models which are capable of capturing some unique characteristics of the latent

volatilities of the time series. This GAS model family, �rst proposed and developed by Harvey and

Chakravarty [2008] and Creal et al. [2013], is a more general set-up compared to GARCH models.

By adding the �rst derivatives of its likelihood function as the latent factor of dynamics, this model

takes full advantage of the changing directions of likelihood. As shown in Creal et al. [2013], the

GAS framework demonstrates superior features and better empirical �t over Gaussian GARCH

models, which is also consistent with our �ndings in this paper in case of Dutch gas prices. Note

that GARCH(1,1) processes can be seen as a special case of a more general GAS(1,1) structure,

which allows a direct Likelihood ratio test of one speci�cation against the other.

Furthermore, the diagnostic test on residuals from both Gaussian GARCH and Gaussian GAS

models rejects the normality assumption. This feature is commonly found in �nancial data, often

referred to as �black swans�: extreme outcomes happen more often than people expect, which

results in the failure of normal distribution assumptions. Therefore, we proceed on with Student's

t-GARCH and t-GAS models, aiming to capture the fat-tail characteristics of the data. The

estimated degrees of freedom for both models are smaller than 4 and statistically signi�cant, which

again con�rms our fat-tail hypothesis. Hence a simple Gaussian assumption would undermine the

high occurrence of extreme events and lead to incorrect descriptions of the data.

To our knowledge, this is the �rst study to derive option pricing results under a process of

t-GAS and compare the results with option valuations based on the constant variance and results

based on Gaussian GARCH assumptions. Even though we solve the problem within a real-option

set-up, the results are doubtlessly relevant to the valuation of �nance options traded in the market.
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Incomplete Markets One di�culty of applying standard option techniques to real life problems

is that often, the decision maker is facing an asset pricing problem in an incomplete market, where

not all underlying risks are hedgeable through the market. For instance, in our gas �eld valuation

problem, reservoir uncertainty cannot be hedged away in any existing market. In fact even price

risk cannot be fully hedged since the derivative market built on the Dutch gas contracts is still

young and immature1. Yet another cause of market incompleteness is the stochastic volatility

characterizing the underlying process driving asset returns (gas prices), because the dynamics

of the second moment of the process cannot be hedged through the market either. Therefore,

classical option pricing models such as the Black-Scholes formula (Black and Scholes [1973]),

which lay their foundations on the assumption of complete markets, are not applicable. In an

incomplete markets environment; in fact preference free (risk neutral) pricing becomes impossible:

an individual's risk preference has to be parametrized and be taken into account. Accordingly,

utility indi�erence pricing is an appropriate valuation method to be applied for our real option

problem.

Model Ambiguity Another important issue in decision-making problem involves model am-

biguity. This occurs when the decision maker is uncertain about the true probabilistic model,

which is often referred to as Knightian uncertainty (Knight [1921]) or model ambiguity. Note

that a decision problem with ambiguity is di�erent from one under risk: the latter refers to a

decision problem with the true probability distribution known and the former is one without the

true probability known. Model ambiguity is a realistic and robust assumption because an investor

often does not have access to the true probabilistic model underlying relevant variables and may

only have an approximation for the true one at the best.

In applications like the one analyzed in this paper concerning gas �eld evaluation, model

1The Dutch gas spot market is called Title Transfer Facility (TTF). The �rst TTF Natural Gas Options were
launches by ICE in December 2011.
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ambiguity occurs often due to the relatively unsophisticated existing technology for reservoir size

estimation. Geophysicists estimate parameters for reservoir distribution based both on imperfect

exploration data, often supplemented by insights derived from their own past experiences, which

makes model ambiguity a particularly important issue for valuation problems.

Choice of Discount Rate In an incomplete market setting, a proper discount rate should

not only re�ects the decision maker's risk aversion and his/her time discount value, but also the

structure of the uncertainty embedded in the project itself. The appropriate choice of discount

rates is not always clear to the decision maker. In fact, managers are struggling in determining

the time discount factor, especially for individual projects. Often, as Borison [2005] point out, the

WACC (weighted average cost-of-capital) is used without clearly identifying its risk coverage, i.e.,

whether it re�ects private risk only or the overall investment risk. In this paper, we decompose

the discount rate and discuss how each aspect inherent in discount rate determination a�ects the

decision making process.

Structure of this paper This paper is arranged as follows. Section 2 reviews related literature

on real options, model ambiguity, GARCH and GAS models, etc. Our representative gas �eld case

study problem is described in Section 3. The econometric models and option pricing models are

explained in the following section. Section 5 demonstrates the results and Section 6 concludes.

2 Literature Review

Real Option Valuation McDonald and Siegel [1986] initiated the application of option pricing

technology to decisions involving irreversible �real� projects. They solve for optimal investment

rules using a contingent claim setting and �nd signi�cantly positive value of waiting. Following

their work, Pindyck [1991] provides methodology for practitioners. He emphasizes two major char-
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acteristics of investment opportunities: irreversible expenditure and postponement of execution.

These features both have a profound e�ect on investment decision, and share similarities with

�nancial options.

Borison [2005] criticizes existing applications of real option theory for requiring assumptions

that are not satis�ed in practice, thereby invalidating the pricing methodologies chosen. He sur-

veys the applicability and assumptions of all existing approaches, including the classic approach

(Brennan and Schwartz [1985], Amram and Kulatilaka [1999]), the subjective approach (How-

ell [2001]), the MAD approach (Copeland et al. [1994]) , the revised classic approach (Dixit

and Pindyck [1994]), and the integrated approach (Smith and Nau [1995], Smith and McCar-

dle [1998]). All of them except the last one assume market completeness (hedgeable risks),

which is however rarely the case in real-life problems where real options are under consideration.

Furthermore, the �rst two explicitly assume the underlying asset follows a constant variance Ge-

ometric Brownian Motion process(GBM), which is also not always a good approximation of real

life situations.

Discount rate According to a survey conducted by Mukerji and Tallon [2001], the most popular

valuation method chosen by CFOs is discounted cash �ow, i.e. the Net Present Value method

(NPV). However, when applying this approach, the CFOs are (understandably...) not clear on

the choice of discount rate. Apparently, they typically use one of the following four discount

rates: the acquiring �rm's weighted average cost of capital, the acquiring �rm's cost of equity,

the target's weighted average cost of capital, or other rates such as the target's cost of equity.

Each discount rate has its pros and cons, and the choice may also depend on the (size of the)

M&A project itself. This may confuse the CFOs and lead to biased (too optimistic or pessimistic)

results. And in fact project structures may be such that the use of any constant discount rate is

wrong because the risk structure changes over time .
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Dynamic processes of underlying assets As is explained in Van Wijnbergen and Zhao

[2013], the dynamic of gas prices follows a complicated structure with time varying volatilities,

which cannot be captured by a GBM process. Therefore the classic approach, the subjective

approach, and the revised classic approaches mentioned before become inapplicable, since they

rely on the GBM assumption for their pricing formulas.

In this paper, we consider GAS/GARCH models accounting for volatility, where both are able

to reproduce the volatile volatility. Creal et al. [2012] explain that GAS models can be special-

ized into GARCH models by selecting appropriate factors. They also compare di�erent dynamic

copula models and conclude that the likelihood information is extensively exploited under a GAS

framework. As shown in Andres [2014], the model with dynamic scores outperforms autoregres-

sive conditional duration (ACD) models in terms of the rate of convergence and reliability. Note

that an ACD model, as proposed in Engle and Russell [1998], is analogous to a Gaussian GARCH

model.

Furthermore, the �nancial data often contain fat-tails: extreme outcomes happen too often

that a normal distribution is not capable of accounting for the outliers. By applying GARCH/DCC

and GAS models to global equity returns, Creal et al. [2011] �nd that t-GAS produces highly

persistent estimated factors and improves loglikelihood substantially.

Real options and Incomplete market As mentioned above and in Borison [2005], most

real option approaches assume market completeness, which results in problematic applications.

For example, the subjective approach uses subjective probability; therefore, it is incapable of

shading lights on the market trading price. The MAD approach argues that traditional NPV

serves as an unbiased replicated portfolio; however, still, the no-arbitrage assumption cannot be

satis�ed with this argument only, because the arbitrage opportunity may exist due to the use of

subjective data. Several attempts have been made for resolving the incomplete market problem.
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For example, Smith and Nau [1995], Smith and McCardle [1998] remedy the issue by assuming a

partial complete market and solve the partial market incompleteness by utility indi�erence pricing.

Carmona [2009] states the e�ectiveness of utility indi�erence pricing mechanism for option pricing

problem in a incomplete market, where risk preferences are built into the model to acknowledge

risks.

Model ambiguity The concern for modeling ambiguity can be traced back to Knight [1921],

where ambiguity is also described as uncertainty. The essential di�erence between risk and (Knigh-

tian) uncertainty (or ambiguity, as we refer to it here) is whether the true probability is known or

unknown. The breakthrough made by Gilboa and Schmeidler [1989] solves the ambiguity problem

numerically through a maximin utility with multiple priors, by assuming the agent is ambiguity

averse and therefore considers the worse case scenario.

Camerer and Weber [1992] give an extensive survey on ambiguity aversion, including both

theoretical and empirical analysis. In earlier experimental studies, e.g. Heath and Tversky [1991],

subjects were shown to exhibit strong ambiguity aversion in many circumstances. However, the

results for the e�ect of ambiguity on asset prices are not always coherent. For example, Camerer

and Kunreuther [1989] show that even though ambiguity has changed the market structure, it

did not a�ect the asset prices systematically; whereas, Sarin and Weber [1993] draw a di�erent

conclusion, and claim that ambiguity drives prices down slightly but signi�cantly. Furthermore,

market incompleteness and model ambiguity may mutually reinforce each other. Mukerji and

Tallon [2001] argue that the markets are less complete due to the e�ect of ambiguity aversion.

Chen and Epstein [2002] investigate the e�ect of ambiguity by considering multiple-priors

utility. Their model is able to decompose excess returns into a risk premium and an ambiguity

premium. Maccheroni et al. [2006] consider models of decision-making under ambiguity of vari-

ational preferences, which focus both on multiple preferences and on multiple priors as in Chen
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and Epstein [2002].

Real options and LSMC: Non-European options There is no closed form solution to the

option valuation problems we analyze since we are adopting the GARCH and GAS frameworks.

And there is an additional complication in that our problem has endogenous exercise moments, so

it has an American option style character, but for American options no analytical solution exists

either (in fact it is more appropriate to characterize the options as Bermuda type because of the

discrete exercise dates). We solve the valuation problem using Stochastic Dynamic Programming,

and reduce the dimensionality problem common to this approach by using the Least Squares

Monte Carlo approach proposed by Longsta� and Schwartz [2001]. The continuation value of

the claim is then approximated as a function of the state variables by repeated application of

regression techniques. A �owchart (Figure 24) in the Appendix explains how this method works.

3 Problem Description

A and B are two gas �elds geographically close to each other. The recoverable size of Field

A is currently estimated to be low and not economically attractive by itself. However, if the

development of Field B turns out to be successful, the reservoir estimate of Field A can be

revisited and a more precise estimate might then be expected. So given the possible information

updates, the investor designs a strategic developing plan as displayed in Figure 1. As is shown, if

the drilling on B is successful and the reservoir of Field B turns out to be high, the producer may

decide to build a new platform on Field A, which allows the production of A and B at the same

time due to a platform's larger capacity compared to a pipeline. Thus Field A can be considered

as an extension option on Field B, which should be exercised only when the reservoir of B reveals

a good state (P102).

2The de�nition of P10 is explained in Section 3.1.
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Figure 1: Developing Plan
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Our aim is to value Field B appropriately, so that the valuation can serve as a reserve price for

the acquisition of the area containing both A and B. Van Wijnbergen and Zhao [2013] provide a

suitable option pricing model for this acquisition valuation problem. In this paper, we still use the

Least Square Monte Carlo method for simulating and obtaining option prices.

3.1 Reservoir Distribution

Possibility of success (POS) stands for the probability of a successful drilling. So the probability of

a dry well is 1−POS. Based on a drilling success, the investor expects a recovery size R. Three

commonly used assumptions for the distribution of R are a triangular distribution, the lognormal

distribution, and a variant on the latter, the truncated lognormal distribution.

The triangular distribution is the industry standard for capital budgeting problems due to its

simplicity. It considers only three outcomes of R, namely cases P10, P50, and P90. Naturally

in line with the concept of a CDF (cumulative density function), reservoir amount RP10 of P10
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case means the probability that the realization of the gas reserve is lower than RP10 is 90%. This

simple representation is popular among decision makers, because it provides reasonable and easy

proxies for low/medium/high reserve size cases, based on which a scenario analysis can be set up

for capital budgeting procedures.

Despite the simplicity of triangular distribution, geophysicists prefer a lognormal distribution

which provides more insights into the reservoir distribution. However, a standard lognormal

distribution ranges from 0 to in�nity, which is unrealistic in case of a gas reservoir. Therefore, we

apply a truncated lognormal distribution for the simulation of the reservoir volume size. To fully

approximate the estimations provided by the geophysicists, the reservoir distribution sometimes

cannot solely be characterized by a single truncated lognormal one. For example, the reserve

size of Field B here is well described by a sum of two weighted lognormal probability distribution

functions. The two lognormal distributions are truncated at 99% quantile, one with parameters

(-0.1772, 0.5336)3 and a weight of 0.8661, the other with parameters (-26.6623, 0.0002)4 and a

weight of 0.1339.

In the case of Field A, its POS and reservoir size R are given as one point estimate. But the

POS may be updated from the exploration of Field B and the ambiguity of A, if any, may disappear

too. Note that even if the reservoir size of A in our case study is given as one number instead

of a whole distribution, our methodology can still be easily adjusted to one with complicated

distributions, where the input of the reservoir size would be replaced by a simulated number

from a distribution, such as a lognormal distribution, or a weighted lognormal distribution, etc.

Furthermore, the information update could be also extended to that of a more precise distribution

estimation of A after B's development. We give an example of such an extension in Section 5.4.

3(Mean, standard deviation).
4(Mean, standard deviation).
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3.2 Option characteristics of the exploration/valuation problem

The strategic plan followed by the �rm is divided into two steps. First, the �rm might wait and

meanwhile observe the market price of gas to decide whether to start developing B or not. This

decision has to be made within three years, due to the remaining life of the relevant exploration

licenses. This setup means that the �rm has a wait-and-see Bermuda-type5 option on B with a

maturity of three years. Once this development option is exercised, the �rm may build a platform

and further develop A based on a not-worse-than-P10 realized reservoir amount of B (Figure 1),

which can thus be seen as the unlocking of a European option. Thus, Project B has multiple

and compound option characteristics with a sequential structure, whose values are calculated in

Section 5.

4 Methodology

Below, we present the econometric model used for �tting and predicting gas prices and the utility

indi�erence pricing setting for the option pricing problem. We apply both GARCH and GAS

models to analyze weekly returns obtained from Title Transfer Facility (TTF), the Dutch gas

market.

4.1 Generalized Autoregressive Score (or GAS) Models

The gas weekly return series ranges from Jan 4, 2005 to Oct 2, 2013, shown in Figure 2. The

time series is stationary by both Dickey-Fuller test and Phillips�Perron test.

The Generalized Autoregressive Score model follows Creal et al. [2012]. yt is the demeaned

weekly log return of gas on the TTF market and has a probability distribution function p (yt|ft; θt),

where ft stands for unobserved time-varying factors and θt contains unknown parameters.

5A Bermuda option is an American option with a set of predetermined exercise timing possibilities.
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Figure 2: TTF Weekly Logarithmic Return Data

2006 2007 2008 2009 2010 2011 2012 2013 2014
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Week

yt = σtεt

ft+1 = ω + Ast +Bft

st = St∇t

St = −Et−1 [∇t∇′t]−1

∇t =
∂ log p (yt|ft; θt)

∂ft

The scaling matrix St equals the Fisher information matrix and ∇t stands for the �score� as in

�Generalized Autoregressive Score�. Hence, st is also called the scaled score function. We assume

that εt follows a standard normal (Gaussian) distribution but also investigate the possibility of
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fatter tails by basing the GAS model on a student's t distribution with estimated degrees of

freedom, thereby testing for normality. The model collapses into a Gaussian GARCH or a t-

GARCH one with the appropriate assumptions on the factor ft as we show below in the Appendix

7.1.1; so GARCH is embedded in GAS, which allows for a simple loglikelihood test.

4.2 Estimation Results and Diagnostic Tests

Our econometric analysis shows that the Gaussian GAS model yields a higher log-likelihood value

of 672.36, comparing to 614.76 for the Gaussian GARCH model. Thus a Gaussian GARCH model

outperforms a Gaussian GAS model by 9% in terms of log-likelihood. And the kernel density plots

and the QQ-plots in Figure 3 imply that the residuals from both Gaussian GARCH and Gaussian

GAS models present fat tail leading to a rejection of the normality hypothesis. Therefore we

proceed with a Student's t-based GAS model, to capture the impact of the fat tails embedded in

the data.
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Figure 3: Residual Tests

Table 4 lists the estimation results from all four models considered. The estimated degree of

freedom for the Student's t distribution is 3.95 and 3.91 for Student's t-GARCH and Student's

t-GAS model respectively, and is signi�cant for both models6. In addition, the loglikelihood

from the models with Student's t distribution is signi�cantly larger than the one from those with

Gaussian distribution, which also con�rms our �ndings from the residual plots. The result of a

6Arguably more important, the degrees of freedom parameter is very signi�cantly lower than the number where
the di�erence between t-distribution and the normal becomes negligible (higher than 30).
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Figure 4: Estimation Results

Gaussian Student's t
GARCH GAS GARCH GAS

omega
4.6086 0.1823 3.7312 0.2447
(1.4039) (0.6241) (1.2269) (0.6235)

A
0.3822 0.2245 0.2860 0.2434
(9.4001) (8.7826) (7.3775) (7.6351)

B
0.9803 0.9329 0.9704 0.9205

(57.7331) (56.8993) (32.7113) (35.0938)
nu 3.9511 3.9096

(Degree of Freedom) (5.0168) (4.6893)
LogLikelihood -614.759 -672.361 -595.759 -593.894

(Note: t statistics are reported in parentheses.)

loglikelihood-ratio test7 between Gaussian-GAS and Student's t-GAS is signi�cant, implying the

existence of fat-tails in the data series.

Figure 5 demonstrates the variances σ2
t estimated from the two models. As can be seen, a

model with constant variance assumption is not able to capture all the relevant features of this

time series adequately. All Gaussian/ Student's-t GARCH/ GAS models are able to characterize

the high volatility periods, compared to a constant volatility model. As illustrated, two highly

volatile periods in early 2007 and mid 2012 can be easily observed correspondingly to Figure 2.

The Student's t-GAS model produces a slightly more smooth volatility series than the Student's

t-GARCH model: In the high volatility periods, e.g. early 2007, the estimated volatility given by

a Student's t-GAS model is smaller than one by a Student's t-GARCH model. This observation

is attributed to the feature of Student's t-GAS model, which adjusts quickly to new observations.

Also it implies that extreme outcomes of returns does not necessarily stem from high volatility,

the occurrence of tail events can result in the rare outcomes as well.

7LR = 2 (−593.894 + 672.361) = 156.934 > χ2 (1) .
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Figure 5: Comparison of Estimated Volatility with Gaussian/ Student's-t GARCH/ GAS Models
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4.3 Utility Indi�erence Pricing

Van Wijnbergen and Zhao [2013] applied an integrated approach adjusted from Smith and Nau

[1995], Smith and McCardle [1998] based on the assumption that (A) gas price risk can be hedged

so risk neutral valuation can be used in that dimension,but (B) reservoir risk is not hedgeable so

we used a preference based valuation method in that dimension. Although we used a Gaussian

GARCH(1,1) model for gas prices in our earlier paper, which violates the constant variance property

necessary for the applicability of risk neutral pricing methods, we used a local variant on risk neutral

pricing as proposed by Duan (1995). But that mixed approach cannot be used here because the
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general GAS models do not satisfy Duan's conditions necessary for the applicability of his local

variant on risk neutral pricing. Since now the gas price volatility risks are unhedgeable too, we

thus simply assume that neither risk can be hedged and adopt multidimensional utility indi�erence

pricing for both the gas price and reservoir size risks. Also, for comparison with methods more

used in practice, we present results adopting the so called Cost-of-capital method where a range

of discount rates is used instead of explicit preference parameters.

5 Results

The number of Monte Carlo simulations is 100,000. Here POS for drilling at A is 90% and POS

for drilling at B is 30%.

5.1 Cost-of-capital Method

5.1.1 NPVs v.s. Option Values

The results over a range of values for the cost-of-capital (3% - 15%) rates are shown in Figure 6.

Figure 6a gives the results based on assuming a t-GARCH(1,1) process for gas prices, and Figure

6b the same set of results but now based on assuming a t-GAS(1,1) structure for the volatility

process of gas prices. In both sub-�gures, option values and NPVs of both �elds are declining

as the assumed cost of capital increases, as one should expect given the time structure of cash

�ows. The horizontal solid (red) line stands for a break-even project, which sets a standard for

accepting and rejecting investment projects. The gray circled line illustrates the net present value

of B at time zero without any option values counted. The dashed gray line stands for the net

present value of the strategic plan without the wait-and-see Bermuda option on B, i.e. a �xed

starting time at t=0.
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The �rst interesting result stems from comparing the two graphs: the option values assuming

t-GAS(1,1) are about 0.5-1 million euros higher than the project values based on assuming a

t-GARCH(1,1) speci�cation. Note that the t-GARCH and t-GAS models explains the data with

similar power in terms of loglikelihood, therefore this di�erence of option values result from the

di�erent volatility structure predicted by two models.

As is shown in Figure 6b (and Table 1 in the Appendix), with a t-GAS speci�cation, the

gray circled line intersects the break-even line at a cost-of-capital of 10%, so on a NPV should

be positive criterium, the �rm would reject the entire project B for any cost-of-capital higher

than (or equal to) 10%. But taking into account the various waiting option values changes that

outcome: The discounted net project value with all options incorporated values more than doubles

for a WACC of 3%, declines with higher values for the WACC but the overall project value with

options included stays signi�cantly positive for all values of the WACC considered. It does decline

with higher discount rates, obviously, because the high CAPEX come upfront but the revenues

come later in time. Note also that a platform may have further uses that we do not incorporate:

for example, it can be used for gas storage at a later stage. Nevertheless, it is evident that

the strategic development plan including waiting option is worthwhile because the project value

including option values stays positive given cost-of-capitals varying from 3% to 15%. A second

conclusion one can draw is that incorporating the option values is a meaningful exercise: otherwise

the wrong investment decision would be taken under a wide range of cost of capital estimates.

Similar patterns can be found under the t-GARCH speci�cation with slightly lower option

values, as demonstrated in Figure 6a (and Table 1 in the Appendix). For example, the break-even

point of NPV of B is at a cost-of-capital of 9.5%, compared to 10% in case of a t-GAS model.

The strategic plan is valued less than the NPV of sole project B. Later we show that the

strategic plan becomes valuable if more information will be brought in in the future.

20



Figure 6: Option pricing results

(a) Student's t-GARCH
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(b) Student's t-GAS
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From here on we will not report the GARCH results anymore8. They are obviously qualitatively

similar to the GAS based results, but the GAS speci�cation has a stronger basis in the econometric

results of our data analysis.

5.1.2 Good State v.s. Bad State

As in regular option pricing theory, the option value in our analysis depends on the current market

state, in this case the gas price, since the econometric analysis suggests that the best prediction

for the future return is mainly in�uenced by the current state. Figure 7 shows that the value

of the project increases with the spot market price. For example, when the spot price is lower

than 15 euros per megawatt hour, the option value is close to zero, so for spot prices that low

the project has not only negative NPV but also almost worthless options, resulting in a de�nite

rejection at all discount rates.

8Corresponding GARCH based results can be found in the Appendix.
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Figure 7: Spot prices v.s. option value under a Student's t-GAS speci�cation
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5.2 Utility Indi�erence Pricing (UIP)

We assume the investor has an exponential utility function: ut(xt) = −exp(−xt/ρt), where ρt
represents the decision maker's risk tolerance. A high ρt implies a high tolerance for risk (low risk

aversion). Our basic criterion then relies on the discounted value of certainty equivalence cash

�ows where the certainty equivalence is calculated using a speci�c value for ρ. Given the degree

of risk tolerance, the certainty equivalent therefore represents the project value, in comparison to

the NPVs used above.
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Figure 8: Utility Indi�erence Pricing (Student's t-GAS)
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The option values calculated based on utility indi�erence pricing for a range of values for the

risk tolerance parameter ρ are given in Figure 8 and Table 2 in the Appendix. For both models,

the option values ranges between 10 to 15 million euros. As one should expect, option values

are increasing in the investor's risk tolerance9. Or, to put it di�erently, the more risk averse

an investor is, the less value she/he attaches to a risky project. It is evident that taking into

account the option values once again leads to higher project values, and to a di�erent outcome

in terms of the decision to proceed or not. Note that the valuation increases initially steadily as

the risk tolerance of the decision maker goes up from 5 to 40; however, from a risk tolerance

of 40 onwards, the valuation �attens out. These �ndings are similar to the results obtained by

9This may sound plausible, but it is not trivial: note that such a result is typical for real options (unhedgeable
risk) set ups only. For standard risk neutral option pricing methodology to be applicable all risks need to be
hedgeable and option values do not depend on risk aversion in such a hedgeable risk environment.
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Van Wijnbergen and Zhao [2013].

One interesting observation can be made by comparing Figure 8 and Figure 6b. In Figure 8,

when the risk tolerance of the investor increases and she/he becomes risk neutral, the valuations

are similar to the ones from Cost-of-capital method with a cost-of-capital of 3%. Since we assume

a risk free rate of 3%, these two methods coincide provided complete market assumption holds.

As one should expect, the UIP approach leads to a comparison between the outcomes based

on the di�erent stochastic speci�cations of the volatility processes that is similar to what we saw

comparing the outcomes under di�erent cost of capital values. For all levels of risk tolerance, the

t-GAS based analysis leads to slightly higher valuations than the t-GARCH based approach due to

higher estimated volatilities. We do not show the plots based on the GARCH results any further.

5.3 Model Ambiguity

In the discussion sofar we have proceeded on the assumption that speci�c values for the reserve

levels were unknown, but that their probability distribution was known with full certainty. Of

course that is overly optimistic: there is ambiguity about the distribution itself, model ambiguity

in short. Therefore, in this subsection, we take this ambiguity into consideration and show how it

a�ects the project valuation. We also assume that the investor is ambiguity averse, which means

she/he considers the worst-case scenario when facing ambiguity. In technical terms, the investor

follows a Minimax strategy: take the minimum value of the maximized outcomes/valuations over

the di�erent distributional possibilities (see Gilboa and Schmeidler [1989]). We assume in this

example ambiguity on the mean of the reservoir distribution only, and we take the variance of

the reservoir distribution as known from the geological structure of the locations. Initially we

assume the same ambiguity on the reservoir sizes of both A and B. Of course we can apply similar

methods based on the assumption of di�erent ambiguity levels for A and B. Of special interest

is the case where ambiguity levels get reduced when information becomes available half way the
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project. We consider that possibility explicitly in the next section, 5.3.1.

Figure 9 shows that the project value is declining with higher ambiguity levels. The levels

chosen here are only for demonstration purpose. A higher ambiguity level means the decision

maker is less certain about the mean of the reservoir distribution, which leads to a lower level of

valuation due to the Minimax strategy followed. As can be seen, given a high level of ambiguity,

the valuation di�erences between decision makers with di�erent risk tolerance shrink accordingly.

Figure 9: Option Values with Persistent Model Ambiguity

0 10 20 30 40 50

6

8

10

12

14

16

18

20

22

Risk Tolerance

O
pt

io
n 

V
al

ue
 (

M
ill

io
n 

E
ur

os
)

Certainty equivalent/Value of B with model ambiguity (t−GAS)

 

 
No Ambiguity
Ambiguity Level 1
Ambiguity Level 2
Ambiguity Level 3
Ambiguity Level 4
Ambiguity Level 5

These results have interesting implications for insurance. The mirror image (up and down)

of these graphs can be interpreted as how much the agent would be willing to pay for insurance

against a certain risk the agent faces. It implies that for a given ambiguity level, risk averse agents

are likely to buy an insurance product because they attach a high value to the insurance. On the

contrary, risk tolerant agents would be less likely to buy such an insurance. On the other hand,
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for those people with the same risk tolerance, the decision of purchasing the insurance contract

depends on her/his ambiguity level on the underlying processes. For example, people with high

ambiguity levels tend to buy an insurance comparing to those with low ambiguity levels.

5.3.1 Project values when ambiguity is resolved halfway the process

In the preceding section, we introduced persistent ambiguity, i.e. uncertainty about the probability

structure that remains constant over time. However it is more reasonable to assume that once

production in B has started, more information about A, and more speci�cally, about the probability

distribution of possible outcomes of A, will become available, since the geological structures of B

and A are related. And declining ambiguity again brings in rewards for waiting, in a sense once

again real option value. We explore the additional value project B gets if its exploration reduces

ambiguity over well A once B is brought in production. In particular, we focus on reservoir A

ambiguity only, and assume it gets resolved after starting on reservoir B. In other words, starting

on B leads not only to more speci�c information but also narrows down the range of distributional

possibilities.

For simplicity and focus we demonstrate the e�ect for the case where there is just ambiguity

about A, which gets resolved once B is brought into operation. The no-ambiguity case is obviously

the same as shown in Figure 9. But the interesting results come once we assume that starting on

B leads to reduced ambiguity on A because the �elds are contiguous. If the ambiguity level of A is

at a particular level at the beginning and we know that ambiguity disappears after the development

of B, then the di�erence between no-ambiguity and the project value at that particular Ambiguity-

level should be added to the project value of B. 10 makes the point for the two moderate ambiguity

level (Level 2 and Level 3): it shows the option values that resolution of ambiguity leads to as a

percentage of the original project value of B with ambiguity persistent, and for di�erent levels of

risk tolerance.
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Figure 10: Ambiguity in Field A Only (Student's t-GAS)
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It is clear from Figure 10 that option values go up with risk tolerance and also increase as the

initial ambiguity level that gets resolved is higher. And the option value numbers are substantial:

in this example the increase in project value due to the reduction in ambiguity ranges between

approximately 5 and 15% of the original project value depending on risk tolerance and level of

pre-existing ambiguity.

5.4 Reservoir Correlation

Finally we consider another plausible example of correlated information, for when the reservoir size

of A follows a truncated lognormal distribution, with mean equal to the one mass point before,

and with variance equal to 0.5, shown in Figure 11a. Assume now that if B turns out to be a

successful development, the information about the reservoir size distribution of A will be updated
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correspondingly. This can be interpreted as one example of ambiguity reduction. Figure 11 shows

some possible distribution updates for the distribution of A, with the original distribution given in

Figure 11a. The following diagrams 11b-d show three di�erent ways the distributional information

could change: In Figure 11b we show how the distribution changes when the truncation point

shifts inwards, the range of possible outcomes narrows down, as in the shadow area displayed in

Figure 11b. Alternatively, the mean could shift, Figure 11c shows an example where the mean

shifts up. Finally, mean and truncation points could be left unchanged but the variance could be

reduced as information from B becomes available (Figure 11d). In what follows we focus on the

case where the truncation point shifts inwards once B has started up, the case shown in Figure

11b, to demonstrate how our option technique works. We again present the results both for the

Cost-of-capital approach and for UIP.
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Figure 11: Reservoir Correlation Examples

(a) A has a truncated lognormal distribution (b) Truncation Update

(c) Mean Update (d) Variance Update

5.4.1 Cost-of-capital method

By comparing Figure 12 with Figure 6, one can easily �nd out that this reservoir correlation has

increased the option value by about 1 to 5 million over the range of cost-of-capital rates considered

(as also shown in Figure 13). The reservoir correlation of course does not change the NPV of B,

therefore the red dashed line and the gray circled line stay the same as in Figure 6. Moreover, the

strategic plan now outperforms the stand-alone project B for low cost-of-capital estimates; this
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happens for rates below 10% under a t-GAS speci�cation.

Figure 12: Option Pricing Results for the General Case with Reservoir Correlation (Student's
t-GAS)
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Comparison with the case without reservoir correlation Furthermore, the shadow areas

in Figure 13 represent the di�erences of values between the projects with and without reser-

voir correlation. It is evident that both the option and strategic plan are valued higher when

reservoir correlation exists. In other words, the halfway resolution of reservoir distribution ambi-

guity/correlation increases the project value signi�cantly by adding option value.
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Figure 13: Comparison: Option Values With and Without Reservoir Correlation (Student's t-GAS)

0.05 0.1 0.15
−10

−5

0

5

10

15

20

25

Cost of Capital

O
pt

io
n 

V
al

ue
 (

M
ill

io
n 

E
ur

os
)

Comparisons of option values and strategic plans, without and with reservoir correlation (t−GAS)

 

 
Option Value with Reservoir Correlation
Option Value without Reservoir Correlation
NPV of the strategic plan starting at time 0, with reservoir correlation
NPV of the strategic plan starting at time 0, without reservoir correlation

5.4.2 Utility Indi�erence Pricing

When we base the evaluation on UIP instead of on �xed cost-of-capital estimates, Similar to the

comparison in Section 5.4.1, the strategic plan presented brings in more revenues (in NPV terms)

than project B on its own, shown in Figure 14 and Figure 15. But the more important point is

that reduction of uncertainty, this time a narrowing down of the range of possible outcomes, once

again leads to substantial option values and correspondingly higher project value. Again, ignoring

option values and information acquisition would lead to overly conservative project valuation and

excessively conservative project decisions.
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Figure 14: Utility Indi�erence Pricing Results for the General Case with Reservoir Correlation
(Student's t-GAS)
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Comparison with the case without reservoir correlation Similar to Figure 13, the shadow

areas in Figure 15 represent the di�erences of values when comparing the projects with and without

reservoir correlation.
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Figure 15: Comparison: Option Values With and Without Reservoir Correlation (Student's t-GAS)
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Once again, the fact that ambiguity on A is reduced once B has been brought into operation

causes the option values to increase: the more future information gets updated as the project

moves ahead, the higher the initial project value.

6 Conclusion

This paper has focused on the real option approach to solving a contingent claim problem as

an alternative method for decision making under uncertainty. We incorporate many aspects that

complicate asset pricing problems, such as incomplete markets and unhedgeable risks, dynamic

release of distributional information and non-normal volatility assumptions, ll of which invalidate

traditional risk neutral approaches to asset pricing. Utility indi�erence pricing is applied in face of

market incompleteness and t-GARCH/t-GAS models are used for volatility modeling of gas prices.

We show in a real world example that the Student's t-GARCH/ -GAS model, with its fatter tails,
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�ts the observed data better than the Gaussian GARCH/GAS model in terms of loglikelihood

ratio.

We also take the analysis one step further by introducing deep uncertainty, of the type that

cannot be summarized by formulating a probability density function, because it concerns uncer-

tainty about that very density function. In the literature this sort of uncertainty is referred to as

Knightian uncertainty or, the word we prefer, model ambiguity. In our case study we show that

the existence of model ambiguity reduces asset values in a risk averse world and will ceteris paribus

lead to more conservative project continuation decisions. But we also introduce a new angle to

this debate by pointing out that for time structured projects with correlated distributions, a new

source of option value can emerge. If executing one part of the project leads to reduced model

ambiguity concerning the later components of the project, the initial blocks acquire additional op-

tion values, which in our case study are shown to be substantial. As the ambiguity level decreases

with project progress, the initial project becomes more valuable due to the information that will

be brought in along with development. The value of projects that allow for that sort of �exibility

will be underestimated consistently by more traditional NPV-based valuation approaches. In our

real world case study, the biases are shown to be substantial.

Real option approaches have been known for a long time, but have by and large been dismissed

in practice because real world problems quickly lead to what is called the curse of dimensionality.

Their solution requires solving quintessentially non-linear stochastic dynamic optimization prob-

lems, and the numerical problems solving those become rapidly insurmountable as the problem's

dimensionality increases. We demonstrate however that a dimension reduction approach long

used in the solution of problems posed by the valuation of American options (i.e. options with

endogenous exercise timing) can also be applied successfully to the stochastic dynamic program-

ming (SDP) problems arising in complex high dimensionality real option problems. We analyze a

real world case study, the valuation of two connected o� shore gas �elds in the presence of price
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uncertainty with variable volatility (which we analyze using the Generalized Autoregressive Score

or GAS models), intertemporally correlated uncertainty and even model ambiguity concerning the

reservoir size of the two connected gas �elds. Our analysis shows very substantial payo�s to

explicitly introducing asymmetric stochastic variance modeling, substantial option values in the

presence of unhedgeable risks (although in that case we show them to depend on preferences)

and the importance for decision making of taking into account (declining) model ambiguity. We

show that traditional valuation approaches will consistently underestimate the value of project

�exibility and in general lead to overly conservative investment decisions in the presence of time

dependent stochastic structures.
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7 Appendix

7.1 GAS Models

7.1.1 Gaussian GARCH model

The model above can be reduced to a Gaussian GARCH model if ft = σ2
t and εt ∼ N (0, 1), i.e.

yt = σtεt

σ2
t+1 = ω + A

(
y2t − σ2

t

)
+Bσ2

t

where ω, A, and B − A are parameters in a classical Gaussian GARCH model.

7.1.2 Gaussian GAS model

Alternatively, if take ft = log σ2
t , we obtain a Gaussian GAS(1,1) model, i.e.

yt = σtεt

log σ2
t+1 = ω + A

(
y2t
σ2
t

− 1

)
+B log σ2

t

In this model, next period's variance depends in a linear manner on a constant, the current period's

variance and the square of the standardized observations,
y2t
σ2
t
.

7.1.3 Student's t GARCH model

If the error term εt follows a Student's t distribution with degree of freedom ν, then it again
becomes a t-GARCH model. Similarly, if we still �t it into a GAS framework, the model can be
written as follows:

yt = σtεt

σ2
t+1 = ω + A

ν + 3

ν

((
1 +

y2t
ν − 2

)−1
ν + 1

ν − 2
y2t − σ2

t

)
+Bσ2

t

7.1.4 Student's t GAS model

A Student's t GAS(1,1) model is obtained by choosing ft = log σ2
t , and εt ∼ t (ν).

yt = σtεt

log σ2
t+1 = ω + A

ν + 3

ν

((
1 +

y2t
ν − 2

)−1
(ν + 1) y2t
(ν − 2)σ2

t

− 1

)
+B log σ2

t
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7.2 Results under a speci�cation of the gas price volatility process
as a Student's t-GARCH model

Figure 16: Spot prices v.s. option value under a Student's t-GARCH speci�cation
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Figure 17: Utility Indi�erence Pricing (Student's t-GARCH)
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Figure 18: Option Values with Persistent Model Ambiguity (t-GARCH)
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Figure 19: Ambiguity in Field A Only (t-GARCH)
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Figure 20: Option Pricing Results for the General Case with Reservoir Correlation (t-GARCH)
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Figure 21: Comparison: Option Values With and Without Reservoir Correlation (Gaussian
GARCH)
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Figure 22: Utility Indi�erence Pricing Results for the General Case with Reservoir Correlation
(t-GARCH)
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Figure 23: Comparison: Option Values With and Without Reservoir Correlation (t-GARCH)
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7.3 Option Results in Details
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Table 1: Option values versus NPV of B at time 0 (million euros)

Cost-of-capital
Student's t-GARCH Student's t-GAS

Option Values
NPV of B

Di�erence Option Values
NPV of B

Di�erence
at t = 0 at t = 0

3% 14.18 6.49 7.68 15.28 7.27 8.00
4% 12.62 5.41 7.21 13.49 5.90 7.59
5% 11.25 4.40 6.85 11.99 4.75 7.25
6% 9.89 3.35 6.54 10.57 3.67 6.91
7% 8.66 2.37 6.29 9.34 2.72 6.62
8% 7.52 1.36 6.17 8.17 1.66 6.51
9% 6.51 0.48 6.03 7.19 0.83 6.36
10% 5.61 -0.34 5.95 6.30 0.00 6.29
11% 4.83 -1.02 5.85 5.47 -0.79 6.26
12% 4.12 -1.70 5.82 4.81 -1.43 6.24
13% 3.52 -2.22 5.75 4.19 -2.04 6.23
14% 2.93 -2.81 5.74 3.61 -2.65 6.25
15% 2.48 -3.18 5.66 3.09 -3.28 6.37

Table 2: Utility Indi�erence Pricing Comparison (million euros)

Risk Tolerance
Option Value under Option Value under

Di�erence
a t-GARCH speci�cation a t-GAS speci�cation

5 11.09 11.11 -0.02
10 12.31 12.63 -0.32
15 12.84 13.19 -0.35
20 13.35 13.87 -0.52
25 13.58 14.21 -0.63
30 13.60 14.37 -0.77
35 13.73 14.60 -0.86
40 13.74 14.74 -1.00
45 13.76 14.85 -1.08
50 13.83 14.90 -1.08
55 13.92 14.98 -1.06
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Table 3: Model Ambiguity

(a) Student's t-GARCH

Risk Tolerance
Ambiguity Level (Left to Right, Low to High)

No Ambiguity Level 1 Level 2 Level 3 Level 4 Level 5

5 11.09 10.30 9.03 8.24 7.52 6.74
10 12.31 11.23 9.87 9.02 8.00 7.09
15 12.84 11.58 10.24 9.20 8.26 7.24
20 13.35 11.93 10.65 9.53 8.48 7.35
25 13.58 12.09 10.82 9.59 8.59 7.42
30 13.60 12.17 10.98 9.61 8.67 7.46
35 13.73 12.26 11.01 9.62 8.65 7.50
40 13.74 12.30 11.07 9.74 8.66 7.56
45 13.76 12.38 11.06 9.73 8.64 7.58
50 13.83 12.43 11.11 9.77 8.68 7.57
55 13.92 12.47 11.13 9.89 8.69 7.60

(b) Student's t-GAS

Risk Tolerance
Ambiguity Level (Left to Right, Low to High)

No Ambiguity Level 1 Level 2 Level 3 Level 4 Level 5

5 11.11 10.21 9.25 8.41 7.87 7.05
10 12.63 11.43 10.39 9.29 8.46 7.55
15 13.19 11.98 10.80 9.67 8.71 7.74
20 13.87 12.58 11.29 10.04 9.00 7.99
25 14.21 12.88 11.48 10.24 9.10 8.12
30 14.37 13.04 11.55 10.35 9.19 8.19
35 14.60 13.16 11.62 10.40 9.22 8.22
40 14.74 13.15 11.69 10.40 9.25 8.24
45 14.85 13.17 11.73 10.47 9.22 8.23
50 14.90 13.16 11.77 10.51 9.24 8.25
55 14.98 13.18 11.90 10.56 9.26 8.22
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Table 4: Model Ambiguity of A Only

(a) Student's t-GARCH

Risk Tolerance
Ambiguity Level (Left to Right, Low to High)

No Ambiguity Level 1 Level 2 Level 3 Level 4 Level 5

5 11.09 10.70 10.38 10.08 9.83 9.74
10 12.31 11.81 11.31 11.00 10.71 10.36
15 12.84 12.23 11.77 11.36 11.02 10.64
20 13.35 12.72 12.23 11.75 11.38 10.96
25 13.58 12.97 12.48 11.92 11.55 11.13
30 13.60 13.06 12.61 12.00 11.62 11.22
35 13.73 13.21 12.67 12.08 11.69 11.27
40 13.74 13.30 12.74 12.16 11.75 11.30
45 13.76 13.36 12.77 12.24 11.76 11.28
50 13.83 13.37 12.78 12.26 11.76 11.30
55 13.92 13.42 12.85 12.30 11.78 11.28

(b) Student's t-GAS

Risk Tolerance
Ambiguity Level (Left to Right, Low to High)

No Ambiguity Level 1 Level 2 Level 3 Level 4 Level 5

5 11.11 10.89 10.56 10.21 9.96 9.71
10 12.63 12.16 11.90 11.46 10.98 10.75
15 13.19 12.75 12.43 11.95 11.51 11.22
20 13.87 13.36 12.97 12.51 12.00 11.69
25 14.21 13.66 13.21 12.75 12.27 11.87
30 14.37 13.86 13.34 12.87 12.42 12.01
35 14.60 14.01 13.45 12.96 12.49 12.08
40 14.74 14.11 13.48 13.07 12.49 12.13
45 14.85 14.21 13.54 13.08 12.56 12.17
50 14.90 14.26 13.61 13.10 12.62 12.25
55 14.98 14.35 13.66 13.13 12.70 12.27
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Table 6: Utility Indi�erence Pricing Comparison (million euros) with Reservoir Correlation

Risk Tolerance
Option Value under Option Value under

Di�erence
a Student's t-GARCH speci�cation a Student's t-GAS speci�cation

5 11.19 11.33 -0.14
10 12.92 13.11 -0.19
15 13.63 13.81 -0.18
20 14.35 14.76 -0.41
25 14.66 15.19 -0.53
30 14.84 15.40 -0.56
35 14.84 15.72 -0.88
40 15.02 15.92 -0.90
45 15.19 15.87 -0.68
50 15.20 15.94 -0.74
55 15.40 15.94 -0.54

49



Figure 24: Least Square Monte Carlo Method (Longsta� and Schwartz [2001])
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max {Ŷ (n),max
(
K − Pn

t−∆t, 0
)
}
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