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Abstract 

 

The three most popular univariate conditional volatility models are the generalized 

autoregressive conditional heteroskedasticity (GARCH) model of Engle (1982) and Bollerslev 

(1986), the GJR (or threshold GARCH) model of Glosten, Jagannathan and Runkle (1992), and 

the exponential GARCH (or EGARCH) model of Nelson (1990, 1991). The underlying 

stochastic specification to obtain GARCH was demonstrated by Tsay (1987), and that of 

EGARCH was shown recently in McAleer and Hafner (2014). These models are important in 

estimating and forecasting volatility, as well as capturing asymmetry, which is the different 

effects on conditional volatility of positive and negative effects of equal magnitude, and 

leverage, which is the negative correlation between returns shocks and subsequent shocks to 

volatility. As there seems to be some confusion in the literature between asymmetry and 

leverage, as well as which asymmetric models are purported to be able to capture leverage, the 

purpose of the paper is two-fold, namely: (1) to derive the GJR model from a random coefficient 

autoregressive process, with appropriate regularity conditions; and (2) to show that leverage is 

not possible in these univariate conditional volatility models. 

 

Keywords: Conditional volatility models, random coefficient autoregressive processes, random 

coefficient complex nonlinear moving average process, asymmetry, leverage. 

 

JEL classifications: C22, C52, C58, G32. 
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1. Introduction 

 

The three most popular univariate conditional volatility models are the generalized 

autoregressive conditional heteroskedasticity (GARCH) model of Engle (1982) and Bollerslev 

(1986), the GJR (or threshold GARCH) model of Glosten, Jagannathan and Runkle (1992), and 

the exponential GARCH (or EGARCH) model of Nelson (1990, 1991). The underlying 

stochastic specification to obtain GARCH was demonstrated by Tsay (1987), and that of 

EGARCH was shown recently in McAleer and Hafner (2014).  

 

These models are important in estimating and forecasting volatility, in capturing asymmetry, 

which is the different effects on conditional volatility of positive and negative effects of equal 

magnitude, and (possibly) in capturing leverage, which is the negative correlation between 

returns shocks and subsequent shocks to volatility. The purpose of the paper is two-fold, namely: 

(1) to derive the GJR model from a random coefficient autoregressive process, with appropriate 

regularity conditions; and (2) to show that leverage is not possible in these univariate conditional 

volatility models. 

 

The derivation of three well known conditional volatility models, namely GARCH, GJR and 

EGARCH, from their respective underlying stochastic processes raises two important issues: (1) 

the regularity conditions for each conditional volatility model can be derived in a straightforward 

manner; and (2) the GJR and EGARCH models can be shown to capture asymmetry, but they 

can also be shown to be unable to capture leverage. 

 

The paper organized is as follows. In Section 2, the GARCH, GJR and EGARCH models are 

derived from different stochastic processes, the first two from random coefficient autoregressive 

processes and the third from a random coefficient complex nonlinear moving average process. It 

is shown that asymmetry is possible for GJR and EGARCH, but that leverage is not possible. 

Some concluding comments are given in Section 3. 

 

2. Stochastic Processes for Conditional Volatility Models 
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2.1 Random Coefficient Autoregressive Process and GARCH 

 

Consider the conditional mean of financial returns as in the following: 

 

tttt IyEy   )|( 1            (1) 

 

where the returns, ty  = tPlog , represent the log-difference in stock prices ( tP ), 1tI  is the 

information set at time t-1, and t  is conditionally heteroskedastic. In order to derive conditional 

volatility specifications, it is necessary to specify the stochastic processes underlying the returns 

shocks, t . 

 

Consider the following random coefficient autoregressive process of order one: 

 

tttt   1           (2)  

 

where 

 

t  ~ iid ),0(  , 

t  ~ iid ),0(  . 

 

Tsay (1987) showed that the ARCH(1) model of Engle (1982) could be derived from equation 

(2) as: 

 

2
11

2 )|(   tttt IEh  .         (3)  

 

where th  is conditional volatility, and 1tI  is the information set at time t-1. The use of an 

infinite lag length for the random coefficient autoregressive process in equation (2), with 

appropriate restrictions on the random coefficients, can be shown to lead to the GARCH model 

of Bollerslev (1986).  
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As the ARCH and GARCH models are symmetric, in that positive and negative shocks of equal 

magnitude have identical effects on conditional volatility, there is no asymmetry, and hence also 

no leverage, whereby negative shocks increase conditional volatility and positive shocks 

decrease conditional volatility (see Black (1976)). 

 

It is worth noting that at least one of   or   must be positive for conditional volatility to be 

positive. From the specification of equation (2), it is clear that both   and   should be positive 

as they are the variances of two different stochastic processes. 

 

2.2 Random Coefficient Autoregressive Process and GJR 

 

The GJR model of Glosten, Jagannathan and Runkle (1992) can be derived as a simple extension 

of the random coefficient autoregressive process in equation (2), with an indicator variable 

)( 1tI   that distinguishes between the different effects of positive and negative returns shocks on 

conditional volatility, namely: 

 

ttttttt I    111 )(         (4)  

 

where  

 

t  ~ iid ),0(  , 

t ~  iid ),0(  ,  

t  ~ iid ),0(  , 

 

)( 1tI  = 1 when 1t < 0,  

)( 1tI   = 0 when 01 t .  
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The conditional expectation of the squared returns shocks in (3), which is typically referred to as 

the GJR (or threshold GARCH), can be shown to be an extension of equation (3), as follows: 

 

2
11

2
11

2 )()|(   tttttt IIEh   .       (5)  

 

The use of an infinite lag length for the random coefficient autoregressive process in equation (4), 

with appropriate restrictions on the random coefficients, can be shown to lead to the standard 

GJR model with lagged conditional volatility. 

 

It is worth noting that at least one of ),,(   must be positive for conditional volatility to be 

positive. From the specification of equation (4), it is clear that all three parameters should be 

positive as they are the variances of three different stochastic processes. 

 

The GJR model is asymmetric, in that positive and negative shocks of equal magnitude have 

different effects on conditional volatility. Therefore, asymmetry exists for GJR if: 

 

Asymmetry for GJR: 0 . 

 

A special case of asymmetry is leverage, which is the negative correlation between returns 

shocks and subsequent shocks to volatility. The conditions for leverage in the GJR model in 

equation (5) are: 

 

Leverage for GJR: 0  and 0 . 

 

It is clear that leverage is not possible for GJR as both   and  , which are the variances of two 

stochastic processes, must be positive.  

 

2.3 Random Coefficient Complex Nonlinear Moving Average Process and EGARCH 

 



7 
 

Another conditional volatility model that can accommodate asymmetry is the EGARCH model 

of Nelson (1990, 1991). McAleer and Hafner (2014) showed that EGARCH could be derived 

from a random coefficient complex nonlinear moving average (RCCNMA) process, as follows: 

 

tttttt    11 ||         (6)  

 

where  

 

t  ~ iid ),0(  , 

t ~  iid ),0(  ,  

t  ~ iid ),0(  , 

1t  is a complex-valued function of 1t . 

 

The conditional variance of the squared returns shocks in equation (6) is given as: 

 

111
2 ||)|(   ttttt IEh  .       (7) 

 

It is worth noting that the transformation of th  in equation (7) is not logarithmic, but the 

approximation given by:  

 

1))1(1log(log  ttt hhh  

 

can be used to replace th  in equation (7) with 1 + thlog . The use of an infinite lag for the 

RCCNMA process in equation (6) would yield the standard EGARCH model with lagged 

conditional volatility. 

 

EGARCH differs from GARCH and GJR in that, given the logarithmic transformation, no sign 

restrictions on ),,(   are necessary for conditional volatility to be positive. However, it is 



8 
 

clear from the RCCNMA process in equation (6) that all three parameters should be positive as 

they are the variances of three different stochastic processes. Therefore, asymmetry exists for 

EGARCH if: 

 

Asymmetry for EGARCH: 0 . 

 

The conditions for leverage in the EGARCH model in equation (7) are:  

 

Leverage for EGARCH: 0  and   .  

 

As acknowledged in McAleer and Hafner (2014), leverage is not possible as both   and  , 

which are the variances of two stochastic processes, must be positive.  

 

3. Concluding Remarks  

 

The paper was concerned with the three most widely-used univariate conditional volatility 

models, namely the GARCH, GJR (or threshold GARCH) and EGARCH models. These models 

are important in estimating and forecasting volatility, as well as in capturing asymmetry, which 

is the different effects on conditional volatility of positive and negative effects of equal 

magnitude, and in capturing leverage, which is the negative correlation between returns shocks 

and subsequent shocks to volatility.  

 

As there seems to be some confusion in the literature between asymmetry and leverage, as well 

as which asymmetric models are purported to be able to capture leverage, the purpose of the 

paper was two-fold, namely: (1) to derive the GJR model from a random coefficient 

autoregressive process, with appropriate regularity conditions; and (2) to show the GJR and 

EGARCH models are able to capture asymmetry, but are unable to capture leverage. 
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