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Abstract

Many empirical studies have shown that factor models produce relatively accurate forecasts

compared to alternative short-term forecasting models. These empirical findings have been

established for different macroeconomic data sets and different forecast horizons. However,

various specifications of the factor model exist and it is a topic of debate which specification is

most effective in its forecasting performance. Furthermore, the forecast performances of the

different specifications during the recent financial crisis are also not well documented. In this

study we investigate these two issues in depth. We empirically verify the forecast performance

of three factor model approaches and report our findings in an extended empirical out-of-

sample forecasting competition for quarterly growth of gross domestic product in the euro

area and its five largest countries over the period 1992-2012. We also introduce two extensions

of existing factor models to make them more suitable for real-time forecasting. We show that

the factor models have been able to systematically beat the benchmark autoregressive model,

both before as well as during the financial crisis. The recently proposed collapsed dynamic

factor model shows the highest forecast accuracy for the euro area and the majority of

countries that we have analyzed. The forecast precision improvements against the benchmark

model can range up to 77% in mean square error reduction, depending on the country and

forecast horizon.
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1 Introduction

It is widely acknowledged that forecasting macroeconomic time series is of key importance

for economic policy makers but also for the general public. Reliable short-term forecasts

are especially in high demand when the economic environment is uncertain. Many different

methodologies exist for this purpose, ranging from basic time series models to sophisticated

dynamic factor models. Over the last decade the latter have become a popular tool for

short-term forecasting amongst practitioners and econometricians. This is due to their good

forecast performance as shown in amongst others Stock and Watson (2002) and Giannone

et al. (2008) for the United States, Rünstler et al. (2009) and Angelini et al. (2011) for

the euro area and Schumacher and Breitung (2008) for Germany. Despite the increasing

attention for factor models, the appropriate specification of a factor model remains a topic

of debate. One of the issues is how to determine the optimal number of factors in the model;

see, for example, Bai and Ng (2002, 2007). Another issue of debate is the determination of the

optimal size of the database for the extraction of the factors; see, for example, the discussions

in Caggiano et al. (2011) and den Reijer (2013). A related issue that has attracted relatively

little attention in the literature is the gain in forecast accuracy resulting from including

autoregressive terms of the target variable in the model specification, i.e. including one or

more lags of the targeted variable in the forecast equation. However, recent studies indicate

this might be a promising extension in terms of forecast accuracy. Clements and Galvão

(2008), Kuzin et al. (2011) and Jansen et al. (2012) find that the inclusion of an autoregressive

term significantly improves the forecast accuracy for a range of different models. It is an

empirical question whether this conclusion also holds for factor models.

Our study compares the short-term forecast performance of different factor models for

quarterly gross domestic product (GDP) growth for the euro area and its five largest countries

before and during the financial crisis. We present a concise discussion of the literature on

short-term forecasting using factor models and consider several recent developments. The

earliest contributions on dynamic factor analysis have been recently reviewed by Stock and

Watson (2006), Breitung and Eickmeier (2006) and Bai and Ng (2008). We concentrate

on three factor models: the canonical factor model of Stock and Watson (2002) who have

initiated the current literature on factor models, the widely used dynamic factor model of

Bańbura and Rünstler (2011) and the recently proposed collapsed dynamic factor model of

Bräuning and Koopman (2014). The two dynamic factor models are siblings of the canonical

factor model of Stock and Watson (2002) as the models are all built on the idea of using

principal components to summarize the information in a large set of monthly indicators.

However, in contrast to Stock and Watson (2002), both dynamic factor models analyze the

target and the principal components simultaneously in a multivariate unobserved component

time series model. This model setup allows for panels with mixed-frequencies and for the

efficient handling of monthly series with different publication delays and different starting

dates. These differences lead to a data matrix of monthly time series with so-called “jagged”

or “ragged” edges at the beginning and end of the sample.

The econometric foundation of the Bańbura and Rünstler (2011) model is described in

Doz et al. (2011) who propose a two-step estimation method. In the first step, the principal

components are computed and its dynamic properties are estimated by means of a vector

autoregressive model. In the second step, the factor estimates and forecasts are obtained

from the Kalman filter and smoother. Doz et al. (2011) provide the asymptotic properties

of the Kalman filter and smoother estimates and apply the model to forecast quarterly GDP

growth with monthly variables containing jagged edges at the beginning and the end of
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the sample. Bańbura and Rünstler (2011) develop this approach further for quarterly GDP

growth and show how the contributions of individual variables in the factor model forecasts

can be measured using the methods of Koopman and Harvey (2003).

The model of Bräuning and Koopman (2014) differs from Bańbura and Rünstler (2011)

mainly as follows. Firstly the former model adopts a low-dimensional unobserved components

model for the target variable and a set of principal components from which the dynamic

factors are extracted. The unknown parameters in this more parsimonious model are jointly

estimated by using maximum likelihood for which the loglikelihood function is evaluated

using the Kalman filter and smoother. The resulting model setup captures the cross-sectional

and dynamic time series information jointly in a transparent and optimal way. Secondly,

in the Bräuning and Koopman (2014) model, the idiosyncratic part for the target vector

series is modeled explicitly and estimated jointly with the dynamic factors. This mitigates

the problem that the estimated factors in a large macroeconomic panel are not considering

information from the forecasting target.

The main contributions of this paper are threefold. Firstly, we extend the approach of

Bräuning and Koopman (2014) by proposing a more efficient way of handling the jagged

edges in the collapsed dynamic factor model. We propose a three-step method. In the first

step we analyze each univariate time series by an unobserved components model to extract

the main signal for interpolating (or extrapolating) the jagged edges, in the second step we

extract the principal components and in the third step we estimate all model parameters

simultaneously. The efficient handling of the jagged edges significantly improves the forecast

accuracy. Secondly, we extend the model of Bańbura and Rünstler (2011) by including

autoregressive terms in the model, putting it on more equal footing with the models of Stock

and Watson (2002) and Bräuning and Koopman (2014). This modification improves the

forecast accuracy of the Bańbura and Rünstler (2011) model. Thirdly, we verify rigorously

the forecast accuracy of the three factor models. We present a systematic comparison of the

factor models for the euro area and its five largest countries (Germany, France, Italy, Spain

and the Netherlands) utilizing the same information set across countries and the euro area.

We show that the factor models are able to systematically beat the benchmark autoregressive

model. The good performance of the factor models is not limited to the pre-crisis period, but

the models also outperform the benchmark model during the financial crisis. In this period,

factor models have improved the forecast accuracy of the benchmark model by up to 77%,

in terms of mean square error, depending on factor model, country and forecast horizon.

Overall, the performance of the collapsed dynamic factor has been most successful.

The remainder of the paper is organized as follows. Section 2 gives an overview of the

factor models of Stock and Watson (2002), Bańbura and Rünstler (2011), and Bräuning

and Koopman (2014) and introduces the modifications we propose for the Bańbura and

Rünstler (2011) and Bräuning and Koopman (2014) models. Section 3 provides details

on the construction of the database, the forecast setup and specification details such as

the number of common factors and lags. Section 4 discusses the empirical results of our

forecasting study. We summarize our findings in Section 5.

2 Factor models using principal components

We consider three factor models: the autoregressive model with principal components as

covariates and proposed by Stock and Watson (2002); the high-dimensional dynamic factor

model of Bańbura and Rünstler (2011); and the (collapsed) low-dimensional dynamic factor
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model of Bräuning and Koopman (2014). We focus on forecasting the quarterly GDP growth

rate (quarter on quarter), denoted as yQtq , where tq = 1, . . . , Tq is the quarterly time index.

We follow the statistical convention by having the quarterly GDP growth rate at the monthly

frequency by setting yMt equal to the growth rate (yQtq ) in the third month of each quarter

(t = 3tq) and to a missing value otherwise, where t = 1, . . . , T is the monthly time index. The

time dimensional relation is Tq = bT/3c. We define yt as the latent monthly GDP growth

rate, i.e. the 3-month growth rate with respect to the corresponding month of the previous

quarter. Furthermore, we define y∗t as the mean-adjusted series of yt, that is y∗t = yt − µ
where µ is the in-sample mean of yQtq .

The factor models that we describe in the remainder of this section all use principal

component analysis to extract r monthly common factors, Ft, from a N -dimensional stan-

dardized stationary monthly time series of candidate predictors, Xt, for t = 1, . . . , T . We

denote the matrix of eigenvalues (or factor loadings) as Λ. The vector FQtq contains the q

quarterly factors that we calculate by taking the three-month averages of Ft.

2.1 Stock and Watson: autoregression with principal components

The Stock and Watson (2002) model is designed for the forecasting of a single time series with

length T , using a large number N of candidate predictor series, where typically N >> T .

The high-dimensional problem is reduced to an univariate autoregressive model for the key

economic time series of interest with the inclusion of a small number of principal components

that are used as predictors. The autoregressive model is for the target variable with a specific

forecast horizon. More specifically, the variable to forecast is yQtq+h using the data (FQtq , y
Q
tq )

and the model as given by

yQtq+h = αh +

p∑
j=1

βh,jF
Q
tq−j +

m∑
k=1

γh,ky
Q
tq−k + εQtq+h, tq = 1, . . . , Tq, (1)

where h is the forecast horizon, αh is the constant term, βh(L) and γh(L) are finite-order

autoregressive lag polynomials βh,j and γh,k are regression coefficients, for j = 1, . . . , p and

k = 1, . . . ,m, and εQtq+h is the disturbance. The lag dimensions p and m are set a-priori.

All parameters are indicated by forecast horizon h. Although the model remains the same,

it is assumed that for each horizon h the coefficients of the model can be different. Hence

in the Stock and Watson procedure the model coefficients are re-estimated for each forecast

horizon h while we hold the set of explanatory variables fixed. The principal components Ft

are obtained from a balanced sub-sample of Xt’s which is obtained by discarding the rows

that have missing values at the end of the estimation period. This typically only involves

removing the last few rows that are not complete due to publication delays. The missing

values at the beginning of the sample are dealt with by using the Expectation Maximization

(EM) algorithm described in Stock and Watson (2002).

Forecasting is then carried out in a two-step procedure: first, the factors (or principal

components) are obtained from the set of candidate predictors; second, the parameters of

the autoregressive model are estimated by the method of ordinary least squares (OLS) from

which the forecasts can be generated. In this way, any forecast, from yQTq+1 to yQTq+h∗ , for

some h∗ > 1, can be computed easily but the two-step procedure must be repeated for

each forecast horizon. Typically, the lag dimensions p and q are kept fixed for each forecast

horizon and are often both set equal to two.
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2.2 Bańbura and Rünstler: high-dimensional dynamic factor model

The Bańbura and Rünstler (2011) model is based on the dynamic factor model of Giannone

et al. (2008) that is given by

Xt = Λft + ut, ut ∼ NIID(0,Σu), (2)

ft =

p∑
j=1

Φjft−j + ζt, ζt ∼ NIID(0,Σζ), (3)

where Λ is the loading matrix, ft is a q×1 vector of latent dynamic factors, ut is a normally,

identically and independently distribited (NIID) disturbance with mean zero and variance

matrix Σu, Φj is the autoregressive coefficient matrix, for j = 1, . . . , p, and ζt is a NIID

disturbance with mean zero and variance matrix Σζ , and the two disturbance series ut and

ζt are mutually independent. The variance matrix Σu is typically assumed to be diagonal.

The latent dynamic stochastic process for ft is explicitly modelled as a stationary vector

autoregressive process with lag dimension p. The time index t refers to months.

We have presented the dynamic factor model in state space; it allows for the efficient

handling of “jagged edges”, the treatment of missing values and the computation of the

forecasts via the Kalman filter and smoother. Bańbura and Rünstler (2011) argue that

exploiting the dynamics of the estimated latent factors directly can be beneficial in improving

the forecasting accuracy. However, they recommend that factors should not be very noisy.

To enforce some smoothness in the factors ft, the rank of matrix Σζ can be reduced to

r < q. We effectively obtain r stochastic factors and q − r static factors. The rank r can

be determined on the basis of in-sample measures such as the likelihood function or out-

of-sample measures such as the mean squared forecast error; see also the discussions in Bai

and Ng (2002). We consider all possible values r = 1, . . . , q − 1 for a reduced rank variance

matrix Σζ and base our forecasts on the average of the q − 1 forecasts resulting from the

different models with a reduced rank variance matrix Σζ .

The values for the unknown parameter matrices Λ, Σu, Φ1, . . . ,Φp, and Σζ are determined

using the q principal components Ft’s as outlined by Giannone et al. (2008). The principal

components Ft are based on the eigendecompostion of the sample variance matrix of the

data matrix [X1, . . . XT ]′, denoted by the N ×N positive definite matrix SX . The columns

of the N × q loading matrix Λ is set equal to the q eigenvectors associated with the q

largest eigenvalues of SX . The variance matrix Σu is set to a diagonal matrix with the ith

diagonal element equal to the (i, i) element of the sample variance matrix of the data matrix

[(X1 − ΛF1), . . . , (XT − ΛFT )]′. The matrix parameters in (3) are set equal to their OLS

estimates applied to vector autoregressive model equation (3) where ft is replaced by Ft, for

t = 1, . . . , T .

The incorporation of the quarterly target series yQtq in the monthly state space model

(2) - (3) is required for its forecasting. Here we follow Mariano and Murasawa (2003) in

the forecasting of mean-adjusted quarterly GDP growth in a mixed-frequency modelling

framework. We introduce the univariate mean-adjusted latent monthly variable y∗t which is

modelled as

y∗t = β′ft + εt, εt ∼ NIID(0, σ2
ε), t =1, . . . , T, (4)

where β is a q×1 vector of coefficients and εt is a NIID disturbance and mutually independent

of ut and ζt. The link with y∗t and the observed quarterly GDP growth rate yQtq is established

as follows. We create a monthly time series yMt of missing values except at time t = 3tq
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where it is set equal to yQtq . We further introduce a recursive latent cumulator variable y∗Ct
that is generated by

y∗Ct+1 = δty
∗C
t +

1

3
y∗t+1, δt =

0, t = 3tq,

1, otherwise,
(5)

for t = 1, . . . , T and tq = 1, . . . , Tq, with initialization of the cumulator variable as y∗C1 = 1
3y
∗
1 .

It is implied that y∗Ct , when t = 3tq, equals the average of the latent monthly series y∗t
within quarter tq and hence it is equal to the observed yQtq ≡ yMt = y∗Ct + µ where µ is the

in-sample mean of yQtq . The remaining values for y∗t can be estimated via the Kalman filter

and smoother.

The values for the unknown parameters β and σ2
ε are determined by OLS applied to the

regression model

yQtq = β′FQtq + eQtq , eQtq ∼ NIID(0, σ2
e).

The value for σ2
ε is obtained via the relation σ2

ε = σ2
e / 3.

The nowcasting and forecasting of quarterly GDP growth is based on the Kalman filter

and smoother applied to the state space model as given by the observation equation

(
Xt

yMt

)
=

(
0

µ

)
+

[
Λ 0 0 0

0 0 0 1

]
ft

ft−1

y∗t
y∗Ct

+

(
ut

0

)
, (6)

where µ is the sample average of the observed quarterly GDP growth rates yQtq , and hence

of yMt , and the transition equation is given by
Ir 0 0 0

0 Ir 0 0

−β′ 0 1 0

0 0 −1/3 1



ft+1

ft

y∗t+1

y∗Ct+1

 =


Φ1 Φ2 0 0

Ir 0 0 0

0 0 0 0

0 0 0 δt




ft

ft−1

y∗t
y∗Ct

+


ζt

0

εt+1

0

 , (7)

for t = 1, . . . , T . All variables are introduced in the equations (2)-(5). This state space

representation is based on q = 1 and p = 2; it is straightforward to amend it for other values

of q and p. We notice that the time series yMt contains many missing values. The jagged

edges in data matrix (X1, . . . , Xt) can also be regarded as a missing value problem. The

treatment of missing values, the computation of forecasts and the estimation of ft and y∗t
using the Kalman filter and smoother are discussed in detail in Durbin and Koopman (2012).

The transition equation (7) is non-standard given the pre-multiplication of the state vector

on the left-handside of the equation; a minor modification provides the standard updating

equation but is somewhat less intuitive.

2.3 Bańbura and Rünstler: an extension

In earlier empirical studies, for example in Jansen et al. (2012), it is shown that adding

autoregressive terms in the forecast equation can significantly improve forecast accuracy for

GDP growth. The inclusion of autoregressive terms, or lagged values of yt, in (4) can simply

be achieved by considering

y∗t = ρ1y
∗
t−1 + ρ2y

∗
t−2 + β′ft + εt, εt ∼ N(0, σ2

ε), (8)
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for t = 1, . . . , T , where ρ1 and ρ2 are the additional coefficients of the autoregressive process.

We then adjust the state space form accordingly. To illustrate, the observation equation for

r = 1 and p = 2 is defined as:

(
Xt

yMt

)
=

(
0

µ

)
+

[
Λ 0 0 0 0

0 0 0 0 1

]


ft

ft−1

y∗t
y∗t−1
y∗Ct

+

(
et

0

)
, (9)

where µ is the in-sample mean of yQtq . The transition equation is given by:
Ir 0 0 0 0

0 Ir 0 0 0

−β′ 0 1 0 0

0 0 0 1 0

0 0 −1/3 0 1




ft+1

ft

y∗t+1

y∗t
y∗Ct+1

 =


Φ1 Φ2 0 0 0

Ir 0 0 0 0

0 0 ρ1 ρ2 0

0 0 1 0 0

0 0 0 0 δt




ft

ft−1

y∗t
y∗t−1
y∗Ct

+


ζt

0

εt+1

0

0

 . (10)

We obtain values for the parameters ρ1, ρ2, β and σ2
ε from their OLS estimates in the

regression model

ỹ∗Mt = ρ1ỹ
∗M
t−1 + ρ2ỹ

∗M
t−2 + β′Ft + eMt , eMt ∼ NIID(0, σ2

ε),

for t = 1, . . . , T and where ỹ∗Mt is the monthly time series of the linearly interpolated mean-

adjusted quarterly series of yQtq , that is ỹ∗Mt = y∗Qst /3+(t−3 st)(y
∗Q
st+1−y∗Qst )/3 for t = 1, . . . , T

and st = bt/3c, where y∗Qtq = yQtq − µ and with y∗Q0 = y∗Q1 .

2.4 Bräuning and Koopman: collapsed dynamic factor model

The collapsed dynamic factor model of Bräuning and Koopman (2014) is effectively a low-

dimensional multivariate unobserved components time series model where the target series

and a set of q principal components are treated jointly as dependent variables. The number

of unknown parameters to be estimated is relatively small. Maximum likelihood estimation

is carried out via the numerical maximization of the loglikelihood function that is evaluated

by the Kalman filter.

The model of Bräuning and Koopman (2014) is based on the dynamic factor model

(2) that is extended with the target series of quarterly GDP growth in a specific way. To

accommodate the monthly and quarterly series, we formulate the extension of the model in

terms of the unobservable series y∗t and we obtain(
Xt

y∗t

)
=

[
Λ 0

Γ 1

](
ft

ψt

)
+

(
ut

0

)
, (11)

where Γ is a loading matrix with the coefficients of the dynamic factors for the monthly

unobserved series y∗t , ψt is a univariate latent dynamic process for the target series and the

definitions for the other matrices and variables remain as above. The dynamic factors ft are

modelled as the vector autoregressive process (3) while the unobserved component ψt for the

target series can also be modelled as an autoregressive process, for example,

ψt+1 = φ1ψt + φ2ψt−1 + ηt, ηt ∼ NIID(0, σ2
η), (12)

where φ1 and φ2 are autoregressive coefficients and ηt is a NIID disturbance and mutually

independent of other disturbances in the model. The monthly series y∗t is linked with the
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(partially) observed monthly series yMt in the relation yMt = µ+y∗Ct when t = 3tq and where

y∗Ct is constructed as in (5).

The collapsed dynamic factor model is based on the insight that the principal component

Ft is a linear combination of Xt, that is Ft = AXt for t = 1, . . . , T and for a matrix A with

property AΛ = I. Pre-multiplying (11) by matrix[
A 0

0 1

]
,

we obtain (
Ft

y∗t

)
=

[
I 0

Γ 1

](
ft

ψt

)
+

(
vt

0

)
, (13)

where vt = Aut, for t = 1, . . . , T .

Next we provide the state space model for the observed series of principal components Ft

and of quarterly GDP growth yMt . Our specification is based on the collapsed dynamic factor

model with (13), (12) and (3), for p = 2. The state space form consists of the observation

equation

(
Ft

yMt

)
=

(
0

µ

)
+

[
I 0 0 0 0 0

0 0 0 0 0 1

]


ft

ft−1

ψt

ψt−1

y∗t
y∗Ct


+

(
vt

εt

)
, (14)

and the transition equation

I 0 0 0 0 0

0 I 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

−Γ 0 −1 0 1 0

0 0 0 0 −1/3 1





ft+1

ft

ψt+1

ψt

y∗t+1

y∗Ct+1


=



Φ1 Φ2 0 0 0 0

I 0 0 0 0 0

0 0 φ1 φ2 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 δt





ft

ft−1

ψt

ψt−1

y∗t
y∗Ct


+



ζt

0

ηt

0

0

0


,

(15)

for t = 1, . . . , T . The unknown parameters Φ1, Φ2, Γ, φ1, φ2, Σζ , σ
2
η and σ2

ε are estimated

by maximum likelihood. The number of unknown parameters is 4(q + 1), that is 8 and 12

for q = 1 and q = 2, respectively.

In contrast to the approach of Bańbura and Rünstler (2011), the collapsed dynamic factor

model requires a pre-analysis to treat the jagged edges in the data matrix (X1, . . . , XT )

because we do not model Xt but its principal component Ft instead. We may adopt the

EM method of Stock and Watson (2002) for the purpose of computing the Ft’s. However,

it has turned out that it is more effective to consider a simple univariate model for each

variable in Xt and use the model to interpolate and extrapolate its missing values using the

Kalman filter and smoother. In particular, for the ith time series Xit in Xt, we consider the

stationary decomposition model

Xit = θit + κit, t = 1, . . . , T

where θit is an autoregressive process and κit is a NIID disturbance (mutually independent

of any other disturbance series), for i = 1, . . . , N . We typically let θit be an autoregressive
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process with two lags. We further notice that each observed time series Xit is standardized

and hence has a sample mean of zero and a sample variance of unity. After the estimation

of the unknown parameters, the Kalman filter and smoother replaces the missing entries by

their corresponding estimates. In this way we obtain a balanced data set (X1, . . . , XT ) and

the principal components can be constructed in a standard way.

The use of a stationary autoregressive process for θit ensures that the balanced variable

return to their long term mean of zero when a long sequence of entries is missing. Figure 1

presents two examples in the data set of our empirical illustration in Section 4. The first

variable only contains missings at the beginning of the sample while the second variable

contains missings only at the end of the sample.

variable j trend variable j 

1980 1985 1990 1995 2000 2005 2010

-0.5

0.0

0.5
variable j trend variable j 

variable k trend variable k 

1980 1985 1990 1995 2000 2005 2010

-1

0

1

variable k trend variable k 

Figure 1: The treatment of missing values for two economic variables in our empirical illustration. The

first variable is unbalanced and has missings at the beginning of the series. The second variable has only

a few missings at the end of the series.

3 Data, forecast design and specification issues

3.1 Dataset

Our monthly data set of predictors consists of 52 monthly time series, using harmonized def-

initions across countries. The selected variables fall into four predefined categories: produc-

tion & sales, prices, monetary & financial indicators and surveys. Table IV in the Appendix

provides an overview of all variables, the applied transformations and the starting date of

the monthly series for each country in our sample. Monthly data are typically available after

their adjustments for seasonal and calendar effects. When necessary, the time series are

seasonally adjusted by the US Census X12-ARIMA-program at their default settings. All

monthly series are made stationary by differencing or log-differencing (in case of trending

9



data, such as industrial production, retail sales and monetary aggregates). Thereafter, the

variables are standardized by subtracting the mean and dividing them by their standard

deviation. This standardization is necessary to avoid overweighting of large variance series

in the extraction of common factors.

Our primary source of all data is the statistical data warehouse of the European Central

Bank (ECB).1 The world trade series are taken from the the world trade monitor data set

of the Netherlands Bureau of Policy Analysis (CPB).2 Since their world trade series only

start in 1991 we backdated the series using the world trade data from data sets provided by

the International Monetary Fund (IMF). Time series on industrial production for the United

States are downloaded from the Board of Governors of the Federal Reserve System.3 The

Commodity prices and most financial market indicators are taken from Thomson Reuters

Datastream. Survey data are taken from the European Commission4 and the Purchasing

Managers Indices for the United States and United Kingdom are from Markit services.5

The quarterly GDP series for Italy, Spain and the Netherlands start in the first quarter

of 1981.I, 2000.I and 1988.I, respectively. To backdate the GDP series to 1980.I we use the

”release data and revisions” database of the Organisation for Economic Co-operation and

Development (OECD) that contains historical GDP vintages.6 The backdated GDP series

were constructed by applying the quarter-on-quarter growth rates from the most recent

GDP vintages of the OECD. In particular, for Italy we used the March 2013 and April 2006

vintages, for Spain the March 2013, November 2011, May 2005 and July 1999 vintages and for

the Netherlands the March 2013 and July 2005 vintages. Quarterly GDP data for Germany

were taken from the Deutsche Bundesbank7 who constructed the GDP series using only

GDP data for West Germany pre 1991.I and the re-unified Germany from 1991.I onwards.

We constructed a synthetic GDP series for the euro area using the database underlying the

ECB’s Area Wide Model,8 supplemented with data from the OECD database.

3.2 Pseudo real-time design

The forecast design aims to replicate the availability of the data at the time forecasts are

made in order to mimic the real-time flow of information as closely as possible. To this end,

we used a data set downloaded on March 4, 2013 and combined this with the typical data

release calendar to reconstruct the available dataset on the 4th of each month during the

period January 1992 – December 2012. We construct the database such that the earliest

starting date for the monthly series is January 1980, and the first quarter of 1980 for GDP.

We thus employ a pseudo real-time design, which takes data publication delays into account,

but ignores the possibility of data revisions for GDP and some indicators, such as industrial

production. The latter implies that we might overestimate the forecast accuracy. However,

large real-time datasets for the countries we considered are not (yet) available. Moreover,

the effects of data revisions on the forecasts of factor might largely cancel; see, for example,

Bernanke and Boivin (2003) for the United States and Schumacher and Breitung (2008) for

Germany.

1http://sdw.ecb.europa.eu
2http://www.cpb.nl/en/world-trade-monitor
3http://www.federalreserve.gov/releases/g17/Current
4http://ec.europa.eu/economy_finance/db_indicators/surveys/index_en.htm
5http://www.markit.com/en/products/research-and-reports/pmis/pmi.page
6http://stats.oecd.org/Index.aspx?querytype=view&queryname=206
7http://www.bundesbank.de/Navigation/EN/Home/home_node.html
8http://www.eabcn.org/data/awm/index.htm
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We estimate the parameters of all models recursively, using only the information available

at the time of the forecast, see Rünstler et al. (2009); Giannone et al. (2008); Kuzin et al.

(2011), among others, for a similar approach. We construct a sequence of eleven forecasts

for GDP growth in a given quarter, obtained in consecutive months. Table I illustrates

the timing of the forecasting exercise, taking the forecast for the third quarter of 2012 as an

example. The first forecast on January 4, 2012 is referred to as the two-quarter-ahead forecast

in month one. We subsequently produce a monthly forecast for the next ten months, from

February until November. The last forecast is made on November 4, 2012, approximately a

week and a half before the flash release of GDP in mid-November. Following the conventional

terminology, forecasts refer to one or two-quarter ahead forecasts, nowcasts refer to current

quarter forecasts and backcasts refer to forecasts for the preceding quarter, as long as official

GDP figures are not yet available. In our example, we make two-quarter ahead forecasts

from January to March, one-quarter ahead forecasts from April to June, nowcasts from July

to September, and backcasts in October and November.

Table I: Timing of forecast exercise (example: forecast for 2012.III)

Nr. Name Forecast made on the 4th of

1 January

2 2Q ahead February

3 March

4 April

5 1Q ahead May

6 June

7 July

8 Nowcast August

9 September

10 October

11 Backcast November

3.3 Choosing the appropriate model specification

Many approaches exist for determining the number of factors in Ft, that is dimension r;

see the discussion in Bai and Ng (2002). A standard procedure for the choice of r is to

apply information criteria for a range of models with different r. However, as noted in

recent contributions, the application of information criteria might lead to inferior model

specifications in terms of forecast accuracy, see Bernanke and Boivin (2003); Giannone et al.

(2005); Boivin and Ng (2005). An alternative to using information criteria is to pool over

different model specifications. In this paper we follow Kuzin et al. (2013), who conclude that

taking the unweighted averaged forecast over all possible specifications of the factor models

is superior to the use of information criteria or more complicated weighting schemes.

We limit our model specifications to models with two lags in the (vector) autoregressive

dynamics and a maximum of four static factors. The upper bound of four was derived

from the scree test of Cattell (1966) using normalized eigenvalues calculated from the set of

candidate predictors. Figure 2 shows the scree plots for the euro area and its five largest

countries, where the normalized eigenvalues of the largest thirty principal components are

presented. The plots show that the first principal component is able to explain between
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Figure 2: Scree plots of normalized eigenvalues computed from the set of candidate predictors (euro area

and its five largest countries)
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Figure 3: Correlation principal components (PCs) with the set of candidate predictors (euro area)
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20 and 30 percent of the comovement in the set of candidate predictors. Moreover, the

explanatory power increases only very slightly after the fourth principal component. Figure 3

shows the correlation of the first four estimated principal components with the matrix of

candidate predictors for the euro area.The x-axis has the candidate variables corresponding

to the numbers in Table IV in the Appendix and the y-axis has the correlations in percent.

The first principal component is strongly correlated with a broad range of variables apart

from prices, which is in accordance with the high eigenvalue. This indicates that the bulk of

the covariance of the candidate predictors can be explained by the first factor. The second

and third principal components are strongly correlated with price variables, such as HICP,

commodity prices and oil price, whilst the fourth principal component is highly correlated

with financial variables, such as interest rates and exchange rates.

The factor model of Bańbura and Rünstler (2011) also requires a choice on the number

of principal components to extract from the disturbance matrix in equation (3), the so called

“dynamic” factors q. We followed a similar procedure as in Bańbura and Rünstler (2011)

by imposing the restrictions r ≤ 4 and q ≤ r. The second restriction is motivated by

the finding of D‘Agostino and Giannone (2012) who stated that restricting the number of

dynamic factors to be equal or less than the number of static factors does not hurt predictive

power. Moreover, we need to choose between the original Bańbura and Rünstler (2011)

and the augmented version of the model. Table IX in the Appendix compares the forecast

accuracy of the original Bańbura and Rünstler (2011) model with the augmented version. We

conclude that the forecast accuracy increases when the augmented version of the Bańbura

and Rünstler (2011) model is used, though the differences are usually quite small. In the

Tables in the remainder of this paper we will show the forecast accuracy of the augmented

Bańbura and Rünstler (2011) model.

4 Empirical results

4.1 Forecast accuracy using the complete sample

This subsection describes the forecast accuracy of the factor models versus the benchmark

model. The benchmark model is an autoregression of order 2. The factor models are the

principal component model of Stock and Watson (SW), the augmented dynamic factor model

of Bańbura and Rünstler (BR) and the collapsed dynamic factor model (CFM). In our

analysis, we analyze the forecast performance for the euro area (EA) and its five largest

countries, i.e.: Germany (DE), France (FR), Italy (IT), Spain (ES) and the Netherlands

(NL). We measure forecast accuracy as the mean squared forecast error (MSFE).

Table II presents the forecast performance of the three factor models and the benchmark

model for our five countries and the euro area for the complete length of the sample (1992.I–

2012.IV). The underlying empirical analysis has been carried out on a monthly basis for eleven

horizons. To keep the table parsimonious we only report the average forecast accuracy for the

one and two quarter ahead forecast, the nowcast and the backcast.9 Moreover, the presented

MSFEs are averaged over model specifications with one to four factors. The rows labeled

AR(2) report the MSFE of the benchmark model. For the three factor models, the entries

refer to their MSFE relative to the benchmark model in order to improve comparability of

the results across countries and horizons. Shaded areas indicate the model with the lowest

MSFE for a particular forecast horizon and a particular country. Bold faced entries indicate

9 The forecast for the months within the quarters are available from the authors upon request.
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Table II: Forecast accuracy dynamic factor models (MSFE), 1992.I-2012.IV

EA DE FR IT ES NL

Absolute

AR(2)

All horizons 0.42 0.79 0.26 0.57 0.39 0.51

2Q ahead forecast 0.49 0.81 0.34 0.66 0.46 0.56

1Q ahead forecast 0.45 0.81 0.28 0.60 0.41 0.53

Nowcast 0.39 0.78 0.21 0.53 0.35 0.49

Backcast 0.32 0.76 0.16 0.47 0.31 0.45

Relative to AR(2) model

BR

All horizons 0.68 0.83 1.10 0.79 1.02 0.81

2Q ahead forecast 0.80 0.92 1.10 0.88 0.98 0.96

1Q ahead forecast 0.72 0.87 1.12 0.85 0.94 0.83

Nowcast 0.59 0.79 1.13 0.69 1.12 0.71

Backcast 0.51 0.69 1.01 0.63 1.07 0.67

CFM

All horizons 0.60 0.78 0.86 0.68 0.84 0.70

2Q ahead forecast 0.74 0.85 0.89 0.77 0.94 0.85

1Q ahead forecast 0.62 0.83 0.86 0.73 0.90 0.69

Nowcast 0.51 0.78 0.85 0.63 0.75 0.60

Backcast 0.38 0.58 0.80 0.50 0.67 0.61

SW

All horizons 0.87 1.04 0.93 0.85 0.87 0.88

2Q ahead forecast 0.94 1.18 0.99 0.85 1.03 1.00

1Q ahead forecast 0.92 1.12 0.93 0.88 0.85 0.94

Nowcast 0.82 0.95 0.85 0.87 0.76 0.78

Backcast 0.68 0.85 0.87 0.77 0.77 0.70

This table presents the MSFEs of backcasts, nowcasts, one quarter

ahead forecasts and two quarter ahead forecasts as well as the aver-

age MSFE over all these horizons. The benchmark model is an au-

toregression of order 2 (AR(2)). The factor models are: the principal

component model with diffusion index of Stock and Watson (SW),

the augmented dynamic factor model of Bańbura and Rünstler (BR)

and the collapsed dynamic factor model (CFM). The country codes

are: Euro Area (EA), Germany (DE), France (FR), Italy (IT), Spain

(ES) and the Netherlands (NL). The model forecasts are averaged

over model specifications with one to four factors. The smallest

MSFE for each horizon is highlighted. MSFEs that are at most 10%

larger than the MSFE of the best model and also smaller than the

MSFE of the benchmark model are in boldface.
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models that have an MSFE that is less than 10% larger than that of the best model and also

smaller than the MSFE of the benchmark model. The 10% threshold is meant as a rough

assessment of the economic significance of differences in forecasting ability. We will call

models that meet this condition “competitive models” as in terms of forecast performance

they do no differ “too much” from the best model.10 The outcomes in Table II point to

several interesting results.

First, incorporating monthly information in a factor model pays off in terms of forecast

accuracy, in particular for nowcasts and backcasts. Averaged over all horizons and countries,

the improvement for the best models is around 26% on the benchmark AR(2) model, whilst

the worst model still posts a gain of 9% on the benchmark. The results also indicate that

predictions by the factor models deteriorate when the forecast horizon is longer. This is in line

with previous research, that concludes that factor models are suitable for making nowcasts

and backcasts but less suited for forecasting one and two quarters ahead, e.g. Giannone et al.

(2008), Rünstler et al. (2009) and Bańbura and Rünstler (2011).

Second, the collapsed dynamic factor model displays the highest forecast accuracy. For

most countries and horizons, the collapsed dynamic factor model performs the best. An

exception is one quarter ahead forecast for Spain. However, in both cases the difference with

the best model is negligible. The collapsed dynamic factor model posts the highest gains

in forecast accuracy on the benchmark model for the euro area, ranging from an average

improvement of 26% for the two quarter ahead forecast, to 62% for the backcasts.

Third, the collapsed dynamic factor model is the only model that beats the benchmark

model by more than 10% or more across most countries and forecast horizons. The other two

factor models have a less favorable forecast performance, i.e: the augmented Bańbura and

Rünstler (2011) model fails to beat the benchmark model in France for all forecast horizons,

whilst the Stock and Watson (2002) model is unable to outperform the benchmark model

for Germany, Spain and the Netherlands when forecasting one or two quarters ahead.

These results provide the empirical evidence that predictions by dynamic factor models

are especially well suited for nowcasting and backcasting. Also the results suggest that

the collapsed dynamic factor model displays a significantly larger ability to absorb monthly

information than the other two factor models we have considered in this study.

The relatively good forecast performance of the collapsed dynamic factor model is robust

to model specification, as shown in Table V to VIII in the Appendix. The Tables show the

forecast accuracy for model specifications with one to four factors respectively for all factor

models.

4.2 Forecasts for the Great Moderation and the Great Recession

Our sample includes the period of the financial crisis. During this period we witness a sharp

drop in a broad range of indicators, including manufacturing, confidence indicators and

exports. As a consequence real GDP growth sharply drops across all industrialized countries.

An interesting question is whether and to what extent the performance of the factor models

differs between the volatile financial crisis and the years before which can be characterized

as a relatively stable period. Forecasting in times of crisis poses greater challenges. Hence

a comparative analysis that focusses on these periods may be even more informative on the

issue which factor model is best suited to forecast GDP growth. To determine the influence

of the financial crisis on the forecast accuracy of the factor models we divide the sample into

10 We also conducted conventional statistical tests but -like other authors- we found these are not discriminating

in practice. Details are available from the authors upon request.
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two periods; we take 1992.I-2007.IV and 2008.I-2012.IV. We refer to the latter period as the

“Great Recession” and the former period as the “Great Recession”. Table III presents the

outcome of the forecast performance of the three factor models and the benchmark model

for our five countries and the euro area during both periods. The comparison of these two

distinct periods points to some interesting results that we describe next.

First, predicting GDP growth during the Great Recession is more difficult than during the

Great Moderation. Depending on the country analyzed, the MSFE of the benchmark model

during the Great Recession is two to six times larger than during the Great Moderation.

This deterioration is partly offset as the scope for improving forecast by using monthly

information appears to be larger during the Great Recession, in particular for nowcasting and

backcasting. For example, the relative MSFE of the collapsed dynamic factor model improves

by 51% during the Great Recession, compared to 14% during the Great Moderation. This

finding is consistent with the results of D‘Agostino and Giannone (2012) and Jansen et al.

(2012). Both studies show that the gain in forecast accuracy is especially sizeable in periods

of large swings and high comovement in the monthly predictors, as was the case during the

Great Recession.

Second, when averaged over all horizons, the collapsed dynamic factor model is a highly

competitive model during the Great Recession. This indicates that the model structure

of the collapsed dynamic factor model is well suited to process monthly information in

volatile times. This conclusion also holds for most countries when we analyze the forecast

performance for each forecast horizon separately. The maximum gain in forecast accuracy

against the benchmark model was 77%, recorded for the backcasts in the euro area. However,

there is one exception, i.e: in Spain the collapsed dynamic factor model is not competitive

when nowcasting and forecasting one quarter ahead.

Third, during the Great Moderation the collapsed factor model is still the best model

for most of the countries, but not for all countries. Averaged across forecast horizon the

collapsed dynamic factor model is the best model for the euro area and three out of the

five countries we analyzed (Germany, Italy, Spain), but for the Netherlands the forecast

accuracy of the Bańbura and Rünstler (2011) is higher for all horizons, except for the one

quarter ahead forecast. In France, none of the factor models is able to beat the benchmark

model. Finally, the low forecast accuracy of the Stock and Watson (2002) model during

the Great Moderation is somewhat surprising. The model is unable to improve upon the

benchmark model for the majority of countries and forecast horizons.

Overall, splitting the total sample period into the volatile Great Recession and the more

tranquil Great Moderation enhances the understanding of the forecast accuracy of factor

models. We show that for the euro area and three of our five countries the collapsed dynamic

factor model is the best forecasting model during the Great Moderation as well as during the

Great Recession. However, for France and the Netherlands, the high forecast accuracy of the

collapsed dynamic factor model is limited to the Great Recession. This finding underlines the

importance of continuously monitoring the forecast accuracy of the short-term forecasting

models that practitioners use on a routine basis.

5 Conclusions

This paper makes three contributions to the existing empirical literature on forecasting

GDP in the short-term. The first contribution is empirical. We present the outcome of

a forecasting study for two popular factor models amongst policy makers and the recently
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Table III: Forecast accuracy dynamic factor models (MSFE) during the Great Moderation and the Great

Recession

EA DE FR IT ES NL EA DE FR IT ES NL

Great Moderation (1992.I-2007.IV) Great Recession (2008.I-2012.IV)

Absolute

AR(2)

All horizons 0.20 0.44 0.15 0.28 0.27 0.32 1.12 1.93 0.60 1.51 0.77 1.13

2Q ahead forecast 0.23 0.44 0.18 0.31 0.30 0.35 1.32 2.01 0.83 1.77 0.96 1.23

1Q ahead forecast 0.21 0.44 0.15 0.29 0.28 0.32 1.23 1.98 0.68 1.60 0.84 1.18

Nowcast 0.19 0.44 0.13 0.27 0.25 0.30 1.03 1.89 0.47 1.39 0.67 1.09

Backcast 0.18 0.43 0.12 0.25 0.24 0.28 0.80 1.78 0.31 1.17 0.55 0.99

Relative to AR(2) model

BR

All horizons 0.76 0.93 1.17 0.80 1.01 0.93 0.64 0.76 1.04 0.78 1.02 0.71

2Q ahead forecast 0.81 0.96 1.07 0.85 0.98 0.94 0.80 0.89 1.12 0.89 0.97 0.75

1Q ahead forecast 0.77 0.92 1.19 0.81 0.93 0.92 0.69 0.83 1.07 0.87 0.97 0.75

Nowcast 0.75 0.96 1.29 0.75 1.11 0.93 0.49 0.67 0.98 0.66 1.12 0.53

Backcast 0.68 0.87 1.20 0.75 1.06 0.94 0.40 0.54 0.78 0.55 1.09 0.42

CFM

All horizons 0.69 0.88 1.06 0.73 0.98 0.94 0.54 0.71 0.70 0.66 0.69 0.49

2Q ahead forecast 0.83 0.96 1.04 0.82 1.03 0.95 0.69 0.78 0.78 0.74 0.85 0.76

1Q ahead forecast 0.68 0.89 1.04 0.76 1.06 0.91 0.59 0.79 0.72 0.72 0.73 0.50

Nowcast 0.61 0.85 1.11 0.67 0.91 0.95 0.44 0.74 0.61 0.61 0.55 0.29

Backcast 0.59 0.78 1.07 0.60 0.86 0.99 0.23 0.43 0.46 0.44 0.42 0.27

SW

All horizons 1.01 1.20 1.01 0.90 1.08 0.97 0.79 0.93 0.86 0.82 0.65 0.80

2Q ahead forecast 1.09 1.32 1.03 0.87 1.17 1.00 0.86 1.09 0.96 0.84 0.90 1.00

1Q ahead forecast 1.06 1.24 1.00 0.87 1.06 0.98 0.84 1.03 0.88 0.89 0.63 0.91

Nowcast 0.92 1.09 0.97 0.93 1.02 0.94 0.76 0.85 0.75 0.84 0.44 0.64

Backcast 0.88 1.12 1.05 0.95 1.02 0.98 0.53 0.63 0.65 0.65 0.42 0.45

This table presents the MSFEs of backcasts, nowcasts, one quarter ahead forecasts and two quarter ahead forecasts

as well as the average MSFE over all these horizons. The benchmark model is an autoregression of order 2 (AR(2)).

The factor models are: the principal component model with diffusion index of Stock and Watson (SW), the augmented

dynamic factor model of Bańbura and Rünstler (BR) and the collapsed dynamic factor model (CFM). The country

codes are: Euro Area (EA), Germany (DE), France (FR), Italy (IT), Spain (ES) and the Netherlands (NL). The model

forecasts are averaged over model specifications with one to four factors. The smallest MSFE for each horizon is

highlighted. MSFEs that are at most 10% larger than the MSFE of the best model and also smaller than the MSFE of

the benchmark model are in boldface.
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developed collapsed dynamic factor model for the euro area and its five largest countries

(Germany, France, Italy, Spain and the Netherlands) where we utilize the same information

set for all countries and the euro area. Our sample (1992.I-2012.IV) allows us to discriminate

between the performance of the factor models during the volatile financial crisis and the

more tranquil years before the crisis. Our second and third contribution are extensions to

the existing factor models. First, we extend the model of Bańbura and Rünstler (2011)

by introducing an autoregressive term of the target variable (GDP). Second, we extend the

collapsed dynamic factor by proposing an efficient way to deal with jagged edges at the

beginning and end of the estimation period.

We summarize our findings in four points. First, factor models can extract valuable

information for short-term GDP forecasting, in particular as the forecast horizon shortens

and more monthly information is processed. We find the largest gains in forecast accuracy

for nowcasting and backcasting, suggesting that factor models are especially helpful when

they are able to use information that pertains to the quarter of interest.

Second, during the Great Recession the gains in forecast accuracy against a simple au-

toregressive benchmark model is more profound than during the Great Moderation. This

finding underlines the importance of using factor models instead of simple benchmark models

during volatile periods.

Third, in our study, the collapsed dynamic factor model has shown the highest forecast

accuracy for the euro area and its five largest countries. For the euro area and three out of

five countries (Germany, Italy and Spain) this result has been driven by the high forecast

accuracy during the Great Recession as well as the Great Moderation. However, for France

and the Netherlands the good performance of the collapsed dynamic factor model only applies

to the Great Recession period.

Fourth, small changes in the structure of factor models can improve the forecast accuracy

considerably. We show that the inclusion of an autoregressive term of the target variable

GDP in the Bańbura and Rünstler (2011) model increases its forecast accuracy. Moreover,

the careful and efficient handling of the jagged edges in the Bräuning and Koopman (2014)

model is key to its good forecast performance.

The results of our large-scale comparative forecast analysis may be useful to econome-

tricians and policy makers who regularly use short-term forecasting models. An interesting

topic for future research is how to trace back the contribution of the monthly indicators

to the GDP forecast of the collapsed dynamic factor model. The competing Bańbura and

Rünstler (2011) model does have this feature, and the collapsed dynamic factor model would

probably gain in its attractiveness for policy makers if this feature was incorporated as well.
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Bańbura, M. and G. Rünstler (2011). A look into the factor model black box: publication

lags and the role of hard and soft data in forecasting GDP. International Journal of

Forecasting 27 (2), 333–346.

Bernanke, B. S. and J. Boivin (2003). Monetary policy in a data-rich environment. Journal

of Monetary Economics 50 (3), 525–546.

Boivin, J. and S. Ng (2005). Understanding and comparing factor-based forecasts. Interna-

tional Journal of Central Banking 1 (3), 117–151.
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A Appendix

A.1 Dataset

Table IV: Monthly series in uniform dataset

Nr. Variable Transformation Country

sa ln. dif. EA DE FR IT ES NL

I. Production & sales (N=15)

1 World Trade 1 1 1 ‘77 ‘77 ‘77 ‘77 ‘77 ‘77

2 Ind. prod. US 1 1 1 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60

3 Ind. prod. UK 1 1 1 ‘68 ‘68 ‘68 ‘68 ‘68 ‘68

4 Ind. prod. (excl. constr.) 1 1 1 ‘60 ‘60 ‘60 ‘60 ‘61 ‘62

5 Ind. prod., consumer goods 2 1 1 ‘80 ‘80 ‘63 ‘60 ‘65 ‘90

6 Ind. prod., energy 2 1 1 ‘80 ‘91 ‘63 ‘80 ‘80 ‘00

7 Ind. prod., interm. goods 1 1 1 ‘60 ‘80 ‘63 ‘77 ‘65 ‘00

8 Ind. prod., capital goods 1 1 1 ‘60 ‘80 ‘63 ‘77 ‘65 ‘70

9 Ind. prod., manufacturing 2 1 1 ‘60 ‘78 ‘60 ‘71 ‘80 ‘70

10 Ind. prod., construction 2 1 1 ‘85 ‘78 ‘85 ‘95 ‘88 ‘85

11 Passenger car registration 1 1 1 ‘77 ‘77 ‘77 ‘77 ‘77 ‘79

12 Retail trade volume 2 1 1 ‘70 ‘68 ‘70 ‘90 ‘95 ‘60

13 Unemployment rate 1 0 1 ‘83 ‘62 ‘83 ‘83 ‘86 ‘83

14 Unemployment rate UK 1 0 1 ‘83 ‘83 ‘83 ‘83 ‘83 ‘83

15 Unemployment rate US 1 0 1 ‘83 ‘83 ‘83 ‘83 ‘83 ‘83

II. Prices (N=9)

16 Total HICP-index 2 1 2 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60

17 Core HICP-index 2 1 2 ‘62 ‘62 ‘60 ‘60 ‘76 ‘61

18 Producer prices 2 1 2 ‘81 ‘60 ‘62 ‘70 ‘60 ‘60

19 Commod. prices, tot. 2 1 2 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60

20 Commod. prices, ind. mat. 2 1 2 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60

21 Commod. prices, food-bev. 2 1 2 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60

22 Commod. prices, metals 2 1 2 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60

23 Commod. prices, energy 2 1 2 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60

24 Oil price 2 1 2 ‘85 ‘85 ‘85 ‘85 ‘85 ‘85

III. Monetary & financial indicators (N=14)

25 M1 2 1 1 ‘70 ‘80 ‘80 ‘80 ‘80 ‘80

26 M3 2 1 1 ‘70 ‘70 ‘70 ‘70 ‘70 ‘70

27 Int. rate mortgage 2 0 1 ‘03 ‘82 ‘80 ‘95 ‘84 ‘80

28 3 month interest rate 2 0 1 ‘94 ‘60 ‘64 ‘60 ‘60 ‘60

29 10 year gov. bond yield 2 0 1 ‘70 ‘60 ‘70 ‘60 ‘80 ‘60

30 Headline stock-index 2 1 1 ‘73 ‘73 ‘73 ‘73 ‘87 ‘73

31 Basic material-index 2 1 1 ‘73 ‘73 ‘73 ‘73 ‘87 ‘73

32 Industrials stock-index 2 1 1 ‘73 ‘73 ‘73 ‘73 ‘87 ‘73

33 Cons. goods stock-index 2 1 1 ‘73 ‘73 ‘73 ‘73 ‘87 ‘73

34 Cons. service stock-index 2 1 1 ‘73 ‘73 ‘73 ‘73 ‘87 ‘73

35 Financials stock-index 2 1 1 ‘73 ‘73 ‘73 ‘73 ‘87 ‘73

36 Loans to the private sector 2 1 1 ‘80 ‘80 ‘80 ‘83 ‘80 ‘82

37 Exchange rate, $ per EUR 2 1 1 ‘74 ‘74 ‘74 ‘74 ‘74 ‘74

38 Real eff. exchange rate 2 1 1 ‘70 ‘70 ‘70 ‘70 ‘70 ‘70

IV. Surveys (N=14)

39 Ind. conf. - headline 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘87 ‘85

40 Ind. conf. - orders 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘87 ‘85

Continued on next page
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Table IV – Continued from previous page

Nr. Variable Transformation Country

sa ln. dif. EA DE FR IT ES NL

41 Ind. conf. - stocks 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘87 ‘85

42 Ind. conf. - prod. expect. 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘87 ‘85

43 Ind. conf. - empl. expect. 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘87 ‘85

44 Cons. conf. - headline 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘86 ‘85

45 Cons. conf. - exp. fin. sit. 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘86 ‘85

46 Cons. conf. - exp. ec. sit. 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘86 ‘85

47 Cons. conf. - exp. unemp. 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘86 ‘85

48 Cons. conf. - exp. maj. pur. 1 0 1 ‘85 ‘85 ‘85 ‘85 ‘86 ‘85

49 PMI United States 1 0 1 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60

50 OECD leading ind. UK 1 1 1 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60

51 OECD leading ind. US 1 1 1 ‘60 ‘60 ‘60 ‘60 ‘60 ‘60

52 OECD comp. leading ind. 1 1 1 ‘70 ‘61 ‘70 ‘62 ‘76 ‘61

This table presents the starting year of the monthly series that were used for estimation. Series for

which the time series starts later than 1986 are highlighted and excluded in the models because the series

are too short. transform: sa: 1= seasonal adjustment at the source, 2= seasonal adjustment by US

Census X12-method, log: 0=no logarithm, 1=logarithm, dif.: degree of differencing 1=first difference,

2=second difference
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A.2 Number of factors in dynamic factor models

Table V: Forecast accuracy dynamic factor models (MSFE), 1992.I-2012.IV, one factor

EA DE FR IT ES NL

Absolute

AR

All horizons 0.42 0.79 0.26 0.57 0.39 0.51

2Q ahead forecast 0.49 0.81 0.34 0.66 0.46 0.56

1Q ahead forecast 0.45 0.81 0.28 0.60 0.41 0.53

Nowcast 0.39 0.78 0.21 0.53 0.35 0.49

Backcast 0.32 0.76 0.16 0.47 0.31 0.45

Relative to AR(2) model

BR

All horizons 0.73 0.80 1.18 0.81 1.04 0.85

2Q ahead forecast 0.83 0.94 1.15 0.88 1.05 0.99

1Q ahead forecast 0.78 0.86 1.21 0.87 1.03 0.87

Nowcast 0.64 0.70 1.24 0.75 1.11 0.77

Backcast 0.58 0.63 1.07 0.67 0.94 0.71

CFM

All horizons 0.64 0.73 0.95 0.73 0.91 0.72

2Q ahead forecast 0.79 0.87 0.95 0.83 0.95 0.84

1Q ahead forecast 0.65 0.76 0.92 0.77 0.92 0.71

Nowcast 0.52 0.63 0.98 0.64 0.88 0.63

Backcast 0.49 0.57 0.97 0.58 0.87 0.65

SW

All horizons 0.83 1.00 0.88 0.86 0.86 0.86

2Q ahead forecast 0.89 1.12 0.98 0.88 0.98 0.96

1Q ahead forecast 0.88 1.08 0.88 0.90 0.87 0.90

Nowcast 0.78 0.92 0.78 0.87 0.73 0.79

Backcast 0.64 0.79 0.77 0.72 0.83 0.74

This table presents the MSFEs of backcasts, nowcasts, one and two

quarter ahead forecasts. The benchmark model is an autoregression

of order 2 (AR(2)). The factor models are: the principal component

of Stock and Watson model (SW), the augmented dynamic factor

model of Bańbura and Rünstler (BR) and the collapsed dynamic

factor model (CFM). The country codes are: Euro Area (EA), Ger-

many (DE), France (FR), Italy (IT), Spain (ES) and the Nether-

lands (NL). The model forecasts are averaged over model specifi-

cations with one to four factors. The smallest MSFE for each

horizon is highlighted. MSFEs that are at most 10% larger than

the MSFE of the best model and also smaller than the MSFE of the

benchmark model are in boldface.
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Table VI: Forecast accuracy dynamic factor models (MSFE), 1992.I-2012.IV, two factors

EA DE FR IT ES NL

Absolute

AR

All horizons 0.42 0.79 0.26 0.57 0.39 0.51

2Q ahead forecast 0.49 0.81 0.34 0.66 0.46 0.56

1Q ahead forecast 0.45 0.81 0.28 0.60 0.41 0.53

Nowcast 0.39 0.78 0.21 0.53 0.35 0.49

Backcast 0.32 0.76 0.16 0.47 0.31 0.45

Relative to AR(2) model

BR

All horizons 0.73 0.97 1.26 0.76 1.03 0.72

2Q ahead forecast 0.81 1.03 1.12 0.87 1.01 0.88

1Q ahead forecast 0.74 0.97 1.21 0.81 0.99 0.70

Nowcast 0.66 1.01 1.48 0.64 1.12 0.61

Backcast 0.66 0.79 1.41 0.66 1.03 0.63

CFM

All horizons 0.58 0.85 0.91 0.66 0.89 0.74

2Q ahead forecast 0.69 0.84 0.94 0.74 0.91 0.88

1Q ahead forecast 0.57 0.85 0.91 0.68 0.90 0.72

Nowcast 0.50 0.91 0.90 0.57 0.86 0.65

Backcast 0.49 0.76 0.86 0.59 0.84 0.65

SW

All horizons 0.87 1.05 0.91 0.90 0.91 0.93

2Q ahead forecast 0.91 1.16 0.98 0.91 1.04 1.05

1Q ahead forecast 0.92 1.14 0.91 0.91 0.87 1.01

Nowcast 0.84 0.97 0.83 0.93 0.79 0.82

Backcast 0.73 0.85 0.87 0.80 0.90 0.73

This table presents the MSFEs of backcasts, nowcasts, one and two

quarter ahead forecasts. The benchmark model is an autoregression

of order 2 (AR(2)). The factor models are: the principal component

of Stock and Watson model (SW), the augmented dynamic factor

model of Bańbura and Rünstler (BR) and the collapsed dynamic

factor model (CFM). The country codes are: Euro Area (EA), Ger-

many (DE), France (FR), Italy (IT), Spain (ES) and the Nether-

lands (NL). The model forecasts are averaged over model specifi-

cations with one to four factors. The smallest MSFE for each

horizon is highlighted. MSFEs that are at most 10% larger than

the MSFE of the best model and also smaller than the MSFE of the

benchmark model are in boldface.
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Table VII: Forecast accuracy dynamic factor models (MSFE), 1992.I-2012.IV, three factors

EA DE FR IT ES NL

Absolute

AR

All horizons 0.42 0.79 0.26 0.57 0.39 0.51

2Q ahead forecast 0.49 0.81 0.34 0.66 0.46 0.56

1Q ahead forecast 0.45 0.81 0.28 0.60 0.41 0.53

Nowcast 0.39 0.78 0.21 0.53 0.35 0.49

Backcast 0.32 0.76 0.16 0.47 0.31 0.45

Relative to AR(2) model

BR

All horizons 0.75 0.85 1.21 0.78 0.92 0.75

2Q ahead forecast 0.80 0.94 1.12 0.87 0.98 0.91

1Q ahead forecast 0.76 0.88 1.16 0.83 0.85 0.75

Nowcast 0.75 0.86 1.36 0.72 0.93 0.62

Backcast 0.65 0.67 1.3 0.63 0.89 0.63

CFM

All horizons 0.64 0.87 0.94 0.71 0.92 0.72

2Q ahead forecast 0.73 0.92 0.98 0.74 0.97 0.89

1Q ahead forecast 0.66 0.92 0.94 0.74 0.97 0.70

Nowcast 0.59 0.90 0.91 0.72 0.85 0.60

Backcast 0.48 0.68 0.86 0.56 0.82 0.64

SW

All horizons 0.87 1.11 0.91 0.89 0.99 0.99

2Q ahead forecast 0.94 1.27 0.95 0.88 1.13 1.09

1Q ahead forecast 0.91 1.19 0.92 0.92 0.97 1.05

Nowcast 0.83 0.99 0.86 0.9 0.88 0.93

Backcast 0.72 0.92 0.88 0.81 0.90 0.81

This table presents the MSFEs of backcasts, nowcasts, one and two

quarter ahead forecasts. The benchmark model is an autoregression

of order 2 (AR(2)). The factor models are: the principal component

of Stock and Watson model (SW), the augmented dynamic factor

model of Bańbura and Rünstler (BR) and the collapsed dynamic

factor model (CFM). The country codes are: Euro Area (EA), Ger-

many (DE), France (FR), Italy (IT), Spain (ES) and the Nether-

lands (NL). The model forecasts are averaged over model specifi-

cations with one to four factors. The smallest MSFE for each

horizon is highlighted. MSFEs that are at most 10% larger than

the MSFE of the best model and also smaller than the MSFE of the

benchmark model are in boldface.
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Table VIII: Forecast accuracy dynamic factor models (MSFE), 1992.I-2012.IV, four factors

EA DE FR IT ES NL

Absolute

AR

All horizons 0.42 0.79 0.26 0.57 0.39 0.51

2Q ahead forecast 0.49 0.81 0.34 0.66 0.46 0.56

1Q ahead forecast 0.45 0.81 0.28 0.60 0.41 0.53

Nowcast 0.39 0.78 0.21 0.53 0.35 0.49

Backcast 0.32 0.76 0.16 0.47 0.31 0.45

Relative to AR(2) model

BR

All horizons 0.75 0.83 1.21 0.76 0.88 0.78

2Q ahead forecast 0.81 0.92 1.10 0.87 0.99 0.95

1Q ahead forecast 0.73 0.87 1.14 0.85 0.85 0.78

Nowcast 0.75 0.84 1.42 0.68 0.83 0.64

Backcast 0.65 0.62 1.35 0.52 0.77 0.66

CFM

All horizons 0.67 0.86 0.80 0.75 0.93 0.71

2Q ahead forecast 0.79 0.86 0.82 0.81 1.10 0.87

1Q ahead forecast 0.69 0.92 0.80 0.80 0.99 0.68

Nowcast 0.62 0.95 0.78 0.75 0.75 0.61

Backcast 0.43 0.65 0.77 0.53 0.73 0.61

SW

All horizons 1.01 1.15 1.12 0.87 0.97 0.99

2Q ahead forecast 1.13 1.33 1.13 0.86 1.18 1.12

1Q ahead forecast 1.08 1.17 1.13 0.87 0.90 1.06

Nowcast 0.95 1.04 1.12 0.90 0.84 0.88

Backcast 0.73 0.98 1.10 0.84 0.86 0.80

This table presents the MSFEs of backcasts, nowcasts, one and two

quarter ahead forecasts. The benchmark model is an autoregression

of order 2 (AR(2)). The factor models are: the principal component

of Stock and Watson model (SW), the augmented dynamic factor

model of Bańbura and Rünstler (BR) and the collapsed dynamic

factor model (CFM). The country codes are: Euro Area (EA), Ger-

many (DE), France (FR), Italy (IT), Spain (ES) and the Nether-

lands (NL). The model forecasts are averaged over model specifi-

cations with one to four factors. The smallest MSFE for each

horizon is highlighted. MSFEs that are at most 10% larger than

the MSFE of the best model and also smaller than the MSFE of the

benchmark model are in boldface.
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A.3 Adding an AR(2) term in Bańbura and Rünstler (2011)

Table IX: Sensitivity analysis (augmented) Bańbura and Rünstler model

EA DE FR IT ES NL

Absolute MSFE

Base BR model

1 factor 0.56 0.80 0.61 0.69 0.67 0.66

2 factor 0.57 0.91 0.60 0.66 0.66 0.61

3 factor 0.57 0.86 0.58 0.67 0.61 0.63

4 factor 0.58 0.84 0.58 0.66 0.60 0.63

average 1-4 factors 0.55 0.82 0.58 0.65 0.62 0.63

Augmented BR model

1 factor 0.56 0.80 0.55 0.68 0.64 0.66

2 factor 0.56 0.88 0.57 0.66 0.63 0.61

3 factor 0.56 0.82 0.55 0.67 0.60 0.62

4 factor 0.56 0.81 0.56 0.66 0.58 0.63

average 1-4 factors 0.54 0.80 0.55 0.65 0.60 0.62

This table presents the average MSFE over all forecast horizons

(backcast, nowcast, one quarter ahead forecast and two quarter

ahead forecast) for the Bańbura and Rünstler (2011) model and

the augmented Bańbura and Rünstler (2011) model. The coun-

try codes are: Euro Area (EA), Germany (DE), France (FR), Italy

(IT), Spain (ES) and the Netherlands (NL). Forecasts for specifica-

tion with four static factors. The smallest MSFE for each horizon

is highlighted. MSFEs that are at most 10% larger than the MSFE

of the best model are in boldface.
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