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Research among Copycats:
R&D, Spillovers, and Feedback Strategies∗

Grega Smrkolj† Florian Wagener‡

August, 2014

Abstract

We study a stochastic dynamic game of process innovation in which firms can initiate
and terminate R&D efforts and production at different times. We discern the impact of
knowledge spillovers on the investments in existing markets, as well as on the likely structure
of newly forming markets, for all possible asymmetries between firms. We show that the
relation between spillovers, R&D efforts, and surpluses is non-monotonic and dependent on
both the relative and absolute efficiency of firms. Larger spillovers increase the likelihood
that a new technology is brought to production, but they do not necessarily make the industry
more competitive.

Keywords: Differential game, Feedback Nash equilibrium, Numerical partial differential equations,
R&D, Spillovers,
JEL: C61, C63, C73, D43, D92, L13, O31

1 Introduction

Contemporary markets are flooded with imitations – it is hard to find a business model, good, or
service that is not a variation or an adaptation of some earlier version. Dell and HP are only two
out of many firms that cloned IBM’s Personal Computer. Atari’s video game attracted as many
as 75 imitators, led by Nintendo. More recently, Samsung’s lawyers could not tell the difference
between Samsung’s Galaxy Tab and Apple’s iPad in court.1 While more latent than product
imitations, imitations of business processes abound as well and often even transcend the sector in
which they were first introduced. Walmart’s automated supply chain management strategies were
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imitated by its competitors (e.g., Kmart, Tesco), but also by companies in other sectors, such as
Ryanair. South West Airlines’ innovative business model which led to the low cost revolution in
air travel was successfully imitated by both Ryanair and easyJet. Henry Ford’s introduction of
the moving assembly line did not only reduce the cost of his Model T car, but also revolutionized
manufacturing processes across industries worldwide. Today a similar revolution is taking place
as e-commerce adopted by various sorts of organizations is reducing the need for paperwork.

This paper studies how information leakages, or spillovers, affect industry dynamics and
structure through their impact on innovation incentives of firms. Its focus is process innovation,
interpreted as any improvement in “the way things are done” that enables a firm to satisfy a given
consumer need at lower cost. This focus is motivated by the fact that product innovations often
cannot be successfully introduced in the market without accompanying process innovations2 and
that over time relative productivity becomes decisive for surviving in the market. In fact, a higher
emphasis on process innovation by Japanese companies is believed to be one of the main reasons
for their increasing competitiveness over their American counterparts (Bhoovaraghavan et al.,
1996).

Hardly any business idea is immune to imitation,3 the pace of which is increasing with
the increased codification of knowledge and the advance of globalization: “In the early 1990s
Cardizem lost 80 percent of the market to generic substitutes within five years; a decade later,
Cardura lost a similar share in nine months; and Prozac [...] lost the same market share in only
two months” (Shenkar, 2010, p. 6).4 Imitators often even outperform innovators in business
results. For instance, both Visa and MasterCard enjoy larger market shares than the first credit
card issuer Diners Club, Japanese producers of roll-film cameras switched to digital photography
and eventually overtook Sony, the digital photography pioneer, and Toyota and Honda dominate
the market for minivans over both the pioneering Chrysler, as well as its earlier followers Ford
and GM. Examples abound (see Shenkar, 2010). Similar observations led Levitt (1966, p. 63) to

2A good example of a technology which had been subject to considerable investment before it finally became
suitable for the market is the modern plasma display, the concept of which was first conceived at the University of
Illinois in 1964. At that time, it was too expensive to mass produce using the existing technology. It took several years
for IBM to launch a 48-cm monochrome plasma display destined for commercial use in 1983. Several additional
years of research and improvements on the licensed technology of first innovators were needed for Fujitsu to present
the first 53-cm fully-colored hybrid display in 1992, and the 107-cm display later in 1997. Philips’ plasma display
of the same resolution claimed to be the first to be presented to the retail sector on a large scale in 1997 at a price
of no less than $14,999. Later, Pioneer, Sony, LG, Samsung, and a few others also entered this market. Thanks to
subsequent improvements in the technology and concomitant reductions in the production costs, different variants of
plasma TVs are nowadays available for less than $1,000.

Yet another illustrative example is polyethylene. Previously, the material was extremely expensive due to its high
production costs and was used only to insulate underwater electrical transmission cables. As Utterback (1994) reports,
thanks to subsequent improvements in the production process, polyethylene is today “so cheap and plentiful that it is
used for throwaway bags and milk bottles.”

3 As Arrow (1962, p. 615) explains, “no amount of legal protection can make a thoroughly appropriable commodity
of something so intangible as information. The very use of the information in any productive way is bound to reveal
it, at least in part. Mobility of personnel among firms provides a way of spreading information. Legally imposed
property rights can provide only a partial barrier, since there are obviously enormous difficulties in defining in any
sharp way an item of information and differentiating it from similar sounding items.”

4 Mansfield (1985) finds that rivals obtain information about new products or processes in 12 months or less.
Similarly, Caballero and Jaffe (1993) in their analysis of patent citations conclude that diffusion of information
about innovations is so rapid that it can be regarded as being instantaneous. In their study of 48 specific innovations,
Mansfield et al. (1981) report that 60% of all patented innovations were imitated within 4 years and that imitation
occurred on average at about two thirds of cost and time expended by the innovator.
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claim, “Imitation is not only more abundant than innovation, but actually a much more prevalent
road to business growth and profits.” Shenkar (2010) even writes about the “imovation challenge”
– companies that want to succeed, need to fuse innovation and imitation as in the future it will not
be possible anymore “to rely on innovation or imitation alone to drive competitive advantage.”

Spillovers are prevalent in business practice, yet our understanding of their role in innovation
activities of firms is still incomplete. On the one hand, spillovers could improve market perfor-
mance as imitators make the market more competitive. On the other hand, innovators facing
the danger of having their returns on research investments reduced by imitators could be less
willing to innovate in the first place. Furthermore, the effect of spillovers on the innovation of
asymmetric firms appears ambiguous as well. Empirical studies show that the laggard often
strives to catch up with the leader (see, e.g., Lerner, 1997). If imitating the leader becomes
easier, the laggard is able to progress faster and the industry is less likely to become monopolized.
However, the final result depends also on the way the leader responds to spillovers. The leader
might increase his innovation efforts in order to widen the lead and hopefully drive the laggard
out of the market, or he might decrease his innovation efforts as the laggard is free-riding on
them.

Due to their prominence in practice, this paper puts asymmetries between firms and their
dynamic evolvement to the center of its investigation. It has been a long-standing indication
in the literature, confirmed in a dynamic framework by Petit and Tolwinski (1999), that larger
spillovers can prevent the monopolization of the industry by easing imitation. Using a richer
analytical framework and considering all possible absolute and relative differences in firms’
production costs, this paper shows that while intuitive, the above result is not universally true. It
is true only when initial production costs of the leader are high and, by extension, his incentives
to exert R&D efforts to reduce these production costs. At relatively lower unit costs of the leader,
additional R&D efforts benefit the leader progressively less and the laggard progressively more,
and the incentives of the leader to exert R&D efforts can be rather low. This makes it harder for
the laggard to catch up with the leader. Notably, the ability to copy is not worth much when there
is little to copy. Consequently, lower cost asymmetries can suffice to induce the monopolization
of the industry at larger spillovers. We also show that the relation between spillovers and welfare
is more involved than previously thought – it is highly non-monotonic and affected by both the
relative and absolute initial efficiency of firms.

Strategic R&D decisions of firms in the presence of spillovers were first analyzed in a static
framework by d’Aspremont and Jacquemin (1988), whose work fostered many generalizations
and extensions. Surveying this literature, De Bondt (1997) reports that while the amount of
R&D done by each firm tends to decrease as spillovers increase (due to a free-riding effect),
industry output and welfare increase as long as the level of spillovers is below some critical
intermediate value (0.5 in the homogenous goods case of d’Aspremont and Jacquemin (1988)).
Petit and Tolwinski (1999) consider asymmetric firms in a dynamic, though deterministic, context.
They show that when firms are symmetric, high spillovers are not desirable from the consumers’
perspective as they lead to low R&D efforts and high prices. However, when firms are asymmetric,
high spillovers might be preferred as they can reduce market concentration, and thereby prices,
by enabling less efficient firms to survive. Hinloopen et al. (2013) point out that the received
models give an incomplete picture of R&D: while patent race models abstract from the problem
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of production, strategic models of R&D impose the coexistence of production and R&D at all
times, which contradicts the observation that for many new technologies research starts long
before production. The present article extends the dynamic framework of Hinloopen et al. (2013)
in two important directions. First, rather than a monopoly, we consider a proper differential game
with two competing firms. Second, given that innovation is inherently uncertain, we introduce
stochasticity to the R&D process.

At the outset of the game, each firm has an initial unit cost of production ci(0), corresponding
to the initial level of a particular technology. This value may differ between firms, for instance if
the imitator lacks the production experience of the innovator. Firms can increase their production
efficiency by exerting R&D efforts, which in turn are subject to imitation. Higher production
efficiency in turn makes them stronger competitors on the Cournot product market. In the present
set-up, the initial unit production cost of a firm is allowed to be above the choke price (the lowest
price at which the quantity sold is zero); in such a situation, it is optimal for a firm to postpone
production. Firms’ product market participation constraints are taken into account explicitly.
Consequently, the R&D process and production do not need to coexist at all times and firms can
enter or exit the product market and initiate or cease their R&D processes at different times.

The analysis of spillovers in the existing literature is typically limited to their effects on the
innovation activities already in place. In fact, to this day, all related static and dynamic models of
strategic R&D assume initial unit costs to be below the chock price and are silent on situations
where initial production costs of a new technology exceed the highest willingness to pay in the
market (see Hinloopen et al. (2013) for a critical discussion). Hence, the existence of a market
and R&D process is already assumed and the question left is how spillovers affect the (size of)
R&D efforts. A distinguishing feature of our approach is that we do not limit ourselves to the
question of how much to invest in a given market but recognize that this question is preceded
by the question of whether to invest in a given technology at all.5 We pay special attention to
the determination of those critical cost levels at which a firm’s goal switches from entering the
market to exiting the market. Consequently, we are able to analyze not only how spillovers
affect the investments on existing markets, but also how they influence the likelihood that a new
market will be formed, and if so, how its likely structure (monopoly or duopoly) relates to the
level of spillovers, and this so for every possible combination of firms’ initial unit costs. Our
framework therefore puts conclusions of the previous literature, typically holding only for a
subset of possible cost levels, into a broader perspective.

We analyze both the deterministic and the stochastic version of the dynamic game. This
enables us to analyze the impact of uncertainty on R&D decisions of firms. It turns out that it is
much harder to obtain the solution to the deterministic game. The reason for this is that in the
deterministic version, a firm’s policy functions may exhibit discontinuities at initial technology
levels where entering or not entering the market is equally profitable. These discontinuities pose
significant problems to numerical schemes. We progress by first exploiting the fact that for a
stochastic R&D process policy functions and value functions are smooth, making numerical
schemes easier to implement. We then analyze the policy functions under uncertainty, which

5Elmer Bolton, a scientist-manager at DuPont, one of the most innovative corporations in American business
history, was famous for saying to the company’s chemists who in his opinion lacked the awareness that the success
of the company depends on its products being commercially exploitable: “This is very interesting chemistry, but
somehow I don’t hear the tinkle of the cash register” (Hounshell, 1988).
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are interesting in their own right, as approximating solutions to the deterministic game when
the uncertainty level tends to zero. That is, we obtain a solution to the deterministic game as a
vanishing viscosity solution (see Başar and Olsder, 1999, Ch. 5.7).

We solve for a feedback Nash equilibrium of the differential game, which is characterized by
a system of highly nonlinear implicit partial differential equations, by a variant of the numerical
method of lines (Schiesser, 1991): by discretizing technology levels, but not time, the system
of partial differential equations is approximated by a system of ordinary differential equations.
The solution to this system is then obtained by standard methods. This solution method requires
the values of the value functions of the players at the boundaries of the state space over which
we seek a solution. However, the true boundary values are not known ex ante. To circumvent
this, we exploit the fact that the characteristics of the first-order Hamilton-Jacobi-Bellman partial
differential equations, which correspond to the deterministic situation, leave the state space at the
boundaries. This implies that the solution in the interior of the state space is unaffected by the
precise specification of the boundaries; for modest noise levels, this still holds true, excepting a
small layer along the boundaries. This enables us to obtain accurate approximating solutions for
value and policy functions.

We find that a duopoly arises in the product market generally only, if initial asymmetries
between the firms are not too large.6 The duopoly in the product market is characterized by the
regression toward the mean phenomenon: asymmetries between the firms tend to vanish over
time.

Through increasing complementarities in R&D, larger spillovers always increase the chance
that an expensive technology calling for investments in advance of production will be brought
to production. The level to which such a technology is developed can however be lower due to
lower R&D investments of firms that try to free-ride on each other along the way. In this latter
sense, spillovers increase production efficiency only up to a point. Here our model emphasizes
the importance of considering both dimensions in which spillovers affect markets: first, through
affecting the formation of markets, and second, through affecting investments in the formed
markets. These effects can be of opposite sign.

We find that larger random shocks to firms’ production costs are increasing the likelihood that
a technology will be developed further as firms are stimulated by the possibility of a favorable
shock to their production costs in the future more than they are discouraged by the possibility
of an unfavorable shock. They rather invest more today than be sorry later for giving up too
early. Uncertainty also increases the likelihood that the product market will be competitive as the
chance of a larger favorable shock in the future increases the perseverance of the laggard.

At low spillovers, we find large investments of firms at high initial unit costs for both firms,
if the difference between the unit cost levels is small. That is, a small cost advantage of one
firm leads to a behavior that can be considered predatory: the leader exerts high R&D efforts
which are profitable in that they induce the laggard to give up. However, when firms start from a
perfectly symmetric situation, their behavior resembles a preemption race: each firm invests a lot
trying to win the race in which a small lead suffices for gaining a monopoly position, resulting in
very fast technology development.

6This conclusion is similar to Doraszelski (2003) who finds action-reaction behavior in a patent race model with
history-dependent R&D stocks: the laggard catches up with the leader provided his initial stock of knowledge is of
sufficient size and gives up otherwise.
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The ranking of spillovers based on consumer surplus and total surplus depends on both the
relative and absolute value of firms’ initial unit costs of production, as well as on the variance
of random shocks. Roughly speaking, at high initial unit costs of firms the intermediate level
of spillovers is associated with the highest consumer surplus, except if larger spillovers prevent
the leader from monopolizing the market, or if symmetric initial costs at small spillovers induce
firms to engage in the preemptive race characterized by high R&D investments. The latter two
possibilities diminish in importance as the variance of the shocks increases or as the initial unit
costs of firms decrease. For low initial unit costs of firms, large spillovers bring about the lowest
consumer surplus. This lower desirability of large spillovers at low initial costs characterizes
total surplus as well. While the latter tends to increase with spillovers at high initial unit costs,
increases in spillovers beyond the intermediate level diminish total surplus at low initial unit costs
of firms, especially when asymmetries between firms increase. When initial costs are already
quite low, savings on R&D costs induced by large spillovers are comparably less important and
the main effect of large spillovers is the perverse free-riding effect that diminishes R&D efforts.

The remainder of the paper is organized as follows. Section 2 describes the model specifica-
tion. Section 3 explains our computational approach to obtaining a feedback Nash equilibrium
solution. Section 4 discusses equilibrium strategies and corresponding industry dynamics. Section
5 concludes.

2 Model

The dynamic game is defined in continuous time and over an infinite horizon: t ∈ [0,∞). There
are two firms which potentially compete in a market for a homogenous good with demand

p(t) = max {A− qi(t)− qj(t), 0} , (1)

where p(t) is the market price, qi(t) is the quantity produced by firm i = {1, 2}, qj(t) is the
quantity produced by its rival (i 6= j), and A is the choke price (the lowest price at which the
quantity sold is zero). At the outset of the game, each firm obtains an exogenous technology,
represented by its unit cost level ci(0). For simplicity, we assume that firms may differ in their
production cost, being identical in every other aspect. While both firms produce with constant
returns to scale, each firm can reduce its unit cost ci(t) > 0 by investing in R&D. This process
is subject to spillovers. Firm i exerts R&D effort ki(t) ≥ 0 and as a consequence of these
investments, its unit cost (state variable) evolves over time according to

dci
ci

= (−ki − βkj + δ) dt+ σi dBi, (2)

where kj = kj(t), j 6= i, is the R&D effort exerted by the rival, β ∈ [0, 1] is a degree of spillovers,
and δ > 0 reflects the constant rate of efficiency reduction due to the aging of technology and
organizational forgetting (Besanko et al., 2010; Hinloopen et al., 2013). Moreover, the Bi(t) are
standard Wiener processes with σi > 0 denoting their strength. The processes Bi are assumed
to be independent and of equal strength, that is σ1 = σ2 = σ; this restriction is for definiteness,
as other correlation structures could also be analyzed using our methods. Equation (2) is of
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the form dc = µ(c, k) dt + σ(c) dB, where µ and σ are drift and diffusion, respectively, of a
controllable Itô process c (see Kloeden and Platen, 1992). Hence, firms face some randomness in
the evolution of their unit costs. The random variations in c are high when c is high, i.e. when
the technology is not fully developed yet.

Note that Equation (2) is not linear in state and controls, and that consequently the game
is not linear-quadratic. Low values of β correspond to strong intellectual property protection
and the ability of firms to prevent involuntary leaks of information. The reverse is true for high
values of β.7 We treat the value of β as given for firms.8 Observe in (2) that the smaller the ci,
the smaller the effect of particular ki on ċi. Further innovations require increasingly more R&D
efforts. Exerting R&D effort is costly. This cost equals bki(t)2 per unit of time, where b > 0 is
inversely related to the cost-efficiency of the R&D process. In assuming decreasing returns to
R&D, we follow the bulk of the literature (see Hinloopen et al. (2013) for a discussion of the
model’s assumptions). Both firms discount the future with the same constant rate ρ > 0. The
instantaneous profit of firm i is:

πi(t) =

{ (
A− qi(t)− qj(t)− ci(t)

)
qi(t)− bki(t)2 if p(t) > 0,

−ci(t)qi(t)− bki(t)2 if p(t) = 0,
(3)

yielding its expected total discounted profits over time:

Πi = E0

∫ ∞
0

πi(t)e
−ρtdt; (4)

here and below Et is the expectation operator conditional on information available up to time t.

2.1 Rescaling

Our model depends on five parameters: A, b, δ, β, and ρ. Some of these can be set to 1 by
choosing the measurement scale of units appropriately. The five-dimensional parameter space
then reduces to a three-dimensional one.

Lemma 1. After choosing units of variables and parameters appropriately, we can assume
A = 1, b = 1, and δ = 1. In the new units, the state equations read as

dci =
(

1−
(
ki + βkj

)
φ
)
ci dt+ ci

√
2εdBi (5)

with φ = A/δ
√
b and ε = σ2/2δ.

Proof. See Appendix A.
7Some caution should be taken when considering high spillovers. Even with no legal or other constraints on

information flows, it is questionable that there is perfect additivity between R&D efforts of competing firms. Some
R&D results of a competitor will necessary involve duplication or be only an imperfect match to a firm’s own
knowledge or organizational culture (see discussion in Hinloopen (2003)).

8In general, β may be one of a firm’s strategic variables. See Katsoulacos and Ulph (1998) and Amir et al. (2003)
for an attempt to endogenize the degree of spillovers. Von Hippel (1988) provides empirical evidence for firms being
consensually involved in information sharing. See also Shenkar (2010). Amir et al. (2000) allow for spillovers to
differ between firms.
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The new parameter φ introduced by the rescaling captures the profit potential of a technology
(cf. Hinloopen et al., 2013). Higher potential revenues come with a higher A, and each unit of
R&D effort costs more if b increases, while it reduces unit cost by less the higher is δ. In sum, a
lower (higher) φ corresponds to a lower (higher) profit potential.

2.2 Product market and equilibrium output levels

Firms compete in a product market by strategically setting their output levels. The analysis of
this market is simplified by the fact that production, unlike R&D efforts, does not influence the
evolution of the unit cost levels. Hence, the firms play a Cournot duopoly game with respect
to production at each instant of time, and the output levels, while depending on unit costs,
qi = ψi(c1, c2), are static Cournot-Nash equilibria of the instantaneous game.

Proposition 1. The strategy profile ψ∗(c1, c2) = (ψ∗1(c1, c2), ψ∗2(c1, c2)), where

i) ψ∗i (c1, c2) =
1− 2ci + cj

3
if 2c1 − c2 < 1, 2c2 − c1 < 1; (6)

ii) ψ∗i (c1, c2) = 0, ψ∗j (c1, c2) =
1− cj

2
if 2ci − cj ≥ 1, cj < 1; (7)

iii) ψ∗1(c1, c2) = 0, ψ∗2(c1, c2) = 0 if c1 ≥ 1, c2 ≥ 1, (8)

is a Cournot-Nash equilibrium of a quantity setting duopoly in the product market (i, j ∈
{1, 2}, i 6= j).

These equilibria are illustrated in Figure 1. The curves E1 and E2 are the ‘entry/exit’ curves
for firms 1 and 2 respectively: to the right of E1, firm 1 is not active in the product market;
above E2, firm 2 is not active. The two curves divide state space into four regions: ‘Duopoly’,
‘Monopoly of Firm i’, for i = 1 or 2, and ‘No production’.

Both firms produce positive amounts only for combinations of unit costs in the ‘Duopoly’
region. There, the market price is higher than the unit cost of each firm (the first case in the above
proposition), and firm i earns a profit of

gi(c1, c2) =
(1− 2ci + cj)

2

9
. (9)

In the region ‘Monopoly of Firm 1’, the market price is lower than firm 2’s unit cost; firm 2

therefore optimally sells nothing. Firm 1 earns there a monopoly profit

gi(c1, c2) =
(1− ci)2

4
. (10)

The roles are reversed in the region ‘Monopoly of Firm 2’.
Finally, in the ‘No production’ region, the unit costs of both firms are higher than the choke

price (A = 1), and as firms could sell a positive amount only at negative mark-ups, neither firm
produces.
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In sum, the sales profit of firm i is given by

gi(c1, c2) =


(1− 2ci + cj)

2/9 if 2c1 − c2 < 1, 2c2 − c1 < 1,

(1− ci)2/4 if 2cj − ci ≥ 1, ci < 1,

0 otherwise.

(11)

The function gi is continuous. The total instantaneous profit is the sales profit gi diminished by
the R&D expenditure k2

i :
πi = gi(c1, c2)− k2

i . (12)

The substitution of equilibrium output levels in firms’ profit functions has resulted in the profit
function of firm i being dependent only on unit costs and R&D effort. Consequently, the problem
of the firms is reduced to finding optimal R&D efforts.

c 2
=

2
c 1
-

1
c1
=

2 c2
-

1

E2

E1

E2

E1

Monopoly of Firm I

Duopoly

      No 

production

Monopoly of Firm II

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 c10.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

c2

(a)

Figure 1: Product-market activity.

2.3 Problem statement

To sum up formally, in the two-firm differential game, each firm tries to maximize its expected
pay-off

Πi = E0

∫ ∞
0

[
gi(c1, c2)− k2

i

]
e−ρtdt (13)

through its choice of R&D effort ki ≥ 0, subject to the state equations

dci =
(
1−

(
ki + βkj

)
φ
)
ci dt+ ci

√
2εdBi, i = 1, 2, (14)

where ci > 0 for i = 1, 2.
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2.4 Equilibrium

In the game, each firm tries to maximize its total discounted profits by selecting a strategy which
specifies its action, that is its R&D effort, at each instant of time. In the stochastic context, it
is most natural to consider feedback strategies, where the actions are given as functions of the
current state of the system (see Başar and Olsder, 1999). The corresponding feedback Nash
equilibria are characterized by a dynamic programming equation. The resulting equilibrium
strategies are strongly time consistent or ‘subgame perfect’. Here, the state of the game is
determined by the pair (c1, c2) of unit production costs of the firms, and a strategy for firm i is a
function ki = Γi(c1, c2), specifying its R&D effort ki as functions of the state.

In this context, a ‘feedback Nash equilibrium’ is a pair (Γ∗1,Γ
∗
2) of feedback strategies, such

that the choice
ki(t) = Γ∗i

(
t, c1(t), c2(t)

)
(15)

for all t ≥ t0 maximizes the present discounted value of firm i’s profits, given that the other firm
chooses its R&D level by (15) with i replaced by j. This implies that choosing ki according to
(15) maximizes

Et0
∫ ∞
t0

πi(ki,Γ
∗
j (t, c1, c2))e−ρtdt, (16)

subject to the state equations. Introduce the value W i = W i(t0, c1,0, c2,0) at ci,0 = ci(t0),
i = 1, 2, as the value of the integral. Then W i is the maximum discounted value of profits at
time t = t0 that can be earned by firm i, given that the other firm pursues its equilibrium strategy.
If Γ∗ is a feedback Nash equilibrium solution to our dynamic game, there exist functions W i,
satisfying the so-called Hamilton-Jacobi-Bellman equations (see Başar and Olsder, 1999, Ch. 6.5)
either everywhere, or at least in the sense of viscosity solutions (Crandall and Lions, 1983):

−W i
t = εc2

1W
i
c1c1 + εc2

2W
i
c2c2

+ max
ki≥0

[(
gi(c1, c2)− k2

i

)
e−ρt +W i

ci

(
1− (ki + βΓ∗j (t, c1, c2))φ

)
+W i

cj

(
1− (Γ∗j (t, c1, c2) + βki)φ

)]
,

(17)

where i ∈ {1, 2}, i 6= j. We adopt the convention that a subscript to the value function indicates
a partial derivative of that function with respect to each subscripted variable. This equation is
complemented by the asymptotic terminal condition

lim
t→∞

W i(t, c1, c2) = 0, (18)

which is a ‘No-Ponzi’ condition.
Introduce the current-time value function V i(t, c1, c2) by setting W i = V ie−ρt. That is, V i

equals the profits earned when firm i starts in the state (c1, c2) at time t and invests optimally,
while firm j pursues its equilibrium strategy. Equation (17) can then be written as

10



ρV i − V i
t = εc2

1V
i
c1c1 + εc2

1V
i
c2c2

+ max
ki≥0

[
gi(c1, c2)− k2

i + V i
ci

(
1− (ki + βΓ∗j (t, c1, c2))φ

)
+V i

cj

(
1− (Γ∗j (t, c1, c2) + βki)φ

)]
.

(19)

These equations are complemented by the following analogue of Equation (18)

lim
t→∞

V i(t, c1, c2)e−ρt = 0. (20)

If the value functions V i are continuously differentiable, equations (19) hold everywhere. If
this assumption is not valid, which may typically happen for ε = 0, the V i do not satisfy the
equations (19) in a classical sense. In such a case, these equations are understood in the sense of
viscosity solution (see Crandall and Lions, 1983). If V i is differentiable at some (t, c1, c2), then

Γ∗i (t, c1, c2) = max

{
−1

2
φ
(
V i
ci + βV i

cj

)
, 0

}
. (21)

This relation can be used to eliminate the Γ∗i from equations (19). The result is a coupled system
of parabolic partial differential equations for the value functions V i, i = 1, 2. For a single
firm, under deterministic cost dynamics (ε = 0) there are situations where the value function
is not differentiable over the entire space (Hinloopen et al., 2013), as ‘indifference’ or ‘Skiba’
points appear for certain parameter values. These are points where a firm is indifferent between
developing and not developing a technology further. At such a point, the optimal investment
function is multiple valued, and the corresponding value function is kinked. We expect the
same phenomenon to occur in the case of two competing firms in the deterministic limit ε→ 0.
Hinloopen et al. (2013) were able to show the existence of the value function using geometrical
arguments. For the present dynamic game, we are not able to proceed along those lines. We
therefore propose a method to obtain numerical approximations of the value function.9

3 Computation

This section discusses the numerical solution strategy. First, a number of preliminary space and
time transformations bring the Hamilton-Jacobi-Bellman equations into the form of a system of
quasi-linear parabolic partial differential equations with constant and isotropic diffusion tensors
with given initial values. In order to obtain numerical solutions, artificial boundary conditions
have to be imposed on the problem; this is done in such a way that the solutions are not essentially
changed. A standard numerical scheme, the method of lines, can then be used to obtain numerical
approximations of the solutions to the resulting system.

9Kossioris et al. (2008) numerically compute a non-linear feedback Nash equilibrium for a differential game with
a single state variable, limiting themselves to a class of continuous feedback rules. Dockner and Wagener (2014)
study necessary conditions for feedback equilibria in games with a single state variable. Through an auxiliary system
of differential equations they are also able to find non-continuous feedback strategy equilibria.
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3.1 Preliminary transformations

The structure of equation (19) for V i is that of a parabolic partial differential equation with
state-dependent diffusion tensor

D = ε

(
c2

1 0

0 c2
2

)
.

The variable transformation
ci = e−xi , (22)

converts D to a constant multiple of the identity. For applying Itô’s theorem shows that in xi
coordinates the state equation (5) takes the form10

dxi =
(
(ki + βkj)φ− 1 + ε

)
dt−

√
2εdBi, (23)

for i, j ∈ {1, 2}, i 6= j.
Set Ṽ i(x1, x2) = V i(e−x1 , e−x2), etc. In the new variables, the Hamilton-Jacobi-Bellman

equations read as

ρṼ i − Ṽ i
t = εṼ i

x1x1 + εṼ i
x2x2

+ max
ki≥0

[
g̃i(x1, x2)− k2

i + Ṽ i
xi

((
ki + βΓ̃∗j (t, x1, x2)

)
φ− 1 + ε

)
+Ṽ i

xj

((
Γ̃∗j (t, x1, x2) + βki)φ− 1 + ε

)]
,

(24)

with terminal condition
lim
t→∞

Ṽ i(t, x1, x2)e−ρt = 0.

In order not to overburden notation, we shall drop the tildes, and refer to ‘functions in ci-
coordinates’ and ‘functions in xi-coordinates’ instead.

The terminal condition, which specifies the value at infinite times, is actually numerically
inconvenient. To circumvent it, the model is modified in two steps. First, the corresponding finite
horizon model, where t ranges from 0 to T > 0, is considered instead, with value functions V i

T

and terminal condition
V i
T (T, x1, x2) = 0, i = 1, 2. (25)

Then, by replacing the variable t, denoting elapsed time, with the time-to-completion s = T − t,
the terminal condition is transformed into an initial condition. Introduce the ‘time-reversed value
functions’ by the relation

V i
T (t, x1, x2) = U iT (T − t, x1, x2), i = 1, 2. (26)

The terminal condition (25) is then replaced by the initial condition

U iT (0, x1, x2) = 0, i = 1, 2.

10The transformation ci = exi would also give rise to a constant diffusion tensor. By the choice made in the article,
the main region of interest (0 < ci < 1) corresponds to positive values of the xi.
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As all time-reversed value functions U iT satisfy the same Hamilton-Jacobi-Bellman equation for
each T , and as they all have the same initial value, it follows by standard uniqueness results that
they are equal. Hence we may drop the subscript T . The time-reversed Hamilton-Jacobi-Bellman
equation for U i then reads as

ρU i + U is = εU ix1x1 + εU ix2x2

+ max
ki≥0

[
gi(x1, x2)− k2

i + U ixi
(
(ki + βΓ∗j (s, x1, x2))φ− 1 + ε

)
+U ixj

(
(Γ∗j (s, x1, x2) + βki)φ− 1 + ε

)]
.

(27)

A solution to this equation will yield all value functions V i
T by relation (26).

In the infinite horizon game, profit functions as well as state equations are autonomous,
not depending explicitly on time. As a consequence, when the game is stopped at any point
in time, the continuation game is identical to the original game — this could be termed the
autonomous dynamic programming principle. Consequently, the present-time value functions are
time-invariant. Moreover, if

V i
T (t, x1, x2)→ vi(x1, x2) and

∂V i
T

∂t
(t, x1, x2)→ 0

as T →∞, then vi solves a stationary equation. Equivalently, the time-reversed value function
must become asymptotically time-invariant: U i(s, x1, x2) → ui(x1, x2), with ui solving the
stationary Hamilton-Jacobi-Bellman equations

ρui = εuix1x1 + εuix2x2

+ max
ki≥0

[
gi(x1, x2)− k2

i + uixi
(
(ki + βΓ∗j (x1, x2))φ− 1 + ε

)
+uixj

(
(Γ∗j (x1, x2) + βki)φ− 1 + ε

)]
.

(28)

Once the value functions ui have been determined from these equations, time-independent
equilibrium feedback strategies are obtained as the maximizers of the right-hand side of Equation
(28):

Γ∗i (x1, x2) = max

{
1

2
φ
(
uixi + βuixj

)
, 0

}
. (29)

To obtain an approximating numerical solution to the infinite horizon game, the system (27) is
considered as an ordinary differential equation in the space of pairs (U1, U2) of value functions
depending on x1 and x2 with a given initial value. A solution to the stationary equation (28) is a
steady state of this differential equation.

By integrating equation (27), or rather a discretized approximation, over time-to-completion
s, and stopping once the time derivative (U1

s , U
2
s ) is sufficiently close to zero, an approximation

of an attracting steady state of the ordinary differential equation in function space is obtained.11

11This approach resembles what is in the literature known as a method of false transients (see Schiesser, 1991),
where a time derivative which is not part of the original problem is added to a partial differential equation in order to
transform it into a well-posed initial value (Cauchy) problem. It is then expected that this additional term will have an
insignificant effect on the final solution. In our case, it is rather a method of true transients as U i

s (or V i
t ) is a true part

of the Hamilton-Jacobi-Bellman equation (corresponding to a finite-horizon game) and approaches true zero only in
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3.2 Numerical Method of Lines

The numerical method of lines (Schiesser, 1991) is used to obtain an approximation of the
solutions to (27). Solutions to the differential equations are considered on a symmetric square
region

Ω = (M,M)× (M,M).

The region is discretized using a uniform tensor grid with grid spacing h = (M −M)/(n+ 1).
Grid points are of the form (x1,k, x2,m), with

x1,k = M + kh, x2,m = M +mh, 1 ≤ k,m ≤ n.

Function values at grid points are denoted as

Uk,m = U(x1,k, x2,m), 1 ≤ k,m ≤ n.

At each grid point (x1,k, x2,m), derivatives are approximated by second-order central finite
differences, e.g.,

∂U i

∂x1
(s, x1,k, x2,m) =

U ik+1,m − U ik−1,m

2h
+O(h2),

∂2U i

∂x2
1

(s, x1,k, x2,m) =
U ik−1,m − 2U ik,m + U ik+1,m

h2
+O(h2), etc.

Discretizing in this way results in a system of 2n2 ordinary differential equations. This system
is however not closed, as the derivative discretizations at near-boundary points, e.g. for k = 1,
refer to undefined values, like U i0,m. These values are supplied by the boundary conditions of the
problem, which are discussed in the next subsection.

The time variable is however still continuous. After discretization, a system of ordinary
differential equations is obtained, approximating the partial differential equation (27). It is solved
using a third-order Runge-Kutta method (Judd, 1998).12

3.2.1 Boundary conditions

We already motivated our choice of the initial condition U i(0, x1, x2) = 0. To solve the system
of differential equations (27), we also need to specify boundary conditions corresponding to the
four sides of the grid square. The problem is that the value of a solution at all boundaries is ex
ante not known to us. We address this in Appendix B where we argue that the misspecification of
the boundary conditions only results in a significant error in a small region along the boundaries.

limit (when the horizon of the game approaches infinity and the game itself becomes stationary).
12We wrote the code for computations in Fortran 95, using double precision arithmetic. The criterion for convergence

is that the value of theL2-norm of Us is below 1×10−12. Auxiliary calculations and plots were executed in MATLAB
and Mathematica. In presented plots, M = −2.5, n = 200 and h = 0.035. To prevent the solution from becoming
unstable, the time step ∆t in the Runge-Kutta method has to be taken sufficiently small, in order to satisfy both
the Courant-Friedrichs-Lewy condition ∆t < h

v
, where v is a maximum drift velocity, and the diffusion condition

∆t < h2

2ε
. For small ε, as used in the article, the latter condition is usually not binding.
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We used standard Neumann boundary conditions:

∂

∂~n
U i(s, x) = 0, i = 1, 2, (30)

where for a boundary point x ∈ ∂Ω, ~n is the outward pointing normal vector, and ∂U
∂~n = ~n · ∇U

is the normal derivative of U at x.

3.2.2 Time paths

Having obtained numerical approximations of the value functions in (27) and consequently the
equilibrium feedback strategies, the investment paths of firms can be simulated. Stochastic time
paths are calculated using the Euler-Maruyama scheme (Kloeden and Platen, 1992). For low
values of ε, the drift part of equation (23) generates a good approximation of the evolution of the
state variables over time. That is, we solve

ẋi = (Γ̂∗i + βΓ̂∗j )φ− 1 + ε, xi(0) = x0
i , i = 1, 2, (31)

where Γ̂∗i (x1, x2) and Γ̂∗j (x1, x2) are obtained from (29) after replacing derivatives of the value
functions with their numerical approximations, and where x0

i is firm i’s initial value of unit cost.
Any value of variables between grid points is obtained using cubic spline interpolation (Judd,
1998). Steady states of the drift vector field are analyzed in the usual way.

4 Equilibrium strategies and industry dynamics

This section presents the results of the numerical analysis. It discusses strategic interactions
between firms as implied by their value and policy functions. Furthermore, state vector fields and
time paths of certain variables of interest are analyzed, to obtain insight into possible evolutions
of the game.

As baseline, we take the evolution under moderate spillover effects (β = 0.5). These are
then compared with low and high spillover dynamics. The presented plots are all drawn for
φ = 8 and ρ̃ = 1.13 This parameterization is representative of situations in which firms have an
incentive to develop further a technology which requires R&D efforts prior to production (cf.
also Section 4.8).

4.1 Value function

Figure 2 shows the value functions and R&D efforts for ε1 = 0.125 and ε2 = 0.0156. As
the value functions are symmetric in the sense that U2(x2, x1) = U1(x1, x2), it is sufficient to
consider just U1.14 Large values of xi correspond to small values of ci.15 As Figure 2 shows, a

13 Recall that ρ̃ = ρ/δ is a rescaled discount factor (see Appendix A).
14While we cannot analytically rule out a possible multiplicity of equilibria, our computations always lead to the

same value function irrespective of the particularities of the numerical scheme. This leads us to conjecture that the
equilibrium is unique.

15Recall that ci = e−xi . Hence, negative (positive) values of xi correspond to unit costs above (below) the choke
price (A = 1).
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(a) (b)

(c) (d)

Figure 2: Value functions (top) and R&D efforts (bottom) for ε = 0.125 (left) and ε = 0.0156
(right). In both cases β = 0.5.

firm’s value function is negatively related to a firm’s own unit cost and positively related to the
unit cost of its competitor. The smaller a firm’s unit costs for a given cost of its competitor, the
better a firm’s competitive position and so the larger the profits a firm is able to reap. The highest,
left part of the value function corresponds to unit costs for which firm 1 is a monopolist. Firm
1’s relative cost advantage keeps its competitor out of the market. For lower values of firm 2’s
unit costs, both firms are (eventually) active in the market (recall Figure 1). This change of the
regimes is marked by a steep decline in the value function of the incumbent firm. For relatively
high values of own unit costs (the region of the southern valley), the value of the game for firm 1

is zero as the firm finds it optimal to stay inactive.

4.2 Policy function

The profits a firm is able to reap from the product market are determined by a firm’s cost efficiency.
The latter is costly in the sense that due to a positive rate of technology depreciation, a firm
needs to invest in R&D not only to increase its efficiency (relative to its competitor), but also to
maintain it. The equilibrium R&D efforts are shown in Figure 3. As equation (29) indicates, we
can decompose two effects underlying R&D efforts. We call the first effect, which corresponds
to the relation between the firm’s value of the game and its own unit cost, U ixi , a pure cost effect,
and the second one, which corresponds to the relation between the firm’s value of the game and
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(a) (b)

Figure 3: Symmetry between the R&D efforts of firm 1 (left) and firm 2 (right). β = 0.5,
ε = 0.125.

its competitor’s unit cost, βU ixj , a feedback cost effect.
Observe that, for a given unit cost of its competitor, the R&D effort of a firm increases with

decreasing own unit cost over the region of zero production and decreases shortly thereafter.
This is driven by the pure cost effect. This effect is always positive and is present whether the
competing firm is active or not. It is independent of strategic considerations in the sense that it
concerns the relation between a firm’s own production costs and its profits. When initial unit
costs are high (but still low enough for a firm to pursue further development), there are huge
benefits for a firm to exert R&D efforts as this reduces the amount of time needed to reach the
production phase. Consequently, R&D efforts are high. The lower the unit costs, the more efforts
it takes to reduce them further. This, together with lower tendency of technology to depreciate
for lower unit costs, leads the firm to optimally reduce R&D efforts as the unit costs decrease.

On the contrary, the feedback cost effect corresponds to the fact that due to spillovers,
any R&D effort a firm exerts contributes also to the reduction of a competitor’s production
costs, which retroactively affects the firm’s profits through the product market competition. The
feedback cost effect is always negative and depends positively on the level of spillovers. In the
extreme case of zero spillovers, this effect is null. The feedback cost effect underlies industry
dynamics through strategic considerations discussed in what follows.

4.3 Vector field and dynamics

Recall from Figure 1 that there are three possibilities in the product market depending on the
value of unit costs: no production at all, duopoly, or monopoly by one of the two firms. They
are delimited by the the product market “entry/exit” curves of firm 1 and firm 2 (E1 and E2,
respectively), which are in Figure 4 redrawn in the new coordinates. For any starting value of
unit costs, we are interested in how the spillovers affect the way in which firms steer their unit
costs as the game evolves. There are many possibilities; some of them are indicated in Figure 4.
High initial unit costs (point A) can lead to no market (if both firms refrain from development), to
monopoly (if only one firm pursues development), or to duopoly (if both firms enter the market
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either simultaneously or sequentially). Monopoly by one firm can either sustain or transform into
duopoly if the laggard firm catches up (point B). Likewise, duopoly can persist or change into
monopoly if one firm is squeezed out of the market by the other, more efficient firm (point C).
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Figure 4: Evolving market structure.

The R&D efforts that both firms exert influence the way in which unit costs evolve over time
through the drift term (see equation (23)). This evolvement of costs as governed by the drift term
is summarized by the drift vector field in Figure 5.

Solutions xεi (t) to the stochastic evolution equation (23) tend, for finite times, to the corre-
sponding solution x0

i (t) to the deterministic equation as ε→ 0 (Freidlin and Wentzell, 1998). In
the following, drift paths are used as an approximation of the evolution of the system over time.

In Figure 5, the ẋ1 = 0 loci (labeled I1) and ẋ2 loci (labeled I2) intersect in four steady states
of the drift vector field: S1 and S2 are saddles, S3 is a nodal source, whereas S4 is a nodal sink.
Invariant manifolds of the two saddles are labeled by letter W . Stable and unstable manifolds of
S1 are labeled by WS

1 and WU
1 , respectively. Similarly, WS

2 and WU
2 are, respectively, a stable

and an unstable manifold of S2.16 E1 and E2 are the product market “entry/exit” curves of firm
1 and firm 2, respectively. In the region above the indicated 45-degree diagonal, firm 1 has a
cost advantage over firm 2, whereas the reverse is true in the region below the diagonal. For
combinations of unit costs lying exactly on the diagonal, the firms are equally efficient. Observe
that the vector field below the indicated 45-degree diagonal is a mirror image of the field above
the diagonal. This follows from the symmetry of the feedback equilibrium which is best visible
in Figure 3.

Notice that WS
1 and WS

2 are separatrices which together with isoclines I∗1 and I∗2 around
S3 divide the state space into four domains. The first domain is a basin of attraction of the
asymptotically stable steady state S4. Every motion starting in this domain converges to S4 as
t → ∞. In this domain, eventually both firms are active in the product market. In any other

16The stable and the unstable manifold are the only two trajectories that pass through the saddle point. On any
trajectory other than the stable path, the direction of motion is always away from the saddle point.
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Figure 5: Drift vector field. β = 0.5, ε = 0.125.

domain, the unit cost of at least one firm diverges to infinity; we are left either with a monopoly
of firm 1 (domain 2), a monopoly of firm 2 (domain 3), or no market at all (domain 4).

We now analyze possible evolutions of the game by jointly looking at Figure 3 and Figure 5.
In the region south-west from S3, the unit costs of both firms are “very” high and above the
choke price, such that both firms decide to refrain from developing further the initial technology.
Future expected profits are not high enough to compensate for investments needed to bring the
technology to the production phase. Technically, unit costs flow towards infinity due to the
positive depreciation rate. Intuitively, though, we always interpret any situation in which a firm
stays inactive as one in which it has left the market.

Left to the stable manifold of S1, labeled in Figure 5 by WS
1 , the cost advantage of firm 1

over firm 2 is so large that the latter gives up on R&D (see figure 3). When cost asymmetries
are large, the profits the less efficient firm earns in the product market are low. This reduces
the ability of firm 2 to compensate for R&D investments needed to bring its technology to the
product market and catch up with firm 1. It turns out that left to WS

1 the cost asymmetries are
just so large that firm 2 cannot even afford to battle depreciation of its own technology, thereby
succumbing to its more efficient competitor. Firm 2 does produce only when its initial unit costs
are already sufficiently low (the region between E2 and WS

1 curve), such that it can profitably
sell a positive quantity in a competitive product market. However, its product market activity is
only temporary as the large cost advantage enables the more efficient firm 1 to squeeze firm 2 out
of the market. Thus, firm 2 does eventually neither produce nor invest in R&D. Its unit costs in
this region always tend to flow towards infinity, which is, again, due to the positive depreciation
rate.
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The investment of firm 1 depends on its initial unit cost. The firm decides to enter the market
for all initial costs that in Figure 5 correspond to x1 above the I∗1 curve which flows through
S3. For initial unit costs above the choke price (x1 below the horizontal part of E1 curve), the
firm does at first produce nothing but invests increasingly in the reduction of its unit costs. Once
its unit costs have been reduced below the choke price, the firm starts producing as it can now
sell at positive mark-ups. The level of R&D efforts and unit costs then gradually decrease to
their long-run optimal levels (x1 approaches the unstable manifold WU

1 which asymptotically
converges with I1 isocline). For unit costs above the choke price, instantaneous profits of firm
1 are negative as there is no production yet. Firm 1 initiates R&D as it expects future profits
will more than compensate for initial investments. There exists a finite upper bound on unit
costs beyond which expected future profits are not enough to compensate for short run losses
(unit costs corresponding to x1 below the I∗1 curve). In this case, the initial technology is not
developed further. Observe how the direction of vectors in Figure 5 changes its sign when passing
through the I∗1 curve. While firm 2 benefits from R&D efforts of firm 1 through spillovers, this
effect is not strong enough to bring firm 2 into the market. It, however, slows down the rise in the
discrepancy between the two firms’ unit costs.

In the south-eastern part of the state space, below the WS
2 curve, the situation is reversed. It

is now firm 2 whose cost advantage leads to its monopoly. For all initial unit costs on the right
side of the I∗2 curve passing through S3, firm 2 brings a technology into the market, while firm 1

is sooner or later forced out of business.
In the north-east region of the state space, between the WS

1 and WS
2 manifolds, the cost

asymmetries are moderate. Eventually, a product market duopoly emerges as for all initial costs in
this region, each firm sooner or later brings a technology into the product market. It is interesting
to observe that the asymptotically stable steady state S4 lies on the 45-degree diagonal. This
implies a kind of a regression toward the mean phenomenon, where any initial difference in the
unit costs between firms tends to vanish over time.17 We have noted that above the 45-degree
diagonal, firm 1 has a cost advantage, which is to the left of WS

1 large enough to squeeze firm 2

out of the market. However, to the right of WS
1 , this is not the case any more. Notice that WS

1

curve travels along the edge of the precipice in the policy function of firm 2 (see the right plot in
Figure 3). While left to WS

1 firm 2 gives up on R&D, right to WS
1 , it invests heavily to catch up

with firm 1. Firm 1 exerts less R&D efforts than firm 2, however, it prolongs its cost supremacy
through positive spillover effects arising from relatively high R&D efforts of firm 2. When its
initial costs are very low, firm 1 for some time even sits back on R&D (observe the basin in
the northern region of the firm 1’s policy function in Figure 3) and retards its technology decay
optimally by relying mostly on spillovers from the R&D efforts of its zealous counterpart.18

Namely, when unit costs of firm 1 decrease relative to firm 2, an additional unit of firm 1’s
R&D effort benefits firm 2 progressively more than firm 1 itself, which diminishes firm 1’s
incentives for own R&D (this follows directly from the formulation of unit costs in (2)). The
story is analogous when we are on the other side of the diagonal, where firm 2 has a relative cost
advantage. In both cases, a dominant firm gradually loses its lead.

17We say “tends to” as it de facto vanishes only in light of a deterministic game interpretation. In a stochastic
interpretation, only the gap between the mean values of the two unit costs narrows and eventually closes.

18A typical example of a large firm relying on inventions by smaller firms is Microsoft, whose competitors “have
long complained that the rest of the industry has served as Microsoft’s R&D lab” (Pollack, 1991).
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4.4 Leader versus laggard

We have noted above that whenever cost asymmetries are large, the less efficient firm is squeezed
out of the market. Only when initial asymmetries are not too large (i.e., when we are within
the basin of attraction of S4) both firms steer the evolution of their costs so that they remain
active in the product market. In this latter case, any initial asymmetry between the firms tends
to vanish over time.19 Figure 6 illustrates further how in the latter case, costs and R&D efforts
evolve over time along the drift path. In the first two plots, firms already start with relatively low
costs, (x1, x2) = (1.5, 1) or (c1, c2) = (0.22, 0.37). We see that the laggard exerts more R&D
efforts than the leader, which gradually reduces the gap between the two firms’ unit costs. In
plots 6c and 6d, both firms start with unit costs above the choke price, (x1, x2) = (−0.2,−0.3)

or (c1, c2) = (1.22, 1.35). With own unit costs very large, the more efficient firm 1 initially
invests a lot in R&D, in particular, more than firm 2. Firm 1 exploits its own cost advantage to
enter the product market first and earn temporary monopoly profits. The situation changes in
the course of time and eventually the laggard invests more than the leader. This causes the gap
between the unit costs to shrink (the evolution of costs is similar to that in 6a and is omitted for
brevity). The quantity each firm produces increases over time together with decreasing unit costs.
As firm 1 is more efficient than firm 2, firm 1 at all times produces more. However, with the gap
between unit costs gradually narrowing, the gap between quantities is narrowing as well.

4.5 Stochasticity and R&D

It is an interesting question how the R&D efforts of firms relate to uncertainty. A look at Figure 2
reveals that both the value function and the policy function are smoother for higher levels of noise
in unit costs. To investigate this further, we plot the value function and policy function of firm 1
for different fixed values of firm 2’s unit cost. In Figure 7, we fix c2 at such a high value that firm
1 is a monopolist (c2 = 11.76; for reference, A = 1). Then, we can directly compare our solution
with the deterministic monopoly solution, obtained in Hinloopen et al. (2013). We observe
that while the deterministic value function (the solid curve) has a kink, the stochastic value
function is smooth. The fact that the value function corresponding to a higher noise level lies
above the one corresponding to a lower noise level suggests that stochasticity increases expected
profits. We see that the stochastic value function converges to the deterministic monopoly value
function as ε ↓ 0. For ε = 0.0156, the stochastic solution is already almost indistinguishable
from the deterministic one, the absolute difference between the two solutions at the kink being
0.0012. The deterministic policy function is discontinuous at the point of indifference, where the
firm is indifferent between developing a technology further or staying out. This discontinuity
is smoothed out by stochasticity. The policy function of the stochastic model is smooth and
everywhere differentiable. It is interesting to observe that stochasticity makes a firm invest in
R&D over the values of unit costs for which a firm in the deterministic setting already gives up.
The firm in the stochastic setting still invests a bit at larger costs in hope of a favorable shock,
for which it sacrifices some investments at lower unit costs – the R&D efforts are smoothed out.
While R&D efforts exerted at large costs might as such not be sufficient to bring a technology to

19Once the drift path has reached the asymptotically stable steady state S4, the actual unit costs fluctuate around S4.
Of course, over a very long time, eventually a large shock may occur, driving one of the firms out of the market (its
unit cost diverges to infinity).
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Figure 6: Time paths: laggard versus leader.

the production phase, they at least retard the decay of a technology for some time during which
hopefully a favorable shock arises. Higher uncertainty, therefore, leads to more opportunistic
behavior of firms, which increases the chance that the development of expensive technologies
will be pursued further. Computations shows that this opportunistic behavior also increases the
relative size of the region of the state space for which eventually duopoly tends to appear in the
product market (in the drift vector field, the basin of attraction of S4 spreads out with increasing
noise levels).

4.6 Deterministic game and indifference curves

In this section, we take a closer look at the deterministic game. Its solution will be close to the
solution to the stochastic game with a small noise level.

As shown in Figure 7, the policy function in the deterministic monopoly solution is discon-
tinuous at the indifference point. Only for initial costs below the indifference point a monopolist
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Figure 7: Value functions (a) and policy functions (b) of firm 1 for varying levels of noise ε when
the unit cost of firm 2 is fixed at c2 = 11.76. The solid line corresponds to the deterministic
monopoly solution.

continues to invest in R&D and stays active in the product market. In what follows, we analyze
the existence of indifference points in the deterministic competitive game. We define the de-
terministic indifference point of a firm as a value of its unit cost at which a firm is indifferent
between developing a technology further and exiting the market. In general, indifference points
do not coincide with points at which the R&D effort of a firm is zero. This is the case only when
an indifference point is in the region of zero production.20 When an indifference point is at the
value of a unit cost at which a firm produces, an exiting firm might still invest a bit in order to
slow down the speed at which it leaves the product market (cf. the notion of the ‘exit trajectory’
in Hinloopen et al. (2013)).

In our stochastic setting, firms steer the evolution of their unit costs through the drift term.
The direction of this steering is summarized in the drift vector field (see Figure 5). The lower
the noise level and so the lower the random shocks to the unit costs, the smaller the deviations
of actual costs form their drift path. For zero noise, the drift path is the actual path. We saw
in our discussion of the drift vector field above that the isoclines I∗1 and I∗2 around S3 and the
separatrices WS

1 and WS
2 play an important role in the motion of the drift – they are boundaries

of different basins of attraction. With noise approaching zero, these curves therefore converge to
the boundaries of basins of attraction of actual unit costs. Consequently, our conjecture, on which
we further elaborate below, is that these curves converge to the union of indifference points of
the deterministic game.

Consider first the state space left to S3 in Figure 5, where the cost of firm 2 is relatively
high. We have already observed that firm 1 steers its unit cost downwards for initial unit costs
corresponding to x1 above the I∗1 curve, and upwards otherwise. In Figure 8, we consider the left
most part of the state space as, again, there we can compare our solution with the deterministic
monopoly solution. We know that the deterministic policy function is discontinuous at the

20Clearly, when there is no uncertainty involved, a firm has no reason to initiate investment if it never plans to enter
the product market. However, when ε > 0, the R&D efforts are always positive on both sides of an approximating
indifference point due to smoothing-out.
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point of indifference. As Figure 8b shows, the deterministic drift is also discontinuous at the
indifference point, it is negative left to the indifference point (the unit cost continues to decrease)
and positive to the right of it (the unit cost flows towards infinity as a technology decays due to
zero research activity). On the contrary, in the stochastic setting, the policy function is smooth, as
is the drift. The point of zero drift in Figure 8b corresponds to the point on the I∗1 isocline. The
difference between the latter and the deterministic indifference point is for ε = 0.0156 already
within the second decimal point. This difference decreases further with lowering the noise level
as the point on I∗1 converges to the deterministic indifference point. We expect the same relation
between the points on the isocline and indifference points to hold also for other parts of the I∗1
isocline. Analogously, for firm 2, indifference points correspond to points on the I∗2 isocline
below S3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

c
1

k 1

(a)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1

0

1

2

c
1
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Figure 8: Policy function of firm 1 (a) and drift of its unit cost (b). The solid line corresponds to
the deterministic monopoly solution, the dotted line to the stochastic game with ε = 0.0156. The
unit cost of firm 2 is fixed at c2 = 11.76.

We have already noted that the stable manifold WS
2 act as a separatrix. For unit costs above

it, firm 1 invests relatively a lot and steers its unit cost towards S4. For unit costs below it, the
firm still invests a bit in hope of a shock (random discovery) that would reduce its unit cost, but
progressively less so as its unit cost increases due to technology depreciation, thereby steering its
unit cost towards infinity. In the absence of a sufficiently large favorable shock, the firm gradually
gives up on R&D. Figure 9 shows plots of firm 1’s R&D efforts for a given value of firm 2’s unit
cost. The vertical line corresponds to the point on the WS

2 curve. As plots show, with decreasing
ε, the policy function straightens up at the point corresponding to WS

2 as the latter converges to
the deterministic indifference point at which the policy function breaks off and the discontinuity
arises. Right to the indifference point, the less efficient firm gives up, whereas left to it, the firm
invests heavily in R&D in order to catch up with the more efficient competitor.

Analogously, points on WS
1 converge to the indifference points of firm 2 as ε→ 0. We also

observe that steady states S1, S2, and S3 can lie in the regions of zero production (see Figure 5).
Clearly, in a deterministic game, there cannot be steady-state points in such regions as that would
imply a situation in which a firm invests at all times but never produces. These steady states are
the implication of the continuity of the stochastic drift. They correspond to points at which the
drift of both unit costs is zero. Like other points on the two manifolds, when a stochastic game
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Figure 9: Policy functions of firm 1 for a given value of firm 2’s unit cost, c2 = 0.4232. The
vertical line corresponds to the point on the stable manifold WS

2 .

transforms into a deterministic one, these steady states converts into the points of discontinuity.
While at a stochastic steady state the drift is zero, at the indifference point the drift is multi-valued
and so there can be no steady state corresponding to such a point. This is visible in plot (b) of
Figure 8 above and fits nicely into our picture of convergence.

We summarize our observations in the following conjecture.

Conjecture 1. In the deterministic game, the union of the stable manifoldWS
2 and the I∗1 isocline

to the left of S3 approximates an indifference curve of firm 1 as ε→ 0. Likewise, the union of the
stable manifold WS

1 and the I∗2 isocline below S3 approximates an indifference curve of firm 2
as ε→ 0.

This conjecture is illustrated in Figure 10. Observe that indifference curves divide the state
space into four regions i) the region of eventual duopoly, ii) the region of eventual monopoly of
firm 1, iii) the region of eventual monopoly of firm 2, and iv) the no market region, in which
initial unit costs are too high for either firm to consider further development of a technology.
Observe also that the indifference curves do not coincide with product market “entry/exit” curves.
The indifference curve of each firm roughly outlines the “foothills” of the respective firm’s policy
function (see the bottom right plot in Figure 2). Finally, recall that these delimiting curves play
an important role also in a stochastic game – they are boundaries of different basins of attraction
of the drift vector field.21

4.7 Spillover effects

In this section, we compare the case with moderate spillovers (β = 0.5) with that of low and
high spillovers. The larger the level of spillovers (the larger the β), the more the R&D efforts

21Notice a few interesting properties of these separatrices. Consider the one which is above defined as the
indifference curve of firm 1 (properties of the curve corresponding to firm 2 are analogous). First, the subspace of the
state space above the curve is the union of all those unit costs for which firm 1 steers its unit costs toward the level
characterized by positive production (goal I: ‘in the market’), whereas the subspace of the state space below the curve
is the union of all those unit costs for which firm 1 steers its unit costs toward the level characterized by no production
(goal II: ‘out of the market’). Second, for any x in a given subspace it holds that for every unit cost in the ε-ball
around x, the firm steers the cost in the same direction as for x. That is, only a large shock will change the direction
in which the firm steers its unit costs given its initial value of x. Third, a ball around any point on the separating curve
contains points not on the curve. In other words, for every initial x on the curve, even so small a shock can change the
direction of movement. As (large) shocks are purely random, it is in this sense that in a stochastic setting we can say
that on different sides of separatrices firms pursue, though not necessarily also achieve, a different goal.
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Figure 10: Conjectured indifference curves of the deterministic game.

that a firm exerts benefit its competitor, and thus the larger the role of feedback cost effects in
shaping a firm’s policy function.

4.7.1 Low spillovers

For low levels of spillovers, the policy function exhibits a sharp and narrow bulge, as visible in
Figure 11.22 The lower the level of spillovers and/or noise, the more pronounced and sharp the
bulge. Figure 12 shows the drift vector field corresponding to the case with β = 0. Observe that
WS

1 and WS
2 separatrices are in the vicinity of S3 practically indistinguishable from the diagonal

– a small difference in unit costs is enough to drive the less efficient firm out of the market. This
region of proximity corresponds to the location of the bulge. With increasing levels of spillovers
and/or noise, the bulge becomes thicker and lower; the separatrices shift away from the diagonal,
implying that a larger cost advantage is needed to drive the opponent out of the market (compare
with Figure 5).

As Figure 13 shows, on the diagonal within the region of proximity, each firm invests a lot
trying to reduce its production costs as fast as possible and so increase its chances of survival
(the vertical line in the figure corresponds to symmetric costs). For a symmetric initial position,
firms are engaged in a preemption race where the one that falls sufficiently behind the other is
driven out of the market.

Observe that the bulge attains its top above the diagonal (left to the vertical line in Figure 13)
and sweeps sharply down on the other side of the diagonal (the policy function has a steep slope
on the right side of the vertical line in Figure 13). The firm with a cost advantage therefore

22The case with low spillovers is the hardest one to integrate numerically. For small values of ε, the bulge increases
and sharpens dramatically, posing problems for the stability of the numerical scheme. Solutions for lower ε require
increasing refinements of the grid, which in consequence rather considerably affects the speed of calculations. For
this reason, the lowest noise level we currently present for this case is ε = 0.125.
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(a) β = 0.1, ε = 0.125 (b) β = 0, ε = 0.25

(c) β = 0, ε = 0.125 (scale preserving) (d) β = 0, ε = 0.125 (in full)

Figure 11: Preemption & predation at low spillovers. The plots show the policy function of firm
1 for different levels of spillovers and uncertainty.

invests heavily (but briefly), whereas the laggard is induced to give up. This additional R&D
effort of the leader can be considered predatory in a sense that it is profitable only for its effect
on the exit decision of the laggard, but unprofitable otherwise.23 The predatory nature of these
investments is confirmed by the fact that such large investment asymmetries never occur when
the likelihood that a rival remains viable is negligible (e.g., at very high levels of a rival’s unit
cost) or the ability of a firm to influence this likelihood is negligible (e.g., in the case of large
spillovers where large investments would to a great extent benefit the competitor).

The extent of predatory efforts is positively related to the easiness with which the leader
can induce the laggard to give up. Recall that the bulge grows with the spillovers and noise
level approaching zero (see Figure 11). At low spillovers, it is easier for the leader to induce the
laggard to exit as the latter cannot count on catching up with the leader by copying the results
of the leader’s R&D efforts. Thus, the lower the spillovers, the easier it is for the leader to
achieve his dominance by exerting R&D efforts and so the higher are his incentives for extensive
predation. Next, when the probability of large unexpected changes in costs is high, the laggard

23In declaring an action predatory, we follow Cabral and Riordan (1997) who define an action as predatory if “i) a
different action would increase the likelihood that rivals remain viable, and ii) the different action would be more
profitable under the counterfactual hypothesis that the rival’s viability were unaffected” (p. 160). Our interpretation is
similar to that of Borkovsky et al. (2012) who consider predatory investment in a dynamic quality ladder model.
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Figure 12: Drift vector field for β = 0, ε = 0.125.

does not give up that fast when falling behind as it is still possible for him to catch up the leader
if he has a run of luck. In this case, the leader needs to achieve a relatively large cost advantage
to induce the laggard to give up. However, due to large randomness in costs, the effect of the
leader’s R&D efforts on the likelihood of achieving such an advantage is small. Consequently,
his incentives for predatory investments are low. On the contrary, when there is low uncertainty
in cost movements, a small cost advantage is sufficient to drive the other firm out of the market
and the effect of the leader’s R&D efforts on the likelihood of achieving a needed cost advantage
is large. As a consequence, the leader’s incentives to engage in extensive predation are high.24

4.7.2 High spillovers

Figure 14 and Figure 15 show the policy function and the drift vector field, respectively, for
β = 0.9. Figure 16 jointly plots the indifference curves (separatrices) for β = 0 (L), β = 0.5

(M), and β = 0.9 (H).
When the level of spillovers is high, the R&D efforts of one firm benefit the other firm to

a large extent. As each firm tries to free-ride on the other firm’s R&D efforts, the incentives to
exert much R&D efforts can be rather low. This standard conclusion in the literature is in part

24We have seen that the situation in which one firm invests heavily while the other negligibly small can be a feature
of the equilibrium of the stochastic game as large investments are optimal in that they influence the likelihood the
rival is induced to give up on R&D and exit the market. Clearly, it is hard to imagine that such a situation could be a
feature of the equilibrium of a deterministic game as there is no probability of the rival’s market viability involved.
We observe that the bulge narrows and sharpens as ε ↓ 0 (refer also to Figure 13). We therefore conjecture that in a
deterministic case, the bulge corresponds to the point of discontinuity in the policy function, whereas his left and
right foothills determine the R&D efforts of the leader and the laggard, respectively. While still asymmetric, the
difference in R&D efforts is comparably much smaller. In the region of the bulge, indifference curves are tangent to
the diagonal (recall the tangent behavior of WS

1 and WS
2 separatrices in Figure 12). For symmetric initial costs, both

firms eventually produce, whereas a minuscule asymmetry already leads to a monopoly.
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Figure 14: Policy function of firm 1 for β = 0.9.

confirmed by our calculations – R&D efforts decrease over the bulk of the state space as the level
of spillovers approach one. However, there is an important exception, depicted in Figure 14. The
policy function for large spillovers exhibits a pronounced bulge spreading into the “southern” part
of the state space (i.e., x1 low, x2 ≈ −0.1). The size of this bulge increases with spillovers (first
traces of it appear in the policy function for β = 0.5 in Figure 3). The intuition is the following.
Exerting R&D efforts is costly (recall the quadratic R&D cost function). When spillovers are
large and so R&D efforts of the firms complement each other well, the firms facing a convex cost
function are able to circumvent diseconomies of scale in R&D to a large extent. This reduction in
the costs of R&D enables the two firms to competitively bring into the market a technology which
a single firm cannot profitably develop itself. This explains why, provided the cost asymmetries
are not too large, a firm in a duopoly market sometimes does invest in further development of a
technology whereas a monopolist does not (the bulge). The implication of this is best visible in
the drift vector field in Figure 15, where we observe that the steady state S3 (the indifference
point of two firms) corresponds to a higher value of the firm 1’s unit cost than the leftmost part
of the I∗1 isocline (the indifference point of a monopolist). Furthermore, Figure 16 shows that
SH3 corresponds to a higher value of unit costs than either SL3 or SM3 . The larger the spillovers,
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Figure 15: Drift vector field for β = 0.9, ε = 0.125.

the larger the joint savings in R&D costs and so the more infant the initial technology that the
firms can afford to develop further. In contrast to the cases with lower spillovers, in the case with
high spillovers, WS

1 and WS
2 separatrices also form a wider arc around S3. Therefore, higher

spillovers not only increase the range of initial technologies that are developed further, but also
the likelihood that the ensuing product market will be competitive.

Comparing the drift vector field of β = 0 with that of β = 0.5, we observe that the basin
of attraction of the steady state S4 is wider in the latter case (see Figure 16). The WS

1 and WS
2

separatrices spread out. This suggests that it takes a larger cost asymmetry for the less efficient
firm to leave the market when spillovers are higher. In particular, the exit of any firm is much
less likely when both firms already produce (for β = 0.5, larger parts of separatrices lie outside
the production region bounded by E1 and E2 curves). The larger the spillovers, the more the
laggard can benefit from the R&D investments of the leader and so the more disadvantaged it
must be to give up. This point was already raised by Petit and Tolwinski (1999, p. 204) claiming
that “[...] for a duopoly consisting of unequal competitors free diffusion of knowledge may be a
way to avoid market concentration.”

In contrast to the aforementioned authors, our analytical framework allows us to draw much
more precise conclusions as it makes it possible for us to obtain indifference sets over the entire
state space, which in turn enables us to compare entry-exit investment decisions of firms for
all possible initial positions. In particular, we show that the pro-competitive benefit of larger
spillovers does not hold for all levels of spillovers and costs. Observe how in Figure 16 the
separatrices corresponding to β = 0.9 intersect those corresponding to β = 0.5. While for
high initial unit costs of firms larger spillovers still make duopoly in the ensuing product market
more likely, this does not hold for lower values of initial unit costs as there the less efficient
firm is sooner squeezed out of the market when spillovers are larger! Behind this result are
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two countervailing effects of spillovers. The first effect is a pure spillover effect – the larger
the spillovers, the more the laggard is able to free-ride on the leader’s R&D efforts and so the
easier it is for him to overcome any initial asymmetries. This effect is positively related to the
level of spillovers and contributes to widening the region of eventual product market duopoly.
The second effect is the feedback cost effect, which is also positively related to the level of
spillovers, however, it contributes to narrowing the region of eventual product market duopoly.
When the unit cost of a firm is large, an additional unit of R&D effort benefits this firm a lot (the
pure cost effect dominates). However, when the unit cost of the firm is lower, so is the impact
of an additional unit of R&D on its costs (the factor ciki in (2) decreases with ci for a given
ki). If the unit cost of the laggard is sufficiently larger, it can well happen that the additional
R&D effort of the leader benefits the laggard more than the leader himself (ciki < cjβki). As
lower costs of the laggard through fiercer product market competition negatively affects the
leader’s profits, this reduces the leader’s incentives to invest in R&D. This feedback effect, which
negatively affects the leader’s R&D efforts, is stronger, the larger the spillovers. Consequently,
the larger the spillovers, the less asymmetry in costs it takes for the leader to optimally stop
his R&D efforts. Observe how the region of zero R&D efforts above the diagonal spreads out
in the policy function as the spillovers increase (compare Figure 3, Figure 11, and Figure 14).
This explain why larger spillovers might in fact increase the likelihood that the market will be
monopolistic. After a certain level, further increases in spillovers decrease the leader’s incentives
to invest rather significantly, which makes it harder for the laggard to catch up with the leader.
The laggard’s possibilities to copy the leader’s R&D results do increase further with increasing
spillovers, however, the problem is that there is now very little or nothing to copy. In the two
north-eastern regions between the intersecting separatrices in Figure 16, the leader in case of
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β = 0.9 invests relatively less than in case of β = 0.5 and this effect of lower investments by the
leader dominates the pure spillover effect. Consequently, while for larger spillovers, the laggard
is driven out of the market, for smaller spillovers, he continues to catch up with the leader. In
sum, increasing spillovers favors a socially desirable outcome only up to a point.

Whenever one firm gives up, the unit cost of the remaining firm converges to the same
long-run optimal monopolist’s level irrespective of the level of spillovers. The separatrices WU

1

for the three different levels of β asymptotically converge as t→∞ (not shown). The same holds
for separatrices WS

2 . However, the long-run steady-state level of unit costs in case of duopoly
(S4) does depend on the level of spillovers. As Figure 16 shows, in our rescaled coordinates
SH4 < SL4 < SM4 . That is, the long-run unit costs are the lowest in case of β = 0.5, the second
lowest in case of β = 0, and the highest in case of β = 0.9. This suggests that the spillovers
decrease steady-state costs only up to a certain level, beyond which further increases in spillovers
start to increase the long-run costs. We illustrate this further by time plots in Figure 17. We select
an asymmetric initial position which lies in the basin of attraction of S4 for all the three levels of
spillovers: (x1, x2) = (1.68, 0.81), corresponding to (c1, c2) = (0.186, 0.440).

Figure 17a shows total R&D efforts of the two competing firms over time for different levels
of spillovers. We see a typical effect of increasing spillovers – the total industry R&D efforts
decrease as firms increasingly free-ride on each other. However, due to larger complementarities
between R&D efforts at larger spillovers, the effective efforts of the firm i and the firm j (ki+βkj
and kj + βki, respectively) might be larger at larger spillovers despite the firms’ lower de facto
R&D efforts (ki and kj , respectively). Figure 17b shows that this is indeed the case when
spillovers increase from β = 0 to β = 0.5. While for β = 0.5, the industry R&D efforts are
relatively lower at all times, the effective industry R&D efforts are larger for most of the time.
This explains why in the latter case, the unit costs converge to a lower long-run level than in the
case with β = 0. We see that among the three regimes, the industry R&D efforts are comparably
the lowest for β = 0.9. At the beginning, the leader in the latter case invests very little as
he free-rides on the efforts of the laggard. These smaller investments are not offset by larger
spillovers, such that the effective efforts are much lower than in the other two cases. This changes
over time as the leader himself starts to invest more when the laggard gradually reduces his
efforts over time. However, as Figure 17c reveals, lower effective investments at the beginning
very much slow down the speed at which unit costs decrease. In the case of β = 0.9, the unit
costs of both the leader (solid line) and the laggard (dotted line) decrease much slower than in
the other two cases. Moreover, the gap between the laggard and the leader also closes more
slowly. These slower and lower reductions of costs as a consequence of smaller investments
are the reason that the total quantity offered in the market is for β = 0.9 at all times the lowest
among the cases considered (see Figure 17d). The largest total quantity is offered for β = 0.5,
whereas the total quantity for β = 0 is close to that for β = 0.5 but slightly lower.

Calculations show that in the above example total profits increase with spillovers. This is
the effect of higher complementarities in R&D outputs that allow for significant savings on
R&D costs. However, the consumers are not necessarily any better for it. As our comparisons
indicate, there exists a threshold level of spillovers after which further increases in spillovers do
not benefit consumers. At large spillovers, the free riding effect induces firms to invest less and
the consequent lower production efficiency, to the detriment of consumers, also induces them to
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Figure 17: Time paths for varying levels of spillovers. ε = 0.125. In plot (c), the solid lines
correspond to the leader, whereas the dotted lines correspond to the laggard.

produce less.

4.7.3 Spillovers and Welfare

In this section, we analyze welfare effects of spillovers in greater detail. As spillovers play a
crucial role in the laggard-leader relationship, we simulate the model for different relative initial
unit costs of firms. We are interested in how welfare measures relate to spillovers when we vary
the initial difference in units costs, d = c1 − c2. For this, we pick up an initial point on the
diagonal of the state space (d = 0) and vary the costs such that their sum remains unchanged
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(i.e., e−x1 + e−x2 = const.). Two such “iso-sum” loci (ISL) are shown in Figure 16.25 ISL1

intersects the diagonal at x1 = x2 = −0.3 < 0, whereas ISL2, which corresponds to a lower
sum of unit costs, intersects it at x1 = x2 = 1 > 0. For every initial point on the loci, we then
calculate the total discounted value of profits, consumer surplus, and total surplus.26

Notice that Figure 16 already reveals that a sufficiently high level of spillovers might be
necessary for a technology to be developed by any firm at all (SH3 < SM3 < SL3 ). Insofar a given
level of spillovers prevent the development of a new technology (and so brings about zero profits
and consumer surplus), it is dominated by all higher levels of spillovers for which the market is
formed (and which thereby bring about positive profits and consumer surplus). In this section,
we are interested in how spillovers influence surpluses through their impact on the structure of
the ensuing product market (monopoly vs duopoly). Therefore, we select initial values of unit
costs such that xi(0) > SL3 .

We calculate surpluses in two ways. In the first, we calculate total discounted values of
surpluses as they evolve along a drift path. In the second, we calculate discounted values of
surpluses for each of 1, 000 stochastic paths that start in the same initial point, and take their
mean values.27 The first method approximates surpluses in a game with a low noise (and in a
deterministic game), the second one approximates the expected value of surpluses in a proper
stochastic game.

Figure 18 shows standard Marshallian consumer surplus calculated in both ways for β = 0.5.
We see that for low noise, consumer surplus has a local maximum at a symmetric initial point and
decreases as the initial asymmetry is increased. A turnaround occurs when we pass through the
separatrices WS

1 and WS
2 (notice kinks in the drift surplus) and enter the domain of a monopoly.

Clearly, the lower the initial cost of a monopolist, the higher the total consumer surplus. Notice
how stochasticity smooths up the surplus (compare thin curves to bold ones). The drift surplus
and stochastic surplus converge as noise is reduced, but the drift surplus for ε = 0.125 is still a
relatively good approximation of the surplus in a stochastic game with low noise. In what follows,
we compare surpluses between different levels of spillovers along the two ISL loci. We do this
first for drift surpluses as noise can mask some important differences. Later we also compare
stochastic surpluses to see what the effect of noise is. Due to computational constraints at low
spillovers (see footnote 22), we compare different scenarios for ε = 0.125.

4.7.4 High sum of initial unit costs (ISL1 locus)

Figure 19 compares surpluses along the drift path for three different levels of spillovers (β = 0.1,
β = 0.5, and β = 0.9). As Figure 19a reveals, the effect of spillovers on consumer surplus is

25The figure shows only the part of loci above the diagonal. As loci have a diagonal line of symmetry, the second
part is computationally redundant.

26It is a standard feature of Cournot equilibrium that as long as both firms produce, industry output, price, and
consumer surplus remain unchanged for exogenous changes in marginal costs that preserve their sum (see Salant and
Shaffer, 1999). However, in our model, changes in initial unit costs (which equal marginal costs) induce strategic
responses of firms, such that all these variables do change in course of time.

27As the game is infinite, we need to truncate the time interval of simulations. We impose that a simulation stops
once a surplus increment over a time step has fallen below 1× 10−6. If the boundary of the state space is reached
within the simulated time interval, we impose that from the moment the boundary is reached, the instantaneous surplus
remains constant. Alternatively, we assume that from the boundary onwards the monopoly solution (cf. Hinloopen
et al., 2013) applies. The difference in discounted values turns out to be negligible.
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Figure 18: Total discounted value of consumer surplus for different levels of initial asymmetry
and noise; ε = 0.125 (blue), ε = 0.015 (black); drift path (bold), average of 1, 000 stochastic
paths (thin); β = 0.5.

highly non-monotonic. In all three cases, consumer surplus has a peak when firms start symmetric.
This is due to the preemptive nature of investment, which is, as we saw, highly intensified at low
spillovers. As there both firms invest a lot, costs are reduced and quantity increased fast, which is
of benefit to consumers. Thereby, for initially symmetric firms, the lower the spillovers, the better
off are consumers. Things change when we introduce asymmetries. For lower asymmetries,
consumer surplus is now the lowest for β = 0.1. The reason is that low spillovers lead to a market
monopoly as they prevent the laggard from catching up with the leader. The highest consumer
surplus is achieved for β = 0.5, followed by β = 0.9. There are two effects of spillovers at work
behind this ranking. At β = 0.5, firms invest relatively more in R&D than at β = 0.9 due to
lower free-riding incentives at lower spillovers, which is of benefit to consumers. On the other
hand, lower spillovers make it harder for the laggard to catch up with the leader, which is through
softer competition in the product market detrimental to consumers. Initially the first effect is
dominant, but it succumbs to the second one as asymmetries increase. Consequently, β = 0.9

eventually starts to dominate β = 0.5 as we move away from the diagonal. The difference
becomes especially pronounced once we pass through the separatrix for β = 0.5 (the kink in the
red curve). There β = 0.5 leads to a monopoly, whereas for β = 0.9, there is still a duopoly in
the product market. However, as asymmetries increase further, the benefits of larger spillovers
gradually decline and β = 0.9 starts to bring about the lowest consumer surplus. The reason
is that at high spillovers the dominant firm holds back its R&D efforts to a rather considerable
extent in order not to empower the laggard through spillovers and thereby risk his entry into the
market.

Figure 19b shows total discounted profit (implied from the value function) as it depends on
initial asymmetries and spillovers. We see that its value increases with spillovers, which is due
to the cost-saving effect that complementaries in R&D bring about. For β = 0.1, we also plot
individual profits (dotted for firm 1, dashed for firm 2). While the profit of the leader increases
and that of the follower decreases as we move away from the diagonal, the total profit increases.

Figure 19c shows total surplus, which is the sum of profits and consumer surplus. We see
that high consumer surplus induced by preemptive investments at low spillovers prevail over
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Figure 19: Total discounted value of consumer surplus (a), profits (b), and total surplus (c) along
the drift path for different levels of initial asymmetry on ISL1 locus; β = 0.1 (black), β = 0.5
(red), and β = 0.9 (blue).

rather low profits caused by such investments. Hence, with symmetric firms total surplus is
maximized at low spillovers. As we increase initial asymmetries, the situation becomes rather
different as total surplus then increases with increasing spillovers. When initial costs of firms are
large, the cost-saving effect of larger spillovers seems predominant. Eventually, the situation is
reversed again and high spillovers, whose effect is mostly to hold back the leader’s investments,
bring about the lowest total surplus. However, the difference is comparably small and diminishes
as asymmetries increase further and with them the risk that the follower will catch up through
free-riding vanishes.

Figure 20 shows expected values of total discounted consumer surplus and total surplus,
calculated as averages over 1,000 stochastic trajectories for each initial point on the iso-sum locus.
We see that noise smooths up surpluses. In particular, the bulge at β = 0.1 is now considerably
less pronounced. The reason for this that as noise increases, firms move faster away from the
diagonal, characterized by high investments. β = 0.1 now seems to be strictly dominated by
larger spillovers. The intermediate value of spillovers brings about the highest value of consumer
surplus for a wide range of initial unit costs past the diagonal. Excepting the bulge, the ranking
for total surplus is roughly similar as before: total surplus is positively related to spillovers.
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Figure 20: Total discounted value of consumer surplus (a) and total surplus (b); the average over
1,000 stochastic paths for different levels of initial asymmetry on ISL1 locus; β = 0.1 (black),
β = 0.5 (red), and β = 0.9 (blue).

4.7.5 Low sum of initial unit costs (ISL2 locus)

To see whether spillover effects depend on the initial level of a technology, we now consider
comparably lower initial values of unit costs. For unit costs on ISL2 locus, production can start
immediately. Figure 21 reveals that there indeed are significant differences in surpluses. With
lower unit costs, preemptive and predatory stimuli at low spillovers have disappeared. For a wide
range of unit costs, an intermediate level of spillovers brings about the highest value of consumer
surplus. High spillovers (β = 0.9) are strictly dominated by lower ones, and this so even for unit
costs that at low spillovers induce a monopoly market structure. This is due to the free-riding
effect that at high spillovers considerably slows down technological progress, in line with our
discussion of time paths in Figure 17. Therefore, for technologies with relatively low initial unit
costs, intermediate spillovers lead to the highest consumer surplus. They also lead to the lowest
long-run equilibrium level of unit costs, as we saw in Figure 16. Again, for very asymmetric
initial costs, the higher the spillovers, the lower the consumer surplus, as there the main effect of
spillovers is to stifle monopolist’s investments.

For small initial asymmetries, total surplus is the lowest for β = 0.1 and the highest for
β = 0.9. This is induced by larger savings on R&D costs and thereby comparably much higher
profits at higher levels of spillovers. As asymmetries increase, high spillovers lead to lower and
lower total surplus as negative effects of a slow technological progress induced by free-riding
gradually prevail over any advantage of larger complementarities in R&D. Recall that the more
efficient firm has very small incentives to exert R&D efforts when its unit costs are small and
spillovers high. This much worse performance of high spillovers at larger asymmetries is a
notable difference in comparison with Figure 19c.

Conclusions based on stochastic simulations (see Figure 22) are similar. Consumers are
worst off for β = 0.9 and best off for β = 0.5. The difference between β = 0.1 and β = 0.9

is virtually indistinguishable at low levels of asymmetry. Figure 22b shows that total surplus
increases with spillovers, but only up to a point. Notably, β = 0.9 brings about considerably
higher total surplus than β = 0.1, but still lower surplus than β = 0.5.

A notable observation when comparing surpluses between ISL1 and ISL2 is that with lower
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Figure 21: Total discounted value of consumer surplus (a), profits (b), and total surplus (c) along
the drift path for different levels of initial asymmetry on ISL2 locus; β = 0.1 (black), β = 0.5
(red), and β = 0.9 (blue).

values of initial unit costs high levels of spillovers become progressively less desirable from a
social standpoint. The reason for this is that with more developed initial technologies, savings on
R&D costs realized through spillovers become less important simply because there is less R&D
left to be done to reach the long-run optimal level of production costs. Moreover, when initial
production costs already permit profitable production, the free-riding effect of spillovers is worse
as then once high R&D incentives of firms in anticipation of entering the product market have
subsided.

4.8 Market size and industry dynamics

The presentation has so far been focused on the dynamics that occurs at parameters (φ, ρ̃) = (8, 1).
Our calculations over a wide range of parameterizations show that the dynamics at this particular
parameterization is representative of the subset of the parameter space for which both coordinates
of the unstable steady state S3 are negative, that is, S3 corresponds to unit costs above the choke
price. This means that it can be profitable for firms to develop further a technology which
requires R&D efforts before the production can profitably start. We focused on this subset of the
parameter space, which characterizes a ‘promising technology’, as we find it most relevant – for
great many new technologies, research starts long before a prototype sees the light of day.

We now briefly consider two other possibilities that occur when for a given discount rate ρ̃ we
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Figure 22: Total discounted value of consumer surplus (a) and total surplus (b); the average over
1,000 stochastic paths for different levels of initial asymmetry on ISL2 locus; β = 0.1 (black),
β = 0.5 (red), and β = 0.9 (blue).

reduce the profitability potential of a technology that is captured by φ.28 In the first one, which
we call ‘strained market’, a technology corresponding to initial unit costs above the choke price
is never developed further, whereas that already in the production phase is developed further only
if it is already sufficiently developed, such that it does not require “too much” additional R&D
efforts.

Reducing φ further, we obtain the second case, which we call ‘obsolete technology’. In this
case, it is always in the interest of any firm to exit the market at some optimal speed as a low
demand makes it unprofitable to maintain a decaying technology.

Consider first the case of a strained market, represented by (φ, ρ̃) = (5, 1). Notice that a
lower φ for a given discount rate corresponds to a lower demand and/or higher costs of R&D
(recall the rescaling in Lemma 1). In general, lowering φ moves S3 and S4 closer together,
contracting the region of the state space for which there is a duopoly in the product market (the
region between the WS

1 and WS
2 separatrices). When demand decreases or R&D costs rise, a

much smaller lead is needed to induce the laggard to give up. Figure 23b indicates this for the
case of β = 0.5. Observe that neither a monopolist nor any of the two competing firms develop
further a technology which would require investments prior to production – the basin of attraction
of S4 is compressed and fully contained within the production area delimited by the E1 and E2

curves (compare with Figure 5).
Figure 23a shows the drift vector field for (φ, ρ̃) = (5, 1) with β = 0.1. There are now only

two steady states – a nodal source S3 and a saddle-point steady state S∗1 . The two saddles (S1

and S2) and the nodal sink (S4) have colluded and formed a new steady state S∗1 . This new
saddle has two manifolds – the unstable manifold WU

1 and the stable manifold WS
1 which lies

on the diagonal of the state space. The implication of this is that the region of duopoly is now
compressed into a line segment which originates in S3, passes through S∗1 and continues to
infinity. Only for symmetric initial position lying on this line both firms keep producing and steer
their unit costs towards the long-run equilibrium level of S∗1 .29 However, any initial asymmetry

28These possibilities are suggested by the bifurcation diagram of the monopoly regime in Hinloopen et al. (2013).
29If an initial position happens to lie on the diagonal above S∗1 , firms find it optimal to decrease their efficiency

39



−2 −1 0 1 2 3 4

−2

−1

0

1

2

3

4

x
2

x
1

E
2

I
1

E
1

E
2

I
2

E
1S

3

S
1

*

W
1

S

W
1

U

W
1

U

(a) β = 0.1

−2 −1 0 1 2 3 4

−2

−1

0

1

2

3

4

x
2

x
1

E
1

E
2

I
2

I
1

E
1

S
2

S
4

W
1

S

W
2

S

W
2

U

E
2

W
1

U

S
3

S
1

(b) β = 0.5

−2 −1 0 1 2 3 4

−2

−1

0

1

2

3

4

x
2

x
1

E
2

I
1

E
1

I
2

E
2

E
1

S
3

W
1

U

W
1

S

W
2

S

W
2

U

S
4

S
2

S
1

(c) β = 0.9

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−0.2

0

0.2

0.4

0.6

0.8

x
1

x
2

E
2

E
1

S
3

H

S
3

M

(d) β = 0.5 vs β = 0.9

Figure 23: Drift vector field for three different values of β, (φ, ρ̃, ε) = (5, 1, 0.125).

makes the less efficient firm to gradually exit the market. At low spillovers, a small lead is enough
to induce the laggard to give up. Observe how the diagonal acts like a repeller – on each side of
it, the motion is away from it. Clearly, in a stochastic game interpretation, any symmetry is only
temporary, such that for most of the time one firm always diverges out of the market.

In sum, it is noteworthy that for less favorable market and R&D conditions, the asymmetry
emerges for low spillovers – initial asymmetries lead to an asymmetric outcome (a firm with an
initial cost advantage becomes a monopolist, whereas the other firm exits the market).

As spillovers increase, S∗1 transforms into two saddles and a nodal sink. The region of
duopoly becomes a proper region, as in the case of β = 0.5. With increasing spillovers, the two
saddles (S1 and S2) move aside and the region of duopoly enlarges. After some point, however,
the saddles start approaching each other and so the region of duopoly starts to contract. This
effect is visible when comparing the drift vector fields for β = 0.1 and β = 0.5 with the drift
vector field for β = 0.9 (see Figure 23c).

Figure 23d, which shows a zoomed comparison between β = 0.5 and β = 0.9, indicates that

towards a higher long-run level which is less costly to maintain.
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Figure 24: Drift vector field when exiting the market is always optimal. (β, φ, ρ̃, ε) =
(0.5, 2, 1, 0.125).

this contraction of the duopoly region at higher spillovers is again not universal as the region
of duopoly for β = 0.9 remains wider at larger levels of unit costs. All in all, our conclusion is
similar as before – after a certain level, larger spillovers start to reduce the duopoly region (the
region of regression toward the mean) as smaller investments of the unmotivated leader makes it
harder for the laggard to catch up.

The drift vector field in Figure 24 shows the drift motion for the case of obsolete technology
represented by (φ, ρ̃) = (2, 1). We see that both unit costs diverge towards infinity. At this
parameters, the demand is so low and the R&D process so costly that both firms find it optimal to
eventually leave the market. They might still invests in R&D at some smaller rate that retards the
decay of the technology optimally, but eventually both the R&D and production will terminate
and the firms will exit the market.

5 Concluding remarks

In this paper, we study feedback Nash equilibria of a dynamic game in which firms enhance their
production efficiency through R&D endeavors. Firms’ product market participation constraints
are explicitly taken into account. As a result, R&D efforts and production do not necessarily
coexist at all times. In particular, R&D efforts can precede production, as it holds for the
development phase of great many new technologies in practice. Our model allows us to study not
only how spillovers affect investments in existing markets, but also how they affect the formation
of markets and the evolution of their structure over time. We show that the relation between
spillovers, R&D efforts, and surpluses is highly non-linear, non-monotonic, and depends both on
the relative as well as the absolute level of competing technologies.

In the sense that patents obstruct the use of R&D results of a competitor, we can (with some
reservation, as in footnote 7) associate high patent protection with low spillovers, and vice versa.
Our analysis then contributes to the lively debate on the relation between patents and innovation.
It shows that the likelihood that some initial technology which requires investments in advance of
production will be developed further always increases with spillovers. With a convex R&D cost
function, larger spillovers enable larger savings on R&D costs and thereby allow firms to bring
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into the market more expensive technologies. This result stands in a stark contrast to claims that
weak patent protection reduces incentives of firms to pursue the development of a new technology.
It also supports the hands-off policy towards R&D cooperatives involving infant technologies,
under the assumption that such cooperatives increase the flow of R&D information. However,
the level to which a promising technology is developed increases with spillovers only up to a
point due to the free-riding effect that dominates at larger spillovers.

While week patents tend to prevent monopolization of the market by the more efficient firm,
our analysis reveals that this indication in the received literature is not universally true. When
the leader progresses on the development ladder, his incentives to exert further R&D efforts
can be at high spillovers rather low as innovations can start to benefit the laggard relatively
more than the leader himself. This obstructs the laggard’s efforts to catch up with the leader
through free-riding. Consequently, a smaller lag can induce the laggard to exit the market at
larger spillovers. Put differently, weak patents make R&D results easier to copy, but if they
also lead to less patents being taken out by innovators, they can well have a contra-competitive
effect. Besides, in our simulations of surpluses, we obtain a relatively worse performance of large
spillovers for low initial unit costs, especially regarding consumer surplus. This indicates that
patent protection might be relatively more important for technologies that are already associated
with fairly efficient production (and/or have comparably low R&D potential) as in case of week
patents firms may have very little incentives for further innovations. For them, weak patents
might in fact favor market concentration.

There are several interesting venues for future research opened up by our analysis. Our
model is focused on a market for a single product and so does not consider a possibility that
firms can simultaneously work on several products of different levels of substitution in the
product market. Indeed, in practice, introducing new versions of existing products seems to
be a viable response to imitators by many high-tech firms. The kind of technologies pursued
can affect imitation capabilities and firms can intentionally make their research tracks more
or less complementary to those of their competitors. This endogenous determination of R&D
complementarities and absorption capacities is an interesting alternative to the current exogenous
formulation of spillovers. In our analysis we introduce stochasticity through random shocks to
unit costs, keeping market demand fixed. This simplification is not crucial to our results as shocks
to the common demand would not change firms’ relative positions, but is expected to play a more
important role in models combining process and product innovations. The analysis in the paper is
readily extended to different forms of cooperation between firms and now allows a comprehensive
study of their stability and desirability over all possible combinations of firms’ costs. Furthermore,
our discussion has been limited to some representative parameter combinations. We believe it is
an interesting task to unveil a complete bifurcation diagram for a dynamic game which would
precisely indicate those critical values of parameters at which important qualitative features of the
solution change (e.g., a new steady state appears or its stability changes). Recently, Hinloopen
et al. (2013) have obtained such a bifurcation diagram for a model with a single firm investing in
R&D. More complete analysis in this direction awaits the development of bifurcation methods
for non-convex optimization problems with multidimensional state space, which are still in their
infancy.
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Appendices

A Proof of Lemma 1

A scaled variable or parameter is distinguished by a tilde. Define the scaled variables by
the following conversion equations: qi = Aq̃i, ki = A√

b
k̃i, ci = Ac̃i, πi = A2π̃i, Bi(t) =

δ−1/2B̃i(t̃) for i = 1, 2, as well as t = t̃/δ and ρ̃ = ρ/δ. Here the B̃i for i = 1, 2 are
independent standard Wiener processes. Introduce new parameters

φ =
A

δ
√
b

and ε =
σ2

2δ
.

The state equation in the scaled variables then reads as

dc̃i = c̃i

(
1−

(
k̃i + βk̃j

)
φ
)

dt̃+
√

2εdB̃i. (32)

The scaled instantaneous profit function takes the form

π̃i =
(
1− q̃i − q̃j − c̃i

)
q̃i − k̃2

i . (33)

B Boundary conditions

To fully specify the system of coupled Hamilton-Jacobi-Bellman differential equations on a
compact state space Ω, we have specified the Neumann-type boundary conditions

∂U i

∂~n
(s, x) = 0

for all points x ∈ ∂Ω, and ~n being the outward pointing normal vector at x.
Consider the unrestricted problem in (x1, x2) coordinates, and choose a fixed initial state

x(0) = (x1(0), x2(0)) in the open set Ω. The current time value function of a player equals

V i(x1(0), x2(0)) = E0

(∫ τ

0

(
gi(x1, x2)− (Γ∗i )

2
)

e−ρt dt+ e−ρτV i
(
x1(τ), x2(τ)

))
, (34)

where τ = τ ε is the (first) exit time from Ω, and where the time dynamics are given as

dxi =
(
(Γ∗i + βΓ∗j )φ− 1 + ε

)
dt−

√
2εdBi.

Consider first the dynamics without the Brownian motion term. As the drift vector field is
bounded, it follows that the exit time τ0 is bounded from below by some constant c, which is, for
large values of M and M , proportional to the distance d of the initial state x(0) to the boundary
∂Ω of Ω.

For the full dynamics, including the Brownian motion term, the probability that τ ε < τ0/2 is
exponentially small in d. But the contribution of the ‘boundary term’ e−ρτV i to the right hand
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side of (34) is then

E0

(
e−ρτV i(x(τ))

)
= E0

(
e−ρτV i(x(τ))

∣∣∣ τ ≤ τ0

2

)
+ E0

(
e−ρτV i(x(τ))

∣∣∣ τ > τ0

2

)
≤ max

x∈∂Ω
|V i(x)|P

(
τ ≤ τ0

2

)
+ e−ρτ

0/2E0

(
V i(x(τ))

∣∣∣ τ > τ0

2

)
≤ c1e−c2d.

This contribution constitutes the maximal error from misspecifying the boundary conditions. We
see that it exponentially declines towards 0 as M,M →∞.

This is illustrated in Figure 25, which shows the policy function of firm 1 at the upper
boundary of x1 for three different values of M : M = 4.5, M = 5, and M = 5.5, respectively.
We see that consecutive solutions diverge only in the very close proximity of the boundary, where
the solution corresponding to a smaller grid range sweeps sharply down to zero. Hence, by
specifying a large enough range of the grid, we can always obtain a good approximation over the
interior region of interest. This is further confirmed by the first plot in Figure 7, which shows that
for a given large value of firm j’s unit cost, the solution for firm i converges to the deterministic
monopoly solution as ε ↓ 0.

Figure 25: Solution at the boundary.
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