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Abstract

We develop optimal formulations for nonlinear autoregressive models by
representing them as linear autoregressive models with time-varying tem-
poral dependence coefficients. We propose a parameter updating scheme
based on the score of the predictive likelihood function at each time point.
The resulting time-varying autoregressive model is formulated as a non-
linear autoregressive model and is compared with threshold and smooth-
transition autoregressive models. We establish the information theoretic
optimality of the score driven nonlinear autoregressive process and the
asymptotic theory for maximum likelihood parameter estimation. The
performance of our model in extracting the time-varying or the nonlinear
dependence for finite samples is studied in a Monte Carlo exercise. In our
empirical study we present the in-sample and out-of-sample performances
of our model for a weekly time series of unemployment insurance claims.

1 Introduction

Forecasting and policy analysis in economics and finance are often successfully

based on linear dynamic regression models with autoregressive structures. The

models are based on parsimonious formulations of temporal dependence and are

effective in describing the dynamic salient features of the time series. In many

forecasting studies the linear Gaussian autoregressive (AR) model is taken as
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the benchmark model and it is found regularly that more elaborate models can-

not improve the benchmark forecasting accuracy for different forecast horizons.

A favorable aspect of the AR model is that its autoregressive coefficients can

be estimated by standard regression methods. The statistical properties of the

maximum likelihood estimator are well documented.

Many dynamic features of empirical relevance in fields such as biology, medicine,

economics, finance and engineering can however not be appropriately addressed

by the linear Gaussian AR model, see the discussions in Teräsvirta, Tjostheim,

and Granger (2010). For example, in physics, laws of motions and gravitations

are typically nonlinear while in economics and finance economic agents typical

interact in a nonlinear way, partly implied by restrictions such as capacity utiliza-

tion and non-zero unemployment. For this purpose, various nonlinear dynamic

models have been proposed in the literature including the threshold AR model

of Tong (1983) and the smooth transition AR model of Chan and Tong (1986)

and Teräsvirta (1994). A general representation of a nonlinear AR model with

additive innovations takes the form

yt = ϕ(yt−1;θ) + ut , ut ∼ pu(θ), (1)

for an observed time series process {yt}, with some function ϕ of the infinite

past yt−1 := (yt−1, yt−2, ...), parameter vector θ and a sequence of zero-mean

independent innovations {ut} with density pu(θ). The choice for a function ϕ is

somewhat arbitrary and is often based on convenience and feasibility.

It is easy to show that any process {yt} generated by the nonlinear AR model

in (1) also admits the representation,

yt = btyt−1 + ut , ut ∼ pu(θ) , bt = ξ(yt−1) (2)
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where bt is a random temporal dependence parameter that can be written as a

measurable function ξ of the infinite past yt−1. The representations of the data

generating process for {yt} in (1) and (2) can be used interchangeably: the time-

varying dependence parameter bt in (2) implies the autoregressive function ϕ and

vice-versa.

More immediate motivations to adopt the latter representation of a linear au-

toregressive model with a time-varying temporal dependence coefficient can also

be provided. For example, the financial crisis that started in 2007 has clearly

led to fundamental changes in economic and financial interrelationships. The

dynamic structures in time series of economic growth, inflation and interest rates

have been affected as a result. To accommodate possible changes in the dynamic

properties of economic time series, we can impose time-varying functions for the

autoregressive coefficients in the autoregressive model. It implies that dynamic

properties of the time series change over time. Earlier contributions in the econo-

metrics literature have considered time-varying parameters in an autoregressive

model, most often in the context of vector autoregressive models. Doan, Litter-

man, and Sims (1984) have been the first to explore the estimation of time-varying

coefficients in AR models via the representation of the model in state space form

and the application of the Kalman filter. More elaborate Markov chain Monte

Carlo methods have been explored by Kadiyala and Karlsson (1993) and Clark

and McCracken (2010).

In our study we adopt the AR model with time-varying temporal dependence

as a representation of the nonlinear AR model. It enable us to develop optimal

formulations of nonlinear AR processes. We then compare our resulting nonlinear

AR model with the existing threshold and smooth transition AR models in detail.

We further establish the information theoretic optimality of the AR parameter

updating scheme. In particular, we show that for each parameter update we
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reduce the Kullback-Leibler divergence between the true unknown conditional

density of the data and the model implied conditional density. We show that

only our model with parameter updating based on the score function can have

the optimality property. The asymptotic properties of the maximum likelihood

estimates are also explored. General conditions for consistency and asymptotic

normality of the estimates are documented. We further analyze the finite-sample

performance for estimating the time-varying AR coefficient in a Monte Carlo

study. Finally, we illustrate the empirical relevance of the model for a time series

of growth rates in US unemployment insurance claims. We show that our model

outperforms its most direct competitors, in both minimizing in-sample fit and

out-of-sample forecasting errors.

The time-varying parameter process is specified as an observation driven

model. In particular, we adopt the approach of Creal, Koopman, and Lucas

(2013) and Harvey (2013) in which the parameter update is determined by the

score function of the predictive loglikelihood function for observation yt. Blasques,

Koopman, and Lucas (2014a) have shown that updating time-varying parame-

ters based on the predictive score function is optimal in an information theoretic

sense. In a similar and independent development, but for a different purpose,

Delle Monache and Petrella (2014) also propose to use the score function for

updating parameters in a linear AR model.

The remainder of the paper is organized as follows. Section 2 introduces

the model and represents it in state space form. In Section 3 we formulate the

model in reduced form and compare its main features with those of other reduced

form models. Section 4 shows that the model is information theoretic optimal,

regardless whether the model is correctly or incorrectly specified. In Section 5

we review the stochastic properties of the filter for the time-varying parameter.

Section 6 establishes the consistency and asymptotic normality of the maximum
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likelihood estimator. Section 7 presents the results of a Monte Carlo exercise

that analyses the time-varying parameter estimation in a finite sample setting.

In Section 8 we illustrate the model by presenting our empirical analysis. Section

9 concludes.

2 Autoregressive Model with Score Driven Coefficient

Consider the autoregressive process of order one, the AR(1) model, with a time-

varying temporal dependence coefficient as given by

yt = h(ft;θ)yt−1 + ut, ut ∼ pu(ut;θ), (3)

where {yt} is a time series, {ft} is the time-varying parameter that determines the

temporal dependence or the mean-reverting behavior of {yt} via the link function

h(ft;θ), {ut} is the disturbance that is identically and independently distributed

with density pu(ut;θ), and θ is a vector of fixed, unknown parameters. We

assume that realizations are available for yt for t = 1, . . . , T . The time-varying

parameter ft will be specified as an observation-driven process which is formally

defined by Cox (1981). In effect, the time-varying parameter represents a function

of past observations, that is ft = ft(yt−1, f1;θ). The transformation function

h() can be used to rule out negative temporal dependence (if h(f ; ·) ≥ 0 ∀ f)

or explosive behavior (if −1 ≤ h(f ; ·) ≤ 1 ∀ f) or even unit-root behavior (if

−1 < h(f ; ·) < 1 ∀ f) for all t. In any case, this model allows also for the

temporal dependence of {yt} and its mean-reverting behavior to change over time.

In effect, by letting h(ft; ·) = 1, or even h(ft; ·) > 1 in some occasions, we can

confer {yt} with a ‘transient’ unit-root or even explosive behavior during specific

time periods. In general, these specifications do not rule out the possibility that

{yt} is strictly stationary and ergodic (SE). Indeed, following Bougerol (1993),
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under appropriate regularity conditions, {yt} is SE as long as E|h(ft; ·)| < 1.

Remark 1. All results derived in this paper extend trivially to the autoregressive

model with intercept a ∈ R as given by yt = a+ h(ft;θ)yt−1 + ut. For simplicity,

we set a = 0 and treat the case of the de-meaned sequence {yt}.

The AR(1) model with the time-varying temporal dependence coefficient is

defined by equation (3). The specification of the AR(1) model relies on the

two functions h() and pu(). The motivation for the link function h() is briefly

discussed above. Typical examples are the unity function h(f ; ·) = f and the

logistic function h(f ; ·) = [1 + exp(−f)]−1 which will be considered below. Other

appropriate link functions h() can be adopted as well. The choice of the density

function pu() is implied by the distribution assumption for the observations. Here

the typical examples are the normal and the Student’s t densities. A convenient

feature of our modelling framework is that no further econometric complexities

arise when one departs from the normal density function pu().

Observation driven models are essentially ‘filters’ for {ft}; they update the

parameter ft using the information provided by the most recent observations of

the process {yt}. In general, they take the form of

ft = φ(ft−1, yt−1;θ), (4)

for a given initial value f1. It implicitly follows that ft = ft(yt−1, f1;θ) for the

infinite past yt−1 := (yt−1, yt−2, ...). Any function φ() can be considered for the

updating of ft but it is not immediately obvious what the optimal choice is for φ().

The challenge is to find the best way to combine past information in yt−1 and f t−1

for producing the parameter update ft. For the same but more general purpose,

Creal, Koopman, and Lucas (2013) introduce a class of observation driven models

based on a particular choice of φ() which partly depends on the score function
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of the predictive loglikelihood function for observation yt. Blasques, Koopman,

and Lucas (2014a) show that this choice of φ() is optimal from an information

theoretical perspective.

The predictive loglikehood function for yt in the AR(1) model of equation (3)

conditional on yt−1 and ft is given by

`(yt|yt−1, ft;θ) = log pu(ũt;θ), (5)

where ũt is the prediction error or residual

ũt := ũt(yt, yt−1, ft;θ) = yt − Et−1yt = yt − h(ft;θ)yt−1, (6)

written as a function of yt, yt−1 and ft, where Et−1 is the expectation conditional

on yt−1. The observation driven update for ft as proposed by Creal, Koopman,

and Lucas (2013) is given by

ft = ω + αst−1 + βft−1, (7)

where ω, α and β are unknown coefficients and

st = st(yt, yt−1, ft;θ) := ∇t(yt, yt−1, ft;θ) / S(ft), (8)

is the scaled score with

∇t = ∇t(yt, yt−1, ft;θ) := ∂ log `(yt|yt−1, ft;θ)
∂ft

, (9)

and S(ft) is some scaling function. For this specification of the function φ(),

we have taken p = q = 1 in (4) and the parameter vector θ in (5) includes the

coefficients ω, α and β from (7). The update equation (7) formulates a highly
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nonlinear function for ft in terms of the past observations yt−1. The functional

form is partly determined by the observation density (3) while the impact of past

observations on ft is mostly determined by the coefficients ω, α and β. Given the

updating equation (7) and the role of the score function, this update is designed

to take a step in the direction that maximizes the likelihood contribution at time

t, given the past information yt−1. It is argued that different scaling functions

S(·) can be considered. Here we focus on a purely ‘score driven’ update for

convenience and we set S(f) = 1 ∀ f .

2.1 Model I : Affine Gaussian updating

Consider the case where h(f ; ·) = f ∀ f and where ut is normally independently

distributed with mean zero, that is pu(ut;θ) = N(0, σ2) with θ = σ2. For this

case, we have

yt = ftyt−1 + ut, ut ∼ N(0, σ2),

with the predictive loglikelihood function at time t given by

`(yt|yt−1, ft;θ) = −1
2 log 2π − 1

2 log σ2 − 1
2σ2 ũ

2
t ,

where prediction error ũt, as defined in (6), reduces to ũt = yt−ftyt−1. The score

function is given by

∇t = ∂`(yt|yt−1, ft;θ)
∂ft

= ũt
yt−1

σ2 (10)

and hence the update for the dependence parameter is given by

ft = ω + αũt−1
yt−2

σ2 + βft−1. (11)

The update of ft responds to the prediction error ũt−1 which is multiplied by the

step size yt−2/σ
2. It follows that the score update brings parameter ft closer to
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zero since |ft| < |ft−1|, when the change in yt−1 is reverting to its mean, that is

when ũt < 0. On the other hand, it moves ft away from its mean, |ft| > |ft−1|,

when the change in yt−1 is not reverting to the mean, that is when ũt > 0.

We will argue below that the multiplication by yt−2 in (11) plays two crucial

roles in Model I. First, it signals if the process is below or above its mean. Second,

it allows the update to distinguish between those changes in observed data that

are driven by the innovations ut, from those that are driven by the time-varying

parameter ft.

It follows from (11) that the strength of the score in the update is determined

both by α and the term yt−2/σ
2. If β = 1, the score is the only determinant

of the parameter update. However, when 0 < β < 1, the parameter will move

away from its mean only when we have sufficiently strong evidence that yt−1 is

not ‘mean-reverting’. It implies that, for a given α, a β smaller than unity will

make ft revert to its mean more often, when compared to the case that β equals

unity. Also, if σ2 is large, one expects large variations in yt only because of the

large variability in ut; it is not because the conditional mean has changed.

2.2 Model II : Logistic updating

The function h() can be used to ensure that the dependence in {yt} satisfies

certain properties. In Model II we adopt a logistic function h() that allows for

transient unit-root dynamics but rules out negative dependence and explosive

behavior as 0 ≤ h(f ; ·) ≤ 1.

Let h(f ; ·) = 1/(1 + exp(−f)) ∀ f and pu(ut;θ) = N(0, σ2) with θ = σ2. In

this case the score is given by

∇t = ∂`(yt|yt−1, ft;θ)
∂ft

= ũth
′(ft;θ) yt−1 / σ

2, (12)
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where

h′(f ;θ) := ∂h(f ;θ)
∂f

,

which in this case reduces to h′(f ; ·) = h(f ; ·)2 exp(−f). Hence the parameter

update becomes

ft = ω + αũt−1h(ft−1; ·)2 exp(−ft−1)yt−2 / σ
2 + βft−1

= ω + α
(
yt−1 −

1
1 + exp(−ft−1)yt−2

) exp(−ft−1)
(1 + exp(−ft−1))2 (yt−2 / σ

2) + βft−1.

(13)

The resulting updating function for ft restricts the autoregressive coefficient to

satisfy 0 ≤ h(ft; ·) ≤ 1 which sometimes can be motivated by economic theory.

In other cases, the econometrician simply wants to bound the possible influence

of outlying observations on the actual value of ft and its future counterparts.

2.3 Model III : Robust updating

Robustness to outliers can be obtained via the specification of h() as above or by

explicitly recognizing that the density function of ut requires fat tails. The depen-

dence of the update equation for ft on both h(ft;θ) and pu(ut;θ) is a convenient

feature of our score driven approach. Let h(f ; ·) = f ∀ f and pu(ut;θ) = τ(0, 1, λ)

which is the density function of the standardized Students’ t distribution with

zero mean, unity variance and degrees of freedom λ. We have θ = λ. The

predictive loglikelihood function at time t is given by

`(yt|yt−1, ft;θ) = c− λ+ 1
2 log

(
1 + ũ2

t

λ

)
,
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Three Nonlinear Dynamic Model Specifications

Model Equations h(ft) st pu(ut;θ)
I Affine Gaussian (3) + (11) ft (10) N(0, σ2)
II Logistic Gaussian (3) + (13) 1 / (1 + exp(−ft)) (12) N(0, σ2)
III Affine Student’s t (3) + (15) ft (14) Student’s t(λ)

Table 1: Model is yt = h(ft)yt−1+ut and ft = ω+αst−1+βft−1 with ut ∼ pu(ut;θ).

where c is a constant that does not depend on yt nor on ft. In this case, the score

function becomes

∇t = ∂`(yt|yt−1, ft)
∂ft

= (λ+ 1)ũt
yt−1

λ+ ũ2
t

. (14)

The updating function is then given by

ft = ω + α(λ+ 1) (yt−1 − ftyt−2)yt−2

λ+ (yt−1 − ftyt−2)2 + βft−1. (15)

The updating function for ft reveals that it is now less sensitive to large variations

in observed data compared to the updating for the affine Gaussian case. In

particular, our robust updating is a bounded function of ũt−1. The intuition

follows straightforwardly. When the innovations ut are coming from a fat tailed

density, large variations in observed data are relatively more likely to correspond

to draws from the tail of pu(ut;θ), rather than from changes in the conditional

expectation. On the contrary, when the innovations in ft are bounded by a

small variance, large variations in yt are likely to correspond to changes in the

conditional expectation.
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2.4 Assessment of Three Model Specifications

Table 1 reviews our main three nonlinear dynamic model specifications. Figure 1

compares the different updating functions for ft in their responses to variations

in the observation yt when the innovations are generated by Gaussian and Stu-

dent’s t distributions. Figure 1 reveals several interesting features of the updating

functions. First, it shows that the update tends to decrease ft when yt−1 shows

mean-reverting behavior and increase ft otherwise. Second, it shows that param-

eter updates with β = 0.5 tend to bring ft faster to its unconditional mean, here

it is zero as ω = 0 when compared to the updates with β = 1. In the former case,

the score information dominates the update. Third, it shows how the specified

distribution for ut is incorporated in the parameter updating step. In particular,

it shows that for a fat tailed distribution, large variations in the observed data

do not necessarily reflect a strong change in the conditional expectation. As a

result, ft is bounded in yt−1. This is in sharp contrast with the linear response

shown for the affine Gaussian case.

Figure 1 further reveals how the updating function uses the value yt−2 as

a crucial guidance mechanism to distinguish between changes in observed data

that provide information about the conditional expectation and those that do not.

For example, consider the case where observed data is very close to its mean (left

graph). Then, there is no reason to strongly update the conditional expectation,

regardless of yt−1 being large or small; the observation yt−1 does not contain much

information about the dependence of the process {yt}. Indeed, in the case where

yt−2 = 0, then yt−1 contains no information about the dependence of the process

because the mean-reverting force is simply inactive. Any value of yt−1 would have

to reflect only the innovation draw. On the contrary, in the case where yt−2 is

large (in absolute value), the observed yt−1 will carry more information about ft.

In particular, consider the case where yt−2 = 4 (right graph). Then, if yt−1 is
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Figure 1: Shape of Normal (black) and Student’s t (red) updating functions. The updated
parameter ft = φ(ft−1, yt−1, yt−2;θ) is plotted as a function of yt−1 for given ft−1 = 0.5 and
given low initial state yt−2 = 0.5 (left) high initial state yt−2 = 2 (middle) and very high initial
state yt−2 = 4 (right). All plots obtained with ω = 0 and α = 0.1. Solid lines have β = 0.5 and
dashed lines have β = 1.

also large, these observations provide strong evidence that the process has strong

dependence and hence that ft is close to one. Only the unlikely event of two

consecutive draws from the right tail of ut could potentially indicate a low value

of ft−1.

2.5 Maximum likelihood estimation and forecasting

Maximum likelihood (ML) estimation of parameters in the AR(1) model with

a time-varying autoregressive coefficient is similar as for autoregressive moving

average models. The conditional likelihood function can be evaluated in closed-

form given that we have both an updating equation for ft and an expression for

the score function st explicitly available. The conditional loglikelihood function

is then simply obtained via the prediction error decomposition and is given by

`T (θ, f1) =
T∑
t=2

`(yt|yt−1, ft;θ).
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The maximization of this loglikelihood function with respect to θ is typically

carried out using a quasi-Newton optimization method. The prediction errors ũt
evaluated at the maximum likelihood estimate of θ can be used for diagnostic

checking procedures.

The forecasting of future values of yT+j and fT+j for j = 1, 2, . . ., can be

obtained as follows. The forecast for yT+1 is based on (3) with fT+1 computed

by (7) given a value for yT . The other forecasts for j = 2, 3, . . . are obtained in

the same way where future yt’s are replaced by their forecasts. It follows that all

future score values, that is sT+1, sT+2, . . . in (8), can be set to zero.

3 Nonlinear Autoregressive Representations

The nonlinear autoregressive (AR) model can be generally expressed as in (1),

that is yt = ϕ(yt−1;θ) + ut. The relation between a nonlinear AR model and

a linear AR(1) model with a time-varying autoregressive coefficient is estab-

lished straightforwardly. The nonlinear AR model (1) can be expressed as yt =

h(ft;θ)yt−1 + ut, given the equivalence h(ft;θ) ≡ ϕ(yt−1;θ) / yt−1 since ft =

ft(yt−1;θ). This specification is well defined a.s. because yt−1 is present in both

the nominator and denominator. The converse is also true: for all distributions

considered for ut, the dynamic model (3)-(4) can be expressed as a nonlinear

autoregressive moving average (ARMA) model. We discuss this in more detail

and provide illustrations below.

The AR(1) model (3) implies that

h(ft;θ) = yt − ut
yt−1

.

In the case of an unity function for h(), we have ft = (yt − ut)y−1
t−1 and the
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score-driven updating function becomes

ft = ω + αst−1(yt−1, yt−2,
yt−1 − ut−1

yt−2
;θ) + β

yt−1 − ut−1

yt−2
.

By substituting this expression into (3), that is yt = ft yt−1 + ut, we obtain

yt = ωyt−1 + αst−1
(
yt−1, yt−2,

yt−1 − ut−1

yt−2
;θ
)
yt−1 + β

yt−1 − ut−1

yt−2
yt−1 + ut,

which we can recognize as an ARMA model with two lags for the dependent

variable and one lag for the innovation ut, that is a nonlinear ARMA(2, 1) model.

3.1 Illustration: Models I and III

In the case of the affine Gaussian AR(1) model in Section 2.1, we have st =

ut yt−1 / σ
2 and the nonlinear ARMA(2, 1) model becomes

yt = ωyt−1 + α
yt−1yt−2ut−1

σ2 + β
yt−1 − ut−1

yt−2
yt−1 + ut.

In the case of the Student’s t AR(1) model with λ as the degrees of freedom in

Section 2.3, we have st = (λ + 1)ut yt−1 / (λ + u2
t ) so that the nonlinear ARMA

representation for yt is given by

yt = ωyt−1 + α(λ+ 1)yt−1yt−2ut−1

λ+ u2
t−1

+ β
yt−1 − ut−1

yt−2
yt−1 + ut.

It is interesting that these extensive nonlinear ARMA model representations orig-

inate from a basic linear AR(1) model with a time-varying autoregressive coef-

ficient based on the observation-driven process ft = ω + αst−1 + βft−1. While

the original model is relatively simple, it implies an extensive but parsimonious

nonlinear ARMA model. We emphasize that we do not base our analysis on
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the nonlinear ARMA framework: we analyze the time series by means of the

time-varying parameter AR(1) model representation as discussed in Section 2.5.

3.2 Illustration: Model II

The illustrations above are based on the unity function for h(f) = f . The

Gaussian AR(1) model with a logistic function for the time-varying autoregression

coefficient can also be represented as a nonlinear ARMA(2, 1) model. In case of

Model II in Section 2.2, we have yt = h(ft)yt−1+ut where h(ft) = [1+exp(−ft)]−1

and pu(ut) is a Gaussian density. The corresponding score function is given by

st = h′(ft)
yt−1 ut
σ2 = h(ft)[1− h(ft)]

yt−1 ut
σ2 = (yt − ut) (ut −∆yt)ut

σ2 yt−1
,

with ∆yt = yt − yt−1, since h(ft) = (yt − ut) / yt−1 and h′(ft) = h(ft)2 exp(−ft).

The updating equation is

ft = ω + αst−1 + β log
( yt−1 − ut−1

ut−1 −∆yt−1

)
, (16)

since ft = − log[h(ft)−1−1] and h(ft) = (yt−ut) / yt−1. After some minor algebra

we obtain the nonlinear ARMA model representation as

yt = h(ft)yt−1 + ut

=
[
1 + exp(−ω − αst−1)

(ut−1 −∆yt−1

yt−1 − ut−1

)β]−1

yt−1 + ut.

The intuition behind these nonlinear ARMA representations are not so clear

but we have shown that our original modeling framework leads effectively to

a nonlinear ARMA model. We therefore compare our model with some other

well-known nonlinear dynamic models next.
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3.3 Comparison with other nonlinear models

Two well-known nonlinear AR models are the threshold AR (TAR) model of

Tong (1983) and the smooth transition AR (STAR) model of Chan and Tong

(1986) and Teräsvirta (1994). We relate our nonlinear dynamic models with the

basic versions of these two nonlinear AR models. In the next section we show

that our modeling framework has favorable optimality properties. Such proofs of

optimality are not available for other models such as the TAR and STAR.

When written as a nonlinear autoregressive model, the TAR model takes the

form

yt = γ1yt−1 + γ2 I(yt−2 < γ3)yt−1 + ut,

where I() is an indicator function that returns unity if the condition in the argu-

ment holds, and otherwise zero. The TARmodel can be expressed and generalized

in various ways. The STAR model can be specified as

yt = γ4yt−1

1 + exp(−γ6 yt−2) −
exp(−γ6 yt−2)γ5yt−1

1 + exp(−γ6 yt−2) + ut.

Both TAR and STAR models are effectively nonlinear ARMA(2, 0) models with

four parameters when we assume that ut ∼ N(0, σ2). These models have the same

number of parameters as our Models I and II of Sections 2.1 and 2.2, respectively.

Naturally, the TAR and STAR can also be represented as a simple linear

AR(1) model with a time-varying parameter. The TAR model represents a class

of models that let the coefficient change when a certain value crosses a certain

benchmark.

yt = ρt yt−1 + ut , ρt = γ1 + γ2 I(yt−2 < γ3).
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The STAR model admits the time-varying parameter representation

yt = ρt yt−1 + ut , ρt = γ4xt−2 + γ5(1− xt−2), xt := 1
1 + exp(−γ6 yt)

.

In Figure 2 we present the response to yt for different values of yt−1 and yt−2,

for different parameter settings in case of the TAR and STAR models, and for

different ranges of values for ut−1 and for β = 0.5, 1 in case of Model II. Figure

2 compares the shapes of the nonlinear ARMA representation of the Model II

of Section 2 for different parameter settings with those of the TAR and STAR

models. Although the latter two models are nonlinear AR(2) models and Model

II is a nonlinear ARMA(2,1) model, the nonlinear functions are quite similar in

many respects and over a range of values for ut−1.

In all cases, there are two regimes that are clearly identified. One regime with

large slope over the yt−1 axis, which occurs for positive values of yt−2, and another

regime with small slope over the yt−1 axis that occurs for negative values of yt−2.

In both the TAR and STAR models these regimes are linear in yt−1, and hence,

in each regime, the slope is constant over yt−1. The cross-section over the yt−2

axis shows however the difference between the TAR and STAR models. Namely,

in the TAR case, the transition from one regime to the other is discontinuous,

whereas in the STAR case it is smooth. The response behaviour of Model II

is similar to the TAR given that the transition is discontinuous. It is similar

to the STAR given that the responses to the range of yt−2 values is nonlinear

in each regime. The responses of Model II are nonetheless unique given that

the two regimes are nonlinear in yt−1. In particular, the low regimes shows an

increasing slope in yt−1, while the high regime shows a decreasing slope in yt−1.

Most importantly, and in contrast to the TAR and STAR models, Model II is the

result of a score driven time-varying parameter model which possesses a number

of optimality properties described in the next section.
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Figure 2: Response functions for TAR and STAR models (top 2 rows) are pre-
sented for different slopes in each regime. The response functions for Model II
(bottom 2 rows) are presented for different values of β and innovations ut−1.
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4 Optimality of Autoregressive Parameter Update

The score driven update for the time-varying parameter ft is not only intuitively

appealing, but it can also be shown to be optimal. This section provides a simple

extension of the results in Blasques, Koopman, and Lucas (2014a) to the context

of Markov autoregressive models with time-varying dependence parameters. In

particular, it shows that that the update for ft is the optimal observation driven

parameter update, in an information theoretic sense, as it reduces locally the

Kullback-Leibler (KL) divergence between the true conditional density and the

conditional density implied by the model. Just as in Blasques, Koopman, and

Lucas (2014a), we also show that only the score update can possess these proper-

ties. These results can be obtained whether the model is correctly or incorrectly

specified.

The KL divergence is an important measure of distance in various fields from

information theory to statistics and econometrics; see, for example, Ullah (1996,

2002) for several applications of the KL divergence in econometrics. In the de-

velopments below, we have pt := p(·|ft, yt−1) as the true conditional density of yt
indexed by the true time-varying parameter ft and the lagged observation yt−1,

and we define p̃t := p̃(·|f̃t, yt−1) as the postulated density indexed by the filtered

parameter f̃t and yt−1.

Definition 1. (RKL Optimality) The realized KL (RKL) variation of a param-

eter update from f̃t ∈ F̃ to f̃t+1 ∈ F̃ is given by

∆t|t = DKL
(
pt, p̃t+1

)
−DKL

(
pt, p̃t

)
=
∫
Y
p(y|ft, yt−1)

(
ln p̃(y|f̃t, yt−1;θ)− ln p̃(y|f̃t+1, yt−1)

)
dy.

where DKL
(
pt, p̃t

)
denotes the KL divergence between pt and p̃t. For a given pt,

a parameter update is RKL optimal given yt−1 if and only if ∆t|t < 0.
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Definition 2. (CKL Optimality) Define the conditional expected KL (CKL)

variation of a parameter update from f̃t ∈ F̃ to a random f̃t+1 taking values in

F̃ as

∆t|t−1 =
∫
F
q(f̃t+1|f̃t, ft, yt−1;θ)

[∫
Y
p(y|ft, yt−1) ln p̃(y|f̃t, yt−1;θ)

p̃(y|f̃t+1, yt−1;θ)
dy
]
df̃t+1,

with q(f̃t+1|f̃t, ft;θ) denoting the density of f̃t+1 conditional on both f̃t and ft.

For a given pt, an update is CKL optimal given yt−1 if and only if ∆t|t−1 < 0.

The RKL optimality measures the change in the KL divergence between

the true conditional density p(·|ft, yt−1) and the model’s conditional densities

p̃(·|f̃t, yt−1) and p̃(·|f̃t+1, yt−1) for given points f̃t ∈ F̃ and f̃t+1 ∈ F̃ since it is

conditional on information until time t. On the contrary, f̃t+1 is random in the

CKL optimality because this measure is conditional on the information until time

t−1. Hence, CKL optimality measures the expected change in the KL divergence

between the true conditional density p(·|ft, yt−1) and the model’s conditional den-

sity p̃(·|f̃t, yt−1) and the random density p̃(·|f̃t+1, yt−1).

Definition 3. A nonlinear autoregressive model as in (1) is said to be RKL

(CKL) optimal if it admits a time-varying parameter representation (2) with RKL

(CKL) optimal parameter update.

Next we show that the score update for ft in (7) is locally optimal for any pt.

Local results focus on the ‘direction’ of the updating step. Intuitively, an update

is locally KLV optimal if the updating step is in the correct direction, that is, if

the update is in a direction that reduces the KL divergence. By ‘local’ we mean

that the results hold for every f̃t+1 in a neighborhood of f̃t ∈ F̃ and every y in a

neighborhood of yt ∈ Y . In other words we show that ∃δf > 0∧ δy > 0 such that
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suppt
∆t−1|t−1 < 0 and suppt

∆t|t−1 < 0 hold on the sets

F = Fδf
(f̃t) := {f̃ ∈ F̃ : |f̃ − f̃t| < δf}, Y = Yδy(yt) := {y ∈ Y : |y − yt| < δy}.

Assumption 1. p(y|f, y′) > 0 ∀ (y, y′, f) ∈ R × R × F and ∇̃(f̃ , y, y′, ;θ) 6= 0

for every (f̃ ,θ) ∈ F̃ ×Θ and almost every (y, y′) ∈ R× R.

Assumption 2. α > 0 and S(f̃ , y;θ) > 0 ∀ (f̃ , y,θ) ∈ F̃ × R×Θ.

The proofs of Lemmas 1 and 2 below can be easily obtained by extending

the proofs of Propositions 1-5 in Blasques, Koopman, and Lucas (2014a) so as

to allow the lagged yt−1 to enter the conditioning set in both p and p̃. For this

reason, the proofs of the two Lemmas below are deferred to the main appendix.

Lemma 1 below shows that the score update for ft is locally optimal.

Lemma 1. Let Assumptions 1 and 2 hold and let (ω, β) = (0, 1). Then, the score

update for ft is locally RKL optimal and CKL optimal given yt−1 for any pt.

Lemma 2 shows that only a ‘score-equivalent’ update can have this optimality

property. An update is said to be ‘score-equivalent’ if it essentially ‘mimics’ the

score update for ft in (7) locally.

Definition 4. (Score-Equivalent Update ) An observation driven parameter

update f̃t+1 = φ(f̃t, yt, yt−1) is said to be ‘score-equivalent’ if and only if the con-

dition sign(∆φ(f, y, y′;θ)) = sign(∇̃(f, y, y′;θ)) holds for almost every (y, y′, f) ∈

Y × Y × F and every θ.

Lemma 2. Let Assumptions 1 and 2 hold. For any given pt, a parameter update is

locally RKL optimal and CKL optimal given given yt−1 if and only if the parameter

update is score-equivalent.

22



These properties of the score update hold also when we allow for (ω, β) 6= (0, 1)

as long as the “forces away” from the optimal direction at f̃t, which are determined

by the autoregressive component ω + (β − 1)f̃t, are weaker than the “forces

towards” the optimal direction, which are determined by the score component

αs(f̃t, yt, yt−1;θ); see the main appendix for such extensions.

5 Stochastic Properties of the Filter

Next we obtain the strict stationarity and ergodicity (SE) of the filter for the time-

varying parameter. The SE properties are required for deriving the asymptotic

properties of the ML estimator in Section 6. The proofs of the Theorems are

presented in the main appendix.

For notational simplicity, we define the score update as

ft+1 := φ(ft, yt, yt−1;θ) := ω + αs(ft, yt, yt−1;θ) + βft

and we define the random supremum

φ̄t,k(θ) := sup
f∈F

∣∣∣∣α∂s(f, yt, yt−1;θ)
∂f

+ β

∣∣∣∣k.
When convenient, we shall also state explicitly the dependence of the filtered

parameter ft+1 on the initialization f1 ∈ F , the data y1:t = {ys}ts=1 and the

parameter vector θ ∈ Θ. The score update equation is then expressed as

ft+1(y1:t,θ, f1) = ω + αs
(
ft(y1:t−1,θ, f1), yt, yt−1;θ

)
+ βft(y1:t−1,θ, f1),

∀ t ∈ N. Theorem 1 states sufficient conditions for the stochastic sequence

{ft(y1:t−1,θ, f1)}t∈N initialized at f1 ∈ R to converge almost surely, uniformly on
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F , and exponentially fast to stationary and ergodic (SE) sequence {ft(yt−1,θ)}t∈Z
that has nf bounded moments, where yt−1 := {ys}s=t−1

s=−∞. It establishes the con-

vergence to an SE limit of the sequence {ft(y1:t−1, ·, f1)}t∈N with random elements

taking values in the Banach space (C(Θ,F), ‖ · ‖Θ) for every t ∈ N, where ‖ · ‖Θ

denotes the supremum norm on Θ.

Theorem 1. Let F be convex, Θ be compact, {yt}t∈Z be SE, s ∈ C(F ×Y2×Θ)

and assume there exists a non-random f1 ∈ F such that

(i) E ln+ supθ∈Θ |s(f1, yt, yt−1;θ)| <∞; and

(ii) E ln supθ∈Θ φ̄
′
1,1(θ) < 0.

Then {ft(y1:t−1,θ, f1)}t∈N converges exponentially almost surely to the limit SE

process {ft(yt−1,θ)}t∈Z; i.e. we have supθ∈Θ |ft(y1:t−1,θ, f1)− ft(yt−1,θ)| e.a.s.→ 0

as t→∞. If furthermore ∃ nf ≥ 1 such that

(iii) E supθ∈Θ |s(f1, yt, yt−1;θ)|nf <∞; and either

(iv) supθ∈Θ |s(f,y, f ;θ)− s(f ′,y, f ;θ)| < |f − f ′| ∀ (f, f ′,y) ∈ F ×F ×Y2;

or

(v) E supθ∈Θ φ̄
′
1,nf

(θ) < 1 and ft(yt−1,θ, f1) ⊥ φ̄′t+1,nf
(θ) ∀ (t, f1) ∈ N×F .

Then both {ft(yt−1,θ, f1)}t∈N and the limit SE process {ft(yt−1,θ)}t∈Z have nf
bounded moments; i.e. supt E supθ∈Θ |ft(yt−1,θ, f1)|nf < ∞, and furthermore,

E supθ∈Θ |ft(yt−1,θ)|nf <∞.

Verification of these conditions is typically straightforward as the following

illustration for Model II of Section 2.2 shows. The updating equation for ft is

given by (13). If {yt}t∈Z is SE and satisfies E|y|ny < ∞, then the SE condition
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reduces to

E ln
∣∣∣αyt−1yt−2

σ2
exp(2ft−1)− exp(ft−1)

(1 + exp(ft))3 −α
y2
t−2
σ2

exp(2ft−1)(exp(ft−1)− 2)
(exp(ft−1) + 1)4 +β

∣∣∣ < 0.

(17)

It follows that {ft} is SE with E|ft|2 < ∞ for every triplet (α, β, σ2) satisfying

(17). A subset of this region that is analytically tractable is given by the diamond-

shaped set,

c

σ2E|y
2
t−2| <

1− |β|
|α|

where c = 39 + 55
√

33
4608 ≈ 0.077. (18)

6 Asymptotic Properties of Maximum Likelihood

The observation driven structure of our model allows for a simple implementa-

tion of a maximum likelihood estimation procedure. The ML estimator of the

updating parameters is defined as an element of the arg min set of the sample

loglikelihood function `T (θ, f1),

θ̂T ∈ arg min
θ∈Θ

`T (θ, f1)

where

`T (θ, f1) = 1
T

T∑
t=2

`t(θ, f1) = 1
T

T∑
t=2

log pu
(
yt − h

(
ft(yt−1;θ)

)
yt−1;θ

)
.

The results of Section 5 can now be used to establish the existence, consistency

and asymptotic normality of the ML estimators of the updating parameters. In

what follows (Ω,F ,P) denotes the underlying complete probability space. Ob-

served data {yt}Tt=1 is thus a subset of the realized path of a real-valued stochastic

process y : Ω→ R∞ where R∞ := ×t∈ZR denotes the infinite Cartesian product

of copies of R.
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Assumption 3. (Θ,B(Θ)) is a measurable space and Θ is a compact set. Fur-

thermore both h : R → R and pu : R× Θ → R are continuously differentiable in

their arguments.

Theorem 1 below establishes the existence and measurability of the ML esti-

mator. Essentially, it ensures that there exists a random variable that lies in the

arg max set of LT (·, f1) for every f1.

Theorem 2. (Existence) Let Assumption 3 hold. Then there exists a.s. an

R/B(Θ)-measurable map θ̂T : Ω×R→ Θ satisfying θ̂T (f1) ∈ arg maxθ∈Θ `T (θ, f1)

for all T ∈ N and every initialization f1 ∈ R.

In order to establish consistency, we now impose enough conditions to en-

sure that the likelihood function satisfies a uniform law of large numbers for SE

processes. Assumption 4 establishes conditions that make the arguments of the

likelihood function SE.

Assumption 4. ∃ (nf , f) ∈ [1,∞)× R such that

(i) supθ∈Θ E|s(f, yt, yt−1;θ)|nf <∞ and either

(ii) sup(f∗,y,y′,θ)∈R×Y×Y×Θ |β + α ∂s(f ∗, y, y′;θ)/∂f | < 1 or

(iii) E supθ∈Θ φ̄
′
1,nf

(θ) = E supθ∈Θ |β + α ∂s(f ∗, yt, yt−1;θ)/∂f | < 1 and

ft(yt−1,θ, f1) ⊥ φ̄′t+1,nf
(θ) ∀ (t, f1) ∈ N×F .

The moment conditions stated in Assumption 5 below require the definition of

‘moment preserving map’. This allows us essentially to obtain moment conditions

for the likelihood function from primitive conditions. In particular, we derive

the number of bounded moments of the likelihood from the number of bounded

moments of both the data and the filtered process.
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Definition 5. (Moment Preserving Maps) A function H : R × Θ → R is

said to be n/m-moment preserving, denoted as H ∈ MΘ(n,m), if and only if

E supθ∈Θ |xt(θ)|n <∞ implies E supθ∈Θ |H(xt(θ);θ)|m <∞.

Assumption 5. h ∈ MΘ(nf , nh) and log pu ∈ MΘ
(
n, nlog pu

)
with nlog pu ≥ 1 for

n = min{ny, nynh/(ny + nh)}.

Theorem 3 obtains the consistency and asymptotic normality of the ML esti-

mators of the parameters for SE data.

Theorem 3. (Consistency) Let {yt}t∈Z be an SE sequence satisfying E|yt|ny <∞

for some ny > 0 and assume that Assumptions 3, 4 and 5 hold. Furthermore, let

θ0 ∈ Θ be the unique maximizer of `∞(θ) on the parameter space Θ. Then the

MLE satisfies θ̂T (f1) a.s.→ θ0 as T →∞ for every f1 ∈ R.

Theorem 4 obtains the asymptotic normality of the ML estimator. In this

theorem we impose moment bounds directly on the derivatives of the likelihood

function. As for Theorem 3, these moment bounds can be derived from primitive

conditions concerning the moment preserving properties of h and pu; see the tech-

nical appendix and Blasques, Koopman, and Lucas (2014b) for further details.

However, for simplicity, Theorem 4 adopts the more usual approach of imposing

moment conditions directly on the derivatives of the likelihood; see Straumann

and Mikosch (2006).

Below we let I(θ0) := E`′′T (θ0) be the Fisher information matrix evaluated

at θ0 ∈ Θ, and J (θ0) := E`′T (θ0)`′T (θ0)> denote the expected outer product of

gradients also evaluated at the point θ0 ∈ Θ.

Theorem 4. (Asymptotic Normality) Let {yt}t∈Z be an SE sequence satisfying

E|yt|ny < ∞ for some ny > 0 and let Assumptions 3, 4 and 5 hold. Further-

more, let E|`′T (θ0)|2 < ∞, E supθ∈Θ |`′′T (θ)| < ∞ and θ0 ∈ int(Θ) be the unique

27



maximizer of `∞ on Θ. Then the ML estimator θ̂T (f1) satisfies

√
T
(
θ̂T (f1)− θ0

)
d→ N

(
0, I−1(θ0)J (θ0)I−1(θ0)

)
as T →∞.

7 Small Sample Properties of the Score Filter

We analyze the filtering properties of our nonlinear ARMA modeling framework

in a simulation setting. In particular, our Monte Carlo illustration focuses on the

finite-sample performance of the filter when the data generating process for {yt}

is given by

yt = ftyt−1 + ut , ut ∼ N(0, λ)

with {ft} following a sigmoid path in the interval [0, 1], that is

ft = 0.5 + 0.5 sin(t/150).

Figure 3 is based on 1000 Monte Carlo simulated paths for a sample size of

T = 500 and T = 1500. The Figure displays the true path of {ft} as well as the

paths filtered by the Models I and II. The cloud of dots are filtered points {f̃t}.

The dashed lines are bounds containing 95% of the mass of the filter over the 1000

Monte Carlo repetitions. The presented results in Figure 3 illustrate how different

specifications of the autoregressive model for {yt} can lead to score filters for {ft}

with different properties. While Figure 3 shows that both models perform well,

it also reveals that Model II (with the logistic link function) outperforms Model

I (with the unit link function). In particular, Model I tends to do worse during

periods of low dependence.
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Figure 3: We present 1000 draws in a Monte Carlo performance comparison for
Model I (left) and Model II (right) for sample size T = 500 (top) and T = 1500
(bottom).

8 Application to Unemployment Insurance Claims

We illustrate the empirical relevance of our new nonlinear dynamic models by

analyzing the time-varying behaviour of weekly unemployment insurance claims

(UIC) in the U.S. In particular, we consider our Affine Gaussian Model I of

Section 2.1 with its nonlinear ARMA representation presented in Section 3.1.

Another illustration for U.S. industrial production is provided in the technical

appendix.

The development of economic models for unemployment insurance claims

(UIC) and related macroeconomic variables, together with the empiricial econo-

29



metric analysis of UIC time series, have received considerable attention in the

literature; see, amongst others, McMurrer and Chasanov (1995), Meyer (1995),

Anderson and Meyer (1997, 2000),, Hopenhayn and Nicolini (1997) and Ashenfel-

ter, Ashmore, and Deschenes (2005). Furthermore, the importance of forecasting

weekly UIC time series data has been highlighted by Gavin and Kliesen (2002)

where they show that UIC is highly effective as a leading indicator for labor

market conditions and hence for the forecasting of GDP growth rates.

We analyse the weekly time series of growth rates for US seasonally adjusted

UIC from 1960 towards 2013 by means of Model I. Figure 4 presents our ob-

served UIC time series together with the filtered estimates of the time-varying

autoregressive parameter from Model I. The autoregressive parameter estimates

fluctuate considerably over time: ranging from a minimum of roughly 0.2 in the

late 1960s where UIC data is shown to have low temporal dependence, to a max-

imum of over 0.6 in the 1980s where the process deviates from its overall mean

persistently over an extended number of weeks. Furthermore, we observe that

the temporal dependence in weekly UIC started to increase prior to the financial

crisis unleashed by the fall of Lehman Brothers in 2008 reaching a peak of almost

0.6 in that year, followed by a steady decline until late 2010.

Table 2 compares the performance of Model I against that of the TAR, STAR

and linear AR models. In the latter case, the order of the AR model is established

by the general-to-specific methodology that selects the lag length based on the

minimum corrected Akaike’s information criterion (AICc) of Hurvich and Tsai

(1991).

As in many economic time series, linear AR models tend to outperform non-

linear ones in modeling the UIC; see Clark and McCracken (2010). The reported

log likelihood confirms that the autoregressive model of order 5 outperforms all

models in maximizing the likelihood and minimizing the AICc. Table 2 reveals
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Figure 4: Growth rate of US seasonally adjusted weekly unemployment insurance
claims reported by the Federal Reserve Bank of St. Louis.

however that the lower AICc of the AR(5) is not translated into a much bet-

ter forecasting performance. On the contrary, among the possible linear AR(p)

models, the AR(2) achieves the lowest RMSE of one-step ahead in-sample pre-

dictions. Furthermore, our preferred Model I outperforms the TAR and STAR

models. Model I does not only outperform its nonlinear TAR and STAR rivals

in terms of it maximized log likelihood value and its corresponding AICc value,

it also outperforms the linear AR models in terms of forecasting accuracy.
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Unemployment Insurance Claims: Model Comparison

Model I TAR STAR AR(2) AR(5)
Log Lik 6743.96 6736.22 6736.86 6438.89 6967.71
AICc -13477.901 -13462.41 -13463.70 -12869.76 -13921.39

F-RMSE 0.7502 0.7522 0.7521 0.8484 1.2081

Table 2: The values for log likelihood (Log Lik), Akaike’s information criterion
with finite sample correction (AICc) and root mean squared errors for 1, 2 and 3
step-ahead forecasts of the growth rate of US seasonally adjusted weekly unem-
ployment insurance claims reported by the Federal Reserve Bank of St. Louis.

9 Final Remarks

We have introduced a new nonlinear dynamic model specification together with

the corresponding linear autoregressive model that has time-varying temporal

dependence parameters. Our nonlinear dynamic model class is based on recently

developed observation driven score models for time-varying parameters. We have

shown that the nonlinear dynamic model is optimal in an information theoretic

updating sense and performs well in finite sample Monte Carlo exercises. We

also have developed the asymptotic theory for the maximum likelihood estimator

of the static parameter vector. In an empirical illustration for a macroeconomic

time series, our most basic nonlinear dynamic model outperforms the well-known

threshold and smooth-transition autoregressive models, in both in-sample fit and

out-of-sample forecasting.
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A Proofs of Theorems and Propositions

A.1 Proof of Theorem 1
Proof. Let (C(Θ,F), ‖ · ‖Θ) be a separable Banach space under compact Θ by application

of the Arzelá–Ascoli theorem to obtain completeness and the Stone-Weierstrass theorem for

separability. We obtain the uniform e.a.s. convergence of the filter

sup
θ∈Θ
|ft(y1:t−1,θ, f1)− ft(yt−1,θ)| e.a.s.→ 0

from Bougerol (1993, Theorem 3.1) which applies to the sequence {ft(y1:t−1, ·, fΘ
1 )}t∈N with

elements ft(y1:t−1, ·, fΘ
1 ) taking values in the separable Banach space FΘ ⊆ (C(Θ,F), ‖ · ‖Θ)

with initialization fΘ
1 in C(Θ,F) at t = 1, fΘ

1 (θ) = f1 ∀ θ ∈ Θ, and generated according to

ft(y1:t, ·, fΘ
1 ) = φt

(
ft(y1:t−1, ·, fΘ

1 )
)
∀ t ∈ N,

where {φt}t∈Z is here a sequence of stochastic recurrence equations φt : Ξ × C(Θ,F) →

C(Θ,F) ∀ t as in Straumann and Mikosch (2006, Proposition 3.12). The SE nature of {yt}t∈Z
and the continuity of φ on F ×Y2 ×Θ, implied by s ∈ C(F ×Y2 ×Θ), ensures that {φt}t∈Z is

SE by Krengel (1985, Proposition 4.3).

Condition C1 in Bougerol (1993, Theorem 3.1) follows immediately from the moment bound

E ln+ supθ∈Θ |s(f1, yt, yt−1,θ)| <∞ by a simple norm sub-additivity. Similarly, the log moment

bound E ln+ supθ∈Θ |s(f1, yt, yt−1,θ)| <∞ implies E log+ ‖φ0(fΘ)− fΘ‖nfΘ <∞.

For any pair (fΘ, f
′Θ) ∈ C(Θ)× C(Θ), define

ρt = ρ(φt) = sup
(fΘ,f ′Θ)∈FΘ×FΘ

‖φt(fΘ)− φt(f
′Θ)‖Θ

‖fΘ − f ′Θ‖Θ
.

Condition C2 in Bougerol (1993, Theorem 3.1) holds if E ln ρt < 0 and this is ensured by
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E ln supθ∈Θ φ̄
′
t,1(θ) = E ln supθ∈Θ φ̄

′
1,1(θ) < 0 because

E ln ρ(φt) := E ln sup
(fΘ,f ′Θ)∈FΘ×FΘ⊆C(Θ,F)×C(Θ,F):‖fΘ−f ′Θ)‖>0

‖φt(fΘ)− φt(f
′Θ)‖Θ

‖fΘ − f ′Θ‖Θ

= E ln sup
(fΘ,f ′Θ)∈FΘ×FΘ:‖fΘ−f ′Θ)‖>0

supθ∈Θ |φ(f(θ, f1), yt, yt−1,θ)− φ(f ′(θ, f1), yt, yt−1,θ)|
supθ∈Θ |f(θ, f1)− f ′(θ, f1)|

≤ E ln sup
(f,f ′)∈FΘ×FΘ:‖fΘ−f ′Θ)‖>0

supθ∈Θ φ̄
′
t,1(θ) supθ∈Θ |f(θ, f1)− f ′(θ, f1)|

supθ∈Θ |f(θ, f1)− f ′(θ, f1)|

= E ln sup
θ∈Θ

φ̄′t,1(θ) < 0.

and since E ln ρ1 ≤ E ln supθ∈Θ φ̄
′
1,1(θ) < 0 < ∞ and E ln ρ(φJ ◦ . . . ◦ φ1) ≤ E ln

∏J
j=1 ρj ≤

E
∑J
j=1 ln φ̄′1,1(θ) < 0. As a result, we conclude that

sup
θ∈Θ
|ft(y1:t−1,θ, f1)− ft(y1:t−1,θ)| e.a.s.→ 0;

i.e. {ft(·, f1)}t∈N converges e.a.s. to an SE solution {ft(·)}t∈Z in ‖ · ‖Θ-norm. Uniqueness and

e.a.s. convergence is obtained in Straumann and Mikosch (2006, Theorem 2.8).

Finally, the moment bounds

sup
t

E sup
θ∈Θ
|ft(y1:t−1,θ, f1)|nf <∞ and E sup

θ∈Θ
|ft(y1:t−1,θ)|nf <∞

are obtained by noting that

sup
t

E sup
θ∈Θ
|ft(y1:t−1,θ, f1)|nf <∞

if and only if

sup
t

(E sup
θ∈Θ
|ft(y1:t−1,θ, f1)|nf )1/nf = sup

t
‖ft(·, f1)‖Θnf <∞,

and that, for any fΘ ∈ C(Θ,F), having ‖ft(·, f1) − fΘ‖Θnf < ∞ implies ‖ft(·, fΘ
1 )‖Θnf < ∞

since continuity on the compact Θ implies supθ∈Θ |f(θ)| < ∞. The moment bound can then

be obtained by a simple adaptation of the proof of Propositions SA.1 and SA.2 in Blasques at

al. (2014b). In particular, obtain the moment bound by noting that there exists ¯̄φ < ∞ and

f̄ <∞ such that

sup
t
‖ft(·, fΘ

1 )− fΘ‖Θnf ≤ c̄ sup
t
‖ft(·, fΘ

1 )− fΘ‖Θnf +A
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with c̄ = supθ∈Θ φ̄
′(θ), A = c̄ supθ∈Θ |ft − fΘ(θ)|+ ¯̄φ+ f̄ = (c̄+ 1)f̄ + ¯̄φ, and hence,

sup
t
‖ft(·, fΘ

1 )− fΘ‖Θnf ≤
t∑

j=0
(c̄)j((c̄+ 1)f̄ + ¯̄φ) + c̄t+1 sup

t
‖fΘ

1 − fΘ‖Θnf

≤ (c̄+ 1)f̄ + ¯̄φ
1− c̄ + ‖fΘ

1 − fΘ‖Θnf <∞.

For the convenience of the reader, a detailed proof is made available in the technical appendix.

A.2 Proof of Theorem 2
Proof. Assumption 3 implies that the `T (θ, f1) = (1/T )

∑T
t=2 `t(θ, f1) is a.s. continuous in

θ ∈ Θ through continuity of each

`t(θ, f1) = `(yt, ft(yt−1, f1,θ),θ) = pu(yt − h(ft(yt−1, f1,θ))yt−1,θ)

ensured in turn by the differentiability of pu and h and the implied a.s.c. of

∇(yt, ft(yt−1, f1,θ);θ) = ∂ log pu(yt − h(ft)yt−1)/∂f

in (ft(yt−1, f1,θ);θ) and the resulting c. of ft(yt−1, f1,θ) in θ as a composition of t continuous

maps. Together with the compactness of Θ this implies by Weierstrass’ theorem that the

arg max set is non-empty a.s. and hence that θ̂T exists a.s. ∀T ∈ N. Assumption 3 implies

also by a similar argument that `T (θ, f1) = `
(
yt, fT (yt−1, f1,θ),θ

)
is continuous in yt ∀ θ ∈ Θ

and hence measurable w.r.t. a Borel σ-algebra. The measurability of θ̂T follows from White

(1994, Theorem 2.11) or Gallant and White (1988, Lemma 2.1, Theorem 2.2).

A.3 Proof of Theorem 3
Proof. We obtain θ̂T (f1) a.s.→ θ0 from the uniform convergence of the log likelihood function

sup
θ∈Θ
|`T (θ, f1)− `∞(θ)| a.s.→ 0 ∀ f1 ∈ F as T →∞ (19)
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and the identifiable uniqueness of the maximizer θ0 ∈ Θ introduced in White (1994),

sup
θ:‖θ−θ0‖>ε

`∞(θ) < `∞(θ0) ∀ ε > 0. (20)

See White (1994, Theorem 3.4) or Theorem 3.3 in Gallant and White (1988) for a proof of

consistency based on (19) and (20).

We obtain(19) by noting that

sup
θ∈Θ
|`T (θ, f1)− `∞(θ)| ≤ sup

θ∈Θ
|`T (θ, f1)− `T (θ)|+ sup

θ∈Θ
|`T (θ)− `∞(θ)| (21)

and then showing that both terms on the right hand side of the inequality vanish.

By continuity, the first term in (21) vanishes almost surely if

sup
θ∈Θ
|`t(θ, f1)− `t(θ)| a.s.→ 0 as t→∞.

The continuity of pu ensures that

`t(·, f1) = `(ft(yt, ·, f1), yt, yt−1, ·)

has ` continuous in (ft(yt, ·, f1), yt, yt−1). Since all the assumptions of Theorem 1 are satisfied

we know that there exists a unique SE sequence {ft(yt, ·))}t∈Z with elements taking values in

C(Θ,F) such that

sup
θ∈Θ

∣∣(ft(yt−1, f1,θ), yt, yt−1)− (ft(yt,θ), yt, yt−1)
∣∣ a.s.→ 0

and supt E supθ∈Θ |ft(yt−1, f1,θ)|nf <∞ and E supθ∈Θ |ft(yt,θ)|nf <∞ with nf ≥ 1. Hence,

the application of a continuous mapping theorem for ` : C(Θ,F)→ C(Θ,F) yields the desired

result.

The second term in (21) vanishes by applying the ergodic theorem for separable Banach

spaces in Rao (1962) to the likelihood sequence {`T (·)} with elements taking values in C(Θ,R).

Subsequently, the SE nature of {`T }t∈Z is implied by the continuity of ` on the SE sequence

{(yt, yt−1, ft(yt−1, ·))}t∈Z and by the Proposition 4.3 in Krengel (1985) The moment bound

E supθ∈Θ |`t(θ)| <∞ is implied by E|yt|ny <∞, supθ∈Θ E|ft(yt−1,θ)|nf <∞ ∀ θ ∈ Θ and the

36



moment preserving conditions of Assumption 5 which ensures

sup
θ∈Θ

E|h(ft(yt−1,θ))|nh <∞ ∀ θ ∈ Θ

and hence

sup
θ∈Θ

E|yt − h(ft(yt−1,θ))yt−1|n <∞ ∀ θ ∈ Θ

with n = min{ny, nynh/(ny + nh)}, by a generalized Holder inequality. As a result, by As-

sumption 5,

sup
θ∈Θ

E| log pu(yt − h(ft(yt−1,θ))yt−1)| <∞ ∀ θ ∈ Θ

and the ULLN supθ∈Θ |`T (θ)− E`t(θ)| a.s.→ 0 as T →∞ follows.

Finally, the identifiable uniqueness (see e.g. White (1994)) of θ0 ∈ Θ in (20) is ensured by

the uniqueness of θ0 as the maximizer of the likelihood, the compactness of Θ, and the continuity

of the limit likelihood function E`t(θ) in θ ∈ Θ which is obtained from the continuity of `T in

θ ∈ Θ ∀ T ∈ N and the uniform convergence in (19).

A.4 Proof of Theorem 4
Proof. Asymptotic normality is obtain from (see e.g. White (1994, Theorem 6.2) for a proof):

(i) the consistency of θ̂T
a.s.→ θ0 ∈ int(Θ); (ii) the a.s. twice continuous differentiability of

`T (θ, f1) in θ ∈ Θ; (iii) the asymptotic normality of the score

√
T`′T

(
θ0,f

(0:1)
1 ) d→ N(0, J(θ0)

)
as T →∞ where J(θ0) = E

(
`′t
(
θ0)
)2; (22)

(iv) the uniform convergence of the likelihood’s second derivative,

sup
θ∈Θ

∥∥`′′T (θ,f (0:2)
1 )− `′′∞(θ)

∥∥
R16

a.s.→ 0 as T →∞ ; (23)

and finally, (v) the non-singularity of the limit `′′∞(θ) = E`′′t (θ) = I(θ).

(i) follows by Theorem 3 and the additional assumption that θ0 ∈ int(Θ).

(ii) follows from Assumption 3.

(iii) follows by Theorem 18.10[iv] in van der Vaart (2000) by showing that,

‖`′T
(
θ0,f

(0:1)
1 )− `′T

(
θ0)‖R4

e.a.s.→ 0 as T →∞ (24)
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to conclude that

‖
√
T`′T

(
θ0,f

(0:1)
1 )−

√
T`′T

(
θ0)‖R4 =

√
T‖`′T

(
θ0,f

(0:1)
1 )− `′T

(
θ0)‖R4

a.s.→ 0 as T →∞

and applying the CLT for SE martingales in Billingsley (1961) to obtain

√
T`′T

(
θ0) d→ N(0, I(θ0)

)
as T →∞ where I(θ0) = E

(
`′t
(
θ0, f1)

)2
. (25)

The e.a.s. convergence in (24) follows from

|ft(yt−1,θ0, f1)− ft(yt−1,θ0)| e.a.s.→ 0

and

‖f (1)
t (yt−1,θ0,f

(0:1)
1 )− f (1)

t (yt−1,θ0)‖R4
e.a.s.→ 0

which are both implied by the conditions of Theorem 1; see the technical appendix and Blasques

et al. (2014b) for further details on the e.a.s. convergence of the derivative process. The con-

vexity of F and the differentiability of the likelihood function

`′t(θ,f
(0:1)
1 ) = `′(yt,f (0:1)

t (yt−1,θ,f
(0:1)
1 ))

allows us to employ the mean-value theorem

‖`′T
(
θ0,f

(0:1)
1 )− `′T

(
θ0)‖R4 ≤

5∑
i=1

∣∣∣∂`′(yt, f̂ (0:1)
t )

∂f

∣∣∣∣∣f (0:1)
j,t (yt−1,θ0,f

(0:1)
1 )− f (0:1)

j,t (yt−1,θ0)
∣∣

=
5∑
i=1

Op(1)oe.a.s(1) = oe.a.s.(1)

where f (0:1)
j,t denotes the j-th element of f (0:1)

t and hence vanishes e.a.s.. The probability bound

∣∣∂`′(yt, f̂ (0:1)
t )/∂f

∣∣ = Op(1)

is implied by the moment bound E
∣∣∂`′(yt, f̂ (0:1)

t )/∂f
∣∣ < ∞. The CLT in (25) finally follows

from Billingsley (1961) since {`′T
(
θ0)}t∈Z is an SE martingale sequence with E

(
`′T
(
θ0)
)2
<∞.
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(iv) is obtained by noting that

sup
θ∈Θ
‖`′′T (θ, f1)− `′′∞(θ)‖R16 ≤ sup

θ∈Θ
‖`′′T (θ, f1)− `′′T (θ)‖R16 + sup

θ∈Θ
‖`′′T (θ)− `′′∞(θ)‖R16

then showing that both terms on the right hand side vanish a.s. and applying the ergodic the-

orem for separable Banach spaces in Rao (1962) (see also Straumann and Mikosch (2006, Theo-

rem 2.7)) to the sequence {`′′T (·)} with elements taking values in C(Θ,R16) so that supθ∈Θ ‖`′′T (θ)−

`′′∞(θ)‖R16
a.s.→ 0 where `′′∞(θ) = E`′′t (θ) ∀ θ ∈ Θ.

The first term satisfies supθ∈Θ ‖`′′t (θ, f1)− `′′t (θ)‖R16
a.s.→ 0 as t→∞. The smoothness con-

ditions in Assumption 4 ensure that `′′t (·, f1) = `′′(yt,f (0:2)
t (yt−1, ·,f0:2), ·) with `′′ continuous

in (yt,f (0:2)
t (yt−1, ·,f0:2)). Under the conditions of Theorem 1, we know that there exists a

unique SE sequence {f (0:2)
t (yt−1, ·)}t∈Z with elements taking values in C(Θ,F (0:i)) such that

supθ∈Θ
∥∥(yt,f (0:2)

t (yt−1,θ,f0:2)) − (yt,f (0:2)
t (yt−1,θ)

∥∥ a.s.→ 0; see the technical appendix and

Blasques et al. (2014b) for further details. Hence, the desired result is obtained by application

of a continuous mapping theorem for `′′ : C(Θ,F (0:2))→ C(Θ,F (0:2)).

The ULLN supθ∈Θ ‖`′′T (θ)−E`′′t (θ)‖R16
a.s.→ 0 as T →∞ follows, under the moment bound

E supθ∈Θ ‖`′′t (θ)‖R16 <∞, by the SE nature of {`′′T }t∈Z which is implied by continuity of `′′ on

the SE sequence {(yt, ft(yt−1, ·))}t∈Z and Proposition 4.3 in Krengel (1985).

(v) is implied by the uniqueness of θ0 as a maximum of the limit likelihood.

B Extensions to Non-Local Optimality

Lemma 3. Let Assumptions 1 and 2 hold. Then, the score update is locally RKL optimal given

yt−1 for every pt if

α >
|ω + (β − 1)f̃t|

S(f̃t, yt−1;θ)|∇̃(f̃t, yt, yt−1;θ)|
. (26)

Furthermore, the score update is locally CKL optimal given yt−1 for every pt if

α >
Et−1
Yf
|∇̃(f̃t, yt, yt−1;θ)|

S(f̃t, yt−1;θ)Et−1
Yf
|∇̃(f̃t, yt, yt−1;θ)|2

|ω + (β − 1)f̃t|, (27)

with Et−1
Yf
|∇̃(f̃t, yt, yt−1;θ)| =

∫
Yf

p(yt|ft) |∇̃(f̃t, y, yt−1;θ)|dy

and Yf := {y ∈ R : |φ(f̃t, y, yt−1;θ)− f̃t| < δf}.
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For any given value of α, the larger the absolute value of the scaled score S(f̃t;θ)|∇̃(f̃t, yt, yt−1;θ)|,

the more likely it is that the realized step is locally optimal. Similarly, the closer ω is to 0 or

β is to one (which corresponds to the Newton-score update), the easier it is to obtain local

optimality.

Example 1. For Model I the local RKL optimality condition in (26) reduces to

α > σ2 |ω + (β − 1)f̃t|
|(yt−1 − f̃t−1yt−2)yt−2|

, (28)

and the local CKL optimality condition in (27) is given by

α >
Et−1
Yf
|(yt−1 − f̃t−1yt−2)yt−2|

Et−1
Yf
|(yt−1 − f̃t−1yt−2)yt−2|2

|ω + (β − 1)f̃t|. (29)

C Proofs of Optimality Lemmas

Proof of Proposition 1. This proof follows closely that in Blasques et al. (2014), but extends

it by allowing the scaling, the score and all conditional densities to depend on yt−1. In this

sense, the derived result is also different as it obtains optimality conditional on yt−1. Note also

that this proof could be made considerably shorter by adopting a different method of proof.

However, the present method of proof allows us to reduce the length of all subsequent proofs

since we can borrow substantially from the expressions derived here.

By a repeated application of the mean value theorem to p̃(y|f̃t+1, yt−1;θ) and ∇̃t(f̃∗t+1, yt, yt−1;θ),

and using the form of the Newton-GAS update f̃t+1 − f̃t = αS(f̃t, yt−1;θ)∇̃(f̃t, yt, yt−1;θ), we
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obtain CKL optimality if

∫
Yδy (yt)

p(y|ft, yt−1) ln p̃(y|f̃t;θ)
p̃(y|f̃t+1, yt−1;θ)

dy

= −
∫
Yδy (yt)

p(y|ft, yt−1)
∂ ln p̃(y|f̃∗t+1;θ)

∂f
(f̃t+1 − f̃t)dy

= −
∫
Yδy (yt)

p(y|ft, yt−1)∇̃(f̃∗t+1, y, yt−1;θ) αS(f̃t;θ)∇̃(f̃t, yt, yt−1;θ)dy

= −
∫
Yδy (yt)

p(y|ft, yt−1)αS(f̃t;θ)
(
∇̃(f̃t, yt, yt−1;θ)

)2dy (30)

−
∫
Yδy (yt)

p(y|ft, yt−1)αS(f̃t;θ)∇̃(f̃t, yt, yt−1;θ)
∂∇̃(f̃∗∗t+1, y

∗∗
t ;θ)

∂y
(yt − y)dy

−
∫
Yδy (yt)

p(y|ft, yt−1)αS(f̃t;θ)∇̃(f̃t, yt, yt−1;θ)
∂∇̃(f̃∗∗t+1, y

∗∗
t ;θ)

∂f
(f̃∗t+1 − f̃t)dy < 0,

=: −
∫
Yδy (yt)

p(y|ft, yt−1)αS(f̃t;θ)
(
∇̃(f̃t, yt, yt−1;θ)

)2dy +A(δf , δy) +B(δf , δy), (31)

where f̃∗t+1 is a point between f̃t+1 and f̃t, f̃∗∗t+1 is a point between f̃∗t+1 and f̃t, y∗∗t is a point

between yt and y, and A(δf , δy) and B(δf , δy) in (31) are equal to the second and third term

of (30), respectively. From Assumptions 1 and 2 we obtain αS(f̃t;θ)
(
∇̃(f̃t, yt, yt−1;θ)

)2
> 0

almost surely, such that for every f̃t and pt, ∃γ < 0 such that

−
∫
Yδy (yt)

p(y|ft, yt−1)αS(f̃t;θ)
(
∇̃(f̃t, yt, yt−1;θ)

)2dy ≤ γ < 0.

The desired result now follows by noting that second and third term in (30) can be made

arbitrarily small compared to the first term due to the differentiability of the score and the

compactness of Yδy (yt); see the working paper version for more details.

The proof for local CKL-optimality follows immediately by a similar argument using the

assumption that f̃t+1 is a continuous random variable with a density. More details can be found

in the working paper version of this paper.

Proof of Proposition 2. Let f̃t+1−f̃t = φ(f̃t, yt, yt−1;θ)−φ(f̃t−1, yt−1;θ) = ∆φ(f̃t, yt, yt−1;θ).

We follow the same line of proof as for Proposition 1. To prove the ‘if’ part, we write the local
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RKL variation is for any given pt as

−
∫
Yδy (yt)
p(y|ft, yt−1)

∂ ln p̃(y|f̃∗t+1;θ)
∂f

(f̃t+1 − f̃t)dy

= −
∫
Yδy (yt)

p(y|ft, yt−1)∇̃(f̃∗t+1, y, yt−1;θ)∆φ(f̃t, yt, yt−1;θ)dy.

Using the definition of a score-equivalent update and by the same argument as in the proof

of Proposition 1, we have that for sufficiently small δy

sign(∇̃(f̃∗t+1, y, yt−1;θ)) = sign(∆φ(f̃t, yt, yt−1;θ)) ∀ (f, y) ∈ Fδf (f̃t)× Yδy (yt),

and hence ∫
Yδy (yt)

p(y|ft, yt−1)∇̃(f̃∗t+1, y, yt−1;θ)∆φ(f̃t, yt, yt−1;θ)dy > 0. (32)

This implies that (C) is strictly negative under the regularity conditions of Assumptions 1 and

2. A similar argument holds for CKL variation by taking a subsequent expectation over f̃t+1

given f̃t and ft.

To prove the ‘only if’ part, suppose that the update f̃t+1 = φ(f̃t, yt, yt−1;θ) is not score-

equivalent. Then, by Assumption 1, there must exists an open set FY ⊆ F × R such that

sign(∇̃(f, y, yt−1;θ)) 6= sign(∆φ(f, y, yt−1;θ)) for all (f, y) ∈ FY . This implies in turn that for

sufficiently small δy we get ∇̃(f̃∗t+1, y, yt−1;θ)∆φ(f̃t, yt, yt−1;θ) < 0 for all (f, y) ∈ FY . Hence,

by Assumption 1, ∃δy > 0 such that

∫
Yδy (yt)

p(y|ft, yt−1)∇̃(f̃∗t+1, y, yt−1;θ)∆φ(f̃t, yt, yt−1;θ)dy < 0.

We thus conclude that an update that is not score equivalent is not RKL optimal regardless of

pt. By Assumption 1, the result extends immediately to CKL optimality.
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Proof of Proposition 3. As in the proof of Proposition 1, we require

∆t|t = −
∫
Y

p(y|ft, yt−1)∇̃(f̃∗t , y, yt−1;θ)(f̃t+1 − f̃t)dy

= −
∫
Y

p(y|ft, yt−1)∇̃(y|f̃∗t , yt−1)(ω + αS(f̃t;θ)∇̃(ft, y, yt−1;θ) + (β − 1)f̃t)dy

= −
∫
Y

p(y|ft, yt−1)∇̃(f̃t, yt, yt−1;θ)(ω + (β − 1)f̃t)dy (33)

−
∫
Y

p(y|ft, yt−1)αS(f̃t;θ)∇̃(f̃t, yt, yt−1;θ)2dy +A(δy, δf ) < 0

where A(δy, δf ) is an appropriate remainder term as in the proof of Proposition 1, which can

be made arbitrarily small by the selecting small enough values for (δy, δf ). The second term in

(33) is surely strictly negative, whereas the first term may not be. As a result, for small enough

(δy, δf ) we obtain the desired inequality if

αS(f̃t;θ)∇̃(yt|f̃t))2 > |∇̃(f̃t, yt, yt−1;θ)| |ω + (β − 1)f̃t| ⇔ α >
|ω + (β − 1)f̃t|

S(f̃t;θ)|∇̃(f̃t, yt, yt−1;θ)|
.

The proof for local CKL optimality follows by a similar same argument and taking additional

local expectations with respect to f̃t+1 given f̃t and ft.

D Additional Results on the Stochastic Properties of

the Filtered Sequence

Below we provide some details on the derivation of the moment bounds that have been omitted

in the proof of Theorem 1.

Proof. The moment bounds supt E supθ∈Θ |ft(y1:t−1,θ, f1)|nf <∞ and E supθ∈Θ |ft(y1:t−1,θ)|nf <

∞ are obtained by noting that

sup
t

E sup
θ∈Θ
|ft(y1:t−1,θ, f1)|nf <∞

if and only if

sup
t

(E sup
θ∈Θ
|ft(y1:t−1,θ, f1)|nf )1/nf = sup

t
‖ft(·, f1)‖Θnf <∞,

and that, for any fΘ ∈ C(Θ,F), having ‖ft(·, f1) − fΘ‖Θnf < ∞ implies ‖ft(·, fΘ
1 )‖Θnf < ∞

since continuity on the compact Θ implies supθ∈Θ |f(θ)| < ∞. Now, since we have shown
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above that ∃ fΘ = φ(y, f, fΘ
∗ , ·) ∈ C(Θ,F) satisfying ‖φ(yt, yt−1, f

Θ, ·)‖Θnf ≤
¯̄φ < ∞ and

‖fΘ
1 − fΘ‖Θnf = ‖fΘ

1 − φ(fΘ
∗ , y, f, ·)‖Θnf <∞, then

sup
t
‖ft(·, fΘ

1 )− fΘ‖Θnf =

sup
t
‖φ(yt, yt−1, ft(·, fΘ

1 ), ·)− φ(y, f, fΘ
∗ , ·)‖Θnf

≤ sup
t
‖φ(yt, yt−1, ft(·, fΘ

1 ), ·)− φ(yt, yt−1, f
Θ
∗ , ·)‖Θnf

+ sup
t
‖φ(yt, yt−1, f

Θ
∗ , ·)‖Θnf + sup

θ∈Θ
|φ(y, f, fΘ

∗ , ·)|

≤ sup
t

(
E sup

θ∈Θ
|ft(y1:t−1,θ, f1)− fΘ(θ)|nf

× sup
θ∈Θ

|φ(yt, yt−1, ft(y1:t−1,θ, fΘ
1 ),θ)− φ(yt, yt−1, f

Θ
∗ (θ),θ)|nf

|ft(y1:t−1,θ, fΘ
1 )− fΘ(θ)|nf

)1/nf

+ sup
t
‖φ(yt, yt−1, f

Θ
∗ , ·)‖Θnf + sup

θ∈Θ
|fΘ(θ)|

≤ sup
t

(
E sup

θ∈Θ
|ft(y1:t−1,θ, f1)− fΘ(θ)|nf

× sup
θ∈Θ

sup
(fΘ,f ′Θ)∈C(Θ,F)×C(Θ,F):‖fΘ−f ′Θ‖Θ>0

|φ(yt, yt−1, f
Θ(θ),θ)− φ(yt, yt−1, f

′Θ(θ),θ)|nf
|fΘ(θ)− f ′Θ(θ)|nf

)1/nf

+ sup
t
‖φ(yt, yt−1, f

Θ
∗ , ·)‖Θnf + sup

θ∈Θ
|fΘ(θ)|

≤ sup
t

(
E sup

θ∈Θ
|ft(y1:t−1,θ, f1)− fΘ(θ)|nf

× sup
θ∈Θ

sup
(fΘ,f ′Θ)∈C(Θ,F)×C(Θ,F):‖fΘ−f ′Θ‖Θ>0

φ̄′t+1,nf (θ)|fΘ(θ)− f ′Θ(θ)|nf

|fΘ(θ)− f ′Θ(θ)|nf
)1/nf

+ sup
t
‖φ(yt, yt−1, f

Θ
∗ , ·)‖Θnf + sup

θ∈Θ
|fΘ(θ)|

≤ sup
t

(
E sup

θ∈Θ
|ft(y1:t−1,θ, f1)− fΘ(θ)|nf

)1/nf
E sup

θ∈Θ
φ̄′t+1,nf (θ)

+ sup
t
‖φ(yt, yt−1, f

Θ
∗ , ·)‖Θnf + sup

θ∈Θ
|fΘ(θ)|

≤
(

sup
t
‖ft(·, xΘ

1 )− fΘ‖Θnf + ‖fΘ − fΘ(θ)(·)‖Θnf
)
E sup

θ∈Θ
φ̄′(θ) + ¯̄φ+ f̄ ,

with ¯̄φ < ∞ and f̄ < ∞ and the thus yielding the recursion supt ‖ft(·, fΘ
1 ) − fΘ‖Θnf ≤

c̄ supt ‖ft(·, fΘ
1 ) − fΘ‖Θnf + A, with c̄ = supθ∈Θ φ̄

′(θ), A = c̄ supθ∈Θ |ft − fΘ(θ)| + ¯̄φ + f̄ =
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(c̄+ 1)f̄ + ¯̄φ, and hence,

sup
t
‖ft(·, fΘ

1 )− fΘ‖Θnf ≤
t∑

j=0
(c̄)j((c̄+ 1)f̄ + ¯̄φ) + c̄t+1 sup

t
‖fΘ

1 − fΘ‖Θnf

≤ (c̄+ 1)f̄ + ¯̄φ
1− c̄ + ‖fΘ

1 − fΘ‖Θnf <∞.

The following proposition derives a subset of Θ over which the contractions on φ̄t,k(θ) hold

true. These contractions are used in the paper to establish the exponential fast convergence of

the filter to an asymptotic SE sequence.

Proposition 1. Let s̄′t,k(λ) denote the expected score supremum

s̄′t,k(λ) := E sup
f∈F

∣∣∣∂s(f, yt, yt−1,θ)
∂f

∣∣∣.
If s̄′t,k(λ) <∞ holds for every λ ∈ Λ ⊆ R, then the contraction conditions

E sup
(f,f ′)∈F×F :f 6=f ′

|φt(f)− φt(f ′)|
|f − f ′|

< 1

and Eφ̄t,k(θ) < 1 = E sup
f∈F

∣∣∣α∂s(f, yt, yt−1, λ)
∂f

+ β
∣∣∣k < 1

holds, for k = 1, on the subset Θ∗ of Θ given by,{
(ω, α, β, λ) ∈ R× R× (−1, 1)× R : |α| < 1− |β|

s̄′t,1(λ)

}
.

and for k = n ≥ 1 on the subset Θ∗∗ of Θ given by,{
(ω, α, β, λ) ∈ R× R× (−1, 1)× R :

n∑
k=0

(
n

k

)
|α|ks̄′u,k(λ)|β|n−k < 1

}
.

Proof. Since s ∈ C(0,1,0)(U × F × Λ) and F is convex, by the mean value theorem, ∀ (f, f ′) ∈

F × F ∃ f∗ ∈ F such that

|φ(yt, f,θ)− φ(yt, yt−1, f
′,θ)|

|f − f ′|
=
∣∣∣∂φ(yt, yt−1, f

∗,θ)
∂f

∣∣∣
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and hence for ∀ (k, f, f ′) ∃ f∗ such that

|φ(yt, f,θ)− φ(yt, f ′,θ)|k

|f − f ′|k
=
∣∣∣∂φ(yt, f∗,θ)

∂f

∣∣∣k
and

E sup
(f,f ′)∈F×F

|φ(yt, f,θ)− φ(yt, yt−1, f
′,θ)|k

|f − f ′|k
≤ E sup

f∗∈F

∣∣∣∂φ(yt, yt−1, f
∗,θ)

∂f

∣∣∣k.
As a result, condition (ii) in Proposition 1 stating that

E sup
(f,f ′)∈F×F

|φ(yt, yt−1, f,θ)− φ(yt, yt−1, f
′,θ)|k

|f − f ′|k
≤ φ̄′k(θ) < 1 ∀ θ ∈ Θ (34)

is trivially implied by having,

E sup
f∗∈F

∣∣∣∂φ(yt, yt−1, f
∗,θ)

∂f

∣∣∣k = E sup
f∗∈F

∣∣∣α∂s(yt, yt−1, f
∗;λ)

∂f
+ β

∣∣∣k ≤ s̄t,k(λ) < 1 (35)

∀ θ ∈ Θ, and which, for k = 1, is surely satisfied by every θ in the set{
(ω, α, β, λ) ∈ R× R× (−1, 1)× R : |α| < 1− |β|

s̄′′t,1(λ)

}
.

Now for k = n ≥ 1 we have by the Binomial theorem that,

E sup
f∈F

∣∣∣α∂s(yt, yt−1, f ;λ)
∂f

+ β
∣∣∣n ≤ E sup

f∈F

(
|α|
∣∣∣∂s(yt, yt−1, f ;λ)

∂f

∣∣∣+ |β|
)n

≤ E sup
f∈F

n∑
k=0

(
n

k

)
|α|k

∣∣∣∂s(yt, yt−1, f ;λ)
∂f

∣∣∣k|β|n−k
≤

n∑
k=0

(
n

k

)
|α|k

∣∣∣E sup
f∈F

∂s(yt, yt−1, f ;λ)
∂f

∣∣∣k|β|n−k
≤

n∑
k=0

(
n

k

)
|α|ks̄′t,k(λ)|β|n−k

Hence, the inequality in (35) holds for every θ such that

n∑
k=0

(
n

k

)
|α|ks̄′t,k(λ)|β|n−k < 1.
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E Technical Appendix

E.1 Supporting Results for Asymptotic Normality
For the asymptotic normality of the ML estimator we will use uniform laws of large numbers

for the first two derivative of the likelihood, and a central limit theorem for the score. The first

and second derivatives of the likelihood are given by,

`′T (θ, f0:1
1 ) = − 1

T

T∑
t=1

(
yt−1h

′
tf

(1)
t p

(1,0)
u,t + p

(0,1)
u,t

)
(pu,t)−1

and

`′′T (θ, f0:2
1 ) = − 1

T

T∑
t=1

(
yt−1h

′′
t f

(1)
t f

(1)
t p

(1,0)
u,t + yt−1h

′
tf

(2)
t p

(1,0)
u,t −

(
yt−1h

′
tf

(1)
t

)2
p

(2,0)
u,t

+ yt−1h
′
tf

(1)
t p

(1,1)
u,t − yt−1h

′
tf

(1)
t p

(1,1)
u,t + p

(0,2)
u,t

)
(pu,t)−1

−
(
yt−1h

′
tf

(1)
t p

(1,0)
u,t + p

(0,1)
u,t

)
(pu,t)−2

(
yt−1h

′
tf

(1)
t p

(1,0)
u,t + p

(0,1)
u,t

)
= − 1

T

T∑
t=1

[(
yt−1h

′′
t f

(1)
t f

(1)
t p

(1,0)
u,t + yt−1h

′
tf

(2)
t p

(1,0)
u,t −

(
yt−1h

′
tf

(1)
t

)2
p

(2,0)
u,t + p

(0,2)
u,t

)
(pu,t)−1

−
(
yt−1h

′
tf

(1)
t p

(1,0)
u,t + p

(0,1)
u,t

)
(pu,t)−2

(
yt−1h

′
tf

(1)
t p

(1,0)
u,t + p

(0,1)
u,t

)]

where h′t = h(ft), pu,t = pu(ut;θ) = pu(yt − h(ft)yt−1;θ), p(1,0)
u,t = ∂pu(ut;θ)/∂ut, p(0,1)

u,t =

∂pu(ut;θ)/∂λ, p(2,0)
u,t = ∂2pu(ut;θ)/∂u2

t , p
(0,2)
u,t = ∂2pu(ut;θ)/∂u2

t , p
(1,1)
u,t = ∂2pu(ut;θ)/∂ut∂λ,

and where f (0:2)
t = (ft,f (1)

t ,f
(2)
t ) and f (0:1)

t = (ft,f (1)
t ) are collections of partial derivatives

f
(1)
t = ∂ft(yt−1,θ, f1)/∂θ and f (2)

t = ∂2ft(yt−1,θ, f1)/∂θ∂θ′.

In the Appendix, we show that the ith-derivative process {f (i)
t (yt−1,θ,f

(0:i)
1 )} of ft(yt−1,θ, f1)

with respect to θ satisfies the stochastic recurrence equation

f
(i)
t (yt−1,θ,f

(0:i)
1 ) = Ai,t(θ) +Bi,t(θ)f (i−1)

t (yt−1,θ,f
(0:i)
1 ) ∀ (i,θ, T ), (36)

where Ai,t(θ) and Bi,t(θ) are functions of f t(0:i−1), h and pu. Equation (36) allows us to

establish the SE properties of {f (i)
t (yt−1,θ,f

(0:i)
1 )} by studying the properties of {Ai,t(θ)} and

{Bi,t(θ)}.

For notational simplicity, we define the random derivative s(1,0)(f∗;λ) = ∂s(f∗, yt;λ)/∂f ,
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and its kth power supremum as

rkt (θ) = sup
f∗∈f∗

|β + α s(1,0)(f∗;λ)|k,

where F ⊆ f∗ ⊂ R. Theorem 2 also uses the definition

s(k)(f, yt;λ) = ∂k1+k2+k3s(f, yt;λ)/(∂fk1∂yk2
t ∂λ

k3),

with k = (k1, k2, k3). We also adopt the convention that nfs := n
(1,0,0)
s , nffs := n

(2,0,0)
s ,

nλs := n
(0,0,1)
s , nλλs := n

(0,0,2)
s and nfλs := n

(1,0,1)
s , and define n(1)

f = min
{
nf , ns, n

λ
s

}
and

n
(2)
f = min

{
n

(1)
f , nλs , n

λλ
s ,

nfsn
(1)
f

nfs + n
(1)
f

,
nffs n

(1)
f

2nffs + n
(1)
f

,
nfλs n

(1)
f

nfλs + n
(1)
f

}
.

Using this notation, we have the following proposition.

Proposition 2. Let Θ∗ ⊂ R3+nλ be compact and {yt}T∈Z be an SE sequence satisfying

E|yt|ny <∞ for some ny > 0. Suppose that s ∈ C(2,0,2)(F×Y×Λ∗) and s(k) ∈MΘ∗,Θ∗(n, n(k)
s ),

with Λ∗ = Θ∗ ∩ Λ, and n := (nf , ny). Assume n(1)
f > 0, n(2)

f > 0, and ∃ f ∈ F such that

(i) E ln+ supλ∈Λ∗ |s(f, yt;λ)| <∞;

(ii) E ln supθ∈Θ∗ r
1
1(θ) < 0.

Then, for i = 0, 1, 2, there exists a unique SE sequence {f (i)
t (yt−1,θ)}T∈Z, such that

sup
θ∈Θ∗

‖f (i)
t (yt−1,θ,f

(0:i)
1 )− f (i)

t (yt−1,θ)‖r e.a.s.→ 0 as T →∞.

If furthermore ∃ nf ≥ 1 such that nfd ≥ 1, nff ≥ 1 and

(iii) ‖s(f, yt;λ)‖nfΛ∗ <∞;

(iv) E supθ∈Θ∗ rnf (θ) < 1;

(v) ft(yt−1,θ, f1) ⊥ rnf (θ) ∀ (T,θ, f1).

Then supT ‖ft(yt−1,θ, f1)‖nfTheta∗ <∞, supT ‖ft(yt−1, f1)‖nfTheta∗ <∞,

supT ‖f
(i)
t (yt−1,θ,f

(0:i)
1 )‖

n
(i)
f

Θ∗ <∞, and ‖f (i)
t (yt−1,θ)‖

n
(i)
f

Θ∗ <∞ for i = 1, 2.

We have suppressed the dependence of s on λ in the moment preserving properties by

defining n := (nf , ny). We can do so without loss of generality, as we have assumed λ to be

non-stochastic such that all moments of λ exist.
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We can simplify the moment results in Proposition 2 substantially by writing the moments

nfd and nff for the first and second derivative processes in terms of a common minimum

moment bound that holds for all derivatives of s. We state this as a separate remark.

Remark 2. Let the assumptions of Proposition 2 hold with m = min{n(i,0,j)
s : (i, j) ∈ N2, i+

j ≤ 2}, then the moment bounds on the derivative processes hold with nfd = m and nff = m/3.

The bound in expectation in (ii) is sometimes difficult to handle. Remark 3 states that we

can ensure condition (ii) if we assume a uniform bound on the derivative of the score process.

Remark 3. If sup(f∗,yt;λ)∈f∗×Y×Θ∗ |β + α∂s(f∗, yt;λ)/∂f | < 1, we can drop conditions (iv)

and (v) in Proposition 2.

We also find that conditions (iii) and (iv) imply (i) and (ii), respectively.

E.2 Application to Industrial Production
Nonlinear models are known to perform better than linear models in explaining industrial

production data; see e.g. Teräsvirta, Tjøstheim, and Granger (2010). The relative better fit of

nonlinear models can be explained by a number of economic factors and empirical regularities

that have been the focus of study of economists since very early on. Indeed, as pointed out

by Granger and Terasvirta (1993, Chapters 8 and 9), already in the 30s Keynes (1936, p.314)

argued that economic contractions were shorter and more violent than economic expansions.

Burns and Mitchell (1946) took this as an empirical fact that linear models cannot reproduce.

Nonlinear autoregressive models such as TAR and STAR can however reproduce these empirical

regularities.

We adopt Model II to analyze the growth rate of US seasonally adjusted industrial produc-

tion index (2007=100) spanning from 1919 to 2013. Table ?? shows that Model II outperforms

both its linear and nonlinear competitors in log likelihood and AICc fit as we all the one-step-

ahead forecast RMSE.
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Industrial Production: Model Comparison

Model II TAR STAR AR(3)
Log Lik 3025.94 3020.07 3020.50 3020.84
AICc -6041.83 -6030.09 -6030.95 -6031.62

F-RMSE 0.560 0.564 0.563 0.880

Table 3: Log-likelihood, Akaike’s information criterion with finite sample correc-
tion and root mean squared errors for 1, 2 and 3 step-ahead forecasts of the growth
rate of US monthly seasonally adjusted industrial production index (2007=100)
reported by the Federal Reserve Bank of St. Louis.
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