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Abstract 

 

One of the most widely-used multivariate conditional volatility models is the dynamic 

conditional correlation (or DCC) specification. However, the underlying stochastic process to 

derive DCC has not yet been established, which has made problematic the derivation of 

asymptotic properties of the Quasi-Maximum Likelihood Estimators (QMLE). To date, the 

statistical properties of the QMLE of the DCC parameters have been derived under highly 

restrictive and unverifiable regularity conditions. The paper shows that the DCC model can be 

obtained from a vector random coefficient moving average process, and derives the stationarity 

and invertibility conditions. The derivation of DCC from a vector random coefficient moving 

average process raises three important issues: (i) demonstrates that DCC is, in fact, a dynamic 

conditional covariance model of the returns shocks rather than a dynamic conditional correlation 

model; (ii)  provides the motivation, which is presently missing, for standardization of the 

conditional covariance model to obtain the conditional correlation model; and (iii) shows that the 

appropriate ARCH or GARCH model for DCC is based on the standardized shocks rather than 

the returns shocks. The derivation of the regularity conditions should subsequently lead to a solid 

statistical foundation for the estimates of the DCC parameters. 

 

Keywords: Dynamic conditional correlation, dynamic conditional covariance, vector random 

coefficient moving average, stationarity, invertibility, asymptotic properties. 

 

JEL classifications: C22, C52, C58, G32. 
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1. Introduction 

 

Among multivariate conditional volatility models, the dynamic conditional correlation (or DCC) 

specification of Engle (2002) is one of the most widely used in practice. The basic DCC 

modelling approach has been as follows: (i) estimate the univariate conditional variances using 

the GARCH(1,1) model of Bollerslev (1986), which are based on the returns shocks; and (ii) 

estimate what is purported to be the conditional correlation matrix of the standardized residuals. 

The first step is entirely arbitrary as the conditional variances could just as easily be based on the 

standardized residuals themselves, as will be shown in Section 4 below. 

 

A similar comment applies to the varying conditional correlation model of Tse and Tsui (2002), 

where the first stage is based on a standard GARCH(1,1) model using returns shocks. The 

second stage is slightly different from the DCC formulation as the conditional correlations are 

defined appropriately. However, no regularity conditions are presented, and hence no statistical 

properties are given. 

 

The DCC model has been analyzed critically in a number of papers as its underlying stochastic 

process has not yet been established, which has made problematic the derivation of the 

asymptotic properties of the Quasi-Maximum Likelihood Estimators (QMLE). To date, the 

statistical properties of the QMLE of the DCC parameters have been derived under highly 

restrictive and unverifiable regularity conditions, which in essence amounts to proof by 

assumption. 

 

This paper shows that the DCC specification can be obtained from a vector random coefficient 

moving average process, and derives the conditions for stationarity and invertibility. The 

derivation of regularity conditions should subsequently lead to a solid statistical foundation for 

the estimates of the DCC parameters. 

 

The derivation of DCC from a vector random coefficient moving average process raises three 

important issues: (i) demonstrates that DCC is, in fact, a dynamic conditional covariance model 

of the returns shocks rather than a dynamic conditional correlation model; (ii)  provides the 
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motivation, which is presently missing, for standardization of the conditional covariance model 

to obtain the conditional correlation model; and (iii) shows that the appropriate ARCH or 

GARCH model for DCC is based on the standardized shocks rather than the returns shocks.  

 

The remainder of the paper organized is as follows. In Section 2, the standard ARCH model is 

derived from a random coefficient autoregressive process to provide a background for the 

remainder of the paper. In Section 3, the DCC model is discussed. Section 4 presents a vector 

random coefficient moving average process, from which DCC is derived in Section 5. The 

conditions for stationarity and invertibility are given in Section 6. Some concluding comments 

are given in Section 7. 

 

 

2. Random Coefficient Autoregressive Process 

 

Consider the following a random coefficient autoregressive process of order one: 

 

tttit   1           (1)  

 

where 

 

t  ~ iid ),0(  , 

t  ~ iid ),0(  . 

 

The ARCH(1) model of Engle (1982) can be derived as (see Tsay (1987)): 

 

2
11

2 )|(   tttt IEh  .        (2)  
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where th  is conditional volatility, and 1tI  is the information set at time t-1. The use of an 

infinite lag length for the random coefficient autoregressive process leads to the GARCH model 

of Bollerslev (1986).  

 

The scalar BEKK and diagonal BEKK models of Baba et al. (1985) and Engle and Kroner 

(1995), though not the Hadamard BEKK and full BEKK models, can be derived from a vector 

random coefficient autoregressive process (see McAleer et al. (2008)). As the statistical 

properties of vector random coefficient autoregressive processes are well known, the statistical 

properties of the parameter estimates of the ARCH, GARCH, scalar BEKK and diagonal BEKK 

models are straightforward to establish. 

 

 

3. DCC Specification 

 

Let the conditional mean of financial returns be given as: 

 

tttt IyEy   )|( 1           (3) 

 

where )'( ...,,1 mttt yyy  , ity  = itPlog  represents the log-difference in stock prices ( itP ), i = 

1,…,m, 1tI  is the information set at time t-1, and t  is conditionally heteroskedastic. Without 

distinguishing between dynamic conditional covariances and dynamic conditional correlations, 

Engle (2002) presented the DCC specification as: 

 

1
'

11)1(   tttt QQQ          (4)  

 

where Q  is assumed to be positive definite with unit elements along the main diagonal, the 

scalar parameters are assumed to satisfy the stability condition,   < 1, the standardized 
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shocks, )'( ...,,1 mttt   , which are not necessarily iid, are given as ititit h/   , with 

ttt D   , and tD  is a diagonal matrix with typical element ith , i = 1,…,m.  

 

As the matrix in equation (4) does not satisfy the definition of a correlation matrix, Engle (2002) 

uses the following standardization: 

 

2/12/1 ))(())((  tttt QdiagQQdiagR        (5) 

 

There is no clear explanation given in Engle (2002) for the standardization in equation (5) or, 

more recently, in Aielli (2013). The standardization in equation (5) might make sense if the 

matrix tQ  were the conditional covariance matrix of t  or , though this is not made clear. It 

is worth noting that the unconditional covariance matrix of t  is not analytically tractable. 

Despite the title of the paper, Aielli (2013) also does not provide any stationarity conditions for 

the DCC model, and does not mention invertibility. Indeed, in the literature on DCC, it is not 

clear whether equation (4) refers to a conditional covariance or a conditional correlation matrix. 

Some caveats regarding DCC are given in Caporin and McAleer (2013). 

 

 

4. Vector Random Coefficient Moving Average Process 

 

Marek (2005) proposed a linear moving average model with random coefficients (RCMA), and 

established the conditions for stationarity and invertibility. In this section, we derive the 

stationarity and invertibility conditions of a vector random coefficient moving average process. 

 

Consider a univariate random coefficient moving average process given by: 

 

tttt   1           (6)  

 

where  

t
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t ~  iid ),0(  .   

 

The conditional and unconditional expectations of t  are zero. The conditional variance of t  is 

given by: 

 

2
11

2 )|(   tttt IEh          (7) 

 

which differs from the ARCH(1) model in equation (2) in that the returns shock is replaced by 

the standardized shock. The use of an infinite lag length for the random coefficient moving 

average process in equation (6), with appropriate restrictions on t , would lead to a generalized 

ARCH model that differs from the GARCH model of Bollerslev (1986) as it would replace the 

returns shock with a standardized shock. 

 

The univariate ARCH(1) model in equation (7) is contained in the family of GARCH models 

proposed by Hentschel (1995), and the augmented GARCH model class of Duan (1997). 

 

It can be shown seen from the results in Marek (2005) that a sufficient condition for stationarity 

is that the vector sequence )',( 1 tttt   is stationary. Moreover, by Lemma 2.1 of Marek 

(2005), a sufficient condition for invertibility is that: 

 

  0log tE  .          (8) 

 

The stationarity of  and the invertibility condition in equation (8) are new 

results for the univariate ARCH(1) model given in equation (7), as well as its direct extension to 

GARCH models.  

 

)',( 1 tttt 
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Extending the analysis given above to the multivariate case and to a vector random coefficient 

moving average (RCMA) model of order p, we can derive a special case of DCC(p,q), namely 

DCC(p,0), as follows: 

 

t

p

j
jtjtt   




1

          (9) 

 

where  and  are both 1m  vectors and jt , j = 1,…,p are random iid mm   matrices.  

 

As t  ~ iid ),0(  , the unconditional variance of it  is given as: 

 

 )1()( thE . 

 

For the multivariate case in equation (9), it is assumed that the vector t  ~ iid ),0(  . As the 

diagonal elements of   are equal to unity, this is also the correlation matrix of  t . It follows 

that: 

 









 



p

j
jtHE

1

1)(  . 

 

This approach can easily be extended to include autoregressive terms. For example, in a model 

analogous to GARCH(p,q), namely: 

 

 
 

 
p

i

q

j
jtjititit HH

1 1

'   

 

where )1,0[j  and 


q

j
j

1

 < 1, it follows that: 

 

t t
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































q

j
j

p

i
i

tHE

1

1

1

1
)(




. 

 

The derivation given above shows that, as compared with the standard DCC formulation, our 

formulation permits straightforward computation of the unconditional variances and covariances. 

It should also be noted that in Aielli’s (2013) variation of the standard DCC model, it is possible 

to calculate the unconditional expectation of the tQ  matrix, as in equation (4), but this is not 

equal to the unconditional covariance matrix of t  , which is analytically intractable. This is an 

additional advantage of using the vector random coefficient moving average process given in 

equation (9). 

 

 

5. One Line Derivation of DCC 

 

If jt  in equation (9) is given as: 

 

mjtjt I  , with ),0(~ jjt iid  ,    j = 1, …, p,  

 

where jt  is a scalar random variable, then the conditional covariance matrix can be shown to be: 

 




 
p

j
jtjtjtttt IEH

1

'
1

' )|(  .       (10) 

 

The DCC model in equation (4) is obtained by letting p , setting 1 j
j  , and 

standardizing tH  to obtain a conditional correlation matrix.  For the case p=1 in equation (10), 

the appropriate univariate conditional volatility model is given in equation (7), which uses the 

standardized shocks, rather than in equation (2),  which uses the returns shocks. 
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The derivation of DCC in equation (10) from a vector random coefficient moving average 

process is important as it: (i) demonstrates that DCC is, in fact, a dynamic conditional covariance 

model of the returns shocks rather than a dynamic conditional correlation model; (ii) provides the 

motivation, which is presently missing, for standardization of the conditional covariance model 

to obtain the conditional correlation model; and (iii) shows that the appropriate ARCH or 

GARCH model for DCC is be based on the standardized shocks rather than the returns shocks. 

 

 

6. Derivation of Stationarity and Invertibility 

 

The formulation of DCC given in the previous section is more natural than the standard 

treatment as it can be derived from an underlying stochastic process, and can be also analyzed in 

terms of properties such as stationarity and moments. This section derives the stationarity and 

invertibility conditions for the DCC model in Theorem 1, based on the following Assumption. 

 

Assumption 1.   pmE kt  log         (11)  

 

where t  is the Frobenius norm, and t  is given by: 

 

















 



01...0

....

0...01

...21 pttt

t



 

 

Theorem 1. A sufficient condition for stationarity is that the vector sequence: 

 

'
11 ),...,,( ptpttttt    
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is stationary. Furthermore, under Assumption 1, the vector random coefficient moving average 

process, t , is invertible. 

 

Proof: The proof of stationarity is similar to that given above for the univariate random 

coefficient moving average process. For invertibility, note that:  

 





p

j
jtjttt

1

  

 

which can be written as: 

 

tttt  ~~~
1    

 

where  

 

'
11 ),...,,(~
 ptttt    and  '

11 ),...,,(~
 ptttt  . 

 

Hence, 

 

nt

n

k
kt

n

j
jt

j

k
ktt 










 

















    ~~~

1

10 1
1 . 

 

Now let: 

 

 





 









n

j
jt

j

k
kt

n
t

0 1
1

)( ~~  . 

 

Consider 
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nt

n

k
kt

n
tt

pmnpmn 




 







   ~1

log
1~~1

log
1 1

1

 

 

nt

n

k
kt

pmnpmn 




   ~1

log
11

log
1 1

1

 

 

ntkt

n

k pmnpmn 


  ~1
log

11
log

1

1

 

 

0
1

log
..

 ktsa pm
E  

 

as pmE kt  log , by assumption. This implies that 0
..


sa

n
tt   and, hence, t  is 

asymptotically measurable with respect to { ...,, 21  tt   }, and t  is invertible.         

 

Note that a sufficient condition for equation (11) is that: 

 





p

j
jt mE

1

2
           (12) 

 

as    ktkt
pm

E
pm

E  
1

log
1

log  

 





p

j
jt mp

pm
E

1

2
)1(

1
log   

 





p

j
jt pp

pm
E

1

2
/)1(

1
log   
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



p

j
jt ppE

pm 1

2
/)1(

1
log   

 

0 . 

 

The condition given in equation (12) may be easier to check than that in equation (11).  

 

For the special case mjtjt I  , with ),0(~ jjt iid  ,    j = 1, …, p,  discussed in Section 5 

above, the condition in equation (12) simplifies to the well-known condition on the long-run 

persistence to returns shocks, namely: 

 

1
11

2  


p

j
j

p

j
jtE  .  

 

 

7. Conclusion 

 

The paper was concerned with one of the most widely-used multivariate conditional volatility 

models, namely the dynamic conditional correlation (or DCC) specification. As the underlying 

stochastic process to derive DCC has not yet been established, this has made problematic the 

derivation of the asymptotic properties of the Quasi-Maximum Likelihood Estimators (QMLE). 

To date, the statistical properties of the QMLE of the DCC parameters have been derived under 

highly restrictive and unverifiable regularity conditions. 

 

The paper showed that the DCC specification could be obtained from a vector random 

coefficient moving average process, and derived the stationarity and invertibility conditions. The 

derivation of the regularity conditions should eventually lead to a solid foundation for the 

statistical analysis of the estimates of the DCC parameters. 
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The derivation of DCC from the vector random coefficient moving average process 

demonstrated that DCC is, in fact, a dynamic conditional covariance model of the returns shocks 

rather than a dynamic conditional correlation model. Moreover, the derivation provided the 

motivation, which is presently missing, for standardization of the conditional covariance model 

to obtain the conditional correlation model. Finally, the derivation also showed that the 

appropriate ARCH or GARCH model for DCC is based on the standardized shocks rather than 

the returns shocks. The derivation of regularity conditions should subsequently lead to a solid 

statistical foundation for the QMLE of the DCC parameters. 
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