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Abstract

We study price formation in the standard model of consumer search for differentiated products
but allow for search cost heterogeneity. In doing so, we dispense with the usual assumption that
all consumers search at least once in equilibrium. This allows us to analyze the manner in which
prices affect the decision to search rather than to not search at all, which is an important but
often neglected aspect of the price mechanism. Recognizing the role the equilibrium price plays
in consumers’ participation decisions turns out to be critical for understanding how search costs
affect market power. This is because the two margins that determine prices—the intensive search
margin, or search intensity, and the extensive search margin, or search participation—may be
affected in opposing directions by a change in search costs. When search costs go up, fewer
consumers decide to search, which modifies the search composition of demand such that demand
can become more elastic. At the same time, the consumers who choose to search reduce their
search intensity, which makes demand less elastic. Whether the effect on the extensive or the
intensive search margin dominates depends on the range and shape of the search cost density. We
identify conditions for higher search costs to result in higher, constant, or lower prices. Similar
results are obtained when the marginal gains from search vary across consumers.
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1 Introduction

Ever since Stigler (1961), search theory has become an important tool for understanding the function-

ing of real-world markets. Seminal contributions include the homogeneous product market models

of Burdett and Judd (1983), Reinganum (1979), and Stahl (1989), in which the prominent phe-

nomenon of price dispersion is given microfoundations based on search theory. In markets where

products are horizontally differentiated, the pioneering works of Wolinsky (1986) and Anderson and

Renault (1999) show that prices remain above costs even if firm entry is costless and that prices may

initially fall with the degree of product differentiation. An important and well-known result in this

literature that is common to homogeneous and differentiated product market models is that higher

search costs lead to higher prices, thus benefiting firms at the expense of consumers.

Most of the previous literature has proceeded under either of two restrictive assumptions. The

first restrictive assumption is that search costs are required to be “low enough,” de facto implying

that all consumers choose to search at least once in equilibrium rather than to not search at all

(e.g. Stahl, 1989; Burdett and Judd, 1983; Wolinsky, 1986). As pointed out by Stiglitz (1989), the

alternative assumption that search costs are large may cause the market to collapse. For example,

in the setting of Diamond (1971), the only price that can be part of a market equilibrium is the

monopoly price (the well-known “Diamond paradox”). If the search cost is relatively high, the

surplus consumers derive at the monopoly price may be insufficient to cover the cost of the first

search, in which case consumers rather do not search at all and the market fails to exist.

This problem need not arise when consumer search costs are heterogeneous. However, the second

restrictive assumption is precisely that most models in the literature abstract from consumer search

cost heterogeneity or only allow for unrealistic forms of it, typically with some consumers having a

search cost equal to zero (usually referred to as the “shoppers”), while the rest faces a positive and

identical search cost (the “non-shoppers”).1

This paper studies price formation in Wolinsky’s (1986) consumer search model for differentiated

products while allowing for more general forms of consumer search cost heterogeneity. In Wolinsky’s

model, a continuum of firms compete in prices to sell their horizontally differentiated products to

consumers who search sequentially with the purpose of finding a satisfactory good. An individual

1There are some exceptions to this in the literature on consumer search for homogeneous products. For example
Bénabou (1993), Rob (1985), Rauh (2009), Stahl (1996), and Tappata (2009) study homogeneous product models
with search cost heterogeneity. In these papers, however, search costs are restricted to be sufficiently low so that all
consumers search at least once. In Janssen and Moraga-González (2004), Janssen et al. (2005), and Rauh (2004)
consumer participation is endogenous but the search cost heterogeneity assumed is rather special.
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consumer visits a first store and learns how well the product of the chosen store matches her prefer-

ences. If the match value at the visited store is sufficiently good, the consumer stops searching and

buys the product; otherwise, she walks away and searches at another store, again facing a tradeoff

between buying and visiting another store. This process continues until a store is found that offers

a sufficiently good match value. In taking these decisions, consumers have correct conjectures about

the equilibrium price.2

When allowing for more general forms of consumer search cost heterogeneity, we are naturally led

to discard the assumption that search costs are “sufficiently low.” This is because in search markets

with arbitrary heterogeneity in consumer search costs, the price mechanism ought to affect not only

the intensity with which consumers search (which we call the intensive search margin) but also the

share of consumers who choose to search for a good deal in the first place (which we refer to as the

extensive search margin). The literature, by assuming that all consumers search at least once, has

typically focused on the effects of the intensive search margin on price determination and thereby

neglected the role of the extensive search margin.3

Correspondingly, an individual consumer only chooses to search the market when the surplus she

expects to obtain is strictly positive. An individual firm, facing demand only from the consumers

who choose to search, sets its price to maximize the average profits. We show that the model has a

unique equilibrium in pure strategies when the density of match values is increasing and log-concave

and the search cost density is also log-concave.

Failing to recognize that the price might affect both the intensive and the extensive search margins

turns out to be critical for a complete understanding of the functioning of consumer search markets.

In fact, we show that the relationship between search costs and the equilibrium price critically

depends on both the range of search costs as well as on the properties of the search cost density.

Interestingly, it turns out that the equilibrium price can increase, remain constant, or decrease as

search costs increase for all consumers.

When the range of search costs is sufficiently small, all consumers choose to search. In this case,

an exogenous (small) increase in search costs has only a bearing on the intensive search margin.

2Arguably Wolinsky’s framework has become the workhorse model of consumer search for differentiated products.
Recent work that has sprouted from his article includes, for example, Bar-Isaac et al. (2012), which extends the
model to the case of quality-differentiated firms and studies design-differentiation, Armstrong et al. (2009) and Haan
and Moraga-González (2011), which study the emergence and the price effects of prominence, Moraga-González and
Petrikaitė (2013), which examines the effect of search costs on mergers, and Zhou (2014), which studies multiproduct
search.

3This point is also the central tenet in Anderson and Renault (2006), who, by allowing for arbitrary search costs,
are able to reconcile the empirical observation that much of the advertising we observe in arguably search environments
does impart only match information and not price information.
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Consumers, facing higher search costs, all choose to search less and accept products that are less

attractive. Firms, anticipating that average demand becomes less elastic, respond by raising their

prices.

However, when the range of search costs is sufficiently large, a shock that makes search costs

higher affects both the intensive and the extensive search margins. As a result of the effect of the

shock on search intensity, as explained before, firms tend to respond by raising prices. However, as a

result of its effect on consumer participation, firms may get an incentive to lower their prices instead.

This occurs because fewer consumers choose to search the market for a satisfactory product when

search costs increase and, as it turns out, those who make such a choice are the ones with relatively

low search costs. This change in the composition of demand may be such that the average (over the

consumers who choose to search) demand becomes more elastic. We derive necessary and sufficient

conditions under which higher search costs result in lower, constant, or higher prices.

Intuitively, the conditions have to do with how the different percentiles of the search cost density

are affected by a shock that raises search costs. When an increase in search costs relatively more

strongly affects the low percentiles of the search cost density then the effect on the intensive search

margin dominates and higher search costs result in higher prices. We show that a sufficient condition

for this to occur is that the search cost density has the monotone increasing likelihood ratio property.

By contrast, when an increase in search costs is more strongly felt at the upper percentiles of the

search cost density, then the impact on the extensive search margin dominates and prices decrease as

search costs increase. This occurs when the search cost density has a likelihood ratio that decreases

monotonically. When the likelihood ratio is constant, the equilibrium price stays the same after

search costs have gone up because the effects on the intensive and extensive search margins exactly

offset each other.

The insight that higher search frictions can result in higher, equal, or lower prices is fairly general

and does not depend on modeling assumptions such as the number of firms or the search protocol. In

Section 2.2 we extend the analysis by considering the case of a finite number of firms, as in Anderson

and Renault (1999). Elsewhere we examine the case in which consumers search non-sequentially.4

The paper also studies the role of other sources of heterogeneity. The most important insight

we derive is that heterogeneity that has a bearing on the marginal benefits from search affects price

setting in a way quite different from heterogeneity that affects the total gains from search. For

4The analysis of the non-sequential search case is available from the authors upon request. For an empirical
application, see Moraga-González et al. (2014).

4



example, suppose that consumers have to pay a fixed search cost in order to start searching; after

paying this cost, they search as usual. Assume further that consumers are heterogeneous in terms of

the fixed search cost only. In this case, an increase in fixed search costs results in a drop in demand

but this has no bearing on price setting because the average demand remains equally elastic. Similar

insights arise when consumer heterogeneity is in terms of valuations. Therefore, when consumer

valuations vary so that there is heterogeneity in the marginal gains from search, an increase in

consumer valuations may result in higher, constant, or lower prices.

An important result of this paper is to derive conditions on search cost heterogeneity under which

higher search costs may result in higher, equal, or lower prices. This result is relevant for the recent

literature on obfuscation, which points out that firms have incentives to obfuscate their products

by raising the costs consumers have to incur to inspect their offers (Ellison and Wolitzky, 2012;

Wilson, 2010). Our result tells that under certain conditions firms may benefit from doing exactly

the opposite, that is, by lowering search costs.

A few recent papers have put forward situations in which higher search costs do not necessarily

lead to higher prices. The only paper in which the mechanism is similar to ours is Janssen et al.

(2005). Janssen et al. study a homogenous product market with sequential search similar to Stahl’s

(1989) setting and show that prices will surely fall after search costs increase, provided the search

cost is sufficiently high. Though the present paper deals with differentiated products, our analysis

suggests that their outcome is the result of the special “shoppers and non-shoppers” assumption

on consumer search cost heterogeneity. Chen and Zhang (2011), who enrich Stahl’s (1989) setting

by adding loyal consumers, show that a reduction in the search cost sometimes leads to higher

equilibrium prices. In a different framework where search is price-directed, Armstrong and Zhou

(2011) show that higher search costs lead to lower prices. In a model in which consumers search for

various products from multiproduct firms, Zhou (2014) demonstrates that product externalities can

lead firms to cut their prices when search costs go up. Finally, in a model with vertical relations,

Janssen and Shelegia (2014) encounter situations where retail prices decrease as search costs rise.

The structure of the remainder of the paper is as follows. Section 2 presents the model of

sequential search for differentiated products with heterogeneous consumers and studies the existence

and uniqueness of a symmetric equilibrium. In Section 2.1 we study the effects of an increase in

search costs on the equilibrium price. For robustness purposes, a duopoly version of the model is

examined in Section 2.2. A discussion on the effects of fixed search cost heterogeneity is given in

Section 3; there we also discuss the likely implications of valuation heterogeneity. We conclude in

5



Section 4. Most proofs have been placed in the Appendix to ease the reading of the paper.

2 Sequential search for differentiated products

We adopt the framework proposed in the seminal contribution of Wolinsky (1986) but we allow

consumers to have heterogeneous search costs. Consider a market with infinitely many consumers

and firms and, without loss of generality, normalize the number of consumers per firm to 1.5 Firms

produce horizontally differentiated products using the same constant returns to scale technology of

production; let r be the marginal cost of the firms. Aiming at maximizing their expected profits,

firms choose their prices simultaneously. We focus on symmetric Nash equilibria (SNE); let p∗ denote

an SNE price.

A consumer m has tastes for a product i described by an indirect utility function that is

uim = εim−pi if she buys product i at price pi and zero if she does not buy the product. The param-

eter εim is a match value between consumer m and product i. We assume that the match value εim is

the realization of a random variable distributed on the interval [0, ε] according to a differentiable cu-

mulative distribution function (CDF) denoted by F . Match values εim are independently distributed

across consumers and products. Moreover, they are private information of consumers so personalized

pricing is not possible. Let f be the probability density function (PDF) of F . We assume that f is

log-concave. For later use, we define the monopoly price as pm = arg maxp(p− r)(1− F (p)).

Consumers search sequentially in order to maximize expected utility. While searching, they have

correct beliefs about the equilibrium price and can recall previously inspected products costlessly.

Consumers differ in their (marginal) costs of search.6 A buyer’s search cost is drawn independently

from a differentiable cumulative distribution function G with support (c, c) and positive density

g everywhere. We refer to the difference between the upper and lower bound of the search cost

distribution as the range of search costs. We require the lower bound of the search cost distribution

c to be sufficiently low because otherwise no consumer would search and the market would collapse;

without loss of generality, we normalize it to zero.

We now characterize the SNE price. In order to do so, we derive the payoff of a firm, say i,

that deviates from the SNE price p∗ by charging a price pi 6= p∗. Next, we compute the first order

condition (FOC), apply the symmetry condition pi = p∗, and study the existence and uniqueness of

5In Section 2.2 we examine the case of a finite number of firms.
6In some settings consumers may need to incur a fixed search cost in order to start searching. For a discussion

of the effects of fixed search cost heterogeneity, see Section 3. In that section we also analyze the role of valuation
heterogeneity.
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the SNE.

Consider the (expected) payoff to a firm i that deviates from the equilibrium by charging a price

pi. In order to compute firm i’s demand, we first need to characterize consumer search behavior. Since

consumers do not observe deviations before searching, we can rely on Kohn and Shavell (1974), who

study the search problem of a consumer who faces a set of independently and identically distributed

options with a known distribution. Kohn and Shavell show that the optimal search rule is static in

nature and has the stationary reservation utility property. Accordingly, consider a consumer with

search cost c and denote the solution to

h(x) ≡
∫ ε

x
(ε− x)f(ε)dε = c (1)

in x by x̂(c). The left-hand-side (LHS) of equation (1) is the expected benefit in symmetric equilib-

rium from searching one more time for a consumer whose best option so far is x. Its right-hand-side

(RHS) is the consumer’s cost of search. Hence x̂(c) represents the threshold match value above which

a consumer with search cost c will optimally decide not to continue searching for another product.

The function h is monotonically decreasing. Moreover, h(0) = E[ε] and h(ε) = 0. It is readily seen

that for any c ∈ [0,min{c, E[ε]}], there exists a unique x̂(c) that solves equation (1). Differentiating

equation (1) successively, we obtain

x̂′(c) = − 1

1− F (x̂(c))
< 0;

x̂′′(c) =
f(x̂(c)) [x̂′(c)]2

1− F (x̂(c))
> 0,

which implies that x̂(c) is a decreasing and convex function of c on [0,min{c, E[ε]}], with x̂(E[ε]) = 0

and x̂(0) = ε.7

In order to compute firm i’s demand, consider a consumer with search cost c who shows up at

firm i to inspect its product after possibly having inspected other products. Let εi − pi denote the

utility the consumer derives from the product of firm i. Obviously, if alternative i is not the best

one so far, the consumer will discard it and search again. Therefore, only when the deal offered

by firm i happens to be the best so far, the consumer will consider to stop searching and and buy

the product right away. For this decision, the consumer compares the gains from an additional

search with the costs of such a search. In this comparison, the consumer holds correct expectations

about the equilibrium price so she expects the other firms to charge p∗. The expected gains from

7Consumers with search cost c > E[ε], if any, will automatically drop from the market and can therefore be ignored
right away. Therefore x̂(c) is well-defined for every consumer that matters for pricing.
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searching one more firm, say firm j, are equal to
∫ ε
εi−pi+p∗ [εj − (εi − pi + p∗)]f(εj)dεj . Comparing

this to equation (1), it follows that, conditional on having arrived at firm i, the probability that

buyer c stops searching at firm i is equal to Pr[εi − pi > x̂(c) − p∗] = 1 − F (x̂(c) + pi − p∗). With

the remaining probability, the consumer finds the product of firm i not good enough and continues

searching; with infinitely many firms, such a consumer will surely buy at another firm. Because a

consumer with search cost c may visit firm i after having visited no, one, two, three, etc. other firms,

the unconditional probability she stops searching and buys at firm i is

1− F (x̂(c) + pi − p∗)
1− F (x̂(c))

. (2)

To obtain the payoff of firm i we need to integrate expression (2) over the consumers who decide

to search the market for a satisfactory product; in other words, we need to integrate over those con-

sumers who derive expected positive surplus from participation. To compute the surplus a consumer

with search cost c obtains from participation, we note that she will stop and buy at the first firm she

visits whenever the match value there is greater than x̂(c); otherwise she will drop the first option

and continue searching. In the latter case she will encounter herself exactly in the same situation as

before because, conditional on participating, she will continue searching until she finds a match value

for which it is worth to stop searching. Denoting by CS(c) her consumer surplus, we have that:8

CS(c) = x̂(c)− p∗.

Setting this surplus equal to zero, we obtain the critical search cost value above which consumers

will refrain from participating in the market. Using equation (1), solving x̂(c)− p∗ = 0 for c gives

c̃(p∗) =

∫ ε

p∗
(ε− p∗)f(ε)dε. (3)

Depending on how large the range of search costs is, more or less consumers will choose to search

the market for a satisfactory deal. Correspondingly, we define

c0(p
∗) ≡ min{c, c̃(p∗)}.

We refer to the decision to search as the extensive search margin. Because c̃(p∗) is decreasing in p∗,

if consumers expect a higher equilibrium price then fewer of them will choose to search the market

for an acceptable product. The standard assumption in the search cost literature has been that

c0(p
∗) = c, which implies that all consumers search at least once. Because c0(p

∗) might depend on

the equilibrium price, this assumption is undeniably restrictive.

8For a formal derivation of this expression, see the Appendix.
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The payoff to the deviant firm i is then:

π(pi; p
∗) = (pi − r)D(pi, p

∗), (4)

where demand D(pi, p
∗) is9

D(pi, p
∗) =

∫ c0(p∗)

0

1− F (x̂(c) + pi − p∗)
1− F (x̂(c))

g(c)dc. (5)

The FOC is given by:∫ c0(p∗)

0

1− F (x̂(c) + pi − p∗)
1− F (x̂(c))

g(c)dc− (pi − r)
∫ c0(p∗)

0

f(x̂(c) + pi − p∗)
1− F (x̂(c))

g(c)dc = 0.

Applying symmetry, i.e., pi = p∗, we can rewrite the FOC as:

p∗ = r +
G(c0(p

∗))∫ c0(p∗)
0

f(x̂(c))
1−F (x̂(c))g(c)dc

. (6)

We now show that a candidate symmetric equilibrium price exists and is unique. First consider

the case in which search costs are sufficiently low, i.e. c < c̃(p∗). Under this parameter constraint,

c0(p
∗) = c and therefore expression (6) gives the candidate equilibrium price explicitly. In this case,

obviously, there exists a unique candidate equilibrium price.10

When search costs are not restricted to be sufficiently small then c > c̃(p∗) and correspondingly

c0(p
∗) = c̃(p∗). In this case the equilibrium price is given implicitly by the solution to equation (6).

We now show that equation (6) has a unique solution in this case as well. For this we define the

function

L(p) ≡ G(c̃(p))− (p− r)
∫ c̃(p)

0

f(x̂(c))

1− F (x̂(c))
g (c) dc

for p ∈ [r, pm], where pm as before denotes the monopoly price. Note that

L (r) = G(c̃(r)) > 0.

Also observe that L(pm) can be written as

L (pm) =

∫ c̃(pm)

0

1− F (x̂(c))− (pm − r)f(x̂(c))

1− F (x̂(c))
g (c) dc. (7)

9In writing this payoff we have assumed that pi < p∗. For pi > p∗ the payoff is slightly different because the
expression x̂ (c) + pi − p∗ that is part of D (pi, p

∗) can exceed ε. Denote by ĉ (pi) the solution of the equation x̂ (c) +
pi− p∗ = ε for c. Since x̂ (c) is strictly decreasing in c, we get x̂ (c) + pi− p∗ < ε for all c > ĉ (pi). Therefore the payoff
would be

π (pi; p
∗) = (pi − r)

∫ c0(p∗)

ĉ(pi)

1− F (x̂ (c) + pi − p∗)
1− F (x̂ (c))

g (c) dc.

The FOC at the symmetric equilibrium price is however exactly the same as the one we present below.
10To be more precise, the condition we need for this is c <

∫ ε
p∗(ε− p∗)f(ε)dε, where p∗ = r + 1∫ c

0
f(x̂(c))

1−F (x̂(c))
g(c)dc

.
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The sign of this expression depends on the sign of the numerator of the fraction in the integrand. We

now argue that L(pm) < 0 because 1− F (x̂(c))− (pm − r)f(x̂(c)) ≤ 0 for all c ∈ [0, c̃(pm)]. In fact,

note that by log-concavity of f , because x̂(c) decreases in c, it follows that f(x̂(c))/ [1− F (x̂(c))]

decreases in c, which implies that 1− F (x̂(c))− (pm − r)f(x̂(c)) increases in c. Because x̂(c(p)) = p,

if we set c = c̃(pm) in the expression 1 − F (x̂(c)) − (pm − r)f(x̂(c)), we get the monopoly pricing

rule 1− F (pm)− (pm − r)f(pm) = 0. We can now conclude that L (pm) < 0 because the expression

1− F (x̂(c))− (pm − r)f(x̂(c)) is increasing in c and takes on value zero when we compute it at the

upper bound of the integral.

Taken together, L (r) > 0 and L (pm) < 0 imply that a candidate equilibrium price p∗ ∈ [r, pm]

exists. We finally note that

dL (p)

dp
= g (c̃ (p))

dc̃ (p)

dp
− (p− r) f (p) g (c̃ (p))

dc̃ (p)

dp
−
∫ c̃(p)

0
f(x̂(c))g (c) dc

=
1− F (p)− (p− r) f (p)

1− F (p)
g (c̃ (p))

dc̃ (p)

dp
−
∫ c̃(p)

0
f(x̂(c))g (c) dc (8)

is negative for any p ∈ [r, pm], which implies that there exists a unique candidate equilibrium price.

This follows from the fact that 1 − F (p) − (p− r) f (p) ≥ 0 (because it is the first order derivative

of the monopoly payoff (p− r) (1− F (p)), which is log-concave) and dc̃ (p) /dp < 0 (because, from

equation (3), c̃ is decreasing in p). In particular, at the candidate equilibrium price p∗ we must have

dL(p∗)/dp < 0. Figure 1 illustrates these observations.

  

r             p*                                 pm                    p

L(p)

G(c(p))

L(p)

L(pm)

Figure 1: Existence and uniqueness of a candidate equilibrium price

Our next result provides conditions for existence of a symmetric equilibrium.

Proposition 1 There may be two types of symmetric equilibria in the model of sequential search for

differentiated products with heterogeneous search costs:
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(A) An SNE where all consumers conduct at least a first search, in which case c < c̃(p∗) and the

equilibrium price is given by expression (6) after setting c0(p
∗) = c, and where x̂(c) solves equation

(1).

(B) An SNE where only some of the consumers search for a satisfactory product, in which case

c > c̃(p∗) and the equilibrium price is given by expression (6) after setting c0(p
∗) =

∫ ε
p∗(ε−p

∗)f(ε)dε.

In this type of equilibrium the fraction of consumers G
(∫ ε

p∗(ε− p
∗)f(ε)dε

)
conducts at least a first

search while the rest of the consumers do not search at all.

When the density of match values f is increasing and the search cost density g is log-concave,

then the SNE exists and is unique.

The proof is in the Appendix. Since a direct verification of the second order conditions does not

deliver clear-cut results, we proceed by showing that the demand function of an individual firm is a

log-concave function of its own price. Once this is proven, we know that the firm profit function (4)

is quasi-concave in its own price so that the unique candidate equilibrium price given by expression

(6) is indeed an equilibrium. In order to prove that the demand function of a firm is log-concave

in the firm’s own price, we first show that the demand of a single consumer is log-concave both in

price and in search cost and then make use of Theorem 6 in Prékopa (1973), thereby showing that

integration over search costs preserves log-concavity.

2.1 The effect of higher search costs on the SNE price

In this subsection we study the impact of higher search costs on the equilibrium prices given by

Proposition 1. In order to address this question, we parametrize the search cost distribution G by a

positive parameter β and use the notation G(c;β) and g(c;β) to indicate that the distribution and

density of search costs depend on β. Specifically, we assume that an increase in β implies an increase

in search costs in a first-order stochastic dominance (FOSD) sense, i.e. ∂G(c;β)/∂β < 0 for all c.

Let p∗(β) be the corresponding SNE price for a given β. We are interested in the behavior of p∗(β)

with respect to β.

Consider first the case of Proposition 1A. When the upper bound of the search cost distribution

is sufficiently low, the SNE price is

p∗(β) = r +
1∫ c(β)

0
f(x̂(c))

1−F (x̂(c))g(c, β)dc
. (9)

(Notice that we allow the upper bound of the search cost distribution to be increasing in β.) The effect

of an increase in search costs on the equilibrium price follows from taking the derivative of equation

11



(9) with respect to β. Because f is log-concave, the hazard rate f(x̂(c))/(1 − F (x̂(c))) increases in

x̂(c) and decreases in c. As a result, because the denominator of equation (9) is the expectation

of this hazard rate, it falls as β goes up. This implies that the equilibrium price unambiguously

increases as search costs rise.

We now move to the the case of Proposition 1B. In this case the equilibrium price p∗(β) is given

by the unique solution to equation

L(p;β) ≡ G(c̃(p);β)− (p− r)
∫ c̃(p)

0

f(x̂(c))

1− F (x̂(c))
g(c, β)dc = 0. (10)

Upon observing equation (10) we see that an increase in search costs affects two terms. The term

G(c̃(p);β) goes down because of FOSD, while the integral term goes up by the log-concavity of f . As

a result, an increase in β has, potentially, an ambiguous effect on the SNE price. This is illustrated

in Figure 2. In Figure 2(a) we depict a case for which higher search costs result in a higher SNE

price. The black downward sloping curve shows the function L(p;β). When β increases to β′, the

function L(p;β) changes from the black to the red curve. In this case, the new equilibrium price

increases in search costs. By contrast, in Figure 2(b) we observe the opposite case in which a higher

β results in a lower SNE price.

  

r         p*(β)   p*(β')                              pm                    p

L(p)

G(c(p);β)

L(p)

L(pm;β)

G(c(p);β')

G(c(p);β)G(c(p);β)
β'>β

L(pm;β')

(a) Higher β → higher price

  

r       p*(β')    p*(β)                         pm                    p

L(p)

G(c(p);β)

L(p)

L(pm;β)

G(c(p);β')

G(c(p);β)G(c(p);β)
β'>β

L(pm;β')

(b) Higher β → lower price

Figure 2: The effect of higher search costs on the SNE price (c sufficiently large)

The economic intuition for why the effect of higher search costs on the SNE price is ambiguous

when search costs are sufficiently high is as follows. An increase in search costs has two effects on

demand. On the one hand, search becomes more costly and as a result of that consumers’ reservation

values fall. This decreases search activity and demand becomes less elastic. Because of this effect,

firms have an incentive to raise their prices. On the other hand, when search costs increase a larger

fraction of consumers choose not to search at all. This alters the composition of demand and possibly
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makes average demand more elastic because the consumers who choose to leave the market are the

ones with higher search costs. Because of this effect, firms may have an incentive to lower their

prices. Interestingly, as the following example shows, these two effects exactly offset each other when

match values and search costs are both uniformly distributed.

The uniform-uniform example. Assume match values are uniformly distributed on [0, 1] while

search costs are uniformly distributed on [0, β]. In this case, it is straightforward to check that

x̂(c) = 1−
√

2c and that c̃(p∗) = (1− p∗)2/2. Then:

(A) If β ≤ 2
9(1− r)2, a unique equilibrium exists in which all consumers search at least one time.

The equilibrium price and profits are given by

p∗ = r +

√
β

2
and π∗ =

√
β

2
,

while consumer surplus (CS) and social welfare (W) are equal to

CS = 1− r − 7

3

√
β

2
and W = 1− r − 4

3

√
β

2
.

In this case, price and profits increase as search costs go up, while consumer surplus and social

welfare decrease.

(B) If β > 2
9(1−r)2, then a unique equilibrium exists in which a fraction of consumers 1− 2

9β (1−r)2

does not search at all. The equilibrium price and profits are given by

p∗ =
1

3
(1 + 2r) and π∗ =

2(1− r)3

27β
,

while consumer surplus and social welfare are

CS =
4(1− r)3

81β
and W =

10(1− r)3

81β
.

In this case, the equilibrium price is independent of the level of search costs, while profits, consumer

surplus, and social welfare decrease in search costs.

An increase in the costs of search diminishes the fraction of consumers who choose to search and

those who choose to search reduce their search intensity. With uniformly distributed search costs,

the average demand remains equally elastic and, correspondingly the price does not change. We now

proceed to a more general examination of the impact of an increase in search costs on the price.

13



Invoking the implicit function theorem, the effect of an increase in β on the equilibrium price in

equation (10) is given by the sign of

dp∗(β)

dβ
= −

∂L(p∗;β)
∂β

∂L(p∗;β)
∂p∗

. (11)

We have already argued above that the function L(p;β) is monotone decreasing in p so the denom-

inator of equation (11) is negative. In regard to the numerator of equation (11), we note using the

notation gβ(c;β) ≡ ∂g (c;β) /∂β that

∂L(·)
∂β

=

∫ c̃(p∗)

0
gβ(c;β)dc− (p∗ − r)

∫ c̃(p∗)

0

f(x̂(c))

1− F (x̂(c))
gβ (c;β) dc;

=

∫ c̃(p∗)

0
gβ(c;β)dc−

∫ c̃(p∗)
0 g(c;β)dc∫ c̃(p∗)

0
f(x̂(c))

1−F (x̂(c))g (c;β) dc

∫ c̃(p∗)

0

f(x̂(c))

1− F (x̂(c))
gβ (c;β) dc;

=

∫ c̃(p∗)

0
g(c;β)dc

∫ c̃(p∗)0 gβ(c;β)dc∫ c̃(p∗)
0 g(c;β)dc

−

∫ c̃(p∗)
0

f(x̂(c))
1−F (x̂(c))gβ (c;β) dc∫ c̃(p∗)

0
f(x̂(c))

1−F (x̂(c))g (c;β) dc

 , (12)

where the second equality follows from using the equilibrium condition (6). We therefore establish:

Proposition 2 Let G(c;β) be a parametrized search cost CDF with positive density on [0, c(β)] and

with derivative ∂G(·)/∂β < 0. Then the comparative statics of the SNE price in Proposition 1 is as

follows:

(A) The equilibrium price given by Proposition 1A unambiguously increases in β.

(B) The equilibrium price given by Proposition 1B increases (decreases) in β if and only if∫ c̃(p∗)
0 gβ(c;β)dc∫ c̃(p∗)
0 g(c;β)dc

−

∫ c̃(p∗)
0

f(x̂(c))
1−F (x̂(c))gβ (c;β) dc∫ c̃(p∗)

0
f(x̂(c))

1−F (x̂(c))g (c;β) dc
> 0(< 0). (13)

Moreover, if g is from the family of power distributions on [0, β] (which includes the uniform), then

the equilibrium price is independent of β.

Proof. It remains to prove that when g is from the family of power distributions on [0, β], then the

equilibrium price does not depend on β. Let g(c) = αcα−1/βα on [0, β], and let α > 0. In this case,

it is straightforward to check that the SNE price is given by the solution to

p∗ = r +
(c̃(p∗))α∫ c̃(p∗)

0
f(x̂(c))

1−F (x̂(c))αc
α−1dc

, (14)

which is clearly independent of β. �
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Condition (13) is a necessary and sufficient condition under which the SNE price will go down (or

up) after search costs increase for all consumers. Intuitively, for prices to increase in search costs, we

need that the effect on search intensity is stronger than the effect on consumer participation. This

occurs when, in relative terms, the search cost shock is not felt very strongly at the higher percentiles

of the search cost density. In those situations the average demand becomes less elastic after search

costs increase. Our next result provides a sufficient condition under which this is indeed the case.

Proposition 3 Assume that g(c;β) has the monotone increasing likelihood ratio (MILR) property.

Then, no matter whether the range of search costs is small or large, the SNE price given by Propo-

sition 1 unambiguously increases in β.

We have shown in Proposition 2 that for the case when the density of search costs is from the family

of power densities, the SNE price given in Proposition 1B is constant in parameter β. Note that the

family of power densities has a constant likelihood ratio with respect to β. Moreover, Proposition

3 has demonstrated that when the search cost density has the MILR property, higher search costs

result in higher prices. These observations lead us to conjecture that when the density has the

monotone decreasing likelihood ratio property, the SNE price falls in search costs. Though we have

been unable to provide a general proof of this result, we now provide two different settings—one

analytical and one numerical—where this is indeed the case.

The family of MDLR search cost densities g = (1 + t)
[
(c/β)t + 1

]
/(β(2 + t)), 0 ≤ t ≤ 1

Proposition 4 Assume that match values are distributed according to the uniform distribution and

that the search cost density is

g(c;β) =
1 + t

β(2 + t)

[
1 +

(
c

β

)t]
,with 0 ≤ t ≤ 1,

which is log-concave and has monotone decreasing likelihood ratio (MDLR). Then, an increase in β

(which implies a FOSD shift of the search cost CDF):

(A) Unambiguously increases the equilibrium price given by Proposition 1A.

(B) Unambiguously decreases the equilibrium price given by Proposition 1B.

For this family of search cost densities, an increase in the costs of search is felt relatively strongly

at the upper percentiles of the distribution. This has a significant impact on the extensive search

margin and, in spite of the fact that consumers search less, the average demand becomes more elastic.

Firms then respond by raising prices.
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For robustness purposes, we study numerically the price equilibrium for the case of the Ku-

maraswamy (1980) distribution, which has the MDLR property for some values of the parameters.

The Kumaraswamy (1980) density

Definition: The Kumaraswamy distribution has CDF G(·) and PDF g(·) given by

G (c) = 1−
[
1−

(
c

β

)a]b
, c ∈ [0, β] , a, b > 0;

g (c) =
ab

β

(
c

β

)a−1 [
1−

(
c

β

)a]b−1
. (15)

The Kumaraswamy (1980) distribution is often used as a substitute for the beta-distribution (see,

e.g., Ding and Wolfstetter, 2011). This distribution turns out to be quite useful in our setting because

its likelihood ratio is increasing (for b > 1), decreasing (for 0 < b < 1), or constant (for b = 1) with

respect to the shifter parameter β.11 Note that the β parameter multiplies the search cost c and

scales the support of the distribution. An increase in β therefore shifts the search cost distribution

rightward, which signifies that search costs are higher for all consumers.

Table 1 reports some of the numerical results we obtain using the Kumaraswamy distribution.

While computing the equilibrium we set r = 0 and assume match values are uniformly distributed

on [0, 1]. Moreover, we set a = 1 and let b take on values 1/2, 1, and 3/2. For the latter two values,

the search cost density is log-concave so, from Proposition 1, we know the equilibrium exists. For

the case b = 1/2, the search cost density is not log-concave but we have checked numerically that

the equilibrium also exists.

When b = 3/2 the density function satisfies the MILR property; in this case, as shown in Propo-

sition 2, the equilibrium price increases in search costs. We have also computed profits and consumer

surplus, which decrease in search costs. We also report consumer surplus conditional on searching,

which in this case decreases as well. When b = 1 the price is constant and so is consumer surplus

conditional on searching; however, profits, consumer surplus, and welfare fall in search costs. Fi-

nally, when b = 1/2 the density function satisfies the MDLR property. In this case, price decreases

in search costs and consumer surplus conditional on searching therefore goes up; however, profits,

consumer surplus, and welfare go down anyway.

The results reported in Table 1 do not change when we choose other values for parameter b. On

the basis of the numerical results, we state the following:

11A proof can be obtained from the authors upon request. Observe that the uniform density case is obtained by
setting a = b = 1 in the Kumaraswamy distribution above.
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b = 3/2 b = 1 b = 1/2

β = 1 β = 2 β = 3 β = 1 β = 2 β = 3 β = 1 β = 2 β = 3

p∗ 0.3287 0.3311 0.3319 0.3333 0.3333 0.3333 0.3378 0.3354 0.3347

π 0.1045 0.0539 0.0363 0.0740 0.0370 0.0246 0.0393 0.0190 0.0125

CS 0.0729 0.0367 0.0245 0.0493 0.0246 0.0164 0.0250 0.0124 0.0082

CS/
∫ (1−p)2

2
0 gdc 0.2294 0.2255 0.2244 0.2222 0.2222 0.2222 0.2153 0.2189 0.2200

Welfare 0.1775 0.0907 0.0609 0.1234 0.0617 0.0411 0.0643 0.0314 0.0208

Table 1: Sequential search for differentiated products (uniform-Kumaraswamy with a = 1)

Result: Assume that match values are uniformly distributed on [0, 1] and that search costs are

distributed on the interval [0, β] according to the Kumaraswamy distribution with parameter a = 1.

Then:

(A) The equilibrium price in Proposition 1A increases in β.

(B) The equilibrium price in Proposition 1B decreases in β if 0 < b < 1, is constant in β if b = 1,

and increases in β if b > 1.

The results obtained in this section are rather intuitive and they happen to be robust across

model specifications. In fact, we next study a duopoly version of our model and demonstrate by

numerically solving the model that the insights we have derived remain valid. Moreover, elsewhere

we have studied a version of our model where consumers search non-sequentially and again similar

results obtain (see also Footnote 4).

2.2 Duopoly

In this subsection we study the duopoly case. Except that there are only two firms in the market,

the rest of the model details are exactly the same as before.12

We now present the derivations to compute the SNE price p∗. For this we derive the (expected)

payoff to a firm i that deviates by charging a price pi < p∗. In order to compute firm i’s demand,

consider a consumer with search cost c who visits firm i in her first search. This happens with

probability 1/2. Let εi−pi denote the utility the consumer derives from the product of firm i. Notice

that search behavior is exactly the same as in the previous section. The consumer expects the other

firm to charge the equilibrium price p∗. The expected gains from searching one more time are equal

to
∫ 1
εi−pi+p∗ [εj − (εi − pi + p∗)]f(εj)dεj . It follows that the probability that the buyer visits firm i

12Extending this analysis to the case of N firms is straightforward.
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first and stops searching at firm i is equal to

1

2
Pr[εi − pi > max{x̂(c)− p∗, 0}] =

1

2
[1− F (x̂(c) + pi − p∗)] .

where x̂(c) continues to be the solution to equation (1). Consumer c may find the product of firm

i not good enough at first and may therefore continue searching. However, upon visiting the rival

firm j, it may happen that consumer c returns to firm i because such a firm offers her the best deal

after all. This occurs with probability

1

2
Pr[max{εj − p∗, 0} < εi − pi < x̂(c)− p∗] =

1

2

∫ x̂(c)+pi−p∗

pi

F (ε− pi + p∗)f(ε)dε. (16)

With probability 1/2 consumer c first visits the other firm, firm j. In that case, she will walk

away from product j when searching again is more promising than buying j right away. Upon visiting

firm i, she will buy product i when she finds product i better than j. This occurs with probability

(1/2) Pr[max{εj − p∗, 0} < min{x̂(c)− p∗, εi − pi}], which is equal to

1

2

[
F (x̂(c)) [1− F (x̂(c) + pi − p∗)] +

∫ x̂(c)+pi−p∗

pi

F (ε− pi + p∗)f(ε)dε

]
.

To obtain the payoff of firm i we need to integrate over the consumers who decide to participate

in the market. It can be shown that with two firms the surplus of a consumer with search cost c is

given by the expression

CS(c) =
1− F (x̂(c))2

1− F (x̂(c))

[∫ ε

x̂(c)
(ε− p∗)f(ε)dε− c

]
+ 2

∫ x̂(c)

p∗
(ε− p∗)F (ε)f(ε)dε. (17)

Setting this surplus equal to zero, we obtain the critical search cost value c̃(p∗) above which consumers

will refrain from participating in the market. Inspection of equation (17) reveals that the last

consumer who chooses to search has a search cost c such that x̂(c) = p∗. Using again the notation

c0(p
∗) ≡ min{c, c̃(p∗)}, the expected payoff to firm i is:

πi(pi; p
∗) =

pi − r
2

∫ c0(p∗)

0

[
(1 + F (x̂(c))) (1− F (x̂(c) + pi − p∗)) + 2

∫ x̂(c)+pi−p∗

pi

F (ε− pi + p∗)f(ε)dε

]
g(c)dc.

(18)

To shorten the expressions we will from now on write x̂ instead of x̂(c) but the reader should keep
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in mind the dependency of x̂ on c. Taking the FOC gives

0 =

∫ c0(p∗)

0

[
(1 + F (x̂)) [1− F (x̂+ pi − p∗)] + 2

∫ x̂+pi−p∗

pi

F (ε− pi + p∗)f(ε)dε

]
g(c)dc

− (pi − r)
∫ c0(p∗)

0
(1 + F (x̂)) f(x̂+ pi − p∗)g(c)dc

− 2(pi − r)
∫ c0(p∗)

0

[∫ x̂+pi−p∗

pi

f(ε− pi + p∗)f(ε)dε+ F (x̂)f(x̂+ pi − p∗)− F (p∗)f(pi)

]
g(c)dc.

(19)

Applying symmetry pi = p∗ gives

0 =

∫ c0(p∗)

0

[
(1 + F (x̂)) (1− F (x̂)) + 2

∫ x̂

p∗
F (ε)f(ε)dε

]
g(c)dc

− 2(p∗ − r)
∫ c0(p∗)

0

[
(1 + F (x̂)) f(x̂) +

∫ x̂

p∗
f(ε)2dε− F (x̂)f(x̂) + F (p∗)f(p∗)

]
g(c)dc. (20)

In order to check how the equilibrium price changes when search costs go up, we proceed by

solving the FOC in equation (20) numerically. We again use the uniform distribution for the match

values and the Kumaraswamy distribution for the search costs. The focus is on the case in which

the upper bound of the search cost distribution β is sufficiently high, conform Proposition 1B.

For the case of the uniform distribution we have that

CS(c) = x̂(c)− p∗ − x̂(c)3 − p∗3

3
,

whereas the critical search cost value above which consumers refrain from searching the market is

c̃(p∗) =
(1− p∗)2

2

In Table 2, we set r = 0 and let search costs be distributed according to the Kumaraswamy

distribution with parameter a = 1 and various levels of the parameters b and β. The table shows

once again that prices decrease when search costs increase when b = 1/2, in which case the search

cost density has the MDLR property. For the b = 1 case (uniform distribution), once more prices

are independent of the search cost upper bound. Finally, when b = 3/2 and the search cost density

has the MILR property, we get the standard result that prices increase with higher search costs.

3 Discussion

In this section we discuss the implications of other forms of consumer heterogeneity, such as fixed

search cost heterogeneity and valuation heterogeneity.
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b = 3/2 b = 1 b = 1/2

β = 1 β = 2 β = 3 β = 1 β = 2 β = 3 β = 1 β = 2 β = 3

p∗ 0.4713 0.4715 0.4716 0.4717 0.4717 0.4717 0.4722 0.4720 0.4719

π 0.0370 0.0188 0.0126 0.0255 0.0127 0.0085 0.0132 0.0065 0.0043

CS 0.0225 0.0113 0.0076 0.0153 0.0076 0.0051 0.0078 0.0038 0.0025

CS/
∫ c̃(p∗)
0 gdc 0.1116 0.1107 0.1105 0.1100 0.1100 0.1100 0.1084 0.1092 0.1095

Welfare 0.0966 0.0491 0.0329 0.0665 0.0332 0.0221 0.0343 0.0168 0.0112

Table 2: Duopoly model (uniform-Kumaraswamy with a = 1)

Fixed search cost heterogeneity

Sometimes consumers also face a fixed search cost, for instance when they first have to start up a

computer, log onto a website, or drive to a mall before their actual search begins. Suppose that

consumers have to pay a fixed search cost up front, denoted k, in order to start searching; after

paying this cost, consumers proceed as in the model of Section 2, and face a marginal search cost

equal to c. Suppose further that consumers are heterogeneous only in their fixed search cost. Let

K(k) be the distribution of the fixed search cost, with support [0, k].

It is straightforward to check that the search rule given by the solution to equation (1) remains

the same. Correspondingly, the surplus of a consumer with fixed search cost k is equal to

CS(k) = x̂(c)− p∗ − k.

For a consumer to enter the market this surplus must be strictly positive. Setting CS(k) = 0 and

solving for k gives a critical fixed search cost, denoted k̃(p∗), above which consumers will abstain

from searching for an acceptable product. Defining k0(p
∗) ≡ min{k, k̃(p∗)}, the payoff analogous to

the payoff of the deviant firm i in equation (4) is given by

π(pi; p
∗) = (pi − r)

∫ k0(p∗)

0

1− F (x̂(c) + pi − p∗)
1− F (x̂(c))

dK(k)

=
[
1−K(k̃0(p

∗))
]

(pi − r)
1− F (x̂(c) + pi − p∗)

1− F (x̂(c))
. (21)

Inspection of equation (21) immediately reveals that a change in the distribution of the fixed search

cost has no bearing on equilibrium pricing because, even though it affects demand, it does it in a

way that does not modify the elasticity of demand.

The main distinction between heterogeneity in the fixed search cost and heterogeneity in the

marginal search cost is that the former does not affect the marginal (net) benefits from search while
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the latter does. Because the marginal benefits from search for the consumers who choose to search

are not affected by an increase in fixed search costs, the elasticity of demand remains the same. This

illustrates the point that the mechanism we have identified in this paper does not just arise because

consumer participation is endogenous. In fact, for the elasticity of average demand to increase or

decrease as search costs increase, consumers’ marginal benefits from search need to change as well.

Valuation heterogeneity

The same point can be made when analyzing how changes in the distribution of consumer valuations

affect pricing. Suppose now that consumers vary in their valuations for the products. For this

purpose, define the utility of a consumer m as

uim = vm + µmεim − pi,

where vm denotes the intrinsic utility consumer m derives from the product (irrespective of the match

value) and µm stands for the marginal utility of an increase in the match between the consumer and

the product.

Suppose, to start with, that consumers only differ in their marginal valuations for the match

values. This means we can simplify the utility specification to uim = µmεim − pi. Denote the

distribution of marginal valuations by M(µ), with support [µ, µ].

In this case the search rule has to be slightly modified because the gains from searching one more

time equal µh(x), where h(x) is given by equation (1). Accordingly, denote the solution to

µ

∫ ε

x
(ε− x)f(ε)dε = c (22)

in x by x̂(µ). Upon observing equation (22), it is obvious that variation in marginal valuations has

the same effects as variation in marginal search costs. We can therefore conclude that a decrease in

the marginal valuations of consumers may result in lower, constant, or higher prices.

Suppose now that consumers only differ in their intrinsic valuations so they all have the same

search cost and the same match marginal utility. Let the utility be uim = vm + εim − pi. Denote

by V(v) the distribution of intrinsic valuations, with support [v, v]. Again the search rule given by

the solution to equation (1) remains unmodified. Correspondingly the surplus of a consumer with

valuation v is

CS(v) = v − x̂(c)− p∗.

This does not differ much from the case above where consumers have different fixed search costs.

Defining v0(p
∗) ≡ max{v, ṽ(p∗)}, the payoff corresponding to the payoff of the deviant in equation
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(4) is in this case:

π(pi; p
∗) = [1− V(v0(p

∗))] (pi − r)
1− F (x̂(c) + pi − p∗)

1− F (x̂(c)
. (23)

We conclude that a change in the distribution of intrinsic valuations has no bearing on equilibrium

pricing. Changes in the distribution of intrinsic valuations vary the size of the market but not the

elasticity of demand.

4 Conclusions

This paper has studied price determination in a model of search for differentiated products. The

novelty of our study has been to allow for arbitrary search cost heterogeneity. We have also revisited

the question how an increase in search costs affects the level of prices.

Traditional consumer search models have typically assumed that all consumers search at least

once in equilibrium. By doing so, the existing literature has neglected an important role of the price

mechanism, namely, that the price ought to affect the number of consumers who choose to search for a

product in the first place. Assuming that all consumers search the market cannot easily be reconciled

with the idea that search costs, to the extent that they are related to consumer demographics such as

income, age, marital status etc., are likely to differ across individuals. In this paper we have shown

that recognizing this role of the price mechanism turns out to be critical for our understanding of

the effect of higher search costs on prices and profits. The reason is that an increase in search costs

typically affects two margins: the extensive search margin, which reflects consumers’ decisions on

whether to start searching, and the intensive search margin, which corresponds to consumers’ search

intensity. In addition to having studied the existence and uniqueness of the symmetric equilibrium,

the main results of the paper have been on characterizing conditions on search cost densities under

which higher search costs result in higher, equal, or lower prices.

We have identified a critical property of search cost densities that plays a decisive role, namely,

whether the likelihood ratio is increasing or decreasing in the parameter that shifts the search cost

distribution. When the likelihood ratio is decreasing, an increase in search frictions affects consumers

with high search costs relatively more strongly than it affects consumers with low search costs. In

this case, the effect on the extensive search margin is stronger than the effect on the intensive search

margin. Correspondingly, the average (over the consumers who continue choosing to search for an

acceptable product) demand becomes more elastic and thereby prices decrease. When the search

cost density has the monotone increasing likelihood ratio property, higher search costs impact the
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intensive search margin more strongly than the extensive search margin and this results in higher

prices. These insights are quite robust and hold under different modeling assumptions. The paper

has also analyzed the roles played by other forms of consumer heterogeneity, and we have obtained

similar results when marginal valuations differ across consumers.
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APPENDIX

Derivation of consumer surplus. As mentioned in the main text, a consumer with search cost c

will stop and buy after the first search when ε > x̂(c); otherwise she will drop the first option and

continue searching, in which case she will encounter herself exactly in the same situation as before

because, conditional on participating, the consumer will continue searching until she finds a match

value for which it is worth to stop searching. Denoting by CS(c) her consumer surplus, recursively,

we must have:

CS(c) = −c+ (1− F (x̂(c)))

∫ ε
x̂(c)(ε− p

∗)f(ε)dε

1− F (x̂(c))
+ F (x̂(c))CS(c).

Solving for CS(c) gives

CS(c) =

∫ ε
x̂(c)(ε− p

∗)f(ε)dε− c
1− F (x̂(c))

.

Using the value of c from equation (1) we obtain

CS(c) =

∫ ε
x̂(c)(ε− p

∗)f(ε)dε−
∫ ε
x̂(c)(ε− x̂(c))f(ε)dε

1− F (x̂(c))
=

∫ ε
x̂(c)(x̂(c)− p∗)f(ε)dε

1− F (x̂(c))
= x̂(c)− p∗,

which is the expression we give in the text. �

Proof of Proposition 1. It remains to prove that the equilibrium exists when f is increasing and g

is log-concave. For this, we prove that the demand function of a firm i in equation (5) is a log-concave

function of its own price pi. Given this the firm profit function (4) is quasi-concave in its own price

so that the unique candidate equilibrium price given by equation (6) is indeed an equilibrium.

We start by showing that the integrand in equation (5) is log-concave in c and in pi under the

conditions that f is increasing and g is log-concave. For this we first note that the product of

log-concave functions is log-concave. The term (1 − F (x̂(c))−1 in the integrand of equation (5) is

readily seen to be log-concave in c provided that f is increasing. Under log-concavity of g, the

term (1 − F (x̂(c) + pi))g(c) is log-concave in c and in pi provided that the expression q (pi, c) ≡

1− F (x̂(c) + pi − p∗) is log-concave in c and in pi. Let us now show that this is indeed the case.

We first note that, because x̂ (0) = ε, for deviations such that pi − p∗ > 0 (see footnote 9) it will

be the case that q (pi, c) = 0 for values of c close to 0. However, from Prékopa (1971) we know that if

a function is log-concave on a convex set and equal to zero elsewhere then the function is log-concave

in the entire space.

The set on which q (pi, c) > 0 is given by

S = {(pi, c) : pi ∈ [r, pm] , pi < ε+ p∗ − x̂ (c)} .
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Because x̂(c) is decreasing and convex in c, the expression ε + p∗ − x̂(c) is increasing and concave.

This implies that S is a convex set.

It then remains to prove that q(pi, c) is log-concave in c and pi in S. For this we need to prove

that the function m(pi, c) ≡ ln[1 − F (x̂(c) + pi − p∗)] is concave in c and pi in S, where ln denotes

the natural logarithm. Taking derivatives we have:

∂m

∂c
= − f(x̂(c) + pi − p∗)

1− F (x̂(c) + pi − p∗)
x̂′(c);

∂m

∂pi
=

f(x̂(c) + pi − p∗)
1− F (x̂(c) + pi − p∗)

.

To construct the Hessian matrix, we now compute the necessary second order derivatives:

∂2m

∂c2
= − 1

[1− F (x̂(c) + pi − p∗)]2
{[
f ′(x̂(c) + pi − p∗) [x̂′(c)]

2
+ f(x̂(c) + pi − p∗)x̂′′(c)

]
[1− F (x̂(c) + pi − p∗)]

+ [f(x̂(c) + pi − p∗)x̂′(c)]
2
}

;

= − 1

[1− F (x̂(c) + pi − p∗)]2
{

[x̂′(c)]
2
[
f ′(x̂(c) + pi − p∗) [1− F (x̂(c) + pi − p∗)] + [f(x̂(c) + pi − p∗)]2

]
+ f(x̂(c) + pi − p∗)x̂′′(c) [1− F (x̂(c) + pi − p∗)]} .

The sign of this expression depends on the sign of the part in curly brackets. We note that, because

f is log-concave, the first summand of the expression in curly brackets is positive. Moreover, because

x̂′′(c) > 0, the second summand is also positive. Therefore we conclude that ∂2m/∂c2 < 0.

We now observe that

∂2m

∂p2i
= − 1

[1− F (x̂(c) + pi − p∗)]2
{
f ′(x̂(c) + pi − p∗) [1− F (x̂(c) + pi − p∗)] + [f(x̂(c) + pi − p∗)]2

}
,

which is negative again by the log-concavity of f .

Finally we derive

∂2m

∂pi∂c
= − x̂′(c)

[1− F (x̂(c) + pi − p∗)]2
{
f ′(x̂(c) + pi − p∗) [1− F (x̂(c) + pi − p∗)] + [f(x̂(c) + pi − p∗)]2

}
.

Defining

ψ(c, pi) ≡
f ′(x̂(c) + pi − p∗) [1− F (x̂(c) + pi − p∗)] + [f(x̂(c) + pi − p∗)]2

[1− F (x̂(c) + pi − p∗)]2
,

the Hessian matrix is

H =

(
− [x̂′(c)]2 ψ(c, pi)− f(x̂(c)+pi−p∗)x̂′′(c)

1−F (x̂(c)+pi−p∗) −x̂′(c)ψ(c, pi)

−x̂′(c)ψ(c, pi) −ψ(c, pi).

)

It is straightforward to check that the determinant of H is equal to f(x̂(c)+pi−p∗)x̂′′(c)
1−F (x̂(c)+pi−p∗) ψ(c, pi), which

is strictly positive. As a result the function m(c, pi) is strictly concave in c and pi in S. Because S

is a convex set, the integrand of equation (5) is log-concave in c and in pi.
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We now invoke Theorem 6 in Prékopa (1973) showing that the integral taken over a convex subset

of the real line of a log-concave function is also log-concave, which implies that the demand function

(5) is log-concave in pi. Therefore, an equilibrium exists and is unique. �

Proof of Proposition 3. It remains to prove that the SNE price given by Proposition 1B will also

increase under the MILR property. In order to prove this statement, we make use of the following

version of Theorem 9 in Menezes and Monteiro (2009).13

Theorem (Menezes and Monteiro, 2009). Let f1, f2, f3, f4 be non-negative functions on [a, b]

such that f1 (x) f2 (y) ≤ f3 (x ∨ y) f4 (x ∧ y) for all x, y ∈ [a, b], where x ∨ y ≡ max {x, y} , x ∧ y ≡

min {x, y}. Then ∫ b

a
f1 (x) dx

∫ b

a
f2 (x) dx ≤

∫ b

a
f3 (x) dx

∫ b

a
f4 (x) dx.

Let γ > β. We prove that ∫ c0(p∗)
0 g(c;β)dc∫ c0(p∗)

0
f(x̂(c))

1−F (x̂(c))g(c;β)dc
≤

∫ c0(p∗)
0 g(c; γ)dc∫ c0(p∗)

0
f(x̂(c))

1−F (x̂(c))g(c; γ)dc

by using the theorem. Let

f1 (c) = g(c, β), f2 (c) =
f(x̂(c))

1− F (x̂(c))
g(c, γ),

f3 (c) = g(c, γ), f4 (c) =
f(x̂(c))

1− F (x̂(c))
g(c, β).

We show that for all c, d ∈ [0, c̃ (p)]

f1 (c) f2 (d) ≤ f3 (c ∨ d) f4 (c ∧ d) , (A24)

i.e.,

g(c, β)
f(x̂(d))

1− F (x̂(d))
g(d, γ) ≤ g(c ∨ d, γ)

f(x̂(c ∧ d))

1− F (x̂(c ∧ d))
g(c ∧ d, β).

Take first c < d; we have c ∨ d = d, c ∧ d = c. So we need to prove that

g(c, β)
f(x̂(d))

1− F (x̂(d))
g(d, γ) ≤ g(d, γ)

f(x̂(c))

1− F (x̂(c))
g(c, β).

This is equivalent to

g(d, γ)g(c, β)

(
f(x̂(d))

1− F (x̂(d))
− f(x̂(c))

1− F (x̂(c))

)
≤ 0,

which is true because f is log-concave (f(x̂(c))/[1− F (x̂(c))] is decreasing in c and c < d).

13We are indebted to Paulo Monteiro for alerting us about this theorem and showing us how to use it for this proof.
For the proof of the theorem, we refer the reader to the original source Menezes and Monteiro (2009). (We have
nevertheless developed a more detailed proof, which is available from us upon request.)
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Now take c ≥ d; we have c ∨ d = c, c ∧ d = d. So we need to prove that

g(c, β)
f(x̂(d))

1− F (x̂(d))
g(d, γ) ≤ g(c, γ)

f(x̂(d))

1− F (x̂(d))
g(d, β). (A25)

If g(c, β) = 0 then the inequality clearly holds for any d. If g (d, β) = 0 then d = 0. Then the fact

g (d, β) = 0 means that the derivative of G (c, β) is 0 at 0. Since from FOSD (implied by the MILR

property) G (c, γ) ≤ G (c, β), the derivative of G (c, γ) must also be 0 at 0. Therefore, g (d, γ) = 0,

so the inequality holds.

Next, by dividing equation (A25) by g(c, β) and g(d, β) and reorganizing, we get

f(x̂(d))

1− F (x̂(d))

(
g(d, γ)

g(d, β)
− g(c, γ)

g(c, β)

)
≤ 0.

This holds for all c ≥ d if and only if g (c, β) has the MILR property. �

Proof of Proposition 4. Consider the case in which match values are distributed uniformly on

[0, 1] and search costs are distributed on [0, β] according to the following distribution function:

G(c;β) =
c

β(2 + t)

[
1 + t+

(
c

β

)t]
, with 0 ≤ t ≤ 1,

Notice that an increase in β shifts the search cost distribution to the right, so higher β implies a

FOSD shift of the search cost distribution. The corresponding density is given in the proposition.

We now make two observations about this density function. First, the family of densities g is

log-concave, which together with the uniform density for the match values ensures that a SNE exists

and is unique (Proposition 1). To see this, we note that

∂2 ln[g(c;β)]

∂c2
= −

t

[
1− t+

(
c
β

)t](
c
β

)t
c2
[
1 +

(
c
β

)t]2 < 0.

In addition, we notice that g has the MDLR property. To see this, we note that

g′β
g

=
−

1+t+(1+t)2
(
c
β

)t
β2(2+t)

1+t
β(2+t)

[
1 +

(
c
β

)t] = −
1 + (1 + t)

(
c
β

)t
β

[
1 +

(
c
β

)t]
Taking the derivative with respect to c gives

∂(g′β/g)

∂c
= −

t2
(
c
β

)t−1
β2
[
1 +

(
c
β

)t]2 < 0.
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We now compute the equilibrium prices in the cases of Proposition 1. We have that:

(A) When β ≤ 8(1−r)2(1+t)4

(6t2+13t+6)2
the equilibrium price is

p∗(β) = r +

√
β(2 + t)(1 + 2t)

2
√

2(1 + t)2
,

which clearly increases in β.

(B) When β > 8(1−r)2(1+t)4

(6t2+13t+6)2
, the equilibrium price is given by the solution to equation (10). Using

the formulas above for the distribution and the density this equation is:

L(p;β) ≡ (1− p)2

2β(2 + t)

[
1 + t+

(
(1− p)2

2β

)t]
− (p− r)

∫ (1−p)2/2

0

1 + t√
2cβ(2 + t)

[
1 +

(
c

β

)t]
dc = 0.

After integrating and simplifying we obtain that the price is given by the solution to

L̃(p;β) ≡ (1− p)

[
1 + t+

(
(1− p)2

2β

)t]
− 2(t+ 1)(p− r)

[
1 +

(1− p)2t

2tβt(1 + 2t)

]
= 0.

From the analysis above, we know that L̃(p;β) = 0 has a unique solution; let p(β) be such a solution.

Applying the implicit function theorem we have that

dp

dβ
= −∂L̃/∂β

∂L̃/∂p

where
∂L̃

∂β
=

21−tt(1 + t)(p− r)(1− p)2t

βt+1(1 + 2t)
− t(1− p)2t+1

2tβt+1
(A26)

∂L̃

∂p
=

22−tt(t+ 1)(p− r)(1− p)2t−1

βt(1 + 2t)
−2(t+1)

(
(1− p)2t

2tβt(1 + 2t)
+ 1

)
−21−tt(1− p)2t

βt
−
(

(1− p)2

2β

)t
−t−1

(A27)

From the equilibrium condition equation L̃(p;β) = 0 we obtain that

p− r =

(1− p)
(

1 + t+
(
(1−p)2

2β

)t)
2(t+ 1)

(
1 + (1−p)2t

2tβt(1+2t)

) .

Substituting p− r in equations (A26) and (A27) by this expression and simplifying we obtain

∂L̃

∂β
= − t2(1− p)2t+1

β ((1− p)2t + 2tβt(1 + 2t))
< 0

∂L̃

∂p
= − 2t2(1− p)2t

(1− p)2t + 2tβt(1 + 2t)
− (3 + 4t)(1− p)2t

2tβt(1 + 2t)
− 3(t+ 1) < 0.

From this, we conclude that dp/dβ < 0. As a result, the equilibrium price unambiguously decreases

in β. �
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