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Abstract

This paper deals with first-best and second-best congestion pricing of a stylised two-link
network with probabilistic route choice of travellers. Travellers may have heterogeneous
values of travel times and may differ in their idiosyncratic route preferences. We derive first-
best and second-best tolls taking into account how the overall network demand responds
to generalized costs including the tolls that are levied. We show that with homogeneous
values of times the welfare losses of second-best pricing, of one link only, may be smaller if
route choice is probabilistic. Furthermore, we show that with heterogeneous values of times,
common second-best tolls and group-differentiated tolls can be very close when route choice
is governed by random utility maximisation, leading to low welfare losses from the inability
to differentiate tolls.
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1. Introduction

Probabilistic route choice is a common assumption in transportation science. Instead of
considering deterministic trade-offs, route utility is then considered as a random variable,
depending on a deterministic part and a random part. This paper is concerned with the
implications of probabilistic choice for congestion pricing. It presents analytical results for
a stylised two-link road network with price-sensitive demand and heterogeneous travellers.
These results will enhance our understanding of the economic properties of first-best and
second-best congestion pricing in transport networks when route choice is governed by ran-
dom utility.
Since the early seventies of the previous century, economists have tried to fit in psychologi-
cal theories of probabilistic choice in economic choice theory. McFadden (1974) and Manski
(1977) interpreted the random part of utility as the result of the limited ability of the analyst
to observe individuals’ preferences, resulting in a choice model where the utility function is
random from the perspective of the researcher, but the choices of individuals conditional on
their unobserved idiosyncratic preferences are deterministic. Additional assumptions on the
distribution of the idiosyncratic preferences then lead to the well-known and widely applied
logit model. In the absence of income effects, consumer surplus for this model can then be
expressed by the logsum measure, which exhibits returns to variety. This means that, all
else equal, more choice alternatives lead to a higher expected consumer surplus (Williams,
1977; Small and Rosen, 1981; de Jong et al., 2007).
Earlier studies have derived congestion tolls for stochastic user equilibrium network mod-
els. For example, Yang (1999) and Maher et al. (2005) derive first-best congestion tolls in
a road network with price-insensitive demand and homogeneous travellers. They assume
that the number of alternative routes and road capacities are fixed, and show that, -as
with deterministic user equilibrium (DUE)-, first-best tolls internalise the marginal external
costs. Others have included heterogeneous preferences in stochastic user equilibrium (SUE)
network models. For example, Yang and Huang (2004) have analysed network models with
travellers that have heterogeneous values of times (VOTs). Heterogeneity in the relative
size of the random part of utility (scale heterogeneity), has been less frequently analysed.
Huang and Li (2007) propose a network model with price-insensitive demand where some
drivers are equipped with Advanced Travellers Information Systems (ATIS). In their model
the VOT follows a log-normal distribution and group-specific idiosyncratic preferences are
assumed. Simulation is used to obtain the benefits of ATIS.
Many earlier studies have addressed user heterogeneity in the presence of second-best con-
gestion pricing in static and dynamic congestion models (see for example: Verhoef et al.
(1995); Small and Yan (2001); Verhoef and Small (2004); Mahmassani et al. (2005); Lu
et al. (2006); Zhang et al. (2008); Clark et al. (2009); Jiang et al. (2011); van den Berg and
Verhoef (2011a,b, 2013)). When second-best pricing is applied and road users have hetero-
geneous VOTs, travellers will self-select their best route and therefore it is valuable from a
welfare perspective to offer toll differentiated roads (Arnott et al., 1992; Verhoef et al., 1995;
Small and Yan, 2001; Light, 2009). For example, a welfare optimal strategy may be to have
one route with a lower toll and higher congestion, and one with the opposite. The latter
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will then be used by travellers with a higher VOT.
The present paper contributes to the literature on congestion pricing by presenting a stylised
model for a two route network when route choice is probabilistic and preferences are het-
erogeneous. We show how the SUE welfare function and congestion tolls are related to the
DUE welfare function and congestion tolls, and develop an economic meaningful approach
to analyse SUE when choice probabilities of routes are logits. For DUE, welfare is given
by the area under the demand curve up to the equilibrium number of travellers minus the
total user costs. For logit SUE an additional positive network entropy term is added that
captures the total benefits related to individual returns to variety (Fisk, 1980). The welfare
function has this structure for the SUE model with homogeneous and heterogeneous prefer-
ences. As with the DUE model of Verhoef et al. (1996), the SUE model can then be solved
using Lagrangian techniques, leading to analytical marginal expressions for first-best and
second-best tolls.
First, we will derive analytical expressions for first-best and second-best congestion tolls
with homogeneous VOTs and returns to variety. We show that probabilistic choice does not
affect the marginal first-best tolls. These are equal to the standard Pigouvian tolls of the
DUE model. However, for asymmetric route costs, the levels of these first-best tolls differ for
SUE and DUE, despite the equality of the toll rule, because equilibrium flows are different.
Second, we derive a probabilistic second-best toll with homogeneous VOTs and returns to
variety that has the deterministic second-best toll of Verhoef et al. (1996) as a limiting
case. For second-best pricing, we find that the toll rules of the DUE model and the SUE
model diverge. This is because when a toll is levied, the substitution effect to the untolled
route depends on the relative size of the random part of utility in the total utility. More
deterministic route choices naturally will lead to a stronger response to the toll in terms
of diversion onto the tolled route. Because drivers are less responsive to tolls in the SUE
model, these second-best tolls will be higher. This reflects that in a deterministic setting,
the toll is further below marginal external cost on the tolled route when there is a stronger
effect on congestion costs on the untolled route.
Third, we derive first-best and second-best toll rules for the two-route case with heteroge-
neous preferences. Here, we assume a finite number of groups, with each group having a
different valuation of travel time, and a different degree of returns to variety. Our model thus
allows for scale heterogeneity, meaning that the returns of variety may differ between groups.
Compared to the homogeneous case, a discrete distribution of VOTs and scale parameters
increases the empirical plausibility of the model. For example, the VOTs of individuals may
be different because of variations in income (see Small (2012) for a review on heterogeneity
in VOTs).
We show that if congestion tolls are group-specific, the first-best SUE tolls are isomorphic to
the DUE tolls. The marginal expressions do depend on the group-specific valuations of travel
times, but are independent of the idiosyncratic part of utility. But again, the SUE toll levels
may be different if route costs are asymmetric because equilibrium aggregate usage levels
are. We also show that the common first-best toll is equal to the group-specific first-best
toll. This is because we assume that travellers only differ in their travel time valuation and
therefore the marginal change in external costs due to an additional driver is independent
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of the type of traveller. Group-specific first-best tolls are therefore equal across groups for
a given link.
For group-specific second-best tolls, we find an analytical solution for the group-specific toll.
The level of this second-best toll depends on the valuation of route variety of the different
groups. For non-differentiated (common) second-best tolls, we are not able to derive an
analytical closed-form expression, and therefore this case will be analysed only numerically.
Our numerical results confirm the analytical expressions for first and second-best tolls and
give additional insights on the role of probabilistic choice. We assume that there are two
groups: one with high value of time, and one with low value of time. With (almost) de-
terministic route choice there will be a toll differentiated equilibrium, where the high value
of time group uses the tolled road and the low value of time group uses the untolled route.
However, when the randomness in utility increases, this separation disappears due to idiosyn-
cratic route preferences becoming more important in route choice, and a pooled equilibrium
is optimal. The extent to which the roads are differentiated in order to accommodate the
needs of distinct groups therefore crucially depends on the size of the random part of utility
and the heterogeneity in the value of travel times. More deterministic route choice and larger
heterogeneity in travel time valuations increase the likelihood of having a toll differentiated
optimal equilibrium.
The paper proceeds as follows. Section 2 introduces the probabilistic route choice model.
Section 3 discusses first-best congestion pricing policies with homogeneous and heteroge-
neous VOTs. Section 4 introduces the model for second-best congestion pricing with homo-
geneous and heterogeneous VOTs. Section 5 discusses the numerical results and section 6
concludes.

2. The random utility framework

This section introduces the probabilistic route choice model. Consider the following random
utility function of choice t of individual nk belonging to group k, choosing route r from a
finite set of R alternative routes:

Uktr = Gkr + εktr. (1)

Random utility Uktr therefore depends on a deterministic part Gkr and a stochastic idiosyn-
cratic route preference εktr. The individual nk therefore makes repeated route choices where
the route preferences are random. The cause of these random preference may be that there
are unobserved route characteristics that affect route choice. For example, one route may
have a petrol station or a route may be closer to the child care. This leads to unobserved
preferences for a certain route, which may differ from one choice occasion to another. If
idiosyncratic preferences are identically and independently distributed with a Gumbel dis-
tribution, McFadden (1974) showed that the probability that individual nk chooses route x
from the set of R routes is given by:

Pkx =
exp(Vkx)∑R
r=1 exp(Vkr)

, (2)
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where Vkr = θkGkr,∀r = 1...R. The scale parameter θk governs the relative importance of the
unobserved idiosyncratic part of the utility in the total utility. There are two extreme cases
to be considered. First, the random part of utility may be very large (θk → 0), resulting in
route choices that are independent of the deterministic part of utility. Choice probabilities
then converge in the limit to 1/R. Second, the random part of the utility may become very
small (θk →∞), resulting in a deterministic route choice model for individual nk. Because
the random term of the utility is interpreted as individuals’ unobserved preferences, there
are returns to variety for individual travellers, meaning that adding an additional alternative
will lead to higher maximum expected utility. This becomes more evident if we derive the
expected generalised costs for individual nk, which is given by the negative of the logsum
(Williams (1977); Small and Rosen (1981); de Jong et al. (2007)):

GCk = − 1

θk

∫
PkrdVkr = − 1

θk
ln

[
R∑
r=1

exp(Vkr)

]
, (3)

where the minus sign is due to the fact that we transform the logsum to expected generalised
route costs (including tolls). Furthermore, it is assumed that the marginal utility of income
is equal to 1. There is a variety discount, meaning that an increase in the number of routes
will always have a positive effect on the generalised user costs as long as θk < ∞, and
GCk <∞ resulting in non-zero choice probabilities for all alternatives. This is an appealing
feature of the logsum measure, since it implies that having more routes is valued positively
by travellers. The stochastic model has the deterministic model as a limiting case. When
θk → ∞ in equation 3, the utility differences between the alternatives must become 0 in
equilibrium, because otherwise all travellers will travel on one route. Therefore we have
Vkr → Vk and GCk → −Vk, which is equal to the negative part of the systematic utility.

3. First-best congestion pricing, two route case

3.1. Homogeneous preferences

We start our analysis of pricing with first-best congestion pricing in a stylised two-route
setting. This model can be viewed as a probabilistic version of the model in Verhoef et al.
(1996). We assume that there is only one group, meaning that all travellers are identical
in systematic and random utilities. Therefore we can write nk ≡ n, Vkr ≡ Vr and θk ≡ θ.
Traveller n has a willingness to pay to enter the road network reflected by an inverse demand
D(n). A traveller enters the road network if this willingness to pay is higher than the
expected generalised costs of equation 3. Our modelling framework therefore assumes a two
stage decision, where drivers first make their decision to enter the road on the basis of the
expected generalised costs, and then make their route choice on the basis of a individual
’draw’ of their idiosyncratic route preference. This is a plausible assumption as long as
travellers do not consider the decision to travel for every choice occasion t, but rather make
this decision for a series of choices.
If we assume that tolls and congestion costs enter systematic utility in an additive separable
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way, the deterministic utilities for routes U and T are given by:

Vr = −θ (fr + cr(Nr)) , r ∈ {U, T} , (4)

where fr is the toll on route r, and cr(Nr) is the travel cost for route r, which is increasing
in the route flow Nr. Because the cost coefficient is normalised to −1, systematic utility is
expressed in monetary units. For the two route case, equilibrium is implicitly defined by:

Pr =
exp(Vr)

exp(VT ) + exp(VU)
=

Nr

NU +NT

=
Nr

N
. (5)

This is an implicit condition because probabilities in turn determine cr(Nr) through conges-
tion effects. These conditions show that equilibrium probabilities can always be expressed
by the number of drivers on the two routes. Using equation 3, the expected generalised costs
for the two route case is given by:

GCr = −1

θ
ln [exp(VT ) + exp(VU)] . (6)

These generalised costs both capture the congestion costs, the tolls and the variety discount.
This becomes more evident if we rewrite equation 6 using equations 5 and 4:

GCr = −1

θ
ln [exp(VT ) + exp(VU)] = ln

[
exp(Vr)

Pr

]
= −1

θ

(
Vr − ln

[
Nr

N

])
=

fr + cr(Nr) +
1

θ
ln

[
Nr

N

]
.

(7)

This is a convenient way of rewriting the expected generalised costs because it becomes
immediately clear that the deterministic model results as a limiting case when θ → ∞
(Akamatsu, 1997). For given route costs fr + cr(Nr), the variety discount 1

θ
ln
[
Nr
N

]
always

decreases expected generalised costs, because choice probabilities Nr/N are always smaller
than 1, leading to a negative ln-term. For given equilibrium route flows and tolls, the
stochastic choice model therefore always has lower generalised costs then the deterministic
model.
The social surplus S is given by the social benefits (the integral under the inverse demand
curve, the toll revenues and the variety discounts) minus the sum of total maximum expected
costs. We can therefore multiply equation 7 with the number of travellers on each route to
obtain total costs. The toll payments of the travellers are a money transfer to the regulator,
and they drop out of the social surplus function (we assume a zero shadow price of public
funds). To stay as close as possible to the two-route model of Verhoef et al. (1996), we
assumed that inverse demand is given by D(n). In the deterministic model, this reflects
that the routes are pure substitutes. Here it shows that the imperfect substitutability is
fully captured by the logit model. Social surplus is then given by

S =

∫ N

0

D(n)dn−NT cT (NT )−NUcU(NU)− 1

θ

(
NT ln

[
NT

N

]
+NU ln

[
NU

N

])
. (8)
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The first part of this equation captures the consumer surplus and the deterministic total user
costs. The second part is always positive and captures the total variety discounts for given
route flows NT and NU . For given NT and NU , a smaller θ, and hence a higher randomness
of route utility, will lead to higher variety discounts. The total variety discounts are equal to
the negative of the Shannon entropy multiplied by the number of travellers, and the inverse
of the scale parameter (Shannon, 1948). For the multinomial logit model, this relationship
between Shannon entropy and variety discounts has long been recognised (Erlander, 1977;
Fisk, 1980; Miyagi, 1986).
Entropy is higher when route probabilities are more alike. Therefore, if route probabilities
are more similar, variety discounts are higher. This is intuitive: routes add more to the
variety discounts if they are used more equally in equilibrium. The total variety discounts
can fully be expressed by the choice probabilities and the total number of travellers. Any
change in the congestion costs or the toll on a route will only have an effect on the variety
discounts via the equilibrium choice probabilities. We consider first-best congestion pricing
with a welfare-maximizing regulator, setting a toll on route U and route T . The Lagrangian
is given by

L =

∫ N

0

D(n)dn−NT cT (NT )−NUcU(NU)− 1

θ

(
NT ln

[
NT

N

]
+NU ln

[
NU

N

])
+λT

(
D(N)− fT − cT (NT )− 1

θ
ln

[
NT

N

])
+ λU

(
D(N)− fU − cU(NU)− 1

θ
ln

[
NU

N

])
.

(9)

The constraints govern equilibrium on both routes because travellers keep on entering the
road up to the point where the marginal benefits D(N) are equal to the expected gener-
alised costs of Equation 7. This condition holds for both routes and therefore the expected
generalised costs of the two routes are also equal in equilibrium. The setup of Equations 8
and 9 separates the overall demand response from the substitution between routes and has
a clear advantage over a setup with an outside alternative, because then θ governs both the
elasticity of demand and the substitution between routes. Then the limiting case of θ →∞
is not easily interpretable, since this results in a deterministic model with perfect elastic
demand. In order to find the first-best congestion tolls, the following first-order conditions
need to be solved jointly:1

∂L
∂NT

= D(N)− cT (NT )−NT c
′
T (NT )− 1

θ
ln

[
NT

N

]
+ λT

(
D′(N)− c′T (NT )− 1

θ

NT

NUN

)
+λU

(
D′(N) +

1

θ

1

N

)
= 0.

(10)

1Here we use: ∂
∂NT

(
NT ln

[
NT

N

]
+NU ln

[
NU

N

])
= ln

[
NT

N

]
, ∂

∂NU

(
NT ln

[
NT

N

]
+NU ln

[
NU

N

])
= ln

(
NU

N

)
,

∂
∂NT

ln
[
NT

N

]
= NT

NUN , ∂
∂NU

ln
[
NU

N

]
= NU

NTN and ∂
∂NU

ln
[
NT

N

]
= ∂

∂NT
ln
[
NU

N

]
= 1

N
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∂L
∂NU

= D(N)− cU(NU)−NUc
′
U(NU)− 1

θ
ln

[
NU

N

]
+ λT

(
D′(N) +

1

θ

1

N

)
+λU

(
D′(N)− c′U(NU)− 1

θ

NU

NTN

)
= 0.

(11)

∂L
∂fT

= −λT = 0. (12)

∂L
∂fU

= −λU = 0. (13)

∂L
∂λT

= D(N)− fT − cT (NT )− 1

θ
ln

[
NT

N

]
= 0. (14)

∂L
∂λU

= D(N)− fU − cU(NU)− 1

θ
ln

[
NU

N

]
= 0. (15)

Equations 12 and 13 show that the Lagrangian multipliers of both routes are 0 in the socially
optimal equilibrium. This is intuitive, because these multipliers reflect the marginal change
in social surplus for a marginal change in the congestion toll on a route. In equilibrium,
this marginal change should be 0, otherwise the tolls would non-optimal by definition. This
matches insights from deterministic models (Verhoef, 2002). Substituting Equations 12-15
in Equations 10 and 11 we obtain:

fT = NT c
′
T (NT ),

fU = NUc
′
U(NU).

(16)

These first-best toll rules are therefore isomorphic to the standard Pigouvian toll rules of
the DUE model. Tolls internalise marginal external cost to make people behave according
to the social optimum, when acting in their own self-interest. In the probabilistic model
we may not fully observe all the individual benefit components, but through the first-best
tolls travellers are correctly taking into account all relevant aspects (their own costs and
benefits, be it observable to the regulator or not, and the impact on other travellers), so
they behave so as to maximise welfare. Even though the toll rules are the same for DUE and
SUE, absolute toll levels of the SUE and DUE model may still diverge when route costs are
asymmetric. This is because in the DUE model, the route costs will be equal in equilibrium
resulting in equal route flows NT and NU . The SUE model can have unequal equilibrium
route costs and route flows. This asymmetric case is analysed in more detail in section 5.

3.2. Group-differentiated and common first-best tolls with heterogeneous preferences

Next, we proceed with the analysis of first-best congestion pricing with heterogeneous pref-
erences. Assume that there are K distinct groups in the population. The inverse demand for
travelling, the valuation of travel time, and the variety discount are assumed to be group-
specific. The heterogeneity in travel time valuation enters the model via the deterministic
route costs crk(Nr) for group k, with Nr being the total number of travellers using route
r. Scale heterogeneity is captured by having a group-specific scale parameter θk. Finally,
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heterogeneity in overall demand response is captured by having a group-specific inverse
demand Dk(nk). Let NTk be the number of travellers of group k that use route T , and
NUk the number of travellers of group k that use route U . The total number of travellers
in a group is Nk = NTk + NUk. Here we have NT =

∑K
k=1NTk, NU =

∑K
k=1NUk and

NT + NU =
∑K

k=1Nk = N . Because the number of groups can be chosen, our model can
approximate any continuous distribution of preferences arbitrarily closely. Deterministic
route costs are determined by the total number of travellers on each route. To simplify
matters, these travel costs are assumed to be equal up to a group-specific multiplicative
term, implying that cTk(NT ) = αkcT (NT ) and cUk(NU) = αkcU(NU),∀k = 1...K. If cr(Nr)
is interpreted as the travel time on route r, this model can be viewed as a model with trav-
ellers having different valuations of travel time αk. This group-specific valuation of travel
time then converts the route travel time cr(Nr) to monetary units. To save notation we
define N̄T

α
=
∑K

k=1 αkNTk as the preference weighted number of travellers at route T, and

N̄U
α

=
∑K

k=1 αkNUk as the preference weighted number of travellers for route U. Each group
has an inverse demand function Dk(nk). Equilibrium choice probabilities for group k for the
two routes are then given by PTk = NTk

Nk
and PUk = NUk

Nk
. The generalised costs for route

r for group k are given by the negative of the group-specific logsum, which again can be
rewritten as:

GCrk = frk + crk(Nr) +
1

θk
ln

[
Nrk

Nk

]
. (17)

Deterministic costs are governed by the total number of travellers on route r, whereas the
total returns to variety depend on the group-specific route probabilities and the inverse of the
group-specific scale parameter θk. Returns to variety for group k are thus fully determined
by the equilibrium number of travellers for route k at both routes. The interaction of the
groups in the network is captured in the deterministic route costs. The total returns to
variety for the SUE network model are then given by the sum of the group-specific Shannon
entropies, multiplied with the group-specific number of travellers and the inverse of the
group-specific scale parameters. The Lagrangian is given by a straightforward extension of
Equation 9 to K groups:

L =
K∑
k=1

∫ Nk

0

Dk(nk)dnk −
K∑
k=1

αkNTkcT (NT )−
K∑
k=1

αkNUkcU(NU)

−
K∑
k=1

1

θk

(
NTk ln

[
NTk

Nk

]
+NUk ln

[
NUk

Nk

])
+

K∑
k=1

λTk

(
Dk(Nk)− fTk − αkcT (NT )− 1

θk
ln

[
NTk

Nk

])
+

K∑
k=1

λUk

(
Dk(Nk)− fUk − αkcU(NU)− 1

θk
ln

[
NUk

Nk

])
.

(18)

For all groups, the marginal willingness to pay should be equal to the expected generalised
costs in equilibrium, resulting in 2K equilibrium constraints and corresponding Lagrangian

9



multipliers. The system can be solved using the first-order conditions with respect to NT l,
NUl, the Lagrange multipliers and the tolls. In Appendix A we show that the group-specific
first-best tolls with heterogeneous preferences are given by

fTk = N̄T
α
c′T (NT ),

fUk = N̄U
α
c′U(NU).

(19)

Marginal first-best tolls on the routes are therefore equal to the deterministic case with
differentiated tolls. As with first-best tolling with homogeneous preferences, probabilistic
choice only has an effect on the tolls via the equilibrium number of travellers on both
routes. Furthermore, equation 19 shows that the first-best tolls are equal for all groups.
This is because the change in external costs for an additional traveller is assumed to be
the same for all groups. For external costs it does not matter to which group the traveller
belongs, since travel time losses increase with the same amount independent of the type of
traveller. This could be different if different groups had different impacts on travel times, as
would be likely with trucks versus passenger cars (see for example Palma et al. (2008) and
Parry (2008) on trucks). Differentiated and common tolls will not coincide for second-best
congestion pricing, as we will show in the next section.

4. Second-best congestion pricing

4.1. Homogeneous preferences

In many cases first-best pricing is not feasible and often not accepted because travellers do
not have the opportunity to travel on a untolled route. Tolling one of the two routes (a
form of second-best congestion pricing), may then be a viable alternative. In this section we
analyse congestion pricing with probabilistic choice in the presence of an untolled alternative.
The SUE model developed in this section is a probabilistic version of the DUE model of
Verhoef et al. (1996) which has its roots in the earlier DUE analysis of Marchand (1968)
and Lévy-Lambert (1968). For this deterministic model, the substitution between the routes
plays an important role for determining the second-best toll. Because in the SUE model
this substitution is governed by θ, we expect that second-best tolls will depend on θ too.
The systematic route utility for the tolled route is given by VT = −θ (fT + cT (NT )) whereas
for the untolled route it is given by VU = −θcU(NU). Equilibrium is implicitly defined
by equation 5, but the equilibrium conditions are different compared to the first-best case,
because no toll is levied on route U . This has an effect on the expected generalised costs
(the negative of the logsum), and on overall entry, because overall demand is responsive
to generalised cost levels. The expected generalised costs for route T are equivalent to 7
and given by GCT = fT + cT (NT ) + 1

θ
ln
[
NT
N

]
, whereas the generalised route costs of the

untolled route are GCU = cU(NU) + 1
θ

ln
[
NU
N

]
. Because tolls are a cost for the travellers

and a benefit for the government, the toll revenues will not enter the total social surplus.
Therefore the expression for the total social surplus (equation 8) will not change. Because
we have price-sensitive demand, travellers enter the road up to the point where the marginal
willingness to pay is equal to to the generalised route costs. The Lagrangian is then given
by:

10



L =

∫ N

0

D(n)dn−NT cT (NT )−NUcU(NU)− 1

θ

(
NT ln

[
NT

N

]
+NU ln

[
NU

N

])
+

λT

(
D(N)− fT − cT (NT )− 1

θ
ln

[
NT

N

])
+ λU

(
D(N)− cU(NU)− 1

θ
ln

[
NU

N

])
.

(20)

Not surprisingly, this Lagrangian reduces to the DUE model of Verhoef et al. (1996) for
θ → ∞. The second-best toll can be found by solving the following system of first-order
conditions:

∂L
∂NT

= D(N)− cT (NT )−NT c
′
T (NT )− 1

θ
ln

[
NT

N

]
+

λT

(
D′(N)− c′T (NT )− 1

θ

NT

NUN

)
+ λU

(
D′(N) +

1

θ

1

N

)
= 0.

(21)

∂L
∂NU

= D(N)− cU(NU)−NUc
′
U(NU)− 1

θ
ln

[
NU

N

]
+

λT

(
D′(N) +

1

θ

1

N

)
+ λU

(
D′(N)− c′U(NU)− 1

θ

NU

NTN

)
= 0.

(22)

∂L
∂fT

= −λT = 0. (23)

∂L
∂λT

= D(N)− fT − cT (NT )− 1

θ
ln

[
NT

N

]
= 0. (24)

∂L
∂λU

= D(N)− cU(NU)− 1

θ
ln

[
NU

N

]
= 0. (25)

Using Equations 21, 23 and 24 we obtain:

fT = NT c
′
T (NT )− λU

(
D′(N) +

1

θ

1

N

)
. (26)

Using Equations 25 and 23, we can solve Equation 22 for λU :

λU =
NUc

′
U(NU)

D′(N)− c′U(NU)− 1
θ
NT
NUN

. (27)

This Lagrangian multiplier is non-positive implying that if it was possible to raise a positive
toll on route U this would result in a welfare increase because tolls enter the constraints in
Equation 20 negatively. This is expected because raising a toll on route U will bring the
equilibrium closer to the first-best optimum. Substituting Equation 27 in Equation 26 gives:

fT = NT c
′
T (NT )−NUc

′
U(NU)

−D′(N)− 1
θ

1
N

c′U(NU)−D′(N)− 1
θ
NT
NUN

. (28)
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The first term in Equation 28 is equal to the marginal external costs in the second-best
equilibrium. The second term is more complicated and corrects for the marginal costs of
congestion caused by substitution to the untolled route when a toll is levied on route T .
More precisely: the marginal external costs on route U is multiplied by a fraction, which
is for sufficiently high c′U(NU) in between 0 and 1. This fraction gives the weight of this
correction term, relative to the marginal external costs on route T . This weight depends
on the relative size of the random part of utility in the total utility, the slope of the inverse
demand, the ratio of the equilibrium number of travellers on both routes, the total number
of travellers, and the slope of the congestion cost function of the untolled route. It shows
that the second-best toll depends in a complicated way on θ, since θ has a direct positive
effect on the numerator and the denominator of the correction term, but also has an indirect
effect on Equation 28 via the equilibrium number of travellers. This last effect is the result
of additional entry if there are higher variety discounts.
A more detailed look at Equation 28 shows that despite the additional terms due to stochastic
route choice, it has a similar analytical structure as the toll rule for deterministic route choice
and can be written as fT = MECT +MECU

∂NU
∂NT

, where MECr is the marginal external cost

on route r. The marginal external costs on route U are weighted with a term ∂NU
∂NT

. More

specifically, Equation 20 shows that the term D′(N)+ 1
θ

1
N

is the change in the constraint for

route U due to a marginal change in NT , whereas −c′U(NU) +D′(N) + 1
θ
NT
NUN

is the change
in the constraint for route U due to a marginal change in NU . The ratio therefore gives
∂NU
∂NT

. As opposed to the first-best toll rules of Equation 16, the toll rules of the DUE model
of Verhoef et al. (1996) and our SUE model differ even for the case with symmetric route
costs. Several limiting cases can be considered.
First, the second-best toll rule of the deterministic model is a limiting case of the stochastic
model when its random component vanishes:

lim
θ→∞

fT = NT c
′
T (NT )−NUc

′
U(NU)

−D′(N)

c′U(NU)−D′(N)
. (29)

This toll is isomorphic to the toll rule for the DUE model developed by Verhoef et al. (1996).
The SUE model therefore generalises the DUE model because it has the DUE model as a
special case.
Second, for perfectly overall inelastic demand, D′(N) → −∞, and the toll rule becomes
equal to the difference in marginal external costs on the two routes:

lim
D′(N)→−∞

fT = NT c
′
T (NT )−NUc

′
U(NU). (30)

This toll rule is isomorphic to the toll rule of the DUE model with price-insensitive demand
of Verhoef et al. (1996). Because there is no effect of tolling on the overall demand, the
regulator only seeks to find the optimal route split. This produces the first-best outcome, so
in itself it is no surprise that as with first-best tolls, the toll rules for the DUE and the SUE
model become identical again. The level of the toll in Equation 30 may well be different
for DUE and SUE for asymmetric route costs, because θ has an effect on the optimal route
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split. Furthermore, Equation 30 may be negative if in equilibrium the marginal external
costs on route U are higher than the marginal external costs on route T . This means that
travellers on route T would receive a subsidy instead of paying a toll.
Third, with perfectly elastic overall demand the toll rule becomes

lim
D′(N)→−0

fT = NT c
′
T (NT )−NUc

′
U(NU)

−1
θ

1
N

c′U(NU)− 1
θ
NT
NUN

. (31)

This is clearly different from the corresponding toll 29, where the second term vanishes as
−D′(N) becomes 0. For perfectly elastic overall demand the marginal toll rule depends on
θ, because the substitution between the routes depends on the variety discount, whereas the
use of route U would be fully independent of fT with deterministic route choice. The reason
is that for deterministic route costs and perfectly elastic demand, the toll on route T cannot
affect the use of route U , so there is no benefit from taking route U into account in the toll
rule. In the stochastic model, there remains an effect of the toll on the use of route U , and
this is accounted for in the toll rule.
Fourth, if route U is uncongested, c′U(NU)→ 0, and the toll rule 28 reduces to:

lim
c′U (NU )→0

fT = NT c
′
T (NT ). (32)

which is again isomorphic to the toll rule in the deterministic model. The absence of con-
gestion on route U then means that this route is optimally priced when it is not tolled.
The regulator may therefore ignore route U , and needs only to consider the unconstrained
optimal regulation of route T .
Finally, it turns out that both the deterministic model and the stochastic model are part of
a broader class of models with user benefits B(NT , NU). The first derivative of this benefit
function is the inverse demand and should be equal to the congestion costs plus the toll in
equilibrium. The second-best congestion toll is then given by (Small and Verhoef (2007),
equation 4.47):

fT = NT c
′
T (NT )−NUc

′
U(NU)

− ∂2B
∂NU∂NT

c′U(NU)− ∂2B
∂N2

U

. (33)

For deterministic route choice we have B(NT , NU) =
∫ N
0
D(n)dn, whereas for stochastic

route choice we observe from Equation 8 that there are additional returns to variety resulting
in: B(NT , NU) =

∫ N
0
D(n)dn − 1

θ

(
NT ln

[
NT
N

]
+NU ln

[
NU
N

])
. If we substitute the second

order derivatives of this benefit function in Equation 33 we arrive at Equation 28.

4.2. Group-specific second-best tolling with heterogeneous preferences

This section generalises the SUE model of the previous section by deriving group-specific
second-best congestion tolls with heterogeneous travellers. We use a similar setup as in
section 3.2 where K distinct groups have different preferences for congestion costs, returns
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to variety and the inverse demand curve. The Lagrangian is given by:

L =
K∑
k=1

∫ Nk

0

Dk(nk)dnk −
K∑
k=1

αkNTkcT (NT )−
K∑
k=1

αkNUkcU(NU)

−
K∑
k=1

1

θk

(
NTk ln

[
NTk

Nk

]
+NUk ln

[
NUk

Nk

])
+

K∑
k=1

λTk

(
D′k(Nk)− fTk − αkcT (NT )− 1

θk
ln

[
NTk

Nk

])
+

K∑
k=1

λUk

(
D′k(Nk)− αkcU(NU)− 1

θk
ln

[
NUk

Nk

])
(34)

In Appendix B we first show that the group-specific Lagrangian multipliers of route U are
non-positive, implying that the possibility to raise a positive toll on route U for any of the
groups would increase welfare. Furthermore, we show that the second-best group-specific
toll for group k is given by:

fTk = N̄T
α
c′T (NT )− N̄U

α
c′U(NU)

−D′(Nk)− 1
θk

1
Nk

αkc′U(NU)−D′k(Nk) + 1
θk

NTk
NUkN

+ φk
, (35)

where

φk =
K∑
l=1
l 6=k

αlc
′
U(NU)

D′k(Nk)− 1
θk

NTk
NUkNk

D′l(Nl)− 1
θl

NTl
NUlNl

> 0. (36)

The first part in equation 35 is related to the external costs on the tolled route and is
isomorphic to the first-best toll with heterogeneous preferences (19). The second part in
Equation 35 takes into account the substitution effect to the other route which is different
for each group. Several limiting cases can be considered. First, when there is only one group,
φk → 0, and Equation 35 reduces to Equation 28. Second, the DUE group-specific toll is a
special case for which θk →∞,∀k = 1...K. This results in:

fTk = N̄T
α
c′T (NT )− N̄U

α
c′U(NU)

−D′(Nk)

αkc′U(NU)−D′k(Nk)− c′U(NU)
∑K

l=1
l 6=k

αk
D′
k(Nk)

D′
l(Nl)

. (37)

If the slopes of the demand curves of all groups are equal we have D′l(Nl) ≡ D′k(Nk) ≡ D′

this reduces to:

fTk = N̄T
α
c′T (NT )− N̄U

α
c′U(NU)

−D′

c′U(NU)
∑K

l=1 αl −D′
. (38)

This implies that the DUE model with equal slopes of the demand curves lead to common
second-best tolls for all groups because c′U(NU)

∑K
l=1 αk has the same value for all groups.
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For the SUE model with equal slopes of the inverse demand curves, tolls are still differenti-
ated between groups, because the substitution effect to the untolled route does depend on
the equilibrium number of travellers of each group on each route and the group-specific scale
parameters θk.
We were not able to derive analytical solutions for the common second-best toll case (undif-
ferentiated between groups). The welfare for common second-best tolls will be lower than for
the group-specific second-best tolls, because the inability to differentiate the tolls between
user groups imposes an additional constraint. The Lagrangian problem is equivalent to 34
with fTk ≡ fT . However, the next section will include numerical results for this case.

5. Numerical results

5.1. Introduction and calibration

Our numerical results build on the DUE model of Verhoef et al. (1996), who assumed linear
inverse demand and linear cost functions. We shall use the DUE case as a benchmark case
to which we judge the implications of moving from a DUE to SUE framework, considering
sensitivity of the results and toll rules to variations in the variety discounts. The DUE model
of Verhoef et al. (1996) assumes a linear inverse demand:

D(N) = δ1 − δ2(NT +NU), (39)

and linear congestion costs for route r defined as:

cr(Nr) = κr + βrNr, (40)

where the base case assumed parameter values δ1 = 50; δ2 = 0.02;κ1 = κ2 = 20 and
β1 = β2 = 0.02 for both routes. This implies that both routes are assumed to be identical in
the base case resulting in non-intervention equilibrium flows of NT = NU = 750. Substitut-
ing these values in Equation 40 gives equilibrium average costs of 20 + 0.02× 750 = 35 and
marginal social costs of 20 + 0.04× 750 = 50. Applying optimal first-best tolling results in
average costs of 30 and marginal social costs of 40, whereas the toll is given by 40−30 = 10.
The socially optimal number of travellers is given by 500 for both routes.
In what follows we consider the various toll rules and welfare implications under the homoge-
neous cases with the variety discount captured by θ, heterogeneity in values of time between
groups (αk), and heterogeneity in preferences between groups (θk) for the symmetric case.
In order to make a comparison between such cases, we calibrate the initial link flows at the
non-intervention equilibrium to be equal to the UE non-intervention flows, and adjust the
inverse demand function(s) accordingly. We also impose a constraint on the flow weighted
average value of time so that this is equal to the value used in the homogeneous case. This
calibration of the model to observed flows and average value of time not only ensures that
the flows are consistent at the non-intervention case, but also that the initial aggregate wel-
fare levels are maintained across models. We are though aware that symmetric examples
may hide some impacts, in particular the change in route flows even in the non-intervention
case θ is adjusted. For this reason we also develop an asymmetric example (again based on
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Verhoef et al. (1996)), where we adjust the systematic route utility with the introduction of
a specific constant on one route, to maintain the equilibrium route flows. This asymmetric
example is used to illustrate the fact that θ can affect the tolls and resulting flows even in
the first-best homogeneous case. Calibration of the asymmetric case is directed to Appendix
C.
When adapting the model to a SUE with heterogeneous preferences, we purposely calibrate
the demand function and initial group-specific demands such that the DUE non-intervention
route flows (and demands) are retrieved as we move between cases. As we are dealing with
linear inverse demand and cost functions these adjustments are rather straightforward and
additive in nature. Users are willing to travel until their willingness to pay is equal to the
logsum and therefore we have to shift the inverse demand curve by an amount equal to the
difference between the DUE average costs (35 at the no toll equilibrium in our example) and
the no toll stochastic average costs. Hence the new inverse demand function can be written
as:

D(N) = δ1 + ν + δ2(NT +NU), (41)

where the shift term ν < 0 is equal to the logsum evaluated at the DUE demand level
(1500 in this case) minus the DUE systematic average costs. Because the variety discount
decreases average costs, the inverse demand curve needs to be shifted downwards to maintain
the same equilibrium non-intervention flows.
When we move to the case where groups are characterised by different values of time, we
impose the condition that the flow-weighted average value of time remains equal 1, which
is the assumed value with homogeneous travellers, reflecting that in the base calibration
no explicit distinction between a travel time function and the average user cost function is
made. In addition we maintain the initial demand, so that we have conditions as follows:

K∑
k=1

αk
N0
k

N0
= 1;N0 =

K∑
k=1

N0
k , (42)

where superscript N0
k refers to the non-intervention values of total group-specific demand

and N0 is total non-intervention demand. For the case with two groups we have:

N0
1 = N0 1− α2

α1 − α2

;N0
2 = N0 −N0

1 . (43)

For the DUE case with two groups, we have to adjust the group-specific demand functions
to account for the change in value of time in order to maintain the initial systematic average
costs as for the homogeneous case. This is achieved by adjusting the intercept and slope of
the group-specific inverse demand curves as follows:

Dk(Nk) = δ1αk − (δ1 − νk)αk
N0

N0
k

. (44)

This procedure is best demonstrated by an example. Let the values of time be α1 = 0.8
and α2 = 1.3. This gives initial flows of N0

1 = 1500 1−1.3
0.8−1.3 = 900 and N0

2 = 1500 − 900 and
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intercepts of δ1α1 = 50 × 0.8 = 40 and δ1α2 = 50 × 1.3 = 65. Assuming ν1 = ν2 = 0 for
the deterministic model, the slopes of the inverse demand curves for both groups are given
by −α1(δ1−ν1)

N0
1

= −15×0.8
900

= − 1
75

, and −α2(δ1−ν1)
N0

2
= −15×1.3

600
= − 13

400
respectively. Substituting

these values back in the inverse demand function gives equilibrium non-intervention average
costs of 40− 1

75
× 900 = 28 and 65− 13

400
× 600 = 451

2
. Note that their ratio corresponds to

1.3
0.8

, so that the equilibrium travel time will be equal for both groups.
For the no toll DUE equilibrium, group-specific and total welfare can be calculated using
these equilibrium average user costs. Because of linear inverse demand, welfare is given by
the triangular area above the average cost curve. For group k the welfare is denoted by Wk,0.
The group-specific welfare is given by W1,0 = 1

2
×(δ1α1−28)×N0

1 = 1
2
×12×900 = 5400 and

W2,0 = 1
2
× (δ1α2− 451

2
)×N0

2 = 1
2
× 191

2
× 600 = 5850. Total initial welfare is then given by

Ŵ0 = W1,0 +W2,0 = 5400 + 5850 = 11250, which is the required welfare of the homogeneous
DUE case of Verhoef et al. (1996). This procedure for DUE can be extended to SUE by
shifting the group-specific demand curves with the group-specific correction terms ν1 and ν2
in such a way that non-intervention average user costs and welfare levels are maintained.

5.2. First-best congestion pricing with homogeneous travellers and asymmetric route costs

We start with first-best tolling in the homogeneous value of time SUE model with symmetric
route costs. When route costs are symmetric, the first-best tolls from equation 16 were found
to give the same optimal tolls and flows as for the DUE case: tolls of 10 and flows of 500 on
each link for all chosen values of θ. However, this is a special case, because with asymmetric
route costs θ has an effect on the toll via its impact on the equilibrium numbers of travellers
on both routes, which in turn directly enters the first-best toll rules. To illustrate this,
assume that the routes have different free-flow travel times κr, with κT = 20 and κU = 10.
This changes the non-intervention flows on both routes and from Verhoef et al. (1996) these
are N0

T = 625 and N0
U = 1125 for the DUE case. If we now introduce a preference for

variety in the SUE case then these non-intervention flows would be different. As discussed
in the previous section, we seek to maintain the observed route flows in the non-intervention
case. Therefore we introduce a route specific constant for route U , which represents a route-
specific preference not related to travel time and toll. In Appendix C we show that the
required calibrated constant for any chosen value of θ amounts to:

ASCU =
1

θ
ln

[
N0
T

N0
U

]
, (45)

where the flows are from the DUE non-intervention case. This results in a negative constant
being added to the shorter route U , which attracts more users to compensate for the returns
to variety term. Table 1 shows the results for different values of θ. The flows for the θ = 10
case are close to the UE solution of 4581

3
and 7081

3
of Verhoef et al. (1996). This implies

the corresponding tolls are also close to the first-best tolls for DUE. As opposed to the
symmetric case, an increase in returns to variety changes equilibrium route flows which in
turn impact the optimal toll level. The equilibrium flows on the shorter route U , increase
with decreasing θ as the alternative specific constant ASCU increases with decreasing θ. The
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Table 1: Tolls, flows and welfare for FB tolling with asymmetric route costs.

θ fT fU NT NU N ŴFB

10 9.2 14.2 458.1 708.5 1166.6 21041.4
1 9.1 14.2 456.2 709.9 1166.1 21038.6

0.5 9.2 14.2 454.3 711.2 1165.5 21035.8
0.1 8.9 14.4 443.1 719.0 1162.1 21020.0

flows on the longer route decrease when θ decreases. The tolls follow the flows as implied
by the marginal first-best toll rules of 16. Compared to DUE, the overall demand and the
corresponding welfare slightly reduce as returns to variety increase.

5.3. First-best congestion tolling with heterogeneous travellers

For first-best tolling with heterogeneous values of time and stochastic route choice we use
group-specific values of time of α1 = 0.8 and α2 = 1.3. As described in section 5.1 we
maintain the average value of time and welfare at the no toll equilibrium using initial flows
of 900 and 600 respectively. It was confirmed numerically that the first-best tolls from
equations 19 were optimal and the resulting tolls, flows and welfare are shown in Table 2.
For low values of θ, there was only one solution with common first-best tolls which are higher
than in the homogeneous case. As with the homogeneous case, the first-best toll solutions
are independent of θ due to the symmetry in average route costs for low values of θ. In DUE,
almost all the low value of time group were priced off route T , with around 500 remaining
in the higher value of time group. The total welfare is larger than for the homogeneous case
despite the total demand being only 960.8 users. This is due to the new average value of
time being 1.06 at the first-best equilibrium, because more high value of time users enter
the road. For θ = 10 the model is close to the UE case. There we obtain several solutions

Table 2: Tolls, flows and welfare for FB tolling with heterogeneous value of time

θ fT1 fT2 fU1 fU2 NT1 NT2 NU1 NU2 ŴFB1 ŴFB2 ŴFB

10* 10.2 10.2 10.2 10.2 229.4 251.0 229.4 251.0 6081.7 9212.5 15294.1
10 11.4 11.4 9.1 9.1 0.3 437.5 471.8 60.4 5791.9 9558.4 15350.3
1 10.2 10.2 10.2 10.2 229.4 251.0 229.4 251.0 6081.7 9212.5 15294.1

0.5 10.2 10.2 10.2 10.2 229.4 251.0 229.4 251.0 6081.7 9212.5 15294.1

Note: the * optimum is a local minimum that satisfies the marginal toll expression. For θ < 0.5
the tolls, flows and welfare levels are similar.

that satisfy the first-best toll expressions of Equation 19 with heterogeneity.2 The common
toll solution in the first row of Table 2, turns out to be local minimum that satisfies the

2Due to symmetry we leave out two solutions because it is always possible to swap the route flows. we
leave this out
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analytical toll expressions, but not the second order condition for a welfare maximum. For
different values of θ there exist two possible solutions with group flows tending towards a
differentiated toll equilibrium with a high number of high value of time users on the link
with a high toll, and a high number of low value of time users at the other route. This
result occurs also in the heterogeneous DUE case of Arnott et al. (1992) and Verhoef and
Small (2004), but eventually disappears in the SUE case when θ becomes sufficiently low.
Route preferences of individuals then become so stochastic that toll differentiation is not
beneficial in welfare terms. The toll differentiated equilibrium then dissipates due to the
lower sensitivity to deterministic costs, and the toll differentiated solution is “smoothed”
out, by randomness in route choice. Toll differentiated equilibria in our model become more
likely for two reasons. First, the likelihood of these equilibria to occur increases when the
route choice model becomes more deterministic, so for higher values of θ. Second, when
values of times are more heterogeneous, a toll differentiated equilibrium is more likely to
occur because it is more beneficial to offer differentiated roads (see Small and Yan (2001) and
Verhoef and Small (2004)). For our model this implies that when we increase the difference
between α1 and α2, while keeping the average value of time constant, a toll differentiated
equilibrium starts occurring for lower values of θ.

5.4. Second-best tolling, homogeneous values of time

When first-best tolling is not feasible, second-best tolling with a toll on route T might be
a realistic and viable alternative. The numerical results in this section confirm the optimal
toll rule of Equation 28. Figure 1 shows how the welfare improvement varies with the
second-best toll on route T for different values of θ. Quite intuitively, as θ increases, the
solution of the second-best toll tends towards the UE solution of 5.45 of Verhoef et al. (1996).
The general tendency in Figure 1 is that the optimal second-best toll increases when route
preferences become more stochastic. The reason is that travellers are less responsive to the
deterministic part of utility, and therefore the behavioural response to the toll onto route T
is less strong. This allows the regulator to more fully internalize the marginal external costs
on route T , without spillovers upon route U mitigating the gains, and therefore SB tolls
can be higher when the variety discount increases. Randomness in utility thus mitigates the
central inefficiency under second-best tolling. Table 3 shows the optimal second-best tolls,

route flows, and relative efficiencies ω = ŴSB−Ŵ0

ŴFB−Ŵ0
. The latter is defined as the welfare gain

due to second-best regulation divided by the welfare gain due to first-best regulation, where
non-intervention is the benchmark (see Verhoef et al. (1995)). As expected, the optimal
toll with SUE increases when θ decreases, because road users become less sensitive to the
deterministic part of average costs. The total demand decreases as users become less cost
sensitive because the toll increases. The relative efficiency increases with decreasing θ, as the
induced welfare losses on route U become smaller. This implies that the welfare losses due
to second-best congestion pricing are lower when a stochastic route choice model is used.

5.5. Second-best tolling, heterogeneous returns to variety

Next, we allow for heterogeneity in the scale of utility, and thus in the importance of un-
observed preferences, between two groups of equal size and with their value of time set to
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Figure 1: Welfare gains ŴSB − Ŵ0 against toll level fT for second-best tolling with homogeneous
values of times for varying values of θ.

Table 3: Tolls, route flows and welfare for second-best tolling with symmetric route costs and
homogeneous values of times.

θ fT NT NU N ŴSB − Ŵ0 ω

UE 5.45 545.00 818.00 1363.00 1023.7 0.273
10 5.50 544.95 817.74 1362.69 1029.9 0.275
1 5.87 540.63 813.67 1354.30 1093.9 0.292

0.5 6.38 532.72 809.92 1342.63 1163.0 0.310
0.1 9.36 507.89 768.73 1276.62 1653.5 0.441

0.05 11.73 501.07 722.20 1223.27 2111.3 0.563
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1. We will compare the results with the homogeneous second-best toll case of the previous
section. The example follows the symmetric case, where θ2 is varied for group 2 holding
θ1 constant at 10. This allows us to study the effect of heterogeneous returns to variety.
Demand is calibrated as discussed in section 5.1. As we deal with symmetric route costs,
the initial group flows are split equally between the links in the no toll case. Table 4 shows
the results for the second-best group-specific tolls from Equation 35, which were confirmed
numerically to give the optimal tolls. The first row of Table 4 shows the result for homo-
geneous returns to variety and has the same toll as the toll in the second row of Table 3.
Table 4 shows the total welfare so that we can examine the differences between groups. The
base welfare is 11250 so the total welfare gain corresponds to the reported value in Table
3. An increase in θ2 results in a decrease in the optimal toll for group 1 and an increase in
the optimal toll for group 2. Since group 2 has higher returns to variety, this group is less
responsive to the toll, a higher toll can be charged, and more of the congestion externalities
of route T can be internalized. The tolls for group 2 are consistently higher than those

Table 4: Tolls, flows and welfare for SB tolling with heterogeneous returns to variety

θ1 θ2 fT1 fT2 NT1 NT2 NU1 NU2 N1 N2 ŴSB1 ŴSB2 ŴSB

10 10 5.50 5.50 272.5 272.5 408.9 408.9 545.0 817.7 6140.0 6140.0 12279.9
10 1 5.44 5.98 300.5 243.4 384.5 429.9 543.9 814.4 6325.3 5989.5 12314.7
10 0.5 5.37 6.51 304.1 238.9 384.8 425.8 543.0 810.6 6380.1 5972.3 12352.4
10 0.1 4.94 10.07 311.4 226.0 404.8 378.4 537.4 783.2 6668.4 5928.5 12596.9

for the same value of θ in the homogeneous case in Table 3, because the said mechanism
prevails whenever θ2 < 10. Consistent with the toll levels, the equilibrium flows on the
tolled link for group 1(2) increases (decreases) as returns to variety increase for group 2.
The group-specific welfare levels show that group 1 benefits from the increase in returns to
variety of group 2. The result that the toll is higher for the second group as θ decreases
can be inferred from the toll rule of Equation 35, where the second term representing the
group-specific route substitution and demand effects. This term decreases with decreasing
own returns to variety and increases for returns to variety of other groups.

5.6. Second-best congestion tolling, heterogeneous values of time, group-specific tolls

This section present the results for group-specific second-best tolls with heterogeneous values
of times of α1 = 0.8 and α1 = 1.3. Table 5 presents the numerical results for different values
of the scale parameter θ. The SB toll for both groups first decreases in θ and then increases
for lower values of θ. A lower θ means that more low value of time travellers and fewer higher
value of time travellers will use the tolled route. This leads to a downward adjustment of
the first direct term in Equation 35 which captures the marginal external costs of route T .
But a further decrease in θ also means that spillovers become less and less important, and
that means that the second term in Equation 35 decreases. This effect raises the value of
the second-best toll. The U-shaped pattern in Table 5 is the combined result of these two
opposing forces.
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Table 5: Tolls, route flows and welfare for differentiated second-best tolls with heterogeneous values
of time

θ fT1 fT2 NT1 NT2 NU1 NU2 N1 N2 ŴSB1 ŴSB2 ŴSB

10 8.28 8.55 0.00 496.2 793.1 41.7 793.1 537.9 4193.2 8947.0 13140.2
1 7.37 7.72 89.1 404.2 675.2 152.3 764.3 556.5 4550.7 8151.3 12702.0

0.5 7.31 7.25 175.5 331.2 583.6 230.1 759.1 561.3 5125.3 7521.3 12646.5
0.25 8.08 7.33 219.7 288.8 521.1 276.2 740.8 564.9 5433.0 7303.4 12736.5
0.1 11.0 8.45 230.1 263.0 450.2 307.6 680.3 570.6 5604.9 7512.7 13117.6
0.05 14.7 10.4 218.8 254.8 381.2 319.3 600.0 574.0 5624.6 8008.2 13632.8

5.7. Second-best congestion tolling, heterogeneous values of time, common tolls

It may well be that the regulator is not able to distinguish the value of times for different
groups and that only common tolls can be applied. Table 6 shows that the numerically
determined common second-best tolls are between the group-differentiated second-best tolls
of Table 5. Because tolls cannot be differentiated between groups, welfare levels are by def-

Table 6: Tolls, flows and welfare for common second-best tolls with heterogeneous values of time

θ fT NT1 NT2 NU1 NU2 N1 N2 ŴSB1 ŴSB2 ŴSB

1 7.60 73.2 420.0 688.9 139.1 493.2 828.0 4427.3 8271.3 12698.8
0.5 7.28 177.9 328.9 581.8 231.9 506.8 813.7 5142.1 7504.4 12646.5
0.1 9.94 255.9 235.0 448.3 313.9 490.9 762.2 5851.7 7234.1 13085.7

inition always lower or equal than in the previous section. When we compare differentiated
and common second-best tolls for higher values of θ, the higher value of time users may
benefit further from a common toll. This is because the common second-best toll prices off
more low value of time users, and therefore route T is more catered towards the high value
of time group. Common tolls therefore appear to benefit the high value of time users when
route choice is more deterministic. Table 5 shows that for θ = 0.5, the second-best tolls of
both groups are almost equal, meaning that differentiation of tolls between groups is hardly
beneficial. If we compare this result with Table 6 we find that the welfare level for θ = 0.5
is (almost) equal. The benefits of toll differentiation are therefore strongly influenced by the
randomness of route preferences and are highest for very low and very high values of θ.

6. Conclusions

We extended the two route model of Verhoef et al. (1996) along two dimensions. First,
we assumed that route choice is governed by random utility maximization. Second, we
included heterogeneous preferences for travel time savings and derived some useful analytical
expressions for first-best and second-best congestion tolls. Further investigation is needed
to see if our analytical approach can be applied to more general networks.
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Our main results show that when values of time are homogeneous, welfare losses due
to second-best pricing are lower for stochastic route choice than for deterministic route
choice. When preferences for time savings are heterogeneous, the picture is less clear cut
because the benefits of product differentiation (or value-pricing) of roads first decreases and
then increases when route choice becomes more stochastic. In line with this, we find that
stochastic route choice may result in common second-best congestion tolls that are close to
the group-specific (differentiated) tolls. As we showed in our numerical analysis there are
cases where the welfare loss due to the inability to differentiate tolls is negligible. If such
cases are realistic is an empirical question, and therefore further empirical investigation of
stochastic route preferences may help to provide a more detailed estimate of the benefits of
value pricing.

23



Bibliography

Akamatsu, T. (1997). Decomposition of path choice entropy in general transport networks. Transportation
Science, 31(4):349–362.

Arnott, R., de Palma, A., and Lindsey, R. (1992). Route choice with heterogeneous drivers and group-specific
congestion costs. Regional Science and Urban Economics, 22(1):71–102.

Clark, A., Sumalee, A., Shepherd, S., and Connors, R. (2009). On the Existence and Uniqueness of First
Best Tolls in Networks with Multiple User Classes and Elastic Demand. Transportmetrica, 5(2):141–157.

de Jong, G., Daly, A., Pieters, M., and van der Hoorn, T. (2007). The logsum as an evaluation measure:
Review of the literature and new results. Transportation Research Part A: Policy and Practice, 41:874–
889.

Erlander, S. (1977). Accessibility, entropy and the distribution and assignment of traffic. Transportation
Research, 11(3):149–153.

Fisk, C. (1980). Some developments in equilibrium traffic assignment. Transportation Research Part B:
Methodological, 14(3):243–255.

Huang, H. and Li, Z. (2007). A multiclass, multicriteria logit-based traffic equilibrium assignment model
under ATIS. European Journal of Operational Research, 176(3):1464–1477.

Jiang, L., Mahmassani, H., and Zhang, K. (2011). Congestion Pricing, Heterogeneous Users, and Travel Time
Reliability. Transportation Research Record: Journal of the Transportation Research Board, 2254:58–67.
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Appendix A. Derivation of the first-best toll with heterogeneous preferences

Define N̄T
α

=
∑K

k=1 αkNTk as the preference weighted average number of travellers at route

T , and N̄U
α

=
∑K

k=1 αkNUk as the preference weighted number of travellers for route U .
Then 18 is given by:

L =
K∑
k=1

∫ Nk

0

Dk(nk)dnk − N̄T
α
cT (NT )− N̄U

α
cU(NU)

−
K∑
k=1

1

θk

(
NTk ln

[
NTk

Nk

]
+NUk ln

[
NUk

Nk

])
+

K∑
k=1

λTk

(
D′k(Nk)− fTk − αkcT (NT )− 1

θk
ln

[
NTk

Nk

])
+

K∑
k=1

λUk

(
D′k(Nk)− fUk − αkcU(NU)− 1

θk
ln

[
NUk

Nk

])
(A.1)

The first-order conditions are given by:

∂L
∂NT l

= Dl(Nl)− N̄T
α
c′T (NT )− αlcT (NT )− 1

θl
ln

[
NTl

Nl

]
−

K∑
k=1

λTkαkc
′
T (NT )+

λT l

(
D′l(Nl)−

1

θl

NT l

NUlNl

)
+ λUl

(
D′l(Nl) +

1

θl

1

Nl

)
= 0,∀l = 1...K.

(A.2)

25



∂L
∂NUl

= Dl(Nl)− N̄U
α
c′U(NU)− αlcU(NU)− 1

θl
ln

[
NUl

Nl

]
−

K∑
k=1

λUkαkc
′
U(NU)+

λUl

(
D′l(Nl)−

1

θl

NUl

NT lNl

)
+ λT l

(
D′l(Nl) +

1

θl

1

Nl

)
= 0,∀l = 1...K.

(A.3)

∂L
∂fT l

= −λT l = 0,∀l = 1...K. (A.4)

∂L
∂fUl

= −λUl = 0,∀l = 1...K. (A.5)

∂L
∂λT l

= Dl(Nl)− fT l − αlcT (NT )− 1

θl
ln

[
NT l

Nl

]
= 0,∀l = 1...K. (A.6)

∂L
∂λUl

= Dl(Nl)− fUl − αlcU(NU)− 1

θl
ln

[
NUl

Nl

]
= 0, ∀l = 1...K. (A.7)

Equations A.4 and A.5 show that the Lagrangian multipliers are 0. Using A.4, A.5 and A.6
in A.2 we obtain:

fT l = N̄T
α
c′T (NT ),∀l = 1...K. (A.8)

For the toll of route U we use A.4, A.5 and A.7 in A.3:

fUl = N̄U
α
c′U(NU),∀l = 1...K. (A.9)

Because N̄T
α

and N̄U
α

are equal for all groups, the tolls are equal for all groups.

Appendix B. Second-best congestion pricing with heterogeneous preferences and
group-specific tolls

The Lagrangian is given by:

L =
K∑
k=1

∫ Nk

0

Dk(nk)dnk − N̄T
α
cT (NT )− N̄U

α
cU(NU)

−
K∑
k=1

1

θk

(
NTk ln

[
NTk

Nk

]
+NUk ln

[
NUk

Nk

])
+

K∑
k=1

λTk

(
D′k(Nk)− fTk − αkcT (NT )− 1

θk
ln

[
NTk

Nk

])
+

K∑
k=1

λUk

(
D′k(Nk)− αkcU(NU)− 1

θk
ln

[
NUk

Nk

])
(B.1)

The first-order conditions are given by:

∂L
∂NT l

= Dl(Nl)− N̄T
α
c′T (NT )− αlcT (NT )− 1

θl
ln

[
NTl

Nl

]
−

K∑
k=1

λTkαkc
′
T (NT )+

λT l

(
D′l(Nl)−

1

θl

NT l

NUlNl

)
+ λUl

(
D′l(Nl) +

1

θl

1

Nl

)
= 0, ∀l = 1...K.

(B.2)

26



∂L
∂NUl

= Dl(Nl)− N̄U
α
c′U(NU)− αlcU(NU)− 1

θl
ln

[
NUl

Nl

]
−

K∑
k=1

λUkαkc
′
U(NU)+

λUl

(
D′l(Nl)−

1

θl

NUl

NT lNl

)
+ λT l

(
D′l(Nl) +

1

θl

1

Nl

)
= 0,∀l = 1...K.

(B.3)

∂L
∂fT l

= −λT l = 0,∀l = 1...K. (B.4)

∂L
∂λT l

= Dl(Nl)− fT l − αlcT (NT )− 1

θl
ln

[
NT l

Nl

]
= 0,∀l = 1...K. (B.5)

∂L
∂λUl

= Dl(Nl)− αlcU(NU)− 1

θl
ln

[
NUl

Nl

]
= 0, ∀l = 1...K. (B.6)

From B.4 we find that the group-specific Lagrangian multipliers for route T are all 0. Sub-
stituting B.4 and B.6 in B.3 gives:

∂L
∂NUl

= −N̄U
α
c′U(NU)−

K∑
k=1

λUkαkc
′
U(NU) + λUl

(
D′l(Nl)−

1

θl

NUl

NT lNl

)
= 0,∀l = 1...K.

(B.7)

From B.4, B.5 and B.2 we have:

fT l = N̄T
α
c′T (NT )− λUl

(
D′l(Nl) +

1

θl

1

Nl

)
,∀l = 1...K. (B.8)

The solution for the group-specific Lagrangian multipliers for route U can be obtained using
the system of K equations of B.7. This system can be written in matrix notation:

AλU = b, (B.9)

where λU is the K × 1 vector with unknown multipliers, b is the K × 1 vector with each
element equal to N̄U

α
c′U(NU), and A is the following K ×K matrix:

A =


D′

1(N1)− α1c′U (NU )−
1
θ1

NT1
NU1N1

−α2c′U (NU ) . . . −αKc′U (NU )
−α1c′U (NU ) D′

2(N2)− α2c′U (NU )−
1
θ2

NT2
NU2N2

. . . −αKc′U (NU )
.
..

.

..
. . .

.

..

−α1c′U (NU ) −α1c′U (NU ) . . . D′
K(NK)− αKc′U (NU )−

1
θ1

NTK
NUKNK


The solution for the vector λU can be found by Cramers’ rule. Let Al(b) be the matrix A

with column l replaced by the vector b. The solution for the lth Lagrangian multiplier is
given by a ratio of determinants:

λ∗Ul =
det(Al(b))

det(A)
, (B.10)
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and therefore we need det(A) 6= 0 to have a unique solution. Equation B.10 can be made
more explicit using analytical expressions for the determinants. Because the matrix A has
many common elements, its determinant can be written in a tractable closed-form:

det(A) =
K∏
k=1

[
D′k(Nk)−

1

θk

NTk

NUkNk

]
−

K∑
k=1

αkc
′
U(NU)

K∏
m=1
m 6=k

[
D′m(Nm)− 1

θm

NTm

NUmNm

]
.

(B.11)

Using
∏K

m=1
m 6=k

[
D′m(Nm)− 1

θm

NTm
NUmNm

]
=

∏K
k=1

[
D′
k(Nk)−

1
θk

NTk
NUkNk

]
D′
m(Nm)− 1

θm

NTm
NUmNm

, we can divide out the first

product term in B.11:

det(A) =
K∏
k=1

[
D′k(Nk)−

1

θk

NTk

NUkNk

](
1−

K∑
k=1

αkc
′
U(NU)

D′m(Nm)− 1
θm

NTm
NUmNm

)
. (B.12)

Because D′k(Nk) − 1
θk

NTk
NUkNk

< 0,∀k = 1...K, the first part in B.12 will be a product of

negative numbers resulting in a number that is unequal to 0. Because αkc
′
U(NU) > 0, and

D′m(Nm) − 1
θm

NTm
NUmNm

< 0, the summation is over negative numbers resulting in a negative
number for the part between large brackets. Therefore B.12 is unequal to 0 and a unique
solution for the Lagrangian multipliers exists. The solution B.10 can be further investigated
by using the following analytical expression for the determinant det(Al(b)):

det(Al(b)) = N̄U
α
c′U(NU)

K∏
l=1
l 6=k

[
D′l(Nl)−

1

θl

NT l

NUlNl

]
(B.13)

We have det(Al(b)) 6= 0 implying that all the Lagrangian multipliers for route U have a
unique non-zero value. Substituting B.12 and B.13 in B.10 gives:

λ∗Ul =
N̄U

α
c′U(NU)

∏K
l=1
l 6=k

[
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NTm
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) , (B.14)

which can be rewritten as:

λ∗Ul = N̄U
α
c′U(NU)

1(
D′l(Nl)− 1
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NTl
NUlNl

)(
1−

∑K
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NUmNm

) . (B.15)

Taking the lth term out of the summation this reduces to:

λ∗Ul = N̄U
α
c′U(NU)

1

D′l(Nl)− 1
θl

NTl
NUlNl

− αlc′U(NU)− c′U(NU)
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NTk
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This shows that the Lagrangian multipliers for each group are non-positive. Because tolls
enter the constraints negatively, an increase in the group-specific toll fUl from 0 (which is
the SB case under consideration) to a positive value will lead to higher welfare. Substituting
B.16 in B.8 gives:

fT l = N̄T
α
c′T (NT )−N̄U

α
c′U(NU)

D′l(Nl) + 1
θl

1
Nl

D′l(Nl)− 1
θl

NTl
NUlNl

− αlc′U(NU)− c′U(NU)
∑K

k=1
k 6=l

αk
D′
l(Nl)−

1
θl

NTl
NUlNl

D′
k(Nk)−

1
θk

NTk
NUkNk

.

(B.17)
Multiplying the nominator and the denominator of the fractional part by −1 results in 35.

Appendix C. Calibration of the asymmetric route flows

If we want to calibrate the model in the no-toll case for given values of θ, we have observed
number of travellers for both routes and the corresponding total number of travellers. We
therefore also have the observed route probabilities which are functions of these. The inverse
demand is assumed to be linear and is given by 39. In the no-toll equilibrium we have
two conditions that need to be satisfied, since the inverse demand should be equal to the
generalised costs. Using 6 and 40 and assuming βT = βU = β results in:

δ1 − δ2(NT +NU) = κT + βNT +
1

θ
ln

[
NT

N

]
.

δ1 − δ2(NT +NU) = ASCU + κU + βNT +
1

θ
ln

[
NU

N

]
,

(C.1)

where ASCU is the alternative specific constant for route U . Solving C.1 for ASCU gives:

ASCU = κT − κU + β(NT −NU) +
1

θ
ln

[
NT

NU

]
. (C.2)

We want to have NT and NU as the flows in deterministic user equilibrium, implying κT +
βN0

T = κU + βN0
U =⇒ κT − κU + β(N0

T −N0
U) = 0. Substituting in C.2 gives:

ASCU =
1

θ
ln

[
N0
T

N0
U

]
. (C.3)

The symmetric case N0
T = N0

U is a special case and gives ASCU = 0. This completes the
calibration for asymmetric route flows.

29
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