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1 Introduction

In structural vector autoregressive (SVAR) analysis, identifying the struc-
tural shocks properly is typically one of the main problems. Several proposals
how to proceed in specifying the shocks have been made since the publication
of the seminal article by Sims (1980) who argued convincingly in favour of
the VAR approach. Recently it has been suggested that changes in volatil-
ity may be used for identification in SVAR models. For example, Rigobon
(2003) and Lanne and Liitkepohl (2008) use changes in the unconditional
variance of the reduced form residuals for identification while Normandin
and Phaneuf (2004), Bouakez and Normandin (2010), and Lanne, Liitkepohl
and Maciejowska (2010) take advantage of conditional heteroskedasticity in
this context.

Conditional heteroskedasticity can be modelled in different ways. Whereas
Lanne et al. (2010) assume that it is driven by a Markov process, Normandin
and Phaneuf (2004), Bouakez and Normandin (2010) and a number of other
authors use multivariate generalized autoregressive conditional heteroskedas-
ticity (GARCH) processes. For these processes formal conditions for identi-
fication are available (see Sentana and Fiorentini (2001) and Milunovich and
Yang (2013)). In practice it is not straightforward to check these conditions,
however. Therefore the standard approach in applied work is to use infor-
mal checks. In this paper we argue that in particular in macroeconometric
studies it cannot be taken for granted that the identification conditions are
satisfied and therefore informal arguments may not be sufficient to actually
ascertain identification of the model. We emphasize that formal statistical
tests have to be used for investigating identification and argue that the tests
proposed by Lanne and Saikkonen (2007) can be used for that purpose. We
also construct an alternative test that can be used in this context. We ex-
plore the small sample size and power properties of the alternative tests when
applied in the present situation. Given the relatively low power of the tests
in the present context, we discuss testing strategies that are informative on
the issue of interest here, namely the identification of the structural shocks.

The study makes the following contributions. First, we present the model
setup and clarify the identification conditions in such a way that we can use
the Lanne-Saikkonen and related tests for the present purpose. Second, we
provide three alternative tests that may be used to test the sufficient identifi-
cation condition in the SVAR-GARCH context. We explore the small sample
properties of the tests in a Monte Carlo simulation experiment and derive
strategies for testing for identification in SVAR-GARCH models. Third, we
use these strategies in an empirical application investigating the importance
of U.S. monetary policy shocks for exchange rates. It is based on a study by



Bouakez and Normandin (2010) who also use the SVAR-GARCH approach
in their analysis but do not perform formal statistical tests for identification
of their shocks. We argue that there are no compelling reasons for taking
identification for granted in this particular framework and we present evi-
dence that in some of the models used by Bouakez and Normandin (2010)
it is indeed not supported by the data. We discuss the implications of these
findings for the effects of monetary policy on exchange rates.

The study is structured as follows. In Section [2| the model setup is pre-
sented and the formal identification conditions are stated. The statistical
tests for identification are discussed in Section [3] and the Monte Carlo ex-
periment investigating their small sample properties is reported in Section
The empirical application is discussed in Section [5| and conclusions follow in
Section [6l

2 The Model

2.1 Reduced Form and Structural Form

The reduced form of our model is a K-dimensional vector autoregressive
(VAR) process,

ye =v+ 1Ly + -+ Iy + g, (1)

where v is a K-dimensional constant term, the IT; (j =1,...,p) are (K x K)
coefficient matrices and wu, is the serially uncorrelated error term with mean
zero and unconditional covariance matrix >,,.

The structural errors, denoted by &;, are obtained by a linear transforma-
tion from g,

e, =B 'u, or w = Be,. (2)

Of course, the structural errors are also white noise and, hence, serially un-
correlated. In addition, they are assumed to be instantaneously uncorrelated
and their variances are standardized to unity, that is, &, ~ (0, ). Conse-
quently, the transformation matrix B must be such that BB’ = %,,.

The B matrix is the matrix of instantaneous effects of the structural
shocks on the observed variables y;. Uniqueness of the B matrix and, hence,
identification of the shocks is often ensured by zero restrictions on B that
amount to specifying that specific shocks have only a delayed effect on some
of the variables. Such restrictions are quite common in a conventional SVAR
analysis. Alternatively, exclusion restrictions on the instantaneous relations



between the variables are sometimes imposed on B~! in order to ensure
uniqueness of the matrix B. Restrictions on the long-run effects of the shocks
are also frequently used for identification. In any case, a uniquely identified
model requires a sufficient set of restrictions on B.

In structural VAR analysis the identifying restrictions are typically kept
to a minimum and are, hence, just-identifying at best. In that case they
cannot be tested against the data. In the following we take advantage of
conditional heteroskedasticity to obtain a unique B matrix or at least get
some additional identifying information that can be helpful in assessing con-
ventional identifying restrictions.

2.2 Identification via GARCH
Suppose u; has a GARCH structure so that

A2
=B tlt—1 , 3
Uy 0 I, €¢ ( )

where the e; are independently, identically distributed, i.e., e, ~ iid(0, I),
and

g %,t|t—1 0
At|t—1 — - (4)
0 Uz,t\t—l
is an (r x r) diagonal matrix with univariate GARCH processes on the diag-
onal. In other words,

Agp— 0
Ug|t—1 ™ (O;Eﬂt—l =B [ tg ! T ] Bl)-

Thus, the reduced form error GARCH structure is driven by r nontrivial
GARCH components. This setup explicitly allows for the possibility of hav-
ing fewer GARCH components than variables and, hence, accounts for the
fact that some variables used in VAR analysis may be conditionally ho-
moskedastic while others are conditionally heteroskedastic.

To write down the GARCH components, we partition B = [B; : By such
that By is (K x r) and By is (K x (K —r)) and let



be its inverse, partitioned such that A; is (r x K) and A, is (K —r) x K).
Thus,

1/2
Ay = At|t_1€1t and  Asu;, = ey

We assume that all the GARCH components are univariate GARCH(1,1)
processes, that is,

Uz,t|t71 = (1= — gr) + (arue1)* + gkait,lltq, k=1,...,r,

where ay, is the kth row of A; and v # 0 so that the GARCH(1,1) processes
are nontrivial for k =1,... 7.

Sentana and Fiorentini (2001) and Milunovich and Yang (2013) show
that if » > K — 1, the matrix B is unique up to permutations of the columns
and column sign changes. Thus, the objective is to determine the number
r of GARCH components. If it turns out to be at least K — 1 then the
GARCH structure delivers fully identified structural shocks. Of course, in the
present context, full identification means full local identification because the
shocks are identified only up to sign changes and ordering. Therefore we use
the terminology ‘full identification’ rather than the more conventional ‘just-
identification’. Notice that global identification can be achieved by fixing
the sign of one element in each column of B and by ordering the shocks in
some unique way. The standardization of the signs means that the signs of
shocks hitting the system are specified and the ordering has to be done by
the analyst who has to decide where to position, for example, the monetary
policy shock. Thus, this type of local identification is all we need for the
present purposes. In the related literature sometimes the restrictions are
imposed on B~!. Often the uniqueness conditions include normalizing the
main diagonal elements of this matrix to one (see, e.g., Milunovich and Yang
(2013)).

Under our assumptions, the unconditional covariance matrix of wu; is
!/
Y. = BB'.

Following Lanne and Saikkonen (2007) we use a polar decomposition of B =
CR, where C'is a symmetric, positive definite (K x K) matrix and R = [R; :
Ry] is an orthogonal (K x K) matrix partitioned conformably with B so that
B; = CR;, i = 1,2. The conditional covariance matrices can be written as

Yit—1 = Ly + CRl(At\t—l — I,)R\C
and
u;E;tlflut = u, Xy + u,CT R (A} )R, C™ .

tlt—1

b}



Thus, the Gaussian log-likelihood function of the model is

T

log L =) "log fi—1(ut)

t=1

with

1
faer(ye) = (2m) 7% det(Syp1) "2 exp (‘iuézﬂf_lw>

1 T
= (2n) %2 det(2,) M2 exp (—EUQE; lut) [Toriis
k=1

1
X exp (—iu;ClRl(Atltl_l — IT)R’lClut) :
Obviously, the log-likelihood depends on v, I3, ..., IL,, C, Ry, and the GARCH
parameters only, and not on Ry. This is important because, if there are just
r GARCH components, Ry is not identified.

3 The Identification Tests

Lanne and Saikkonen (2007) propose two different types of test statistics for
testing hypotheses regarding the number of GARCH components r. Both test
statistics can be viewed as LM type statistics because they require estimation
only under Hy : r = 1. The latter fact is important because otherwise
potentially unidentified models have to be estimated. The parameters of a
model with given r are estimated by ML or some other, possibly less efficient
procedure that provides estimators of C' and R; with /T convergence rate.
We denote the estimators by C and Ry, respectively, and define

Ry = Ru(éhéu)_lﬂ;
where }?1 1 denotes an orthogonal complement of Rl, and
A, =R,C7".

Recall that if B is not identified, the same is true for B~!. In that case Ay
estimates some linear combination of the last K —r rows of B~!. However, if
Asu; does not have GARCH, the same is true for any linear transformation.
Hence, if we estimate this quantity by Asu,, we can base a test of Hy : 1o = r
on this quantity because under this null hypothesis Asu; has no GARCH. In
the following we continue to use the symbol u; for the residuals of the VAR
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model for simplicity. In practice they are, of course, replaced by the residuals
from estimating the reduced-form VAR(p) in (1)).

Following an idea of Ling and Li (1997), Lanne and Saikkonen (2007)
propose a test statistic based on the autocovariances of quantities

T
& = u,ALAuy — T7! Z U, AL Aguy.

t=1

More precisely, they consider the test statistic

Qi(H) =T [¥(h)/7(0)]* (5)

and show that it is asymptotically x?(H) distributed if the null hypothesis
is true. Here

T
F(h) =T > &

t=h+1

In practice, the u; are, of course, replaced by estimated VAR residuals. For
our purposes a critical question is what are the actual small sample size and
power properties when these tests are applied to macro data, for example.

Lanne and Saikkonen (2007) also propose another test based on the au-
tocovariance matrices of the quantities

0, =vech(Aqugu,Ab) — T~ 21 vech(Aqu,ulAl),

where vech denotes the half-vectorization operator that stacks the elements
of a symmetric ((K —r) x (K — r)) matrix from the diagonal downwards

in a %(K —7r)(K —r + 1)-dimensional column vector. In this case, the test

statistic has the form

Q2(H) =T tx[[(h)T(0)'T(h)T(0)7], (6)
where

) T

D(h)=T"" Y 0, for h=01,...,

t=h+1

and I'(h) = I'(—h)’ for h < 0. Lanne and Saikkonen (2007) show that this

statistic has an asymptotic

Y (GH(K —r)(K —r+1)?)



distribution under Hj.
A related test statistic is obtained using the usual multivariate ARCH
LM test based on the auxiliary model

e =00+ D1+ -+ Dym—p + &, (7)

where 7, = vech(Ayu,u,AL), & is a (K —r)(K — r 4 1)-dimensional fixed
vector, the D;, i =1,...,q, are (3(K —r)(K—r+1)x (K —r)(K —r+1))
parameter matrices and & is an error term. The standard LM statistic for
testing the null hypothesis

Hy:D,=---= Dy
18

LM(H) = T(K —7)(K —r+1) = Ttr[ST(0)"] (8)

2

where i]g is the estimated residual covariance matrix from model (see
Doornik and Hendry (1997)). Just like Q(H ), this test statistic is used with
critical values from a

Y’ (AH(K —r)*(K —r+1)?)
distribution. An F' version,

Farcu(H) = LM(H)/[}lH(K —r)?(K —r+1)3,
to be used with critical values from an

F(%‘H(K —r)2(K —r+1)2T)

distribution was also proposed (see Liitkepohl (2004)). For the present pur-
poses SVAR-GARCH models can only be used when large sample sizes T
are available. For such sample sizes the differences between the y? and F'
versions of the LM statistic should be minor. We have confirmed that with
simulations related to those reported in the next section. Therefore we focus
on the 2 version in the following. Clearly, the large number of degrees of
freedom in these tests make them most attractive for small H and we will
use H =1 exclusively.

For our purposes tests of the null hypothesis Hy : r = K — 2 are of
particular interest because rejecting it and finding that the true rank is at
least K —1 implies full identification of the structural shocks via the GARCH
structure. Any conventional restrictions, for example, zero restrictions on the
instantaneous effects matrix B, then become over-identifying even if they are
just-identifying in a conventional framework. In the next section we explore
the small sample properties of the alternative test statistics with a special
focus on testing Hy : r = K — 2.



4 Monte Carlo Investigation of the Tests

4.1 Monte Carlo Design

We assess the finite sample performance of the previously discussed tests by
conducting Monte Carlo simulations of three- and five-dimensional processes,
that is, K = 3 or 5. The objective is to see which one of the tests is best
suited for investigating identification in SVAR models. Three sample sizes
of T'= 300, 700, and 1500 observations are used. For a limited set of Monte
Carlo designs we also considered the sample size T" = 5000 to get a better
insight into the convergence to the asymptotic properties of the tests. We
do not report the results for 7" = 5000 but refer to them where appropriate.
Each experiment consists of 2000 replications.

All data generating processes (DGPs) are VAR(0) specifications, that is,
we focus only on the innovations. They are generated as follows:

1. Independent random variables are drawn from a standard normal dis-
tribution and stacked into the vector e; = (€14, ..., ex+)".

2. GARCH processes are generated as

Ulz,t|t71 =(1-v—-9)+ ’75%#1 + galz,t—ut—za

where €3 = €g0py—1 for k =1,..., K. In other words, all GARCH
components have the same parameter values in a particular design.
Four sets of GARCH parameters are used:

(7,9) = (0.05,0.65), (0.10,0.70), (0.15,0.75), (0.17, 0.80).

Notably the last two sets of parameter values result in rather persistent
processes as they are occasionally observed in practice.

12 . 12 .
3. A sequence of Ant‘t_1 is generated as Arvt‘t_1 = diag(o tjt—1,- - - Ortt—1)

forr=1,..., K.

4. A sequence of data vectors uy) = (u?g yee ,ug?t)’ is computed according

to equation (3] using each A, 4,—; from Step 3, and the B matrix given
by

09 06 -11 01 -1.2

-0.7 1 07 07 07
B=|-15 =05 12 -12 -04
04 05 =02 05 04

—0.5 1 05 09 1

2The elements of B are chosen arbitrarily but such as to ensure a range of nonzero
instantaneous effects of the shocks on the variables and invertibility of the matrix.
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for 5-dimensional processes and its upper left-hand (3 x 3) submatrix
for 3-dimensional processes.

For each data set ui”, r=1,...,K, we compute the test statistics Q;(1),

@Q2(1), and LM (1) as given in (5)), (€], and (8), respectively. We follow Lanne
and Saikkonen (2007) in setting H = 1 when computing the test statistics.

4.2 Size and Power for Three-dimensional Processes

We consider the size and power of the tests by computing the rejection fre-
quencies using the asymptotic x? distributions discussed in Section 3, and
nominal sizes of 10% and 5%. Table [I] reports the estimated test sizes for
the three-dimensional processes, calculated as relative rejection frequencies
of the true null hypothesis.

The results in Table [l show that the rejection frequencies depend on the
sample size, the GARCH parameters and the number r of actual GARCH
components in the process. In particular, we note the following:

e For testing Hy : 7 = 1, the Q;(1) and @Q2(2) tests tend to reject more
often than specified by the nominal size. The tendency does not disap-
pear in Table [1) with increasing sample size. Thus, even for 7" = 1500
the tests tend to over-reject. We therefore explored the situation with
even larger samples and a subset of DGPs and found that even for
T = 5000 there is a slight tendency to over-reject. The rejection fre-
quencies do not increase with the sample size as can be conjectured
from Table [I] However, the asymptotic x? distribution appears to be
a good finite sample approximation for very large samples only.

e For Hy:r =1, Q(1) tends to be slightly more liberal than (1), that
is, @2(1) tends to reject more often than @1(1). Since both tests have
a tendency to over-reject in most cases, Q1(1) is somewhat preferable
to the multivariate test version (2(1) judging only by the test sizes.

e The @1(1) and @(1) tests are identical except for rounding error if
K —r = 1. Thus, not surprisingly, the rejection frequencies for the two
tests are almost identical for testing Hy : r = 2.

e The rejection frequencies for the LM (1) test tend to be lower than
those of the Q1(1) and @Qy(1) tests. As a consequence, LM (1) is the
most conservative test in situations where the rejection frequencies are
below the nominal sizes and its tendency for over-rejection is smaller
in cases where the tests reject too often.
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e The rejection frequencies depend on the GARCH parameters but are
not monotone with respect to the persistence (measured by v + g) of
the processes. For example, looking at the results for a nominal size of
10% and a sample size of T' = 700, all tests reject most often for the
intermediate parameters (v, g) = (0.10,0.70).

Summarizing the results for the test sizes, all three tests do not distort the
size dramatically for large samples. Since the multivariate test version (Qo(1)
tends to over-reject more than @1(1) the latter test is slightly preferable to
the former. A good balance between over- and under-rejection is achieved
with the LM (1) test.

Of course, the size of a test is just one criterion. Therefore we present
power results in Table With respect to the issue of identification the
question of primary importance is if there are more than K — 2 GARCH
components. in that case the structural shocks are fully identified via the
volatility structure. Therefore we present results for the null hypothesis
Hy:r =1(= K —2) in Table ] Rejecting the null hypothesis implies that
full identification is found. The following results can be deduced from Table

e Not surprisingly, those tests that over-reject (that is, those tests that
actually have a larger size than the nominal one) also tend to reject
more often when the null hypothesis is false and, hence, they have
seemingly more power. In particular, Q2(1) rejects more often than
(1(1) which in turn tends to reject more than LM (1).

e The power of all three tests tends to increase with the persistence (v+¢)
and is rather low for processes with low persistence (v + g small). This
can be seen in Table[2 for GARCH parameters (-, g) = (0.05,0.65) and
(7,9) = (0.10,0.70). For the first set of parameters the power is even
low for the largest sample size T' = 1500. Thus, using these tests it is
quite possible to miss a GARCH component that has low persistence.

e The power increases with the sample size and the number of GARCH
components for all three tests. Q2(1) retains higher rejection frequen-
cies than ()1(1) even in the samples of 7' = 1500 observations for most
null hypotheses.

Thus, overall for three-dimensional processes there is not much to choose
between the tests for our purposes. In terms of meeting the nominal size,
Q1(1) and LM (1) have advantages whereas Q2(1) rejects more often when the
alternative is true. The latter result has to be qualified, however, because we
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are not considering size-adjusted rejection frequencies and (Q5(1) often over-
rejects under Hy. Of course, the small sample properties of the tests may
well depend on the dimension of the process as well. Therefore we present
results for five-dimensional processes next.

4.3 Size and Power for Five-dimensional Processes

Relative rejection frequencies of the tests for five-dimensional processes are
presented in Tables [3] and [4] Because the critical question for full identifica-
tion of the shocks for a five-dimensional process is whether there are at least
four GARCH components, we focus on tests of the null hypothesis Hy : r = 3.
If that hypothesis is rejected and the true number of GARCH components
r > 3, then we have full identification. Thus, to avoid sequential testing, one
may be inclined to focus only on this null hypothesis in the present context.
In Tables 3 and 4 relative rejection frequencies are presented for true numbers
of GARCH components of r = 1,...,5. Thus, the tables give an impression
of test sizes in small samples for r = 3 and of test power for r = 4 and 5.
For r = 1,2 we now look at situations where the true number of GARCH
components is smaller than the one specified under Hy.

In Table we present results for processes with lower persistence [(7, g) =
(0.05,0.65) and (0.10,0.70)] while rejection frequencies for more persistent
processes [(v,9) = (0.15,0.75) and (0.17,0.80)] are given in Table [df The
following observations emerge from the tables:

e In general LM (1) has lower rejection frequencies than (1) which in
turn tends to reject less frequently than Q2(1). In particular, for small
samples of T" = 300 this ordering is not always valid, however. For
situations where the true r is lower than specified in Hy (r = 1 or
2) the LM (1) test tends to reject less frequently than the correspond-
ing nominal sizes indicate. Thus, Q1(1) and Q2(1) come closer to the
nominal sizes for these cases. On the other hand they tend to over-
reject when the null hypothesis is true, that is, » = 3. They also reject
more frequently for r > 3 and thus have power greater than LM (1) in
most cases. Note, however, that this is not size-adjusted power and is
hence not surprising given the higher rejection frequencies for true null
hypotheses.

e Comparing only Q;(1) and Q2(1) it appears again that the former has
some advantages in terms of keeping the size. One may in fact prefer
Q1(1) over Q2(1) because of its better size properties. This result is
analogous to the three-dimensional case.

12



e The low power for GARCH processes with lower persistence in Table
is quite striking. In particular, for (v,g) = (0.05,0.65) in Table 3,
the power remains low even for larger samples of size 7' = 1500. The
chances to find the GARCH components are low if they are not very
persistent. For more persistent processes the problem is alleviated, as
can be seen in Table 4.

4.4 Estimating the Number of GARCH Components

So far we have focussed on testing for full identification. If the tests do
not support full identification, then one may want to explore the number of
GARCH components and test sequentially larger numbers r starting with
Hy : r = 1. The procedure stops when a given null hypothesis cannot be
rejected. Thereby we get an estimate of the number of GARCH components.
Even if the number is smaller than K — 1, that can be useful information
because even a smaller number of GARCH components provides some iden-
tifying information. We will now explore the ability of the tests to estimate
the true number of GARCH components in such a sequential procedure.

We use a constant significance level of 5% for all tests ]| Tables [5] and [6]
display relative frequencies of the numbers of GARCH components estimated
in this way for five-dimensional processes with GARCH parameters (7, g) =
(0.1,0.7) and (v, g) = (0.15,0.75), respectively, and three sample sizes, T' =
300, 700, 1500. Thus, in Table|5| we consider processes for which the power of
the tests is relatively low whereas it is a bit higher for the processes in Table
(§f

Considering the diagonal entries across all panels of Table 5| we observe
that overall Q2(1) outperforms (;(1) and LM (1) in terms of estimating the
true number of GARCH components correctly. In fact, sometimes Q2(1)
chooses the correct number of GARCH components more than twice as often
as (Q1(1) and it is also considerably superior to LM (1). The latter criterion
clearly outperforms @;(1). It cannot be overlooked however, that all three
criteria are doing poorly in finding the right model if the sample size is
small (7" = 300) or even moderate (7" = 700). Even for the largest sample
size (T" = 1500) they are not very reliable in finding the correct number
of GARCH components if that number is greater than 1. For sample sizes
T = 700 and 1500, there appears to be a U-shaped pattern in the frequencies
across diagonal entries, with the best outcomes reached for r = 1 and 5
GARCH components, and the worst for r = 2, 3 or 4.

3 A sequential procedure such as the one used here estimates the true number of
GARCH components consistently provided the significance level ar is adjusted with in-
creasing sample size such that limr_, o l"g% = 0, as discussed in Hosoya (1989).

13



All numbers below the diagonals in the panels of Table [5| are remarkably
close to zero. Thus, all three testing procedures rarely over-estimate the true
number of GARCH components. In contrast, under-estimating r is quite
common, as can be seen by looking at the above-diagonal elements in all
panels of Table

If the persistence of the GARCH components increases, the ability of the
three testing procedures to locate the correct model increases substantially,
as can be seen in Table[6] Even there the performance of the procedures is far
from satisfactory for samples as small as T' = 300 observations. For example,
for T = 300, Q1(1), @2(1), and LM(1) find a correct number of 4 GARCH
components in 4.1%, 11.0%, and 5.8%, respectively, of the replications of our
simulation experiment. The corresponding numbers for 7' = 1500 are 83.1%,
91.7%, and 88.4%, respectively, and, thus, are substantially better. Notice,
however, that even in Table [6] the above-diagonal elements of the panels
tend to be markedly larger than the below-diagonal elements. Hence, under-
estimation of the true number of GARCH components is more common than
over-estimation of r.

Overall these results reflect the poor power of the tests for processes with
low persistence in the GARCH structure. Also, the preferable performance of
()2(1) is driven by its tendency to over-reject. Hence, it is effectively working
with a different significance level and, thus, the larger number of rejections,
which in turn imply larger estimated values of r, is no surprise. In fact, the
results indicate that using a larger significance level for the tests may result
in larger probabilities to find the correct number of GARCH components.

We have also performed simulations with processes with even lower per-
sistence [(y, g) = (0.05,0.65)] and higher persistence (v, g) = (0.17,0.80)] to
confirm that the results are in line with those for the processes with inter-
mediate persistence shown in Tables [5] and [0 As expected, the performance
of the testing procedures is worst for the process with least persistence and
they have the highest probability of finding the correct number of GARCH
components for the most persistent process. Therefore we do not present
tables with detailed results.

Thus, the overall picture evolving from the simulations based on five-
dimensional DGPs is similar to the three-dimensional case. In other words,
LM (1) has lower rejection frequencies than @)1(1) which in turn rejects less
frequently than (Q2(1). Since the tests tend to over-reject, this gives a slight
advantage to LM (1) in terms of precision in meeting the nominal test size.
In turn, LM (1) is somewhat conservative in many situations and therefore
its power is also somewhat lower than that of the other two tests. The most
liberal test based on Q2(1) has the best chances of finding the correct number
of GARCH components in the sequential testing procedure. Since none of the
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three tests is uniformly superior, it is perhaps best to perform different tests
and keep their small sample properties in mind when interpreting the results.
Given the generally low power of the tests it can be concluded that rejecting
under-identified models is strong evidence against them and in favour of full
identification if that is the alternative.

5 An Application

We apply the above discussed tests to investigate identification of the SVAR-
GARCH models used in a recently published paper by Bouakez and Nor-
mandin (2010) who examine the importance of U.S. monetary policy shocks
for exchange rate dynamics. The baseline model is 8-dimensional. It includes
variables of a standard U.S. monetary system for identifying the monetary
policy shocks and variables representing the foreign exchange market of a
number of countries. More precisely, they use the following variables for the
U.S. and G7 countries:

q; — log of U.S. industrial production index,

p: — log of U.S. consumer price index,

cpy — log of world export commodity price index,
nbry; — log of U.S. nonborrowed reserves,

try — log of U.S. total reserves,

ffi — federal funds rate,

dr; — difference between foreign short-term interest rate and U.S. three-
months Treasury Bill rate,

exy — log of exchange rate (U.S. dollars per one unit of foreign currency).

Conventional identification restrictions are often imposed on B! in the set-
tll’lg B_lut = &t where Uy = (uq,t>up,t>ucp,ta Unbr,ty Werty Uttt udr,buex,t)/ and
g; is an 8-dimensional vector of structural shocks. Different sets of con-
ventional identifying restrictions on B~! are reviewed by Bouakez and Nor-
mandin (2010). They summarize them in three groups:

Equilibrium restrictions: Based on Bernanke and Mihov (1998) the model
for the market for bank reserves being in equilibrium implies restric-
tions on B~L.
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Targeting restrictions: Depending on which monetary targeting indica-
tor is used, competing sets of restrictions are imposed to specify the
targeting variable of the monetary authority.

Orthogonality restrictions: The policy variables nbry, try, ff;, dr;, ex; are
restricted to have no contemporaneous effect on the goods variables
G, Pt cps. Moreover, the Fed is assumed to respond with a delay to
changes in the interest rate differential and exchange rates. Hence, the
instantaneous effects of dr; and ex; on nbry, tr,, and ff; are restricted
to zero.

Bouakez and Normandin (2010) use the GARCH setup to investigate the
validity of these sets of conventional restrictions. Specifically, they con-
sider monthly observations for periods 1982:11 - 1998:12 for the euro area
countries France, Italy, and Germany and for 1982:11 - 2004:10 for the re-
maining countries, Canada, Japan, and UK. They fit VAR(6) models with
seven GARCH(1,1) components and argue that their models fully identify
the shocks.

Their argument in favour of having a fully identified model relies on a
criterion given by Sentana and Fiorentini (2001). These authors define the
(T x K) matrix " such that its kth column consists of the conditional vari-
ances of the kth structural shock, (a3 -+, 0% pp_)'s and show that full
identification is equivalent to I'T" having full rank. Bouakez and Normandin
(2010) do not check the rank of the actual matrix I'I" but replace the true
conditional variances by estimated quantities. They find that the estimated
matrix has full rank. Clearly, a formal statistical test of the rank condition
would have to test the rank of the true underlying I' matrix so that their
rank check is not a formal statistical test. In fact, estimating the elements of
a reduced-rank matrix unrestrictedly typically results in a full rank matrix
even if the true matrix of interest has reduced rank, see e.g. Cragg and Don-
ald (1997). Thus, a formal statistical test is called for. It can be performed
as discussed in the previous sections and we will return to that shortly.

Before we perform formal identification tests it may be worth pointing
out some conclusions drawn by Bouakez and Normandin (2010). Under the
assumption of fully identified shocks via the GARCH structure the equilib-
rium, targeting, and orthogonality restrictions are over-identifying, of course,
and, hence, can be tested against the data. They find that the equilibrium re-
strictions cannot be rejected for any of the six G7 countries considered while
the targeting and orthogonality restrictions are rejected for all countries.

Because these results rest on the assumption of full identification via the
GARCH structure we will now apply our tests to explore this condition. No-
tice that for some but not for all of the variables included in the models
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GARCH errors are quite plausible. In particular, GARCH is often found
in financial market variables observed at monthly frequency. On the other
hand, one would not necessarily expect GARCH in variables such as indus-
trial production (¢;) or the consumer price index (p;). In fact, many of the
estimated GARCH parameters in Table 1 of Bouakez and Normandin (2010)
are not significant in the sense that they are smaller than twice their stan-
dard errors. Thus, one may wonder about the validity of the identification
conditions for the shocks.

We use the same data and models and apply our three tests for the
number of GARCH componentsﬁ The resulting p-values are presented in
Table [ Recall that for full identification we have to have more than 6
GARCH components. Hence we should reject Hy : » = 6. Looking at the
corresponding p-values in Table [7] it is clear that all tests for all countries
except for Japan result in p-values that do not justify rejection of the null
hypothesis at conventional significance levels. In particular, all p-values are
greater than 10%. The single exception is the model for Japan for which
(Q1(1) has a p-value of 0.047 and also the p-values of LM (1) and @Q2(1) are
around 5%. Thus, only for Japan more than six GARCH components can be
justified on the basis of our tests. Taking into account the low power of the
tests, the result for Japan can in fact be seen as strong evidence in favour of
full identification.

In Table [7] we present p-values for null hypotheses ranging from r = 1 to
r = 7 and it turns out that only rather small numbers of GARCH components
can be justified by our test results. For example, Hy : r = 4 is not rejected for
Canada and Germany while Hy : r = 3 is not rejected for France and Italy.
Considering the properties of the tests it may also be worth pointing out
that some of the estimated GARCH components in the models underlying
the test results are highly persistent with estimated v+ ¢ > 0.9. Thus, based
on our simulation results one would expect to have a chance to find more
GARCH components if they are actually driving the volatility in the DGPs.
On the other hand, the sample sizes are even smaller than in the Monte
Carlo simulations and we know from the simulations that the tests may not
have much power for small samples. Despite this limitation of the tests they
clearly cannot be used to support the assumption of full identification via
the GARCH structure for any of the countries except J apan.lﬂ

4We thank Hafedh Bouakez for providing the data.

5Since our tests have little power in small samples, we have extended the samples for
Canada, Japan, and the UK to May 2013. Also for the extended samples seven GARCH
components are not supported for Canada and the UK while for Japan the evidence in
favour of more than six GARCH components vanishes. More precisely, the p-values for
Hy : r = 6 increase above 50% for Japan. This may be partly due to the fact that the
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Therefore it may be worth discussing the implications of not having full
identification. First, given that there are some GARCH components in all of
the country models, there is some identifying information from the GARCH
structure. Hence it is not surprising that some of the conventional restric-
tions are rejected by Bouakez and Normandin (2010). In other words, even
without full identification there is enough curvature in the likelihood to re-
ject the targeting and orthogonality restrictions. These rejections are clear
evidence against the targeting and orthogonality restrictions even without
a fully identified model. On the other hand, not rejecting the equilibrium
restrictions may just be a consequence of lack of identification and, hence,
lack of sufficient curvature in the likelihood.

Since the equilibrium restrictions were not rejected, Bouakez and Nor-
mandin (2010) use them in an impulse response analysis based on a B matrix
which is otherwise identified by the GARCH structure. Even with the equi-
librium restrictions imposed the shocks will not be unique without additional
restrictions from the GARCH structure, of course. Given that the GARCH
structure is not economically motivated, it is not clear that the shocks ob-
tained in this way correspond to meaningful economic shocks. Under the
assumptions of Bouakez and Normandin (2010), the GARCH structure iden-
tifies not only one shock and the problem arises which one of the shocks
deserves the label ‘monetary policy shock’. They make the choice on the ba-
sis of standard features of impulse responses generated by monetary policy
shocks such as an increase of output and the price level after an expansionary
shock. They find that the responses to monetary policy shocks obtained in
their setting are quite different from what is reported in other studies based
on conventional identifying restrictions.

If, however, their assumption of having fully identified shocks via the
GARCH structure is incorrect, then not rejecting the equilibrium restric-
tions may just be a consequence of lack of identification and imposing the
restrictions may be as problematic as in a conventional setting. Moreover,
without fully identified shocks via GARCH, it is not clear whether the im-
pulse responses depicted in Figures 2 and 3 of Bouakez and Normandin (2010)
reflect realistically what is going on in the economy and in particular in the
exchange market. Thus, their conclusion that an expansionary monetary
policy shock leads to a ‘delayed overshooting of the nominal exchange rate,
with a peak occurring at around 10 months after the shock and to large devi-
ations from UIP’ [uncovered interest rate parity| (p. 152) is on firm grounds

extended data series are not identical to those used in the original study by Bouakez and
Normandin (2010). Therefore we do not report detailed results. For France, Germany,
and Italy an extension of the sample size is not possible because the currencies ceased to
exist in 1999 when the euro replaced them.
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only for the Japanese system. For all other systems the situation is much
less clear in the light of the problematic identification assumptions. Even the
Japanese case rests on the assumption that none of the other shocks qualifies
as a monetary policy shock which cannot be concluded from the identifying
information obtained from the GARCH structure alone.

6 Conclusions

This study contributes to the growing literature on identification of struc-
tural shocks in SVAR analysis via changes in volatility. We consider GARCH
models for the changes in volatility and argue that formal statistical tests for
identification are important in this context while informal criteria that have
been used in the past are in general insufficient. We point out that tests
proposed by Lanne and Saikkonen (2007) are suitable for testing for identi-
fication in the present context and we explore their small sample properties
and compare them to another test we consider as a plausible alternative.
We find that the small sample properties of all three tests compared in our
simulation study depend on the sample size, the persistence properties and
structure of the underlying GARCH process. In small samples they may all
have relatively little power and tend to favour under-identified models over
fully identified models. Given their dependence on unknown properties of the
DGP and the fact that none of them is uniformly dominating its competi-
tors, it may be a good strategy to apply all of them. Since they all have low
power, if they reject an under-identified model in favour of a fully identified
model this is strong evidence of having full identification in samples of the
size typically available in macroeconometric studies.

We have reconsidered a study investigating the effects of U.S. monetary
policy on exchange rates for which the SVAR-GARCH approach to identi-
fication of structural shocks has been used. We argue that variables such
as industrial production and the consumer price index may not have inde-
pendent GARCH components. Hence, using them in a VAR system may
result in GARCH residuals that are driven by a smaller number of GARCH
components. This is precisely the situation where fully identified shocks are
not obtained from the GARCH structure. We apply our formal statistical
tests for identification and confirm full identification only for one out of six
countries. To demonstrate how the approach can be used in such a case
we discuss in detail which of the conclusions of the previous study can be
maintained and which ones are problematic. In particular, it is argued that
the previous conclusions regarding the responses of the exchange rates to a
monetary policy shock are on soft grounds.
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Table 1: Estimated Sizes of the Tests for Three-Dimensional Processes

Nominal Size

GARCH 10% 5%

parameters  Hy T LM(1) Qi(1) Q1) LM(1) Q1(1) Q1)

v =0.05 r=1 300 0073 0.100 0.110 0.044 0.054 0.063
g =0.65 700  0.083 0.108 0.119 0.052 0.051 0.068
1500 0.110  0.124 0.149 0.062 0.066 0.097

r=2 300 0073 0.089 0.089 0.034 0.045 0.046
700  0.095 0.119 0.119 0.049  0.063 0.063
1500  0.101  0.133 0.133 0.058 0.072 0.072

v = 0.10 r=1 300 0.084 0.115 0.131 0.054 0.062 0.080
g=20.70 700  0.104 0.125 0.139 0.072  0.068 0.097
1500 0.111  0.141 0.157 0.081  0.082 0.108

r=2 300 0.083 0.096 0.096 0.048  0.060 0.060
700  0.099 0.127 0.127 0.066 0.079 0.079
1500 0.112  0.138 0.138 0.077  0.087 0.087

v =0.15 r=1 300 0.087 0.111 0.125 0.056  0.061 0.076
g=0.75 700 0.092 0.118 0.124 0.063  0.062 0.081
1500 0.083  0.122 0.119 0.049  0.059 0.070

r=2 300 0.08 0.108 0.109 0.053  0.064 0.064
700  0.080  0.107 0.107 0.050  0.061 0.062
1500 0.082  0.103 0.106 0.046  0.055 0.055

v =0.17 r=1 300 0.081 0.116 0.121 0.055 0.058 0.075
g =0.80 700  0.081  0.120 0.113 0.052  0.061 0.071
1500 0.073  0.108 0.110 0.041  0.053 0.060

r=2 300 0092 0.110 0.111 0.050 0.061 0.061
700  0.072  0.094 0.095 0.045 0.054 0.054
1500 0.079  0.098 0.097 0.041  0.051 0.051

22



Table 2: Estimated Powers of the Tests for Null Hypothesis Hy : » = 1 Based
on Three-Dimensional Processes

Nominal Size

GARCH 10% 5%
parameters truer T LM(1) Qi(1) Q2(1) LM(1) Qi(1) Q2(1)
v =0.05 2 300  0.098 0.126 0.135 0.063  0.069 0.089
g =0.65 700  0.141 0.161 0.195 0.088 0.093 0.127
1500 0.230  0.225 0.303 0.157 0.149 0.211
3 300  0.124 0.162 0.170 0.083 0.099 0.112
700  0.229 0.275 0.293 0.164 0.191 0.211
1500 0.421 0.418 0.509 0.319  0.387 0.390
v = 0.10 2 300  0.200 0.182 0.258 0.142  0.109 0.184
g=0.70 700  0.406  0.345 0.478 0.325 0.254 0.384
1500  0.745  0.619 0.815 0.683 0.515 0.755
3 300 0334 0.384 0.410 0.261 0.280 0.316
700  0.679 0.736 0.772 0.601  0.644 0.686
1500 0.949 0.964 0.981 0.922  0.940 0.959
v=0.15 2 300 0.410 0.387 0.494 0.334  0.297 0.404
g=0.75 700 0.776  0.700 0.843 0.718 0.613 0.784
1500  0.974  0.956 0.992 0.963 0.924 0.987
3 300 0.674 0.703 0.764 0.602  0.625 0.693
700 0.962 0.981 0.992 0.950 0.967 0.984
1500  0.996  1.000 1.000 0.996 1.000 1.000
v =0.17 2 300 0.557 0.533 0.638 0.492 0.448 0.571
g =0.80 700 0920 0.892 0.958 0.898 0.853 0.937
1500 0.994 0.997  0.999 0.994 0993 0.999
3 300 0.825 0.848 0.895 0.787  0.791 0.856
700 0.984 0.999 1.000 0.983 0.994 0.999
1500  0.995 1.000 1.000 0.995 1.000 1.000
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Table 3: Relative Rejection Frequencies of the Tests for Null Hypothesis

Hy : r = 3 Based on Five-Dimensional Processes with Low Persistence

Nominal Size

GARCH 10% 5%
parameters true r T LM(1) Qi(1) Q1) LM(1) Qi(1) Q2(1)
v =0.05 1 300  0.053  0.108 0.080 0.030 0.052 0.042
g =0.65 700  0.060 0.095 0.082 0.035 0.050 0.047
1500 0.084  0.080 0.086 0.029 0.043 0.044
2 300  0.054 0.092 0.079 0.026  0.045 0.040
700 0.058 0.093 0.086 0.030  0.043 0.044
1500 0.077  0.111 0.112 0.042  0.063 0.065
3 (size) 300  0.056  0.092 0.087 0.033 0.043 0.046
700  0.071 0.091 0.111 0.041 0.044 0.062
1500 0.104 0.119 0.151 0.065  0.064 0.090
4 (power) 300  0.076  0.095 0.112 0.047  0.049 0.068
700  0.100 0.107 0.135 0.060  0.053 0.087
1500 0.139  0.156 0.201 0.086  0.085 0.130
5 (power) 300 0.072 0.100 0.109 0.044 0.050 0.063
700  0.129 0.137 0.177 0.074 0.084 0.110
1500 0.228  0.295 0.310 0.165 0.205 0.225
v =0.10 1 300  0.047  0.093 0.071 0.026  0.047 0.038
g =0.70 700 0.058  0.098 0.089 0.036  0.047 0.050
1500 0.058  0.093 0.089 0.025 0.050 0.040
2 300  0.064 0.099 0.093 0.035 0.045 0.052
700 0.069 0.100 0.101 0.040  0.048 0.060
1500  0.062  0.092 0.094 0.035 0.052 0.051
3 (size) 300  0.087 0.103 0.120 0.055 0.052 0.073
700  0.100 0.123 0.141 0.063  0.072 0.091
1500  0.110  0.129 0.149 0.080  0.085 0.098
4 (power) 300 0.129 0.128 0.172 0.086  0.068 0.115
700 0.264 0.246 0.340 0.201  0.167 0.254
1500  0.601  0.517 0.701 0.531 0.416 0.618
5 (power) 300 0.193 0.214 0.249 0.141 0.141 0.182
700 0.492  0.548 0.584 0.401  0.458 0.492
1500  0.900  0.922 0.954 0.866 0.879 0.920
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Table 4: Relative Rejection Frequencies of the Tests for Null Hypothesis
Hy : r = 3 Based on Highly Persistent Five-Dimensional Processes

Nominal Size

GARCH 10% 5%
parameters true r T LM(1) Qi(1) Q1) LM(1) Qi(1) Q2(1)
v =0.15 1 300 0.054 0.098 0.081 0.026  0.044 0.041
g=20.75 700 0.060 0.088 0.082 0.033 0.044 0.048
1500  0.059  0.101 0.088 0.031  0.052 0.050
2 300 0.059 0.106 0.090 0.035 0.049 0.052
700  0.067 0.104 0.104 0.038  0.051 0.057
1500 0.061  0.092 0.095 0.035  0.040 0.049
3 (size) 300 0.096 0.111 0.142 0.062 0.056 0.088
700 0.093 0.114 0.131 0.059 0.065 0.088
1500 0.078  0.108 0.106 0.051  0.065 0.068
4 (power) 300 0.268 0.247 0.346 0.207  0.171 0.268
700 0.690 0.605 0.769 0.619 0.512 0.700
1500  0.965 0.930 0.987 0.947  0.897 0.978
5 (power) 300 0.486  0.540 0.592 0.407  0.444 0.499
700 0917 0.947 0.965 0.893 0.909 0.947
1500  0.996  1.000 1.000 0.995  0.999 1.000
v =0.17 1 300 0.051  0.107 0.078 0.024 0.057 0.035
g=10.80 700 0.056  0.091 0.088 0.030  0.041 0.048
1500  0.055 0.094 0.082 0.023  0.044 0.043
2 300 0.061  0.097 0.092 0.030 0.046 0.049
700 0.063 0.096 0.101 0.034  0.050 0.054
1500 0.063  0.102 0.097 0.031  0.051 0.047
3 (size) 300 0.094 0.110 0.138 0.063 0.061 0.088
700  0.082 0.114 0.118 0.049 0.065 0.071
1500  0.067  0.096 0.096 0.038  0.055 0.056
4 (power) 300 0.421 0.390 0.510 0.348  0.305 0.440
700  0.873 0.837 0.923 0.834 0.774 0.889
1500 0.990  0.992 1.000 0.989 0.986 0.999
5 (power) 300 0.725 0.746 0.814 0.674  0.660 0.752
700 0975 0.997 0.996 0.972  0.989 0.995
1500  0.997  1.000 1.000 0.997 1.000 1.000
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Table 7: p-Values for the Identification Tests Applied to the Data from
Bouakez and Normandin (2010)

H, Test Canada France Germany Italy Japan UK
LM(1) 0.000 0.001 0.000 0.024 0.000 0.011

r=1 Q1) 0.174 0.370 0.001 0.062 0.083 0.331
Q2(1) 0.000 0.001 0.000 0.012 0.000 0.001

LM(1) 0.027 0.014 0.000 0.037 0.000 0.007
) 0.183 0.457 0.005 0.049 0.000 0.311
) 0.024 0.010 0.000 0.020  0.000  0.000

LM(1) 0.027 0.874 0.000 0.223 0.004 0.009
1) 0.046 0.871 0.008 0.222 0.051 0.345
Q-(1) 0.029 0.821 0.000 0.137 0.001 0.001

LM(1) 0.150  0.673  0.679  0.696 0.025 0.104
r=4 Q1) 0.139 0467 0412 0353 0.050 0.180
1) 0.127  0.581  0.650  0.501 0.019 0.012

LM(1) 0.390 0.948 0.475 0.665 0.008 0.429
0.214 0.675 0.146 0.924 0.018 0.198
0.335 0.917 0.447 0.607 0.006 0.088

LM(1) 0.689 0.751 0.380 0.511 0.057 0.714
) 0.617 0.712 0.105 0.320 0.047 0.161
Q2(1) 0.632 0.669 0.348 0.455 0.051 0.607

LM(1) 0.528  0.941 0488 0200 1.000 0.204
r="T7 Q1) 0.445 0940  0.447 0173 0.699 0.202
1) 0.448  0.940  0.448  0.173 0.699 0.206
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