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Estimating the density of ethnic minorities and aged
people in Berlin: Multivariate kernel density
estimation applied to sensitive geo-referenced

administrative data protected via measurement error

Marcus Groß ∗ Ulrich Rendtel ∗ Timo Schmid ∗

Sebastian Schmon ∗ Nikos Tzavidis†

Abstract

Modern systems of official statistics require the timely estimation of area-specific

densities of sub-populations. Ideally estimates should be based on precise geo-coded

information, which is not available due to confidentiality constraints. One approach

for ensuring confidentiality is by rounding the geo-coordinates. We propose multi-

variate non-parametric kernel density estimation that reverses the rounding process

by using a Bayesian measurement error model. The methodology is applied to the

Berlin register of residents for deriving density estimates of ethnic minorities and

aged people. Estimates are used for identifying areas with a need for new advisory

centres for migrants and infrastructure for older people.

Keywords: Ageing; Binned data; Ethnic segregation; Non-parametric estimation; Offi-

cial statistics.

1 Introduction

Modern systems of official statistics require the estimation of area-specific densities of

sub-populations. In large cities researchers may be interested in identifying areas with

high density of ethnic minorities or areas with high density of aged people. The focus can

be even more specific for example, on density estimates of school age children of ethnic

minority background. Estimates of this type can be used by researchers in Government

Departments and other organisations for designing and implementing targeted policies.

To motivate the methodology we propose in this paper, we start by presenting two

maps in Figure 1. The left map presents the density of the population of ethnic minority

∗Institute for Statistics and Econometrics, Freie Universität Berlin, Germany,
marcus.gross@fu-berlin.de, ulrich.rendtel@fu-berlin.de, timo.schmid@fu-berlin.de,
sebastian.schmon@fu-berlin.de
†Southampton Statistical Sciences Research Institute, University of Southampton, UK,

n.tzavidis@soton.ac.uk

1



Figure 1: Density of the population of ethnic minority background (left map) and density
of the population aged 60 or above in Berlin (right map). The blue points (left map)
show the spatial distribution of advisory centres for migrants. The blue points (right
map) show the spatial distribution of care homes.

background in Berlin. The right map presents the density of the population aged 60 or

over in Berlin. The blue points superimposed on the left map show the spatial distribution

of advisory centres in Berlin. These are centres that provide assistance for migrants in

Berlin. The blue points superimposed on the right map show the spatial distribution

of care homes in Berlin. Both density plots in Figure 1 have been produced by using

real data from the Berlin register, which is a register of residents in all Berlin household

addresses that contains exact geo-coded coordinates. Maps such as those we presented

in Figure 1 can be very useful for planning purposes. For example, city councils can use

the density plots to decide where new advisory centres for migrants are mostly needed

or for deciding in which areas to offer planning permissions for opening new care homes.

Register databases are updated on a frequent basis and hence their timeliness is better

than that of alternative sources of data for example, Census data.

The statistical problem we face in this paper is created by the fact that the register with

the exact coordinates used for producing the maps in Figure 1 is not publicly available.

Access to such data is impeded by confidentiality constraints (VanWey et al., 2005) and

this holds true also for the Berlin register data. It is easy to see why confidentiality

constraints are in place. The availability of precise geo-coding alongside information on

demographic characteristics can increase the disclosure risk in particular for sensitive sub-

groups of the population such as ethnic minorities. Restricted access to sensitive data

may not only apply to users working outside the data host but also to researchers working

for the data host or for related organisations for example, Government Departments.

The host of the data can offer access, possibly in a safe setting, to geo-coded data whilst

ensuring confidentiality. One way to achieve this is by introducing measurement error to
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the grid of longitudes and latitudes (Armstrong et al. 1999; Ozonoff et al. 2007 or Rushton

et al. 2007). However, this raises the following question. Can we derive precise density

estimates of the sub-groups of interest by using data that has been subjected to disclosure

control via the introduction of measurement error in the geographic coordinates? The

present paper proposes non-parametric multivariate density estimation in the presence

of measurement error in the geographic coordinates. The aim is to investigate how the

precision of density estimates produced by using coarsened data and the use of a non-

parametric statistical methodology for reversing the measurement error process compares

to density estimates produced by using the exact geo-referenced data. At this point we

should make clear that the paper does not discuss whether the released geo-referenced

information makes identification possible. Instead, we assume that the parameters of

the disclosure control process are decided by the data provider. For a discussion on the

effectiveness of anonymisation techniques, we refer the reader to Kwan et al. (2004).

Scott and Sheather (1985) used Naive, that is without accounting for the presence

of measurement error, density estimation methods. To account for measurement error

Härdle and Scott (1992) introduced a kernel-type estimator based on weighted averages of

rounded data points and Minnotte (1998) developed an approach of histogram smoothing.

Wang and Wertelecki (2013) proposed a parametric and a non-parametric kernel density

estimator for rounded data but considered only the univariate case. Wang and Wertelecki

(2013) showed that using a Naive kernel density estimator to rounded data with standard

bandwidth selection may lead to poor results for large rounding intervals and large sample

sizes.

An alternative idea, one we explore in this paper, is to interpret rounding as a Berk-

son error process (Berkson, 1950) and to formulate the problem by using measurement

error models (Carroll et al., 2010; Fuller, 2009). Hence, from a methodological perspec-

tive the present article proposes multivariate non-parametric kernel density estimation

in the presence of rounding errors used to ensure data confidentiality. This is achieved

by combining a measurement error model with kernel density estimation. The model is

estimated within a Bayesian framework by using a Gibbs sampler. The main advantage of

the proposed methodology, compared to alternative multivariate methodologies (Blower

and Kelsall, 2002), is that under our approach the bandwidth is derived as part of the

estimation process. Hence, density estimates incorporate the additional variability due to

the estimation of the bandwidth.

In this paper we assume only the availability of register geo-coded data with mea-

surement error in the geographic coordinates. Hence, conventional estimation methods

that combine Census/register data with survey data are not applicable in this case. In

this paper we use the Berlin register data, a complete enumeration of the entire Berlin

population in private households, for illustrating how to derive precise density estimates

of sensitive groups in the presence of measurement error in two applications.

The first application aims at estimating the density of the Berlin population that is of
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ethnic minority background. The focus on this application is motivated by the debate on

integration/ segregation of migrants. Residential segregation describes the phenomenon

of a separation of residents according to certain characteristics such as ethnicity. Recent

literature suggests that higher levels of segregation are linked with higher crime rates

and lower health and educational outcomes (Peterson et al., 2008; Card and Rothstein,

2007; Acevedo-Garcia et al., 2003). To prevent the segregation of ethnic minorities it is

necessary to assist these groups with integration programmes offered by advisory centres.

Programs of this kind should be established in areas with high density of ethnic minorities.

For the purposes of this application we study the current location of advisory centres in

relation to density estimates and identify areas where more support is potentially needed.

The second application relates to the provision of social services for the elderly and

urban planing in the context of changing demographics. Longer life expectancy and de-

clining birth rates lead to an ageing population, which needs to be accounted for in urban

and social planning. For example, the German National Statistical Institute (Destatis,

2009) predicts the ratio of people over 65 to rise from 20% in 2008 to 34% in 2060. This

is a common issue for other industrialised countries too. To ensure the wellbeing of the

elderly and to secure adequate and affordable support for this group it is necessary to

analyze where the elderly live. Gorr et al. (2001) used the density of the elderly popula-

tion as a basis for a spatial decision support system for home-delivered services (meals on

wheels). Further challenges arise in urban planing, where an ageing population requires

easy access to buildings, public services and public transportation. Shortcomings in urban

development can be analyzed by comparing the density of the elderly population against

those characteristics (Verma, 2014). In addition, many elderly people decide to live in a

retirement home. To secure adequate and affordable support for the elderly population

it is necessary to establish services where needed. The methodology we propose in this

paper is also used for providing precise density estimates of the elderly population in the

Berlin area. For both applications the sensitivity of density estimation to the severity of

the rounding error process is studied and the proposed methodology is contrasted to a

Naive kernel density estimator that fails to account for the measurement error process.

The structure of the paper is as follows. In Section 2 we describe the Berlin register

data. In Section 3 we review multivariate kernel density estimation in the presence of

measurement error. A Bayesian multivariate kernel density estimator is proposed and the

computational details of the proposed method are described. In Section 4 we present the

results of the two applications by using the Berlin register data. In Section 5 we empirically

evaluate the performance of the proposed methodology under different assumptions for

the rounding error process with data generated from known bivariate densities. The

precision of the density estimates provided by the proposed methodology is contrasted to

the precision of the estimates derived by using a Naive kernel density estimator that fails

to account for the presence of rounding error. Finally, in Section 6 we conclude the paper

with some final remarks.
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Figure 2: Density of the population of ethnic minority background in Berlin (left map)
and density of the population aged 60 or above in Berlin (right map) based on the publicly
available data.

2 The Berlin register data

The statistical problem we face in this paper is motivated by the Berlin register of residents

dataset, which comprises all Berlin household addresses and contains exact geo-coded

coordinates. Such a comprehensive data set is kept because of German legislation. In

particular, registration at the local residents’ office is compulsory in Germany and is

carried out by the federal state authorities. In the federal city state of Berlin registration

is regulated by the Berlin registration law. This law requires every person who moves into

a new residential unit in Berlin to be registered in person within one week.

As one may expect, this register is not publicly available because of the detailed geo-

coded information it contains. However, a version of the register data is publicly available

as part of the Open Data initiative in Berlin (http://data.berlin.de), an initiative

that aims at using data for improving urban development. The open dataset includes

aggregates for the 447 lowest urban planning areas, the so-called LORs (’Lebensweltlich

Orientierte Räume’), with coordinates given by the centroid of these areas. This is a

discrete and possibly arbitrary geography. The discreetness of the geography is apparent

in Figure 2, which shows kernel density estimates of the population of ethnic background

(left map) and of the population aged 60 or over (right map) in Berlin by using the

publicly available data. A main aim of the present paper is to derive precise density

estimates of population groups by using a more flexible definition of geography. This in

turn may provide more useful information to local authorities than the currently available

LOR geography.

An alternative to the currently available data, and one explored by the data host, is to

generate a grid-based version of the data that is independent from the somewhat arbitrary
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geometry of the LORs. In this case the grid-aggregates can be interpreted as the result

of rounding geo-coded data for ensuring data confidentiality. Here each point of the grid

defines a square-shaped area around the grid point with a longitude and latitude increment

equal to the grid length. Then the value of the variable of interest is the aggregate of the

values with exact geo-coordinates over the area surrounding the grid point. In fact, the

LOR geography in Berlin can be thought of as the process of rounding the geo-referenced

data by using grids of average size 2000 meters by 2000 meters. The methodology we

propose in this paper attempts to reverse the rounding process for deriving estimates that

are more precise than density estimates that ignore the measurement error process and

relate to a more flexible definition of geography.

The data that we have access to in this paper contains all 308,754 Berlin household

addresses on the 31st of December 2012 with the exact geo-coded coordinates subject to

different degrees of rounding error. One of the scenarios we explore is rounding by us-

ing grids of size 2000 meters by 2000 meters that approximately correspond to the LOR

geography. The location is measured by (Soldner)-coordinates in meters. The original

(without rounding error) data includes the total number of residents (Berlin Total) at

their principal residence and the number of persons according to some key demographic

characteristics. These are: (a) Ethnic background (Ethnic): The number of individuals

with ethnic background at the coordinates of the principal household address. The defi-

nition of this variable is further refined by the number of individuals of Turkish (Ethnic

Turkey) or Vietnamese (Ethnic Vietnam) ethnic backgrounds and (b) Age (Age over 60):

The number of individuals who are older than 60 years old. The density estimates of

the subgroups of interest that are produced by using the proposed methodology are con-

trasted to maps of the corresponding densities produced by using the data with the exact

geo-coded coordinates. The use of these maps has been approved by the data host, the

Berlin-Brandenburg Statistics Office.

Table 1 presents summary statistics of the number of residents living at a household

address of the key variables based on the exact geo-coded data. Due to confidentiality

restrictions we are not allowed to publish the maximum number of residents living at a

household address. The average of individuals living at a household address in Berlin

is 11.24 leading to a total population of 3,469,619 (registered) inhabitants. Note that a

household address in the data is defined for example, as an entire block of apartments.

Around 27% of the total population are of ethnic background and around 24.8% of the

population are older than 60 years. The average number of residents of ethnic background

is 3.07 with a median of 0, whereas the average number of individuals above 60 years of

age is 2.78 with a median of 1. This gives a first indication that inhabitants with ethnic

background are more clustered compared to older people in Berlin.
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Table 1: Summary statistics of the number of residents living at a household address.

Sum Min. 1st Qu. Median Mean 3rd Qu.
Berlin Total 3,469,619 1.00 2.00 4.00 11.24 15.00
Ethnic 949,184 0.00 0.00 0.00 3.07 3.00
Ethnic Vietnam 21,637 0.00 0.00 0.00 0.07 0.00
Ethnic Turkey 176,738 0.00 0.00 0.00 0.57 0.00
Age over 60 859,170 0.00 0.00 1.00 2.78 3.00

3 Multivariate kernel density estimation in the pres-

ence of measurement error

In this section we propose an approach to non-parametric multivariate density estima-

tion in the presence of measurement error in particular, rounding of the geographical

coordinates used for disclosure control of sensitive data. Multivariate kernel density esti-

mation is introduced in Section 3.1. In Section 3.2 we investigate density estimation in

the presence of measurement error. In Section 3.3 we present a model that corrects for

measurement error in multivariate kernel density estimation. The model is estimated by

following a Bayesian approach. The computational details of the algorithm we use for

implementing the proposed model are described in Section 3.4.

3.1 Multivariate kernel density estimation

Kernel density estimation as a non-parametric approach is an important tool in ex-

ploratory data analysis. Multivariate kernel density estimation attempts to estimate

the joint probability distribution for two or more continuous variables. This method has

the advantage of producing smooth density estimates compared to a histogram whose

appearance heavily depends on the bin’s breakpoints. Let X = {X1, X2, .., Xn} denote a

sample of size n from a multivariate random variable with density fX . In the following, we

only consider the two-dimensional case without loss of generality. Thus, Xi, i = 1, . . . , n

is given by (Xi1, Xi2), where Xi1 and Xi2 denote the x- and y- coordinates, respectively.

The multivariate kernel density estimator at point x is given by

f̂X(x) =
1

n|H|− 1
2

n∑
i=1

K
(
H− 1

2 (x−Xi)
)
,

where K(·) is a multivariate kernel function and H denotes a symmetric positive definite

bandwidth matrix. A standard choice for K(·), used throughout this paper, is the multi-

variate Gaussian kernel. The choice of bandwidth H is crucial for the performance of a

kernel density estimator. Approaches for bandwidth selection have been widely discussed

in the literature. A popular strategy is to choose H by minimizing the Asymptotic Mean

Integrated Squared Error (AMISE) through plug-in or cross-validation methods (Izenman,

1991 or Silverman, 1986). In the univariate case we refer the reader to Marron (1987) or

7



Jones et al. (1996). Wand and Jones (1994) discussed the choice of the bandwidth in the

multivariate case by using a plug-in estimator. The approach by Wand and Jones (1994)

is the one we use for bandwidth selection in this paper.

3.2 Rounding and kernel density estimation

By introducing rounding for achieving anonymisation of sensitive data the true values

X = {X1, X2, .., Xn}, the exact geographical coordinates, are lost. Instead, only the

rounded (contaminated by measurement error) values, denoted by W = {W1,W2, ..,Wn},
are available. As a consequence the data is concentrated on a grid of points. Using a

Naive kernel density estimator that ignores the rounding process may lead to a spiky

density that is not close to the density of the uncontaminated (true) data. This effect

becomes more pronounced with increasing sample size. In particular, as the bandwidth

determinant |H| is decreasing with higher sample size this causes higher density estimates

on the grid points and lower in between the grid points.

The process of rounding means that the true, unknown, values Xi = (Xi1, Xi2) given

the rounded values Wi = (Wi1,Wi2) are distributed in a rectangle with Wi in its center,

[Wi1 −
1

2
r,Wi1 +

1

2
r]× [Wi2 −

1

2
r,Wi2 +

1

2
r].

The value r denotes the rounding parameter. For instance, the data is rounded to the

next integer for r = 1.

Without prior knowledge about the true value Xi the above set up can be translated

into a Berkson measurement error model (Berkson, 1950) with uniformly distributed

measurement error Ui = (Ui1, Ui2), Ui1, Ui2 ∼ Unif(−1
2
r, 1

2
r) and Ui1, Ui2 independent

of Wi1 and Wi2 such that,

Xi1 = Wi1 + Ui1, i = 1, 2, .., n

Xi2 = Wi2 + Ui2, i = 1, 2, .., n.

In the following section we propose a Bayesian measurement error model for correcting

the density estimates for rounding error. We focus on non-parametric kernel density

estimation because we want to avoid imposing assumptions about the underlying bivariate

distribution.

3.3 Bayesian measurement error model

The Bayesian approach to measurement error problems is to treat the unknown true

values Xi as latent variables (Carroll et al., 2010). Because Wi only depends on Xi,

the Likelihood can be split in two parts. The first part defines the measurement error

model and the second the observation model, which assumes that all (latent) variables
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are observed. Together with a hyperprior for the bandwidth matrix H, we formulate the

posterior distribution by using a hierarchical model (Carroll et al., 2010),

π(X,H|W ) ∝ π(W |X)× π(X|H)︸ ︷︷ ︸
Likelihood

× π(H)︸ ︷︷ ︸
Prior

.

In particular, the Likelihood is written as follows,

L(W |X,H) = π(W |X)× π(X|H) =
n∏

i=1

π(Wi|Xi)× π(Xi|X−i, H).

The measurement error model is defined by

π(Wi|Xi) =

1 for Xi ∈ [Wi1 − 1
2
r,Wi1 + 1

2
r]× [Wi2 − 1

2
r,Wi2 + 1

2
r]

0 else
,

and the observation model π(Xi|X−i, H) is defined by the leave-one-out kernel density

estimator f̂X−i
(xi) (Härdle, 1991; Zhang et al., 2006), where X−i denotes the set X \{Xi}.

The connection to the Berkson model with uniform error distribution can be shown

directly. By assuming a flat distribution on Xi and by using the Bayes theorem we can

write:

π(Xi|Wi) ∝
π(Wi|Xi)

π(Wi)
=
I(Wi1 − 1

2
r ≤ Xi1 ≤ Wi1 + 1

2
r)× I(Wi2 − 1

2
≤ Xi2 ≤ Wi2 + 1

2
r)

π(Wi)
.

π(Xi|Wi) is a uniform distribution on the square with side length r around Wi, which

corresponds to the Berkson model with uniform error distribution that we introduced in

the previous subsection.

3.4 Computational details

The use of a leave-one-out kernel density estimator is computationally prohibitive. To

reduce the computational effort we use an approximation of the full conditional distribu-

tions of Xi (given the rounded values Wi, bandwidth matrix H and X−i). In particular,

we have that

π(Xi|Wi, X−i, H) ∝ π(Wi|Xi)×
n∏

j=1

π(Xj|X−j, H)

≈ c π(Wi|Xi)× π(Xi|X−i, H)

≈ c I(Wi1 −
1

2
r ≤ Xi1 ≤ Wi1 +

1

2
r)× I(Wi2 −

1

2
r ≤ Xi2 ≤ Wi2 +

1

2
r)

× 1

n|H|− 1
2

n∑
j=1

K
(
H− 1

2 (Xi −Xj)
)
,
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where c is a constant. The first approximation ignores the fact that every Xi appears n−1

times on the right side of the condition
∏n

j=1 π(Xj|X−j, H). In a second approximation

we replace the leave-one-out kernel estimator by the estimate on the whole sample X.

Regarding our application, which involves a moderate to large sample size, the effect of

these simplifications should be negligible because the impact of a single observation on

the kernel density estimator should be very small. Additionally, since Bayesian estimation

of the bandwidth matrix H relies on the leave-one-out estimator (Zhang et al., 2006) we

compute H instead by the multivariate plug-in estimator of Wand and Jones (1994).

As a consequence a partly Bayesian algorithm is proposed. Partly Bayesian in the

sense that only the Xi is treated as random variables but not H. The proposed model is

implemented by using a Gibbs-sampler that approximates the full conditionals of Xi and

a plug-in estimate of H as an approximation to the expectation of the full conditional

f(H|W,X). In particular, Xi is repeatedly drawn from the square of side length r around

Wi according to the current density estimate f̂X . The steps of the algorithm are described

below.

1. Get a pilot estimate of fX by setting H to

(
l 0

0 l

)
, where l is a sufficiently large

value such that no rounding spikes occur.

2. Evaluate the density estimate f̂X on an equally-spaced fine grid G = x̃1 × x̃2
(with G = {g1, .., gm}, gridwidth δg and

x̃1 =
{

min
i

(Wi1)− 1
2
r,min

i
(Wi1)− 1

2
r + δg, ..,max

i
(Wi1) + 1

2
r
}

,

x̃2 =
{

min
i

(Wi2)− 1
2
r,min

i
(Wi2)− 1

2
r + δg, ..,max

i
(Wi2) + 1

2
r
}

(i = 1, .., n)).

3. Sample from our approximation of π(Xi|Wi, X−i, H) by drawing a sample
(
xS1i, x

S
2i

)
randomly from(
x̃1 ∈ [Wi1 − 1

2
r,Wi1 + 1

2
r]
)
×
(
x̃2 ∈ [Wi2 − 1

2
r,Wi2 + 1

2
r]
)

with sampling weight

f̂X(xS1i, x
S
2i), i = 1, 2, .., n.

4. Estimate the bandwidth matrix H by the multivariate plug-in estimator of Wand

and Jones (1994) and recompute f̂X . Here we should mention that other bandwidth

selectors are applicable.

5. Repeat steps 2-4 B (burn-in iterations) + N (additional iterations) times.

6. Discard the burn-in samples and get final estimate of fX by averaging over the

remaining samples.

The approach we propose in this paper allows for estimating the bandwidth matrix

H simultaneously with the density. In contrast, for the algorithm proposed by Blower

and Kelsall (2002) it is not immediately clear how to estimate H. Blower and Kelsall

(2002) suggest using an initial estimate based on the rounded data. Another advantage
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is that with the proposed algorithm we can get an estimate of the posterior variance that

accounts for the rounding process. This is obtained as a byproduct of the Monte-Carlo

process. In particular, standard errors and credible intervals for the density estimates

at some arbitrary point can be computed by using the density estimates f̂X produced in

each iteration of the algorithm. The algorithm we propose in this paper is also linked

to the one proposed by Wang and Wertelecki (2013) in the univariate case. Apart from

being applicable only in the univariate case, their approach is derived in a non-Bayesian

framework and corresponds (in the univariate case) to the method we propose in this

paper with B=0 and N=1 or larger. However, without a burn-in period final estimates

can heavily depend on the pilot estimate. The influence of burn-in iterations (B) and

sampling steps (N) on the quality of density estimation is evaluated in a simulation study

in Section 5.

4 Analysis of the Berlin Register of Residents

The benefits of using the proposed multivariate kernel density estimator that accounts for

measurement error are illustrated in two applications both of which use the Berlin register

data we described in Section 2. The first application aims at estimating the density of

the ethnic minority population in Berlin. The density estimates are compared to the

current geographical distribution of advisory centres for migrants in Berlin. The second

application aims at estimating the density of the population aged 60 and above in the

Berlin area. The density estimates are compared to the current geographical distribution

of care homes in the Berlin area.

The analysis is carried out by using the two variables (a) Ethnic and (b) Age over 60.

The setup of the analysis is as follows: To start with, we impose grids on the geographical

space of the Berlin data set with respective grid sizes of 250, 500, 1250, 2000 and 2500

meters. The grid sizes correspond to different degrees of measurement error used for

anonymisation purposes. Note that the use of the 2000m by 2000m grids is because these

are of similar size to the currently used urban planning areas in Berlin a level at which

data is publicly available. Subsequently, we estimate the density of the target population

by using the Naive and the proposed (MCMC) density estimators for each of the grid

sizes.

We compare the performance of the proposed and Naive estimators by using density

plots and the RMISE criterion where f(x) in the RMISE formula is replaced by the

kernel density estimator that uses the original data. At this point we must mention

that the original data is available only to the data host. Hence, for implementing the

code with the original data we had to collaborate with staff at the Berlin-Brandenburg

Statistics Office. Table 2 shows the goodness of fit in terms of RMISE for the Naive

and the proposed density estimators and for different grid sizes. Note that the x- and

y-coordinates are measured in meters, which explains the very small absolute densities
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Table 2: Berlin register data: RMISE for Naive and MCMC multivariate kernel density
estimators for different grid sizes (results in units of 10−8)

r=250m r=500m r=1250m r=2000m r=2500m

Variable Naive MCMC Naive MCMC Naive MCMC Naive MCMC Naive MCMC

Age above 60 0.66 0.67 1.32 1.27 4.52 2.46 14.08 4.06 23.34 4.66
Ethnic 0.98 0.97 1.98 1.84 7.33 3.43 22.07 6.12 36.94 6.31

and small RMISE values in Table 2. However, the relative performance of the Naive

and the MCMC estimators is not affected. Figures 3 and 4 present kernel density plots

for selected grid sizes for Age over 60 and Ethnic respectively. To start, we note that

the proposed estimator outperforms the Naive estimator especially for large grid sizes

(≥ 1250m). For grid sizes larger or equal to 1250m the Naive estimator produces small

spikes at the location of the grid points since in this case the probability mass is mostly

attributed to the center points of the grid. In contrast, the proposed estimator preserves

the fundamental structure of the underlying density. For the largest grid size (2500m),

which implies strongly anonymised data, the general shape produced with the proposed

estimator is clearly visible. This is not the case with the Naive estimator.

Having assessed the performance of both estimators,we now discuss the results of the

density estimates in the context of two applications.

Advisory services for population of ethnic minority background: Around 950,000 peo-

ple of ethnic background from around 190 countries live in the 12 districts in Berlin. The

four largest communities consist of approximately 200,000 people of Turkish ethnic back-

ground, around 100,000 people from Russia or from the former Soviet Union and its suc-

cessor states, approximately 60,000 people of ethnic background from the successor states

in the former Yugoslavia and around 45,000 people of Polish migration. The history of

many migrants started in former West Berlin in the mid-sixties with the recruitment of

guest workers. Workers were recruited mainly from Mediterranean countries like Greece,

Italy, Yugoslavia or Turkey. In the former East Berlin workers were employed by inter-

state agreements from countries like Angola, Poland or Vietnam. From the very beginning

Berlin offered advisory services for migrants. For instance, Berlin has a commissioner for

integration and migration. This office was established in 1981 and was the first of its kind

in Germany. Nowadays, there are specialized advisory service centres that assist people

of ethnic background. The youth migration services provide advice to young adults and

teenagers of migration background. In addition, Berlin has in total 32 advisory service

centres for adults. In these centres migrants can receive support and personal consulta-

tion directly that will assist with their integration. For example, people receive support

with finding appropriate child care facilities. To secure an appropriate level of support it

is important to establish advisory centres where mostly needed. The left panel of Figure

5 shows density plots for the population of ethnic background in Berlin. The blue points

represent the 32 advisory service centres for adults. The plot on the top panel shows the

density estimates produced by using the original data and the exact address coordinates,
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Figure 3: Density of population aged 60 and above: Naive (left panel) and MCMC
estimators (right panel) with rounding step sizes of 0 (original data), 500, 1250 and 2500
m (top down).
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Figure 4: Density of population of Ethnic minority background: Naive (left panel) and
MCMC estimators (right panel) with rounding step sizes of 0 (original data), 500, 1250
and 2500 m (top down).
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Figure 5: Ethnic background (left panel) and Age above 60 (right panel) for the original
data, Naive method and MCMC method (top down) for rounding step size of 2000 m
including points of interest. Blue points indicate migrant advisory centers and retirement
houses respectively.
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which are not publicly available. The plots in the middle and at the bottom present

density estimates produced by using the Naive and the MCMC density estimators with

a rounding step size of 2000m. The choice of 2000m times 2000m grids is because these

are of similar size to the currently used urban planning areas in Berlin. The estimates

based on the original data in Figure 5 show that the density of ethnic populations varies

by Berlin districts. The density is particularly high in the former West-Berlin districts of

Wedding (in the north), Neukölln (in the south-east), Kreuzberg (in the center to south)

and Schöneberg (in the south-west). The former German Democratic Republic (GDR)

Berlin districts such as Friedrichshain and Prenzlauer Berg (in the north-east), show a

lower density of ethnic minority population.

The spatial distribution of advisory centres cover ethnic minority populations in the

centre and north of Berlin quite well. However, there are some hotspots for example,

in the western and south-west parts (Charlottenburg or Moabit) or in the very northern

parts (Märkisches Viertel) of Berlin, with a high density of ethnic minority population

but without any advisory service centres. It would be very important to establish new or

reallocate existing advisory centres to these hotspots. The commentary on the first map

above depends on precise geo-coded addresses which are not publicly available. The second

and third maps show the density estimates based on the rounded data. The density plot

obtained by using the Naive estimator (plot in the middle in Figure 5) produces spikes

at the center of the grids. In contrast, the proposed estimator produces a map (plot at

the bottom in Figure 5) that is able to preserve the fundamental density structure of the

original data. Hence, the commentary we produced by looking at the map of the original

data holds also true for the map of density estimates produced by using the proposed

multivariate kernel density estimator that accounts for measurement error. In addition,

the proposed density estimator produces more precise density estimates than the Naive

one (see Table 2). Local authorities should prefer the density estimates produced by the

proposed estimator, to the one produced by the Naive estimator, for making informed

decisions.

Care for the elderly: Life expectancy in Germany has improved due to advances in

medical research. This leads to a change in the demographic structure with an increasing

number of old-aged people. Approximately 860,000 individuals aged 60 and above live in

Berlin. It is projected that by 2030 the average age of Berlin’s population will increase

from 42.5 years (in 2007) to 45.3 years and roughly every third citizen of Berlin will be 60

years or older. With increasing age the prevalence of diseases and functional restraints,

which are often chronic and irreversible, rises as well (Saß et al., 2009). In 2012, 58.3%

of German women and 55.3% of German men suffered from at least one chronic disease

(Robert Koch Institute, 2014). According to the World Health Organization (2005),

the prevalence and incidence of various chronic diseases, such as cardiovascular diseases,

cancer, diabetes mellitus, dementia or respiratory problems, is predicted to increase in

the next years. For this reason older people are more likely to need help in their daily
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life and will increasingly depend on care. According to the nursing care insurance in

2011 there were roughly 117,500 care-dependent people in Berlin. In order to support

the increasing elderly population it is necessary to offer high-quality medical and social

community structures of care that are close to the people’s place of residence. This is

important because elderly people tend to feel connected to their neighbourhood. These

structures consist of:

- Neighborhood centers: These are combinations of accessible living, residential care

homes and social/cultural centres with neighbourhood cafes, which are suitable for

senior citizens. Such structures offer elderly people with or without care dependency

the opportunity to live actively within the community until old age.

- Foster ambulatory care: These are home care nursing services that enable care-

dependent people to live at home.

- Networked care: The different forms of care systems (i.e., ambulatory care, semi-

residential care, impatient care) need to be more strongly interconnected than they

currently are. This will offer more choices for older people for example, live at home

with ambulatory care but have the opportunity to change to semi-residential or

impatient care near to the place they live.

In order to improve such services for the city of Berlin it is necessary to have an accurate

picture about the distribution of the elderly population in Berlin. The right panel of

Figure 5 shows density plots for the population aged 60 years or above. The blue points

represent 108 retirement homes in Berlin. The location of these points was extracted by

using Google Maps. The plot on the top panel indicates the density estimates based on

the original data with the exact address coordinates, which are not publicly available.

The plots in the middle and at the bottom present the density estimates by using the

Naive and the proposed density estimators with a rounding step size of 2000m. The sup-

ply of retirement houses is particularly good in the center of Berlin. However, locations

for future expansion of retirement houses and other support structures can be identified.

For instance, there are some hotspot areas in the north (Reineckendorf and especially

Märkisches Viertel) or in the south-east (Gropiusstadt) with a high density of the pop-

ulation over 60 but without retirement homes. As in the first application,the proposed

estimator (plot at the bottom in Figure 5) preserves the structure of the density of the

population over 60 years despite the presence of measurement error in the available data

and offers more precise estimates. Hence, the use of the proposed estimator may enable

local authorities and other organisations to make sound strategic decisions regarding the

best places for investigating in creating infrastructure for social care without requiring

access to exact geo-referenced data.
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5 Simulation Study

In this section we present results from a Monte-Carlo simulation study that was conducted

for evaluating the performance of the proposed multivariate kernel density estimator we

presented in Section 3. The objective of this simulation study is twofold. First, we inves-

tigate the ability of the proposed methodology to account for measurement error, under

different scenarios for the intensity of the measurement error process, and hence provide

more precise estimates than standard kernel density estimation that ignores measurement

error. Second, we evaluate the sensitivity of the proposed method in relation to the size

of the data (n), to the burn-in size (B) and sample steps (N) used in the MCMC.

The data is generated under different bivariate normal distributions. Three scenarios,

denoted by A,B and C, are considered. Under Scenario A data is generated by using a

bivariate standard normal distribution,

fA(x) = φ(x|µ,Σ),

where φ(x|µ,Σ) denotes a multivariate normal density with mean µ and variance-covariance

matrix Σ given by,

µ =

(
0

0

)
, Σ =

(
1 0

0 1

)
.

Under Scenario B data is generated by using a mixture of three uncorrelated bivariate

normal distributions,

fB(x) =
1

3
φ(x|µ1,Σ1) +

1

3
φ(x|µ2,Σ2) +

1

3
φ(x|µ3,Σ3),

with

µ1 =

(
0

0

)
, µ2 =

(
5

3

)
, µ3 =

(
−4

1

)
,Σ1 =

(
2 0

0 2

)
,Σ2 =

(
1 0

0 1

)
,Σ3 =

(
1 0

0 3

)
.

Finally, under Scenario C data is generated by using a mixture of three correlated normal

distributions with

µ1 =

(
0

0

)
, µ2 =

(
5

3

)
, µ3 =

(
−4

1

)
,Σ1 =

(
4 3

3 4

)
,Σ2 =

(
3 0.5

0.5 1

)
,Σ3 =

(
5 4

4 6

)
.

Under this scenario we allow both for multi-modality and high correlation. The corre-

sponding density contours under the three scenarios are shown in Figure 6. The use of

bivariate distributions is motivated by the fact that our application data in Section 4 is

bivariate. The use of Gaussian distributions for generating the simulation data follows

Zhang et al. (2006) and Zougab et al. (2014).

For each scenario we generate a dataset S0 of size n = 500 from the corresponding

distribution fA, fB or fC . The dataset S0 includes the exact x- and y-coordinates. For

18



−10

−5

0

5

10

−10 −5 0 5 10

Scenario A

−10 −5 0 5 10

Scenario B

−10 −5 0 5 10

Scenario C

Figure 6: Contour plots of the simulated data under the three simulation scenarios.

introducing measurement error via rounding of the coordinates, we define a grid for the

x- and y-coordinates ranging from -10 to 10 with gridwidth according to rounding values

r=0.75, 1.5 and 2.25. For instance, in the case of r=1.5, the x- and y- coordinates are

rounded to the nearest value in {−10,−8.5,−7,−5.5,−4, ..., 6.5, 8, 9.5} respectively. For

a formal definition of r and the rounding process we refer to Section 3.2. We denote the

dataset after rounding by Sr. Figure 7 shows the different scenarios for the rounding

process for a specific dataset under Scenario B. The size of the points represents the

number of points at a specific rounding tick.
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Figure 7: Scenario B: Rounding procedure for a specific dataset.

By using Sr, we estimate the density with two methods: a) Naive: a standard kernel

density estimator that ignores measurement error. This estimator is implemented by

using the R function kde provided by the ks package (Duong, 2014) and b) MCMC: This

is the proposed Bayesian kernel density estimator with B=5 burn-in and N=10 sample

steps (see Section 3). For both estimators we used a bivariate Gaussian kernel and a

plug-in bandwidth selector by using the R function Hpi in the ks package. The density
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Table 3: Mean RMISE for different grid sizes (r) and scenarios. Corresponding standard
errors of the RMISE in parentheses.

r= 0 r= 0.75 r= 1.5 r= 2.25

Original Naive MCMC Naive MCMC Naive MCMC

Scenario A 0.205 (0.026) 0.238 (0.029) 0.239 (0.031) 3.952 (0.301) 0.242 (0.030) 4.917 (0.248) 0.568 (0.045)
Scenario B 0.162 (0.016) 0.172 (0.017) 0.170 (0.016) 0.380 (0.033) 0.183 (0.018) 0.679 (0.043) 0.256 (0.016)
Scenario C 0.119 (0.012) 0.125 (0.013) 0.121 (0.012) 0.147 (0.013) 0.131 (0.013) 0.351 (0.034) 0.152 (0.014)

of the original sample S0 is estimated by using function kde in R. These estimates are

treated as a benchmark because S0 is not affected by rounding error. The performance of

the density estimates f̂ is assessed by the root integrated mean squared error (RMISE),

which is approximated by a Riemann sum over an equally-spaced fine grid,

RMISE(f̂) =

√
E

(∫
(f(x)− f̂(x))2dx

)
≈

√√√√ 1

m

m∑
j=1

(f(gj)− f̂(gj))2δ2g ,

where f denotes the underlying true density, fA, fB or fC respectively, m is the number

of grid points gj and δg is the gridwidth. The simulation steps (generation of a dataset,

rounding of the coordinates and the density estimation) are independently repeated 500

times for each scenario.

Starting with the first aim of the simulation study, in Table 3 we compare the per-

formance of the Naive and the MCMC density estimators in the three scenarios. The

first column of Table 3 shows the means and the standard deviations of the RMISE over

500 Monte-Carlo replications of the benchmark case i.e. in the absence of rounding error

(r=0).

For the scenarios with small rounding errors (r=0.75) we observe that the Naive

and the MCMC density estimators perform similarly and both methods have RMISE

which is comparable to the RMISE under the benchmark scenario. Data providers may

be keen, however, to introduce more severe measurement error to the data for ensuring

confidentiality. For such scenarios (r=1.5 and r=2.25) the MCMC density estimator

clearly outperforms the Naive estimator. It is notable that the Naive estimator performs

very poorly especially for r=1.5 and r=2.25 in the case of a bivariate standard normal

distribution (scenario A). Presumably this is due to the small variance of the underlying

density we are trying to estimate in scenario A such that discretizing for given rounding

values has a much more pronounced effect. For this reason we also tested a bivariate

normal distribution with a larger variance. The results for the Naive method become

more stable but the MCMC estimator still performs better. Figure 5 shows contour plots

of a particular simulation run under Scenario B for the Naive and MCMC estimators.

It appears that, unlike the Naive, the MCMC density estimator is able the maintain

the underlying structure of the density for different rounding levels. Contour plots under

Scenarios A and C confirm this finding. The corresponding figures are available from the

authors upon request.
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Figure 8: Scenario B: Contour plots of Naive estimator (upper panel) and MCMC es-
timator (lower panel), for grid size r=0.75, 1.5, 2.25 (left to right). The original data
scenario (r=0) is used as the benchmark.

Table 4: Scenario B: Mean RMISE for different sizes of datasets. Corresponding standard
errors of the RMISE in parentheses.

r=0 r=0.75 r=1.5 r=2.25

Original Naive MCMC Naive MCMC Naive MCMC

n=100 0.273 (0.028) 0.280 (0.028) 0.278 (0.028) 0.304 (0.028) 0.294 (0.029) 0.434 (0.039) 0.332 (0.027)
n=500 0.162 (0.016) 0.172 (0.017) 0.170 (0.016) 0.380 (0.033) 0.183 (0.018) 0.679 (0.043) 0.256 (0.016)
n=1000 0.128 (0.013) 0.139 (0.013) 0.141 (0.013) 0.550 (0.036) 0.148 (0.014) 0.872 (0.053) 0.235 (0.016)
n=2000 0.100 (0.010) 0.112 (0.011) 0.120 (0.011) 0.727 (0.037) 0.123 (0.011) 1.187 (0.064) 0.221 (0.015)
n=5000 0.072 (0.012) 0.165 (0.022) 0.107 (0.016) 1.033 (0.081) 0.102 (0.016) 1.803 (0.137) 0.210 (0.024)

Having assessed the performance of the Naive and the MCMC density estimators, the

second aim of this simulation study is to assess the sensitivity of the estimators to the

size of the dataset, (n) and the effect of the burn-in size, (B) and sample steps (N).

For evaluating the impact of the size of the dataset on the estimators, in Table 4

we report the means and the standard deviations of the RMISE under scenario B for

n = 100, 500, 1000, 2000 and 5000. First, we observe that the results of the benchmark es-

timator (r=0) improve as the size increases. This is expected because there is no rounding

error in the data and hence the larger the size of the data, the more precise the estimates

of the underlying density are. The advantage of using the new estimator increases with

the size of the dataset. For n = 100, the benefit from using the MCMC estimator is

relatively low. The small data size means that the chosen bandwidth is large. However,

for larger datasets the bandwidth determinant |H| gets smaller. In this case the spikes

of the density estimates obtained from the Naive estimator get more pronounced, which
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Table 5: Mean RMISE for different burn-in (B) and sample steps (N). Corresponding
standard errors of the RMISE in parenthesis.

Estimators r=0.75 r=1.5 r=2.25

Naive 0.172 (0.017) 0.380 (0.033) 0.679 (0.043)
MCMC (B=0, N=1) 0.176 (0.017) 0.216 (0.019) 0.300 (0.020)
MCMC (B=1, N=2) 0.172 (0.017) 0.193 (0.019) 0.274 (0.020)
MCMC (B=5, N=20) 0.170 (0.016) 0.183 (0.018) 0.256 (0.016)
MCMC (B=10, N=50) 0.170 (0.017) 0.181 (0.019) 0.254 (0.017)
MCMC (B=20, N=100) 0.170 (0.017) 0.182 (0.018) 0.254 (0.017)

leads to an increasing RMISE for the Naive method. In contrast, the MCMC estimator

benefits from an increasing data size. The proposed method still shows higher RMISE

compared to the density estimator based on the original data because some information is

irreversibly lost due to the rounding process. However, the original data is not available

and the proposed methods is able to maintain the underlying structure of the original

data.

For assessing the effect of the burn-in size (B) and the sample steps (N) on the proposed

method we implement the MCMC estimator for scenario B by using different combinations

of burn-in sizes (B=0,1,5,10,20) and sample steps (N= 1,2, 20,50,100). Table 5 shows the

means and standard deviations of the RMISE over 500 Monte-Carlo replications. We

observe that larger B and N values improve the results in particular as the rounding error

increases. The improvement is only marginal, however, for B and N larger than 5 and 20

respectively. This setting appears to be offering a good compromise between computation

time and efficiency.

6 Discussion

Precise geo-coded data is hardly ever available due to confidentiality constraints. The

paper proposes methodology for deriving density estimates of populations of interest in

the presence of rounding in the geographical coordinates used for disclosure control. The

proposed methodology works by reversing the measurement error process by combining

a Bayesian measurement error model with kernel density estimation. The method is

straightforward to implement and works for different dimensions, kernel types and band-

width selection. The use of the proposed methodology is facilitated by the availability

of a computationally efficient algorithm in R. As we demonstrated with the analysis of

the Berlin register data the proposed method can offer considerably deeper insights, com-

pared to a Naive estimator that ignores the measurement error process, to data analysts

about the density of target populations within an area of interest. The structure preserv-

ing property of the proposed method is particularly attractive when working with data

that has been subjected to disclosure control via the introduction of measurement error.

In addition, the paper provides some first indications on how to set the grid-lengths for

geo-coding in the Berlin register of residents such that a data analyst is able to derive

22



precise density estimates. At the same time working with the data host for deciding the

grid-lengths is crucial for ensuring confidentiality.

Further work could extend the proposed approach to different geographical masking

or anonymisation methods including non-uniform for example, gaussian errors added to

the original geographic coordinates. The proposed method can be further generalized for

application to data with varying degree of rounding (heaping) occurring, for example, in

self-reported survey data (see case of responses to income questions). Finally, one idea

for further work is to explore the application of the proposed methodology for generating

synthetic geo-coded data based on anonymised data sets with rounding errors.
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