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Abstract

On June 25, 2013, President Obama announced his plan to introduce carbon dioxide

emission standards for electricity generation. This paper proposes an efficiency analysis

approach that addresses which emission rates (and standards) would be feasible if the ex-

isting generating units adopt best practices. A new efficiency measure is introduced and

further decomposed to identify different sources’ contributions to emission rate improve-

ments. Estimating two Data Envelopment Analysis (DEA) models - the well-known

joint production model and the new materials balance model - on a dataset consist-

ing of 160 bituminous-fired generating units, we find that the average generating unit’s

electricity-to-carbon dioxide ratio is 15.3 percent below the corresponding best-practice

ratio. Further examinations reveal that this discrepancy can largely be attributed to

non-discretionary factors and not to managerial inefficiency. Moreover, even if the best

practice ratios could be implemented, the generating units would not be able to comply

with the EPA’s recently proposed carbon dioxide standard.

JEL classification: Q53, Q48, D24

Keywords: Emission standards; Carbon dioxide emissions; Materials balance condition;

Electricity generation; Weak G-disposability; Data Envelopment Analysis



1 Introduction

On June 25, 2013, President Obama announced his plan to curb U.S. carbon dioxide

(CO2) emissions. By sending a strong signal that the U.S. is willing to take the lead

in preventing climate change President Obama put climate change on the top of the

international agenda and raised hopes for a binding international agreement on climate

change mitigation.

The electricity sector is the largest emitter of CO2 in the U.S., and accounts for about

one-third of all domestic emissions. Although regulations that curb other emissions

such as sulfur dioxide (SO2) and nitrogen oxides (NOx) were implemented decades ago,

CO2 emissions from U.S. power plants are currently not constrained. On March 27,

2012, the Environmental Protection Agency (EPA) proposed a CO2 emission standard

of 1000 pounds of CO2 per megawatt-hour for new plants, based on the performance of

the natural gas combined cycle technology. In his new initiative, President Obama has

directed the EPA to complete CO2 emission standards for both new and existing plants.

Understanding technological capacity is important for successful environmental policies.

This paper considers feasible emission standards for existing electricity generating units,

given the current state of their technology. The paper is thereby closely linked to a

recent paper by Kotchen and Mansur (forthcoming), which analyzes how the EPA’s

proposed emission standard of 1000 pounds of CO2 per megawatt-hour compares to

the emission rates of existing and proposed electricity generating units. We extend the

scope of Kotchen and Mansur’s analysis by taking efficiency improvements into account.

More specifically, we ask which emission rates would be feasible if all units operate at

their technological capacity and thus, how much the electricity generating units’ current

emissions could be decreased if the units adopt best practices. This information is

useful for designing environmental regulations that promote efficiency improvements

(in the spirit of the so-called Porter hypothesis, see Porter and van der Linde (1995)).
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A report by the National Energy Technology Laboratory (2008) suggests that factors

which are under control by the electricity generating units, e.g., operational practices

and maintenance, play large roles in determining the units’ efficiencies. In other words,

it appears to be possible to reduce CO2 emissions significantly by increasing the units’

managerial efficiencies.

To identify feasible improvements in current emission rates, this paper proposes a pro-

duction analysis framework for estimating the electricity generating units’ maximal fea-

sible output-to-emissions ratios. A new efficiency measure that compares the maximal

feasible ratios to the generating units’ actual ratios is proposed. The measure is decom-

posed into three components to identify the sources of improvements. We illustrate the

usefulness of our approach by calculating the maximal output-to-emissions ratios and

the corresponding efficiency scores for a sample of 160 bituminous-fired generating units

in operation in 2011; i.e., for existing coal-fired units that will face emission standards

for CO2 in the future. Data Envelopment Analysis (DEA) is used to model polluting

technologies, i.e. technologies that consume coal and other inputs and produce CO2

emissions jointly with electricity.

The properties of polluting technologies have recently received much attention in the

production analysis literature. It is now well-known that some of the “standard” (neo-

classical) axioms, in particular free disposability of outputs, do not apply to pollutants

(see Førsund (2009) for a detailed discussion). A popular modeling approach by Färe

et al. (1989) therefore suggests to model pollutants as weakly disposable. Among oth-

ers, this approach has been extensively used to estimate environmental efficiencies and

marginal abatement costs for U.S. power plants (see e.g. Mekaroonreung and Johnson

(2012), Färe et al. (1996, 2007b), and Coggins and Swinton (1996)). However, the Färe

et al. (1989) modeling approach is criticized for not complying with physical laws, in

particular with the materials balance condition (see Førsund (2009), Coelli et al. (2007)

and Hoang and Coelli (2011)). This is unfortunate in our setting since the materials
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balance condition is highly relevant for modeling air pollutant emissions from electricity

generation. Some papers have suggested modeling polluting technologies by combining

the neo-classical production technology with a parametric specification of the materials

balance condition to overcome the physical inconsistencies (see e.g. Rødseth (2013) and

Hampf (forthcoming)). Alternatively, the axioms of the neo-classical production model

can be modified to secure consistency between the economic model and the materials

balance principle. The latter approach has, to our knowledge, not been properly ad-

dressed in the literature. Recently, Rødseth (under review) showed that a “materials

balance consistent” production model can be achieved by assuming that 1) inputs and

outputs are weakly G-disposable, and that 2) pollutants are output essential. Rødseth

(under review) further showed that (despite the before-mentioned critique) the model

by Färe et al. (1989, 2005) is consistent with the materials balance condition under a

very strong assumption, namely that reductions in pollutants take place by end-of-pipe

abatement only. This is not an appropriate assumption in our case with CO2 emissions

from electricity generating units since end-of-pipe technologies for CO2 are currently not

commercialized (see Rødseth and Romstad (forthcoming) for a discussion). We therefore

find it useful to compare the results of Färe et al.’s model (hereafter, the joint produc-

tion (JP) model) and Rødseth’s model (hereafter, the materials balance (MB) model), to

identify possible shortcomings of the well-established joint production model in settings

without end-of-pipe abatement. Our paper is the first to implement the materials bal-

ance model empirically and the first to assess the differences between the two production

models using real data.

Our DEA results suggest that the average generating unit’s electricity-to-carbon dioxide

ratio is 15.3 percent below the corresponding best-practice ratio. Unfortunately, further

examinations by second-stage regressions reveal that this discrepancy can largely be

attributed to contextual factors and not to managerial inefficiency. In particular, the

age of the generating units has a significant impact their efficiencies. Building upon the

3



second-stage regression results we find that the lowest feasible emission standard for the

average generating unit is 1870 pounds of CO2 per MwH of produced electricity, which is

slightly lower than the current average emission rate of 1997 pounds per MwH produced.

Consequently, the coal-fired generating units are far from being able to comply with the

EPA’s suggested emission standard of 1000 pounds of CO2 per megawatt-hour.

Our paper is structured as follows. Section 2 describes the theoretical underpinnings of

our analysis. It presents the production models and our new efficiency measure. Section

3 describes the compilation of the dataset and presents the results. Finally, section 4

concludes.

2 Theoretical foundations

We start by introducing the joint production and the materials balance approach to

modeling environmental technologies. Building upon the nonparametric estimation of

these models we introduce optimization methods to estimate the maximal ratio of a good

to a bad output. This ratio is used to construct and decompose a new efficiency measure.

A discussion on the bias-correction of the estimates of the efficiency measure and the

use of regression techniques to identify the effect of contextual variables concludes this

section.

2.1 Environmental production technologies

In the following discussion we focus on a production process where m inputs x ∈ R
m
+ are

used to produce k good outputs y ∈ R
k
+. We further assume that the m inputs can be

split intom1 polluting inputs andm2 = m−m1 non-polluting inputs, hence x =




xP

xNP


.

The consumption of polluting inputs leads to the unintended by-production of s bad (or
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undesirable) outputs b ∈ R
s
+. The technology set T of this production process is the

collection of all technical feasible input-output combinations and is defined by:

T = {(x,y, b) : x can produce (y, b)} (2.1)

Several axiomatic approaches that account for bad outputs have been proposed in the

literature on microeconomic production theory (see e.g. Scheel (2001) for a survey). One

of the most frequently applied models in empirical analyses is the joint production (JP)

model by Färe et al. (1989). This model imposes the following axioms on the technology

(see Färe and Grosskopf (2004) for further discussions):

(JP1) T is nonempty.

(JP2) T is closed.

(JP3) For every finite x, T is bounded from above.

(JP4) No free-lunch: (0,y, b) /∈ T if (y, b) ≥ (0,0).1

(JP5) Convexity:

If (x,y, b) ∈ T and
(
x̃, ỹ, b̃

)
∈ T then α (x,y, b) + (1− α)

(
x̃, ỹ, b̃

)
∈ T with

α ∈ [0, 1].

(JP6) Inactivity: (x,0,0) ∈ T .

(JP7) Strong disposability of inputs: If (x,y, b) ∈ T and x̃ ≧ x then (x̃,y, b) ∈ T .

(JP8) Strong disposability of good outputs:

If (x,y, b) ∈ T and ỹ ≦ y then (x, ỹ, b) ∈ T .

(JP9) Weak disposability of good and bad outputs:

If (x,y, b) ∈ T then (x, θy, θb) ∈ T with 0 ≦ θ ≦ 1.

(JP10) Null-jointness: If (x,y, b) ∈ T and b = 0 then y = 0.

1 Following the usual notational convention we use ≥ and ≤ if at least one element of a vector satisfies
strict inequality while ≧ and ≦ imply that each element can hold with equality.
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The main differences between the conventional technology set that does not account

for the production of pollutants (see Shephard (1970) for an overview ) and the joint

production model are the axioms (JP9) and (JP10). The weak disposability axiom (JP9)

states that a reduction in the bad outputs is costly since the production of good outputs

must be reduced correspondingly, i.e. revenues must be forgone. The rationale behind

this assumption is that inputs are reallocated from the production of the good outputs

to the abatement of the bad outputs. The null-jointness assumption (JP10) states that

no good outputs can be produced without some by-production of bad outputs. In the

words of Färe et al. (2007a, p. 1057), “there is no fire without smoke”.

While the joint production model provides a theoretically appealing approach to incor-

porate pollutants as bad outputs, it is in general not able to account for the laws of

thermodynamics (see Coelli et al. (2007)). The literature on environmental economics

(see e.g. Baumgärtner et al. (2001)) highlights in particular the role of the first and

second laws of thermodynamics in determining pollution from conventional production

processes. In line with previous studies (see Coelli et al. (2007)) we limit our discus-

sion on the first law of thermodynamics to the materials balance condition (MCB). The

MBC, which was introduced in the economic literature by Ayers and Kneese (1969),

states that the amount of materials bound in the inputs must be equal to the amount of

materials bound in the intended outputs and the production residuals, which in our case

translates to the good and bad outputs. Given our above presented production process

the MBC reads as equation (2.2)

Sxx = Syy + b+ a (2.2)

where Sx denotes the s × m matrix which indicates the amount of materials bound

in the inputs (i.e., emission factors). Since the non-polluting inputs do not contain

any materials the last m2 rows of the matrix do only contain zeros. Sy denotes the
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s × k matrix which indicates the amount of materials bound in the good outputs (i.e.,

recuperation factors), and a represents a s×1 vector containing the amount of abatement

for each pollutant.2 In this definition of the MBC the amount of materials bound in the

inputs corresponds to the sum of the materials bound in the good outputs, the amount

of bad outputs, and the amount of abatement. In our empirical case study the matrix

Sy is the zero matrix since the good output (electricity) does not contain any materials.

Moreover, a = 0 since no abatement activities for carbon dioxide are present.3

While the MBC states that materials cannot vanish during the production process,

the second law of thermodynamics states that polluting inputs cannot be completely

transformed into good outputs. Therefore, the bad outputs must be strictly positive if

a strictly positive amount of the polluting inputs is used (see Ebert and Welsch (2007)).

As described in the introduction to this paper, the joint production model is only con-

sistent with the materials balance condition if (end-of-pipe) abatement possibilities are

present. Moreover, the null-jointness and inactivity axioms of the JP model violate the

second law of thermodynamics. To overcome these drawbacks Rødseth (under review)

proposed a production model that is in line with both laws of thermodynamics. In

Rødseth’s paper the G-disposability axiom proposed by Chung (1997) is extended by a

summing-up condition to allow weak G-disposability, which can be defined to ensure that

the production model satisfies the MBC. Moreover, the concepts of input and output

essentiality for the bad outputs are introduced to provide a model which does not violate

the second law of thermodynamics. The full set of axioms of the materials balance (MB)

approach reads as (see Rødseth (under review) for a complete discussion)

2 The term abatement is frequently used for all types of emission reducing efforts, including input
substitution and reductions in the scale of operations. In our setting, abatement primarily refers to
end-of-pipe abatement, but may also encompass various forms of change-in-process abatement. See
Rødseth and Romstad (forthcoming) for a detailed discussion.

3 In the following theoretical discussions we will assume that a = 0. This is done for notational
easiness in the following formal derivations of the programming problems. However, note that these
derivations can be easily adapted accounting for a > 0.
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(MB1) T is nonempty.

(MB2) T is closed.

(MB3) For every finite x, T is bounded from above.

(MB4) Output essentiality for the bad outputs: If (x,y, b) ∈ T and b = 0 then xP = 0.

(MB5) Input essentiality for the bad outputs: If (x,y, b) ∈ T and xP = 0 then b = 0.

(MB6) No free-lunch.

(MB7) T is convex.

(MB8) Inputs and outputs are weakly G-disposable:

If (x,y, b) ∈ T and Sxgx + Sygy − gb = 0 then
(
x+ gx,y − gy, b+ gb

)
∈ T .4

Axioms (MB4) and (MB5) ensure that the second law of thermodynamics is not violated

by stating that it is not possible to completely transform polluting inputs into good

outputs. The summing-up condition in (MB8) states that the increases in pollution due

to increases in the use of inputs (Sxgx) and/or the reduction of good outputs
(
Sygy

)

must equal the increases in the bad outputs (gb) when inputs and outputs are disposed.

Hence, the MBC is satisfied.

In the following we present a simple graphical example to demonstrate the differences

between the joint production model and the materials balance model. We consider a

case with one polluting input
(
xl
)
and two outputs, one good

(
yl
)
and one bad

(
bl
)
. We

assume that the emission factor for the polluting input is 0.4 and that the recuperation

factor for the good output is zero. In this setting, we construct a dataset containing

three (l = A,B,C) DMUs which is presented in table I.

For our following introduction of the new efficiency measure we need to distinguish

between production possibilities for 1) a given output set (production possibilities for

4
gx, gy and gb are direction vectors. They determine the direction in which inputs and outputs are
disposable. The summing-up condition in (MB8) constraints the choice of directions, hence the term
weak G-disposability.
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Table I: Artificial data

Firm ID xl yl bl

A 10 4.5 2
B 10 5 4
C 20 5 8

fixed inputs) and 2) for the overall technology (i.e., the collection of all feasible output

sets). Figure 1 reflects this by jointly representing the output sets for x = 10 and

x = 20 for the joint production model and the materials balance model, assuming

variable returns to scale (VRS) piecewise linear technologies. Note that the figure thereby

deviates from most graphical representations in the literature on polluting technologies

that usually depict a given output set.

�

y �

b �

A

� A′

�

C �

B

�

������������������������������������������������������������������������������	���������
�

��

��

��

��

��

Figure 1: Output sets of the joint production and the materials balance model

Since the DMUs A and B both consume 10 units of the input, the output sets for

x = 10 are estimated on the basis of these two observations. This output set for the

materials balance model is bounded by 2AB42, where the vertical line segments 2A

and B4 are due to weak G-disposability of the good output. The vertical line segments
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can be understood as though the supply of the bad output is perfectly inelastic for a

given input vector, since there is no recuperation of the bad output in the good output.

Second, the line segment AB follows by convexity.

According to the materials balance model, the lowest possible generation of b for x = 10

is 2. The joint production model, on the other hand, assumes that zero bad is feasible for

x = 10 (i.e., pollution is not essential to the consumption of the polluting input). This

is related to the model’s null-jointness assumption, which states that the output set for

x = 10 contains the origin. Since the joint production model assumes free disposability

of the good output, its output set for x = 10 contains the vertical line segments 2A and

B4 (similar to the materials balance model). In addition, its output set includes the line

segment 0A due to weak disposability of the good and bad output (JP9). Consequently,

the output set for x = 10 for the joint production model is bounded by 0AB40, and is

therefore larger than the corresponding output set for the materials balance model.

The two production models’ assumptions about input disposability differ fundamentally.

The joint production model assumes that inputs are freely disposable, which means that

the output set for x = 10 is also feasible for a larger input bundle (e.g., x = 20). Thus,

the joint production model’s output set for x = 20 is found by combing its output set

for x = 10 with observation C that consumes 20 units of the input. For x = 20, the joint

production model’s output set thereby amounts to the set bounded by 0ABC80, where

the line segment BC is due to convexity (i.e., by combining the output set for x = 10

with observation C).

For the materials balance model, on the other hand, the weak G-disposability axiom

(MB8) does in our case state that any increases in pollution due to increases in the use

of the input must lead to corresponding increases in the bad output when inputs and

output are disposed. Pictorially, this means that the output set for x = 10 moves “to

the right” when the input consumption increases from 10 to 20. Hence, in contrast to
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the JP model the output combinations for x = 10 are not technically feasible for x = 20.

For example, the artificial observation A′ corresponds to DMU A for x = 20, since at

this artificial observation 1) the good output is the same as for DMU A and 2) the bad

output is increased by 0.4(20− 10) = 4 - where 0.4 is the emission factor - to be in line

with the weak G-disposability axiom (i.e., with the materials balance condition). Hence,

the materials balance model’s output set for x = 20 amounts to the set bounded by

6A′C86, and the minimal feasible amount of the bad output is 6 for x = 20.

2.2 Nonparametric estimation and ratio optimization

We apply nonparametric methods (Data Envelopment Analysis (DEA) proposed by

Charnes et al. (1978)) which do not rely on a specific functional form to estimate the

technologies. Given a sample of n decision making units (DMUs) with the observed

input-output combinations (xi,yi, bi) with i = 1, . . . , n the estimation of the joint pro-

duction model assuming variable returns to scale (VRS) reads as (see Färe and Grosskopf

(2003))

T̂JP =
{
(x,y, b) : x ≧ Xλ,y ≦ Y λθ, b = Bλθ,1Tλ = 1, 0 ≦ θ ≦ 1,λ ≧ 0

}
. (2.3)

In this formulation X denotes the m×n matrix of (polluting and non-polluting) inputs,

Y denotes the k × n matrix of good outputs and B denotes the s × n matrix of bad

outputs. λ represents a n× 1 vector of weight factors while θ denotes the scaling factor

of the weak disposability assumption (JP9). The inequality constraints on the inputs

and the good outputs imply strong disposability while the equality constraints on the

bad outputs impose weak disposability. The technology exhibits null-jointness of the

good and the bad outputs if each DMU produces a strictly positive amount of at least

one bad output and each bad output is produced by at least a single DMU (see e.g. Färe

(2010)) . This technology can be modified to exhibit constant returns to scale (CRS)
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by removing the summing up condition on the weight factors 1Tλ = 1. In this case the

scaling factor θ can be set equal to one (see Färe and Grosskopf (2003)).

The corresponding nonparametric estimation of the materials balance model (MB) reads

as

T̂MB =
{
(x,y, b) : x = Xλ+ ǫx,y = Y λ− ǫy, b = Bλ− ǫb,1

Tλ = 1,λ ≧ 0
}
. (2.4)

In this program we have replaced the direction vectors of the weak G-disposability as-

sumption (MB8) by their empirical counterparts, the input and output slacks ǫx, ǫy

and ǫb. Hence, production points that are neither observations in the sample nor convex

combinations of the observations are only part of the technology if their slacks fulfill the

summing-up constraint. The technology exhibits output essentiality for the bad outputs

(MB4) if each DMU uses a strictly positive amount of the polluting inputs and produces

a strictly positive amount of the bad outputs.

The purpose of this paper is to undertake an efficiency analysis of U.S. power plants

to, among others, examine whether the existing plants would be able to comply with

EPA’s proposed carbon standard by adopting best-practices. To address this question

one feasible approach would be to minimize the ratio b/y for the estimated technology

sets. However, to make our results and our ratio efficiency measure comparable to other

approaches in the efficiency analysis literature (see e.g. Kuosmanen and Kortelainen

(2005)) we instead maximize the ratio y/b. Since this inversion does not change the

optimal results for the reference observations the policy implications of our empirical

analysis are not influenced by it.

In the following optimization problem we assume that a DMU maximizes the ratio of a

single good output (good output “o”) to a single bad output (bad output “l”) subject

to a technology accounting for multiple polluting and non-polluting inputs, as well as

12



multiple good and bad outputs. We start our discussion by assuming a joint production

technology under constant returns to scale (CRS). In this case the optimal ratio for a

DMU i under evaluation can be obtained by solving the following fractional programming

problem

max
yo,bl,λ

yo
bl

s.t.

[
xP
i

xNP
i

]
≧

[
XP

XNP

]
λ

[
yo

yi,−o

]
≦

[
yT
o

Y −o

]
λ

[
bl

bi,−l

]
=

[
bTl
B−l

]
λ

yo, bl ≧ 0
λ ≧ 0.

(2.5)

In this program we have separated the inputs, good outputs and bad outputs in a suitable

way for our following derivation. The input vector is partitioned into the polluting and

the non-polluting inputs with XP denoting the m1 × n matrix of polluting inputs and

XNP the m2×n matrix of non-polluting inputs. The good outputs are partitioned into

the single good output which is a part of the objective function (yo) and the remaining

(k − 1) good outputs which are fixed
(
yi,−o

)
, with yT

o representing the transpose of the

n×1 vector of good output “o” and Y −o denoting the (k−1)×n matrix of the remaining

good outputs. Similarly, the bad outputs are partitioned into the single pollutant which

is part of the objective function (bl) and the remaining (s − 1) bad outputs which are

fixed (bi,−l) with bTl representing the transpose of the n × 1 vector of bad output “l”

and B−l denoting the (s− 1)× n matrix of the remaining bad outputs.

This fractional optimization problem can be transformed into the linear programming

problem (2.6).5

5 See the appendix for detailed descriptions of the linearization of the following fractional programming
problems. For further discussions on linearization of non-linear DEA models see Zhou et al. (2008).
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max
w,z

yT
o z

s.t.

[
wxP

i

wxNP
i

]
≧

[
XP

XNP

]
z

wyi,−o ≦ Y −oz

wbi,−l = B−lz

bTl z = 1
w ≧ 0
z ≧ 0.

(2.6)

The VRS counterpart to (2.5) is defined by:

max
yo,bl,λ,θ

yo
bl

s.t.

[
xP
i

xNP
i

]
≧

[
XP

XNP

]
λ

[
yo

yi,−o

]
≦

[
yT
o

Y −o

]
λθ

[
bl

bi,−l

]
=

[
bTl
B−l

]
λθ

yo, bl ≧ 0
λ ≧ 0

0 ≦ θ ≦ 1.

(2.7)

where θ denotes the scaling factor by the weak disposability assumption and is an en-

dogenous variable. The linearized programming problem corresponding to (2.7) reads

as

max
h,g

yT
o g

s.t.

[
XP − xP

i

XNP − xNP
i

]
g ≦ 0

hyi,−o ≦ Y −og

hbi,−l = B−lg

bTl g = 1
h ≧ 0
g ≧ 0.

(2.8)

It is also possible to estimate the optimal ratio using the materials balance model. In the

following we present the fractional programming problem and its linearization assuming a

constant returns to scale technology. Note that this transformation can be demonstrated
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similarly for the case of variable returns to scale by adding the constraint 1Tλ = 1.

max
yo,bl,ǫxP ,ǫ

xNP ,ǫyo ,ǫy−o
,ǫbl ,ǫb−l

,λ

yo
bl

s.t.

[
xP
i

xNP
i

]
=

[
XPλ+ ǫxP

XNPλ+ ǫxNP

]

[
yo

yi,−o

]
=

[
yT
o λ− ǫyo

Y −oλ− ǫy−o

]

[
bl

bi,−l

]
=

[
bTl λ+ ǫbl

B−lλ+ ǫb−l

]

[
sT
xP ,bl

ǫxP + sTy−o,bl
ǫy−o

+ syo,blǫyo
SxP ,b−l

ǫxP + Sy−o,b−l
ǫy−o

+ syo,b−l
ǫyo

]
=

[
ǫbl
ǫb−l

]

yo, bl ≧ 0
ǫyo , ǫbl ≧ 0

ǫxP , ǫxNP , ǫy−o
, ǫb−l

,λ ≧ 0.

(2.9)

As in case of the joint production model we have separated the constraints for the good

outputs and the bad outputs. In addition to the variables defined above we denote ǫxP

(ǫxNP ) the m1×1 (m2×1) vector of slacks for the polluting (non-polluting) inputs. The

scalar ǫyo (ǫbl)denotes the slack for the good output “o” (the bad output “l”) while ǫy−o

(ǫb−l
) denotes the (k − 1) × 1 ((s − 1) × 1) vector of the slacks for the remaining good

(bad) outputs. By the weak G-disposability axiom (MB8) the slacks for the bad outputs

are linear functions of the slacks for the polluting inputs and the good outputs. In the

constraint for the slack variable of the bad output “l” sT
xP ,bl

represents the transpose

of the m1 × 1 vector of emission factors of the polluting inputs, sTy−o,bl
denotes the

transpose of the (k − 1) × 1 vector of recuperation factors for all good outputs except

for the output “o”, and syo,bl denotes the scalar recuperation factor for the good output

“o”. In the constraint for the slacks of the remaining bad outputs SxP ,b−l
denotes the

(s− 1)×m1 matrix of emission factors for the polluting inputs, Sy−o,b−l
represents the

(s−1)×(k−1) matrix of recuperation factors for the good outputs without good output

“o”, and syo,b−l
denotes the (s−1)×1 vector of recuperation factors for the good output

“o”. The linearized programming problem corresponding to (2.9) reads as
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max
d,f

(
yo

−1

)
f

s.t.

[
dxP

i

dxNP
i

]
≧

[ (
XP 0

)
f(

XNP 0
)
f

]

dyi,−o ≦
(
Y −o 0

)
z

d
(
SxP ,b−l

xP
i − Sy−o,b−l

yi,−o

)
≧

(
SxP ,b−l

(
XP 0

)

−Sy−o,b−l

(
Y −o 0

)

−
(
0 syo,b−l

))
f

d
(
sT
xP ,bl

xP
i − sTy−o,bl

yi,−o

)
≧

(
sT
xP ,bl

(
XP 0

)

−sTy−o,bl

(
Y −o 0

)

−
(
0 syo,bl

))
f(

bo − sT
xP ,bl

XP + sTy−o,bl

Y −o

syo,bl

)T

f

+d
(
sT
xP ,bl

xP
i − sTy−o,bl

yi,−o

)
= 1

d ≧ 0
f ≧ 0.

(2.10)

In the above presented optimization models we have made two implicit assumptions.

First, we have assumed that the inputs are exogenously given and cannot be adjusted

by the DMUs. Second, we have assumed that yo can be freely chosen by the DMUs.

In this case we denote the solutions to the above programming problems r∗Ex =
y∗Ex

b∗
Ex

. If

the DMUs can adjust the amount of the inputs, x becomes an additional variable to

be endogenously determined by the programming problems. We denote the solutions

to these modified programming problems r∗En =
y∗En

b∗
En

. In addition we also account for

the situation where the inputs are fixed and the DMUs cannot freely choose yo. We

consider the most relevant case that the DMUs cannot decrease the good outputs (e.g.

the production of electricity) to further improve the optimal ratio. To model this case

we include an additional constraint which prevents the optimal amount of yo from being

smaller than the actual observed amount for each DMU. We denote the optimal ratio

obtained by this analysis by rCEx =
yCEx

bC
Ex

, with the superscript “C” indicating that the

additional constraint on the good output is included when optimizing the ratio.

Given the different degrees of freedom of the DMUs to adjust the inputs as well as the
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good output we obtain the following relationship among the above defined ratios

r∗En ≧ r∗Ex ≧ rCEx. (2.11)

2.3 A ratio efficiency measure

The results obtained by the above presented programs enable us to analyze the best

feasible ratios of good to bad outputs for each DMU (i.e. for each electricity generating

unit in our empirical application). However, these results do not provide information

on how efficient the DMUs are in achieving the optimal ratios. To compare their actual

performances to best practices we propose a ratio efficiency measure (REM) as the ratio

of the estimated optimal ratio in the case with endogenous inputs (and without output

constraint) to the actual observed ratio ract:

REM =
r∗En

ract
(2.12)

A DMU is classified as efficient (inefficient) if the measure exhibits a value equal to

(larger than) one. The potential percentage increase in the ratio of good to bad outputs

by adopting best-practice technology can thus be calculated by 100 · (REM− 1).

The REM can be calculated for the joint production model and for the materials balance

model (or any other reference technology). Furthermore, using the optimization results

obtained under different flexibilities to adjust inputs and the amount of good outputs,

we propose the following decomposition of the REM :

r∗En

ract
=

rCEx

ract
·
r∗Ex

rCEx

·
r∗En

r∗Ex

(2.13)

The first component (rCEx/ract) measures by how much the actual observed ratio can

be increased relative to the best practice ratio if the inputs are fixed and the good
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output is not reduced. Hence, the measure captures ratio enhancements which relate

to increases in the good and/or decreases in the bad output, potentially as a result of

eliminating technical inefficiency. We refer to this component as weak ratio efficiency

since a DMU may be capable of further increasing its ratio by further changing the good

output and/or the inputs. The second component (r∗Ex/r
C
Ex) measures the additional

ratio improvements by a flexible choice of the produced amount of the good output.

Therefore, this measure accounts for the possibility to increase the ratio by sacrificing

the good output to further reduce the bad output. Since this component is similar to

the allocative efficiency component in cost efficiency models (see Coelli et al. (2005)) we

refer to it as allocative ratio efficiency. Finally, the third term (r∗En/r
∗
Ex) measures by

how much the best practice ratio can be increased relative to r∗Ex when the DMU can

freely choose the input amount. Hence, we name this component input ratio efficiency.

For a graphical explanation of the REM we again consider the numerical example from

table I. The observed ratio ract of DMU C is defined by the slope of the light grey ray

which intersects DMU C. The overall REM compares DMU C’s ratio to the maximal

feasible ratio for the technology. Intuitively, the optimal ratio can be found by rotating

the ray intersecting DMU C as far “to the left” as possible in figure 2. This means

that the optimal ray - both for the joint production model and the materials balance

model - intersects DMU A (i.e., DMU A is overall REM efficient). However, to obtain

the technologically optimal ratio DMU C may possibly forsake its good output or alter

its input consumption (which may lead to profit losses). To examine these aspects, we

decompose the REM into its three components. The weak ratio efficiency component

studies the difference between DMU C’s actual ratio and the optimal ratio for DMU

C’s output set (i.e., for x = 20) when the good output (i.e., DMU C’s revenue) is not

forsaken. The joint production model suggests that DMU C can obtain DMU B’s ratio

without changing its input use or forsaking the good output (recall that the JP model’s

output set for x = 20 is bounded by 0ABC8O). Hence, the model suggests that DMU
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C is inefficient in terms of the first REM component. The materials balance model does,

on the other hand, suggest that DMU C cannot improve its ratio without forsaking the

good output; i.e., DMU C is considered efficient in terms of the first REM component

(recall that the MB model’s output set for x = 20 is bounded by 6A′C86).
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Figure 2: The REM and its decompositions

The allocative ratio efficiency component assesses whether further ratio improvements

are feasible when the good output is forsaken but the input consumption is unaltered.

In this case, the joint production model suggests that DMU C’s ratio can be set equal to

DMU A’s ratio, and thereby that the allocative ratio efficiency component amounts to

the ratio of DMU B’s ratio to DMU A’s ratio. The materials balance model suggests that

the optimal ratio equals DMU A’s “input adjusted” ratio (represented by the artificial

datapoint A’ in figure 2) when inputs are fixed. Thus, the allocative ratio efficiency

component amounts to the artificial DMU (A’)’s ratio to DMU C’s ratio.

The input ratio efficiency component considers whether DMU C’s ratio could be further
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improved by altering the input use. This is not the case for the joint production model.

The reason for this result is that the free disposability assumption states that if DMU

A’s ratio is feasible for x = 10, then DMU A’s ratio is also feasible for any larger input

bundle. For the materials balance model, on the other hand, most of the potential for

improving DMU C’s ratio comes from altering the input use. This is easily seen from

figure 2 by comparing the ratio of DMU A to DMU A′. Hence, our graphical example

illustrates that there can be large differences in how the joint production model and the

materials balance model describe the DMU’s production possibilities.

2.4 Correcting the bias and regressing contextual variables

In the previous section we discussed how to use nonparametric methods to calculate the

optimal ratios. Since the nonparametric estimation of the technology set is a subset

of the true, but unknown production technology, the estimated optimal ratio is biased

downwards (see Simar and Wilson (2008)). This result holds irrespective of whether

the technology is constructed on the basis of the materials balance model or the joint

production model. A bootstrapping approach to correct the bias for radial distance

function estimations has been proposed by Simar and Wilson (1998) and for directional

distance functions estimations by Simar et al. (2012). Because our proposed ratio effi-

ciency measure is not based on distance functions we cannot apply these approaches.

Instead, we use subsampling methods to estimate and correct the bias in the optimal

ratios. This approach has been proposed by Simar and Wilson (2011) who show that

the subsampling approach (drawing m < n observations without replacement) leads to

consistent estimates of the bias given nonparametric frontier models.

In the following we describe the algorithm to obtain the bias-corrected estimations of the

optimal ratios. Note that we present the algorithm for the optimal ratio y∗En/b
∗
En, hence

for the ratio to construct the overall REM. The ratios to construct the components of
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the REM can be bias-corrected following the same steps. In our presentation we modify

the discussion of subsampling applied to distance functions in Simar and Wilson (2008,

p. 451) to our ratio efficiency measure. The algorithm to obtain the bias-corrected ratios

can be summarized as:

1. Use the original sample Xn = {(xi,yi, bi) , i = 1, . . . , n} to estimate the technology

set T̂ based on the axioms of the joint production or the materials balance model.

Use T̂ to estimate the optimal ratio r∗En,i = y∗En,i/b
∗
En,i for i = 1, . . . , n given the

linearized programming problems defined above.

2. Draw without replacement m < n observations from the original sample Xn and

denote the resulting subsample X̃m.6

3. Use the subsample X̃m to construct the technology and estimate the optimal ratio

r̃∗En,i = ỹ∗En,i/b̃
∗
En,i for each observation in the original sample Xn.

4. Repeat steps 2 and 3 B times and denote the results r̃∗En,i,b with b = 1, . . . , B.

5. Use the subsampled ratio results to estimate the bias as

b̂iasB
(
r∗En,i

)
=

(m
n

) 2
(m+k+s+1)

×

[
1

B

B∑

b=1

r̃∗En,i,b − r∗En,i

]
(2.14)

and estimate the bias-corrected optimal ratio as

r∗En,i,bc = r∗En,i − b̂iasB
(
r∗En,i

)
. (2.15)

Since the bias correction introduces additional noise we follow Simar and Wilson (2008,

6 To obtain the optimal size of m we follow the approaches by Politis et al. (2001) and Bickel and
Sakov (2008). In these papers it is proposed to estimate the statistic of interest for each value in an
interval around m (m− k, . . . ,m, . . . ,m+ k) and to calculate a measure of variation for the results.
This procedure is repeated for several values of m and the value of m with the minimal measure of
variation is chosen for the subsampling. In our application we set k = 2 and estimate the median
bias for each value in the interval. The variation is measured by the standard deviation of the results
and we evaluate a grid of (m = 30, 40, . . . , 130). The optimal value for m obtained by this method is
m = 100.
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p. 450) and correct for the bias only if
|b̂iasB(r∗En,i)|

σ̂
> 1√

3
, where σ̂ denotes the standard

deviation of the optimal ratios based on the subsamples.

In the empirical part of our paper we are not only interested in estimating and decom-

posing the ratio efficiency measure but also in analyzing whether plant characteristics

like age or size as well as other variables have a significant influence on the efficiency of

the power plants. Therefore, after estimating the efficiency we use regression methods to

estimate the effects and test whether they are statistically significant. However, conven-

tional inference based on the results of truncated regression with the efficiency measure

as the dependent variable is not appropriate for this purpose. Simar and Wilson (2007)

have shown that the correlation among the efficiency estimates which are based on non-

parametric technology estimations leads to invalid inference results. To obtain valid

estimates of the confidence intervals Simar and Wilson (2007) have proposed a double-

bootstrap approach with the first bootstrap addressing the problem of bias-correcting

the efficiency estimates and the second bootstrap providing valid statistical inference.

For our regression explaining the results for the REM we combine the bias-correction

based on subsampling as described above and the second bootstrap from the approach

by Simar and Wilson (2007) to estimate the regression results. A detailed explanation

on how to conduct the truncated second-stage regression and to bootstrap the results

can be found in Simar and Wilson (2008, pp. 504-505). In our empirical application we

use 2000 replications in each of the bootstraps discussed above.

3 Analysis of U.S. Power Plants

In this section we present the data and the results of the ratio efficiency analysis of U.S.

power plants.
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3.1 Constructing the dataset

We estimate the optimal ratios using a dataset containing 160 bituminous fired electricity

generating units that were in operation in 2011. Bituminous coal is an important energy

source in the U.S., and accounted for about 43 percent of the electricity sector’s total

receipts of coal in 2011 (EIA (2013)). In turn, coal fired electricity generation accounted

for about 50 percent of the total domestic electricity generation.

Bituminous coal has very high sulfur content but similar carbon content to other types

of coal.7 Although there is currently no regulation for CO2 emissions in place in the

U.S. electricity sector, regulations for SO2 and NOx emissions were implemented many

years ago. The first air pollution control legislations were passed in the 1960s. Later,

the Acid Rain Program (ARP) - a major program to control SO2 and NOx from power

plants - was implemented in 1995, and has been followed by other initiatives such as the

Ozone Commission’s cap-and-trade program for NOx and the Clean Air Interstate rule

(CAIR). Because bituminous coal firing is one of the largest sources of SO2 and NOx

emissions in the U.S. electricity sector, all the units in the dataset are regulated by the

ARP. Most of the units are also regulated by the CAIR program.

We model technologies consisting of two inputs, bituminous coal and capital (proxied

by generating capacity), which are used to produce electricity and CO2. Unlike other

studies on polluting technologies (see e.g. Färe et al. (2005) and Murty et al. (2012))

we do not incorporate labor into our model. Since we are using generator-level data for

our analysis we need precise data on the labor input. However, data on labor are only

available on the plant-level (see Färe et al. (2005)) and hence we would need to rely on

rough estimates of the labor input of the generating units. Moreover, recent studies (see

Färe et al. (2013) and Hampf (forthcoming)) have shown that data on labor input are

very limited and hence we would be faced with a significant reduction in the number

7 NOx formation is to a smaller degree dependent on the nitrogen content of the coal, but is primarily
a function of temperature.
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of observations in our sample if DMUs with missing labor data were to be excluded.

However, a large number of generating units is important for the validity of our results

since our analysis aims at providing information on the feasibility of the EPA standard.

Finally, some authors (see e.g. Welch and Barnum (2009)) argue that labor is a less

important input and can be excluded when analyzing the efficiency of power plants.

Hence, given these arguments we restrain from including labor in our analysis.

Information about the units’ generating capacity is collected from the publicly available

form EIA-860 Generator, while information on coal consumption, gross electricity gen-

eration, and CO2 emissions is collected from the EPA database “Air Markets Program

data”. To ensure that we model a homogeneous technology we only include single-fueled

units in the dataset; i.e. generating units that consume bituminous coal only. Second,

we follow Mekaroonreung and Johnson (2012) and restrict our sample 1) to generating

units with nameplate capacity larger or equal to 100 MW and 2) to pulverized coal-fired

units.

There are three main categories of pulverized coal-fired units: subcritical, supercritical,

and ultra-supercritical.8 The differences between these categories relate to operating

temperatures and pressures, which in turn have implications for operating efficiency.

More specifically, the operating efficiencies of subcritical plants are usually less than the

operating efficiencies of supercritical or ultra-supercritical plants. We omit 32 super-

critical units from the sample to avoid mistaking differences in the units’ production

technologies for potential for efficiency improvements. No units report that they are

ultra-supercritical, but there are several missing values for pulverized coal-fired type

in our dataset. Consequently, some of the units in the sample may be supercritical or

ultra-supercritical. We use a battery of non-parametric tests (the Kolomogorov-Smirnov

8 Pulverized boilers can also be separated into dry bottom and wet bottom units. Most of the DMUs
in our dataset are dry bottom units. We use the nonparametric tests to consider whether the DMUs’
observed electricity to CO2 ratios and the empirical results differ for dry and wet bottom units, but
we are unable to detect any differences. Therefore, we do not exclude wet bottom units from the
dataset.
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test, ANOVA, the Wilcoxon rank-sum test, and the median test, hereafter referred to

as “the non-parametric tests”) to consider whether the ratios of electricity to CO2 emis-

sions differ for the reported subcritical units and the units that do not report their type.

All tests indicate that there are no statistical differences between the two groups’ CO2

efficiencies, and we do therefore not exclude the generating units that do not report their

type from the sample. This results in a dataset containing of 161 electricity generating

units in operation in 2011.
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Figure 3: Actual ratios - MwH produced per ton of CO2 emitted

Next, we inspect the actual ratios of electricity to carbon dioxide emissions to control

for potential outliers in our dataset. As can be seen from figure 3, one unit by far

outperforms the other units in terms of its electricity to CO2 ratio. This particular

unit’s ratio is 33 percent higher than the average ratio and 13 percent higher than the

second most efficient unit’s ratio. We estimate the optimal ratios with and without the

identified outlier, and use the non-parametric tests to consider whether including the
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unit in the dataset influences the results. The tests strongly support that including the

outlier influences the results and we therefore omit it from the dataset.

By undertaking the steps above to ensure that the dataset contains homogenous DMUs

we believe that our study offers substantial advancement relative to other comparable

studies on polluting technologies. The common practice is to merge units with different

production technologies and/or units that consume different types of fossil fuels into one

dataset.9 For example, the selection criterion used for a popular dataset on coal fired

power plants (see e.g. Färe et al. (2007b)) is that at least 95 percent of the plants’

energy inputs must come from coal. The power plant’s technology type or the qualities

of their fuels are not emphasized, and the units are allowed to consume oil and natural

gas in addition to coal. We therefore question whether efficiency analyses based on this

and similar datasets reflect actual possibilities for efficiency improvements or whether

they reflect technological differences among the units (see Heshmati et al. (2012) for a

further analysis of the importance of accounting for heterogeneity in the technologies

when analyzing power plant efficiency).

In order to undertake the regression analysis we add a variable containing the gener-

ating units startup year to the dataset. This variable is collected from the form EIA-

860 Generator. Second, emissions of SO2 and NOx are collected from the “Air Markets

Program” database. Finally, CO2 emission factors are calculated by dividing the gener-

ating units’ CO2 emissions on their bituminous coal consumption. This approach is in

line with the materials balance principle from equation (2.2) since there is no end-of-pipe

abatement taking place for CO2. Summary statistics of the dataset are reported in table

II.

9 One exception is the recent study by Mekaroonreung and Johnson (2012), which also utilizes a
dataset for bituminous generating units. To our understanding, Mekaroonreung and Johnson did
not distinguish between different pulverized coal-fired technologies (i.e. subcritical, supercritical, and
ultra-supercritical units) when compiling their dataset.
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Table II: Summary statistics (160 DMUs)

Variable Units Mean St.dev Min Max

Fuel mmBTUs 16 100 000.00 14 700 000.00 57 417.69 4 900 000.00
Capacity MW 337.92 231.84 100.00 1 425.60
Electricity MwH 1 696 715.00 1 616 519.00 5 884.10 8 541 296.00
CO2 Tons 1653 226.00 1 509 647.00 5 890.97 7 686 116.00
SO2 Tons 4 153.28 6 513.48 34.23 57 308.22
NOx Tons 1 625.39 1 363.38 15.73 8 438.45
Installed year Year 1 966.73 10.83 1 950.00 1 996.00
Emission factor Ton/mmBTU 0.10 0.00 0.10 0.11

3.2 Results of the efficiency analysis

Having presented the dataset we now turn to the empirical results. First, we present

the estimated maximal feasible MwHs to CO2 ratios in figure 4. The overall figure is

made up of 4 sub-figures, each containing histograms for 1) the optimal ratios in the

scenario where the good output cannot be forsaken to reduce CO2 emissions (the weak

efficient ratios), 2) for the scenario where the good output may be forsaken to reduce

CO2 emissions (the allocative efficient ratios), and 3), the scenario where the DMUs

may alter their input mix to improve the optimal ratio (the input efficient ratios). The

4 sub-figures report the results for the two model specifications (JP and MB) and the

two scale assumptions (VRS and CRS). Note that the figures’ horizontal axes report the

magnitudes of the optimal ratios while the vertical axes report percentages.10

The first noticeable aspect of figure 4 is that all four model specifications suggest a max-

imal feasible ratio of approximately 1.18, which corresponds to the maximal ratio in the

dataset. This optimal ratio should be compared to EPA’s proposed CO2 emission stan-

dard of 1000 pounds of CO2 per megawatt-hour for new plants or, stated differently, 0.5

tons of CO2 per megawatt-hour produced. Since we consider its inverse, the generating

units are required to have a ratio of 1/0.5 = 2 MwH per ton CO2 or higher to comply

10 Detailed results for each generating unit can be obtained from the authors upon request.

27



����������	�
������� ����������	�
�������

�

��

��

��

��

��

��

��

��

��

���

��� ��� � ��� ���

���

�

��

��

��

��

��

��

��

��

��

���

��� ��� � ��� ���

������  �!�"#�$�#��

%���!�#�&�  �!�"#�$�#��

'"()#�  �!�"#�$�#��

���
����������	�
������� ����������	�
�������

�����!���*+�
������� ���������*+�
�������

�

��

��

��

��

��

��

��

��

��

���

��� ��� � ��� ���

�

��

��

��

��

��

��

��

��

��

���

��� ��� � ��� ���

������  �!�"#�$�#��

%���!�#�&�  �!�"#�$�#��

'"()#�  �!�"#�$�#��

Figure 4: Optimal ratios

with the EPA’s standard. Clearly, the optimal ratio of 1.18 falls short of this standard

(it is 40% below the EPA standard), thereby indicating that introducing the proposed

standard will have significant economic implications for the existing electricity producers

by forcing them to retire or to invest in end-of-pipe technologies (Carbon Capture and

Storage) that are still in their infancies.

According to figure 4, most of the DMUs in the dataset would be capable of achieving the

best practice ratio of 1.18. This result is consistent across both the production models

(JP and MB) and the scale assumptions (VRS and CRS). However, some differences in

the results across the 4 different model specifications should be pointed out.

28



First, the DMUs’ maximal feasible ratios are estimated to be slightly higher for the CRS

specifications than for the corresponding VRS specifications. For the CRS specifications

most generating units have an optimal ratio of 1.18, also in the cases where the optimal

ratios are calculated without altering the DMUs’ input mixes. The reason for this is

that the CRS assumption implies that if a certain optimal ratio is feasible for a given

input vector, then that optimal ratio is also feasible for any larger input vector (and

their corresponding output sets). In other words, the (globally) optimal ratio of 1.18

appears to be feasible for most of the evaluated outputs sets under CRS.

Second, the maximal ratios calculated by the MB model are found to be slightly less

than the corresponding ratios calculated by the JP model (irrespective of the scale

assumption), except for the model specifications where the inputs are allowed to be

reallocated to improve the optimal ratio. This result can be attributed to the difference

in the models’ assumptions about input disposability. We refer to figures 1 and 2 for

details. We also note that the small differences in the results for the JP and MB models

may be attributed to our choice of efficiency measure, namely the maximal ratios. Other

measures - such as distance functions (see Färe and Primont (1995) for details) - may

result in larger differences among the JP and MBmodels’ result, in particular because the

slack variables for electricity and CO2 may not be zero in the solution to the programming

problems for the distance functions, unlike in the programming problem for the maximal

ratio for the JP model.

Third, the two models differ slightly in terms of how they capture the (potential) eco-

nomic trade-offs related to reducing CO2 emissions. From figure 4 we see that the JP

and MB models both appear to suggest that a positive trade-off between electricity

generation and CO2 emissions exists, since the light grey bars are not parallel to the

medium grey bars. As mentioned in section 2, such a trade-off is likely to occur when

emission reductions solely take place by diverting resources from intended production

to pollution control, in particular to end-of-pipe abatement activities. Such controls for
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CO2 are not adopted by the U.S. bituminous producers, and the trade-off should there-

fore be close to zero. Note that the trade-off suggested by the MB model appears to be

smaller than the corresponding trade-off suggested by the JP model. We use the non-

parametric tests to examine statistical differences in the optimal ratios calculated with

and without the possibility to forsake the good output to carefully examine how the two

production models portray the proposed economic trade-off. All four tests are unable

to reject the null hypothesis of no differences among the ratios for the MB model, both

under VRS and CRS. For the JP model, on the other hand, all the tests strongly reject

the null-hypothesis for the VRS specification and two tests (the Kolomogorov-Smirnov

and the Wilcoxon rank-sum tests) strongly reject the null hypothesis under CRS. Conse-

quently, the MB model seems to be more appropriate to case studies where end-of-pipe

abatement is not common.

So far we have discussed which optimal ratios could be achieved if the generating units

adopt best practices. The next step is to compare current practices with best practices.

Hence, figure 5 provides cumulative plots of the REM and its decompositions. As before,

1) the light grey bars indicate the possible ratio improvements for given inputs and

without the possibility to forsake the good output, 2) the medium grey bars indicate

additional ratio improvements by forsaking the good output (for fixed inputs), while 3)

the dark grey bars indicate additional ratio improvements by reallocating inputs. On

the horizontal axes the generating units are listed in order of the least to the most

inefficient unit. The vertical axes indicate the magnitudes of the REM, i.e. they report

the percentage possible increases in the DMUs’ actual ratios.

Since the optimal ratios in the scenario where inputs can be allocated freely are similar

for the JP and MB models it follows readily that the overall REM is similar for the two

reference technologies.11 Our DEA results indicate that the generating unit’s ratios of

11 Note that given our analyzed empirical specification both models (JP and MB) lead to the same
results of the overall REM under CRS. A proof of this equivalence can be found in the appendix.
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Figure 5: Results for the ratio efficiency measure

MwH produced to tons of CO2 emitted could, on average, be improved by 18 percent

according to the VRS model specifications and 19 percent according to the CRS model

specifications - if the generating units adopt best practices. Stated differently, the aver-

age actual practice ratio of electricity to CO2 is approximately 100·(1−1/1.185) = 15.3%

below the best-practice ratio. The results also indicate that the “worst practice” gen-

erating unit could be able to improve its ratio by 46 percent according to the VRS

specifications and 47 percent according to the CRS specifications.

From figure 5 it is clear that the light grey bars are dominating, i.e. most of the potential

for improving the generating units electricity to CO2 ratios comes from improvements

in the weak ratio efficiency. While it is the dominating source of MwHs to CO2 ratio
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improvements, the remaining potential for improvements comes either from forsaking

the good output or from altering the current input consumption. It is evident from

figure 5 that the occurrences of dark grey bars are far more frequent for the MB model’s

estimates than for the JP model’s estimates, while the occurrences of medium grey bars

are far more frequent for the JP model’s estimates than for the MB model’s estimates.

Simply said, the MB model does not suggest a positive trade-off among electricity and

CO2 at the output sets (and additional ratio improvements must therefore come from

input reallocation), while the JP model does. On the basis of this finding we again

conclude that the MB model paints a more accurate picture of the possible sources of

ratio improvements for the case study at hand.

To indicate the environmental gains from adopting best practices we undertake a simple

calculation. We multiply the inverse of the estimated optimal ratios (calculated for fixed

inputs and without possibilities to forsake revenues) with the actual MwHs produced by

the generating units to obtain estimates of CO2 emissions in the case where all units

operate efficiently.12 Table III presents the sums of the estimated emissions and the

corresponding total and percentage reductions in CO2 emissions relative to the units’

actual emissions, which for the 160 generating units amount to 264.52 million tons of

CO2. For comparison, we also include the corresponding estimates if all units complied

with EPA’s proposed standard of 0.5 tons of CO2 per megawatt-hour produced.

Table III: CO2 emissions and savings

JP VRS JP CRS MB VRS MB CRS EPA standard

Aggregate CO2 emissions 232.34 230.77 234.75 233.09 135.74
(mill. Tons)
Aggregate CO2 reductions 32.18 33.75 29.77 31.43 128.78
(mill. Tons)
Percentage CO2 reductions 12.16 12.76 11.25 11.88 48.68

12 Given that the largest share of the potential for ratio improvements comes from weak ratio efficiency
improvements this procedure allows us to quantify nearly all reductions potentials while accounting
for the constraints on the inputs and the good output.
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The JP model reports a greater potential for efficiency improvements than the MB

model, in particular because the JP model puts less emphasis on input reallocations to

reduce emissions than the MB model. However, both models suggest that the gains from

efficiency improvements on CO2 emissions could be substantial, averaging at about 12

percent reductions in current emissions. Yet, these savings are far from the corresponding

emission reductions that would occur if the generating units were able to comply with

the proposed EPA standard.

While the potential for reducing CO2 emissions by efficiency improvements at first sight

appears to be vast, the differences between the DMUs’ performances may not only be re-

lated to differences in management practices. There is also a possibility that contextual

factors - factors which are outside of the control of the generating units - play an impor-

tant role in determining the spread in the efficiency scores. Identifying these factors are

important, both for achieving a better understanding of our empirical results and for

establishing factors that should be taken into account when designing new regulations

for CO2 emissions. We undertake a second-stage regression analysis to shed some light

on this matter, emphasizing the role which the generating units’ age, sizes (generating

capacities), and existing regulations for SO2 and NOx play for the efficiency results. In

the regressions we analyze the effects of these contextual factors on the weak ratio effi-

ciency. This allows us to quantify feasible emission standards based on improvements in

managerial inefficiencies, and further to compare the resulting CO2 emissions to the best

practice CO2 emissions in table III which do not account for the influence of contextual

variables on the possibilities for efficiency improvements.

In table IV the regression results for the 4 analyzed models (the JP and the MB model

under CRS and VRS) are presented. We consider two different specifications for the re-

gression model. In the first model we solely address the effects of the age (installed year)

and size (capacity) of the generating units. In the second model we include interaction

terms of the age and the ratio of electricity to SO2 as well as the ratio of electricity
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to NOx in the regression. This is done to analyze whether the increased stringency of

environmental regulation for local air pollutants (proxied by their emission ratios) over

time has influenced the CO2-efficiencies of the generating units.13

End of pipe abatement for SO2 - also known as scrubbers - has become one of the most

common compliance strategies for U.S. power plants (see Ellerman (2003) or Rødseth

and Romstad (forthcoming)). The use of scrubbers to reduce SO2 can affect the ratio

of electricity to CO2 in two different ways. First, scrubbers consume a non-negliable

amount of electricity during operation. Second, chemical processes to reduce SO2 can

lead to additional CO2 (see Agee et al. (forthcoming)). In our regression we can only

account for the latter effect since we are using gross electricity as the good output when

estimating the REM (which is in line with the EPA standard).

While compliance with SO2 regulations largely has been achieved by fuel switching and

pollution control, the introduction of the Acid Rain Program in 1995 also led most power

producers under environmental legislation to install low NOx-burners to reduce nitrogen

oxides (see Swift (2001)). Low NOx-burners reduce the peak flame temperature and

thereby also reduce the formation of NOx.

Table IV presents the estimated coefficients and their standard errors. We analyzed

several functional specifications and found that a log-log specification yields the largest

explanatory power (as measured by the R2 values). Hence, the coefficients presented in

table IV are elasticities. Note that a negative coefficient is associated with an increase

in efficiency (the weak ratio efficiency becomes closer to one).

Based on regression model 1 we find that larger generating units are more efficient than

smaller units. Hence, significant economies of scale with regard to the ratio of electricity

to CO2 exist, which suggests that larger generating units would be better equipped to

13 Note that we have also conducted the regressions in model 2 by including the SO2 and the NOx ratio
as additional independent variables. However, due to multicollinearity the standard errors inflated
and the regressions did not lead to any statistically meaningful results.
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meet new CO2 regulations.14 Rather surprisingly, we find that this effect is significant

for the analysis under CRS as well as VRS. Since the analysis under VRS only accounts

for technical efficiency and does not account for scale efficiency we would expect the

coefficient not to be statistically different from zero under VRS. Second, we find that

newer generating units are in general more inefficient than older units. At first, this may

appear to be a counterintuitive result. However, we expect this result to be related to

the stringency of the environmental regulations for NOx and SO2 which has increased

over time.

To evaluate whether this is indeed the case, regression model 2 includes the interaction

terms for the age of the units and the ratios of electricity to SO2 and NOx. The results

for regression model 2 show that when accounting for these interactions the surprising

result from regression model 1 with respect to the negative effect of size on the units’ per-

formances under VRS is not statistically significant anymore. Moreover, the interaction

term between the age and the NOx ratio has a significant negative coefficient, thereby

indicating that an increase in the stringency of regulation reduces the effect of age on

efficiency. Thus, CO2 and NOx appear to be complements, which means that an increase

in the regulatory stringency for NOx leads to further improvements in CO2 emissions.

Therefore, our results are in line with the findings by Holland (2010) who shows in an

analysis of Californian power plants that NOx and CO2 are complements. We do not

find a corresponding significant relationship for the units’ age and SO2 stringency. This

may be due to that we consider gross electricity and therefore do not fully capture the

influences of SO2 reductions on CO2 efficiencies.

These results provide an important lesson, namely that CO2 and NOx are technologically

related and hence that regulations which are implemented for one of the pollutants have

impacts for the other pollutant. This suggests that socially optimal allocations for the

14 It has long been debated that environmental regulations hamper competition by increasing the optimal
plant size (see e.g. Pashigan (1984)). Our finding bares resemblance to this result.
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Table IV: Regression results

CRS VRS

Joint production Materials balance Joint production Materials balance

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

Constant −42.470∗∗∗ −33.520∗∗∗ −35.420∗∗∗ −26.890∗∗ −42.288∗∗∗ −37.616∗∗ −37.184∗∗ −32.641∗∗

(13.209) (13.473) (13.420) (13.411) (14.993) (15.421) (14.955) (15.361)

Capacity −0.096∗∗∗ −0.071∗∗∗ −0.090∗∗∗ −0.065∗∗∗ −0.057∗∗∗ −0.032 −0.051∗∗∗ −0.026
(0.015) (0.018) (0.016) (0.018) (0.017) (0.021) (0.017) (0.021)

Installed year 5.692∗∗∗ 4.519∗∗ 4.756∗∗∗ 3.640∗∗ 5.636∗∗∗ 5.028∗∗ 4.956∗∗ 4.366∗∗

(1.750) (1.784) (1.742) (1.776) (1.986) (2.042) (1.981) (2.034)

Installed year* 0.001 0.001 0.001 0.001
SO2 ratio (0.008) (0.008) (0.001) (0.001)

Installed year* −0.005∗∗∗ −0.005∗∗∗ −0.004∗ −0.004∗

NOX ratio (0.002) (0.002) (0.002) (0.002)

R2 0.215 0.250 0.202 0.237 0.067 0.091 0.054 0.078

Adj. R2 0.210 0.236 0.197 0.223 0.061 0.073 0.048 0.060

Note: Significance levels are obtained from confidence intervals based on Simar and Wilson (2007) using 2000 bootstrap replications. Standard errors are
presented in parentheses.
*** indicates significance at the 1% level.
** indicates significance at the 5% level.
* indicates significance at the 10% level.
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pollutants are unlikely to be achieved by implementing regulations on a pollutant-by-

pollutant basis.

Furthermore, the regression results provide valuable information on which emission stan-

dard could be achieved by reducing managerial inefficiencies. To estimate a technically

feasible emission standard for the average generating unit we utilize the regression results

to calculate the managerial inefficiency for the average generating unit and multiply this

efficiency measure with the actual ratio of electricity to CO2 of the generating unit. We

further multiply the feasible emission standards with the total MwHs generated by the

160 units to obtain a tentative measure of the CO2 emissions under managerial efficiency.

The results for the different models are presented in table V.

Table V: Feasible emission standards

Technology model Feasible emission standard Aggregate CO2 emissions
(pounds of CO2 per MwH electricity)

Joint production (CRS) 1877 254.78
Materials balance (CRS) 1875 254.51
Joint production (VRS) 1868 253.56
Materials balance (VRS) 1867 253.42

The results show that the feasible emission standard based on improving the managerial

efficiency of the generating unit (approx. 1870 pounds of CO2 per MwH of electricity) is

far larger than emission standard of the EPA (1000 pounds CO2 per MwH) irrespective

of which technology model is used to evaluate the efficiency of the units. Moreover,

comparing the results to the average actual ratio (1997 pounds of CO2 per MwH of elec-

tricity) shows that the efficiency improvement possibilities which are due to managerial

deficits in the plant are very small. We find that the CO2 emissions under managerial

efficiency are approximately 4 percent lower than the actual emissions, whereas the DEA

results in table suggested that a 12 percent reduction in the CO2 emissions would be

feasible. Hence, regulatory actions which aim at improving the efficiency of electricity

plants by imposing emission standards can only exploit a very small amount of ineffi-
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ciencies without forcing the plants to shut down operations or to invest in completely

new generating capacities.

4 Conclusion

In this paper we have conducted an efficiency analysis of coal-fired U.S. power plants.

Using a set of 160 homogenous electricity generating units we addressed whether the pro-

posed EPA regulatory standard of 1000 pounds of carbon dioxide emissions per megawatt

hour would be feasible for existing generating units. To analyze the feasibility of this

standard we have constructed a new efficiency measure which evaluates the optimal ratio

of good to bad outputs. Moreover, it allows disentangling efficiency improvements based

on different degrees of flexibility in the choice of good outputs and inputs. We estimated

the efficiency measure and compared the results using two different technology mod-

els: the joint production model based on weak disposability of pollutants by Färe et al.

(1989) and the recently developed materials balance model by Rødseth (2013) which is

based on the assumption of weak G-disposability.

Our results show that even if all generating units were able to adopt best practices

their ratios of electricity to carbon dioxide would still be 40% below the EPA standard.

Moreover, even the adoption of best practices seems beyond the capability of most plants

since our regression results show that the efficiency results are significantly influenced

by contextual variables like the age of the plants. Hence, a large share of efficiency

improvements is only achievable in the long run and would be associated with significant

costs related to the restructuring of the power plants.

Therefore, our results strengthen the findings by Kotchen and Mansur (forthcoming)

who are very pessimistic about the possibility to achieve the proposed emission standard

given the actual ratios of the power plants. Our results add to the results of Kotchen

and Mansur (forthcoming) by showing that even the adoption of best practices would
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not allow the power plants to meet the emission standards. Moreover, we were able to

show that significant interdependences between CO2 and NOx emissions exist. Hence,

a new regulation for CO2 is likely to affect other regulated pollutants, suggesting that

regulations set on a pollutant-by-pollutant basis are unlikely to result in socially optimal

allocations.

In the light of these results we strongly question imposing the proposed EPA standard

on existing power plants. However, this does not lead to the conclusion that no standard

at all should be implemented. Our findings show that efficiency enhancement potentials

exist which are not due to contextual variables and thus are under the control of the plant

operators. However, these potentials are rather small and our efficiency and regression

results show that a feasible emission standard for the average existing generating unit

should not be lower than 1870 pounds of CO2 per megawatt hour of electricity. Future

research should therefore address how the costs of restructuring the coal-fired power

plants compare to the damage costs of carbon dioxide emissions. Second, the contri-

butions of more flexible regulatory schemes - such as emissions averaging and tradable

quotas - in reducing the power producers’ compliance costs should also be taken into

account.
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Baumgärtner, S., H. Dyckhoff, M. Faber, J. Proops, and J. Shiller (2001). “The Con-

cept of Joint Production and Ecological Economics”. In: Ecological Economics 36,

pp. 365–372.

Bickel, P. J. and A. Sakov (2008). “On the Choice of the m out of n Bootstrap and

Confidence Bounds for Extrema”. In: Statistica Sinica 18, pp. 967–985.

Charnes, A. and W. W. Cooper (1962). “Programming with Linear Fractional Function-

als”. In: Naval Research Logistics Quarterly 9, pp. 181–186.

Charnes, A., W. W. Cooper, and E. Rhodes (1978). “Measuring the Efficiency of Decision

Making Units”. In: European Journal of Operational Research 2, pp. 429–444.

Chung, Y. H. (1997). “Directional Distance Functions and Undesirable Outputs”. PhD

thesis. Southern Illinois University.

Coelli, T., L. Lauwers, and G. Van Huylenbroeck (2007). “Environmental Efficiency

Measurement and the Materials Balance Condition”. In: Journal of Productivity

Analysis 28, pp. 3–12.

Coelli, T. J., D. S. P. Rao, C. J. O’Donnell, and G. E. Battese (2005). An Introduction

to Efficiency and Productivity Analysis. New York: Springer.

Coggins, J. S. and J. R. Swinton (1996). “The Price of Pollution: A Dual Approach to

Valuing SO2 Allowances”. In: Journal of Environmental Economics and Manage-

ment 30, pp. 58–72.

40



Ebert, U. and H. Welsch (2007). “Environmental Emissions and Production Economics:

Implications of the Materials Balance”. In: American Journal of Agricultural Eco-

nomics 89, pp. 287–293.

EIA (2013). Electric Power Annual 2011. url: http://www.eia.gov/electricity/

annual/.

Ellerman, A. D. (2003). Lessons from Phase 2 Compliance with the U.S. Acid Rain

Program.
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Färe, R., S. Grosskopf, and C. Pasurka (2007a). “Environmental Production Functions

and Environmental Distance Functions”. In: Energy 32, pp. 1055–1066.

— (2007b). “Pollution Abatement Activities and Traditional Productivity”. In: Eco-

logical Economics 62, pp. 673–682.

— (2013). “Joint Production of Good and Bad Outputs with a Network Application”.

In: Encyclopedia of Energy, Natural Resources and Environmental Economics. Ed.

by J. Shogren. Vol. 2. Amsterdam, Elsevier, pp. 109–118.

41
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Appendix

Linearization of (2.5)

To linearize programming problem (2.5) note that yo=yT
o λ in the optimum. Otherwise

the obtained ratio cannot be maximal. Moreover, by the weak disposability assump-

tion bl=bTl λ holds as well. By inserting these constraints in the objective function the

program can be reformulated as

max
λ

yT
o λ

bTl λ

s.t.

[
xP
i

xNP
i

]
≧

[
XP

XNP

]
λ

yi,−o ≦ Y −oλ

bi,−l = B−lλ

λ ≧ 0.

(A.1)

Denoting w = 1
bTl λ

and z = 1
bTl λ

λ and apply the transformation by Charnes and Cooper

(1962) results in the linear programming problem (2.6).

Linearization of (2.7)

Program (2.7) can be transformed by dividing the good and the bad output constraints

by θ. Denoting ρ = 1/θ the resulting maximization problem reads as

max
yo,bl,λ,ρ

yo
bl

s.t.

[
xP
i

xNP
i

]
≧

[
XP

XNP

]
λ

[
ρyo

ρyi,−o

]
≦

[
yT
o

Y −o

]
λ

[
ρbl

ρbi,−l

]
=

[
bTl
B−l

]
λ

yo, bl ≧ 0
λ ≧ 0

ρ ≧ 1.

(A.2)
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Dividing each constraint by ρ leads to

max
yo,bl,λ,ρ

yo
bl

s.t.




xP
i

ρ
xNP
i

ρ


 ≧

[
XP

XNP

]
λ
ρ

[
yo

yi,−o

]
≦

[
yT
o

Y −o

]
λ
ρ[

bl
bi,−l

]
=

[
bTl
B−l

]
λ
ρ

yo, bl ≧ 0
λ
ρ

≧ 0

1T λ
ρ

= 1
ρ

1 ≧ 1
ρ
.

(A.3)

Denoting λ
ρ
= µ and replacing 1

ρ
by 1Tµ the programming problem can be reformulated

as

max
yo,bl,µ

yo
bl

s.t.

[
1TµxP

i

1TµxNP
i

]
≧

[
XP

XNP

]
µ

[
yo

yi,−o

]
≦

[
yT
o

Y −o

]
µ

[
bl

bi,−l

]
=

[
bTl
B−l

]
µ

yo, bl ≧ 0
µ ≧ 0

1Tµ ≦ 1.

(A.4)

As in case of the analysis under CRS the optimization variables in the objective function

are replaced by the associated constraints since again these constraints hold with equality

in the optimum. Moreover, the constraints on the inputs are slightly rearranged leading

to
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max
µ

yT
o µ

bTl µ

s.t.

[
XP − xP

i

XNP − xNP
i

]
µ ≧ 0

yi,−o ≦ Y −oµ

bi,−l = B−lµ

µ ≧ 0

1Tµ ≦ 1.

(A.5)

Applying the Charnes-Cooper transformation and denoting h = 1
bTl µ

and g = 1
bTl µ

µ

leads to the linear programming problem (2.8).

Linearization of (2.9)

Inserting the equality constraints on the good output “o” and the bad output “l” in the

objective function of (2.9) leads to

max
ǫ
xP ,ǫ

xNP ,ǫyo ,ǫy−o
,ǫbl ,ǫb−l

,λ

yT
o λ− ǫyo
bTl λ+ ǫbl

s.t.

[
xP
i

xNP
i

]
=

[
XPλ+ ǫxP

XNPλ+ ǫxNP

]

yi,−o = Y −oλ− ǫy−o

bi,−l = B−lλ+ ǫb−l[
sT
xP ,bl

ǫxP + sTy−o,bl
ǫy−o

+ syo,blǫyo
SxP ,b−l

ǫxP + Sy−o,b−l
ǫy−o

+ syo,b−l
ǫyo

]
=

[
ǫbl
ǫb−l

]

ǫyo , ǫbl ≧ 0
ǫxP , ǫxNP , ǫy−o

, ǫb−l
,λ ≧ 0.

(A.6)

The constraints for the polluting and non-polluting inputs as well as the good outputs

and the bad outputs can be rearranged to

ǫxP = xP
i −XPλ

ǫxNP = xNP
i −XNPλ

ǫy−o
= Y −oλ− yi,−o

ǫb−l
= bi,−l −B−lλ

(A.7)

Replacing these expressions in the constraints on the slacks for the bad outputs and the

non-negativity constraints we obtain the programming problem
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max
ǫyo ,ǫbl ,λ

yT
o λ− ǫyo
bTl λ+ ǫbl

s.t.




sT
xP ,bl

(
xP
i −XPλ

)
+ sTy−o,bl

(
Y −oλ− yi,−o

)

+syo,blǫyo
SxP ,b−l

(
xP
i −XPλ

)
+ Sy−o,b−l

(
Y −oλ− yi,−o

)

+syo,b−l
ǫyo


 =

[
ǫbl

bi,−l −B−lλ

]

[
xP
i

xNP
i

]
≧

[
XPλ

XNPλ

]

yi,−o ≦ Y −oλ

bi,−l ≧ B−lλ

ǫyo , ǫbl ≧ 0

λ ≧ 0.

(A.8)

Inserting the constraint on the slack of bad output “l” in the objective function and in

the non-negativity constraint as well as combining the equality constraint on bi,−l−B−lλ

with the respective inequality constraint leads to

max
ǫyo ,λ

yT
o λ− ǫyo

bTl λ+ sT
xP ,bl

(
xP
i −XPλ

)
+ sTy−o,bl

(
Y −oλ− yi,−o

)
+ syo,blǫyo

s.t.

[
xP
i

xNP
i

]
≧

[
XPλ

XNPλ

]

yi,−o ≦ Y −oλ

SxP ,b−l
xP
i − Sy−o,b−l

yi,−o ≧ SxP ,b−l
XPλ− Sy−o,b−l

Y −oλ− syo,b−l
ǫyo

sT
xP ,bl

xP
i − sy−o,bl

yi,−o ≧ sT
xP ,bl

XPλ− sTy−o,bl
Y −oλ− syo,blǫyo

ǫyo ≧ 0
λ ≧ 0.

(A.9)

By defining the new vector




λ

ǫyo


 the notation in the programming problem can be

slightly changed to
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max
ǫyo ,λ

(
yT
o

−1

)T (
λ

ǫyo

)

(
bTl − sT

xP ,bl
XP + sTy−o,bl

Y −o

syo,bl

)T (
λ

ǫyo

)
+ sT

xP ,bl
xP
i − sTy−o,bl

yi,−o

s.t.

[
xP
i

xNP
i

]
≧




(
XP 0

)( λ

ǫyo

)

(
XNP 0

)( λ

ǫyo

)




yi,−o ≦
(
Y −o 0

)( λ

ǫyo

)

SxP ,b−l
xP
i − Sy−o,b−l

yi,−o ≧ SxP ,b−l

(
XP 0

)( λ

ǫyo

)

−Sy−o,b−l

(
Y −o 0

)( λ

ǫyo

)

−
(
0 syo,b−l

)( λ

ǫyo

)

sT
xP ,bl

xP
i − sTy−o,bl

yi,−o ≧ sT
xP ,bl

(
XP 0

)( λ

ǫyo

)

−sTy−o,bl

(
Y −o 0

)( λ

ǫyo

)

−
(
0 syo,bl

)( λ

ǫyo

)

(
λ

ǫyo

)
≧ 0.

(A.10)

Defining the new variables

d = 1
b

T
l − sT

xP ,bl
XP + sTy−o,bl

Y −o

syo,bl




T
 λ

ǫyo


+sT

xP ,bl
xP
i −sT

y−o,bl
yi,−o

f = 1
b

T
l − sT

xP ,bl
XP + sTy−o,bl

Y −o

syo,bl




T
 λ

ǫyo


+sT

xP ,bl
xP
i −sT

y−o,bl
yi,−o

(
λ

ǫyo

) (A.11)

and applying the Charnes-Cooper transformation leads to the linearized programming

problem (2.10).
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Equivalence of the REM for the JP and the MB model under CRS

In the following we demonstrate that given the model applied in our empirical analysis

the REM leads to the same results for the joint production and the materials balance

approach. The equivalence holds for the overall efficiency under constant returns to

scale. However, the results for the decomposition as well as the analysis under variable

returns to scale may differ.

In our empirical specification we include a single polluting input, multiple non-polluting

inputs as well as a single good and a single bad output. Hence, the joint production

model under CRS reads as

max
y,b,xP ,λ

y
b

s.t. xP ≧ xPT
λ

xNP ≧ XNPλ

y ≦ yTλ

b = bTλ

y, b, xP ≧ 0
λ ≧ 0.

(A.12)

Since xP ≧ xPT
λ does not constrain the optimal results due to the free choice of xP

and in the optimum y = yTλ and b = bTλ hold the model can be reformulated as

max
λ

yTλ

bTλ

s.t. xNP ≧ XNPλ

λ ≧ 0.

(A.13)

The corresponding materials balance model reads as
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max
y,b,xP ,ǫ

xP
,ǫ

xNP ,ǫy ,ǫb,λ

y
b

s.t. xP = xPT
λ+ ǫxP

xNP = XNPλ+ ǫxNP

y = yTλ− ǫy
b = bTλ+ ǫb

syǫy + sxP ǫxP = ǫb
y, b, xP ≧ 0

ǫxP , ǫy, ǫb ≧ 0
ǫxNP ,λ ≧ 0.

(A.14)

Since our good output electricity does not contain any materials sy = 0 and ǫy can be

removed from the programming problem. ǫxNP can be removed since it does not affect

the optimal choice of y and b. Moreover, combining the restriction on the polluting input

with the summing-up condition on the slacks leads to ǫb = sxP

(
xP − xPT

λ
)
. Hence,

the programming problem can be transformed into

max
y,b,xP ,ǫ

xP
,λ

y
b

s.t. xP = xPT
λ+ ǫxP

xNP ≧ XNPλ

y ≦ yTλ

b = bTλ+ sxP

(
xP − xPT

λ
)

y, b, xP , ǫxP ≧ 0
λ ≧ 0.

(A.15)

In the optimum xP − xPT
λ = 0, y = yTλ and b = bTλ hold. Therefore, this program-

ming problem reduces to the programming problem of the joint production model.
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