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† We are grateful to Jens Krüger for valuable comments. Of course, all remaining errors are ours.



Abstract

In this paper we analyze the economic effects of implementing EPA’s newly proposed regulations

for carbon dioxide (CO2) on existing U.S. coal-fired power plants using nonparametric methods on

a sample of 144 electricity generating units. Moreover, we develop an approach for evaluating the

economic gains from averaging emission intensities among the utilities’ generating units, compared

to implementing unit-specific performance standards. Our results show that the implementation of

flexible standards leads to up to 2.7 billion dollars larger profits compared to the uniform standards.

Moreover, we find that by adopting best practices, current profits can be maintained even if an

intensity standard of 0.88 tons of CO2 per MWh is implemented. However, our results also indicate

a trade-off between environmental and profit gains, since aggregate CO2 emissions are higher with

emission intensity averaging than with uniform standards.

JEL classification: D24, L50, Q54

Keywords: Environmental regulation, profit maximization, emission intensity averaging,

nonparametric efficiency analysis



1 Introduction

In the summer of 2013, President Obama asked the U.S. Environmental Protection Agency (EPA)

to design carbon dioxide (CO2) regulations for new and existing power plants. In response to the

President’s request, the EPA proposed a new rule on June 18th, 2014, under the authority of the

Clean Air Act (CAA).1 According to the EPA’s projections, the new rule would by 2030 reduce the

power sector’s CO2 emissions by 30 percent relative to 2005-levels.

In their proposal, the EPA calculates CO2 performance standards for each state, depending on their

power sectors’ perceived capabilities to reduce CO2 emissions. The standards are determined based on

a number of variables, including existing strategies to improve the efficiency of fossil-fuel power plants,

existing programs to spur investments in low-emitting energy, demand-side energy savings programs,

and the states’ current fuel mixes.

While the state-level CO2 performance standards are specific, the EPA does not direct measures which

the states should implement to reach their emission targets. Instead, each state or a collaboration of

states must develop plans on how they will achieve the EPA standards. The states must establish

emission performance levels for affected electricity generating units that are equivalent to the state-

specific CO2 performance standards proposed by the EPA. These performance levels could be in the

form of the performance standards set by the EPA, or the state-specific performance standards could

be translated into mass-based goals as long as the translated goals achieve the same degree of emission

limitation as the EPA performance standards.

This paper evaluates the economic implications of performance standard regulations using production

analysis. Although our approach is general and thus applicable to a wide range of environmental

policy cases, the paper and its empirical case are motivated by EPA’s recent proposal. Our modelling

strategy builds on Rødseth and Romstad (2014). We assume that the decision making units (DMUs)

under consideration (the electricity generating units) maximize profits and apply microeconomic pro-

duction models to estimate maximal profits with and without environmental regulation. We consider

environmental performance standards that either are DMU-specific or implemented for a group of

DMUs (e.g., all DMUs belonging to an electric utility), where the group-averaging approach builds

on the model by Brännlund et al. (1998). By comparing the different profit maxima, we are able to

identify the economic gains from averaging emission intensities across DMUs.

Our approach also allows examining changes in pollution between the three scenarios, i.e. profit

maximization in the cases i) without environmental regulation, ii) with DMU-specific performance

standards, and iii) with averaging of emission intensities across groups of DMUs. In the case of the

EPA standards, the resulting CO2 emissions when emission intensities are averaged across electricity

generating units provide valuable information for state plan designers. First, it will allow them to

identify the DMU-specific performance standards that together minimize the profit losses related to the

implementation of a certain state-specific standard. Second, knowledge about the level of regulatory

induced emission reductions are also important for converting EPA’s performance standards into

mass-based goals that achieve comparable emission reductions.

1 See https://www.federalregister.gov/articles/2014/06/18/2014-13726/carbon-pollution-emission-

guidelines-for-existing-stationary-sources-electric-utility-generating#h-9 for details.
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It has long been recognized that different types of environmental policy instruments may affect the

rates and direction of technological change differently (Jaffe et al. 2002). The strand of literature

which argues that performance standards reduce incentives to invest in “clean” technologies (see e.g.

Mohr 2006) is particularly relevant to our case. However, our paper examines a different aspect of

performance standards, namely their potential to spur efficiency improvements given the state of the

technology. Our approach builds on microeconomic production analysis, and consequently offers the

possibility to examine forgone profits and excess pollution due to productive inefficiency. This is ben-

eficial for at least three reasons. First, the analysis describes the potential for performance standards

to induce efficiency improvements for affected DMUs. Second, the analysis allows identifying profit

loss minimizing performance standards for affected DMUs under the assumption that all units have

adopted best practices, rather than calculating optimal performance standards based on their current

emission rates. In the latter case, the scope for reducing pollution may be largely underestimated.

Third, by also identifying economic losses due to inefficiency, our approach may reveal that profit losses

from environmental regulation - when compared to current profits - may be low. If the measures that

are implemented influence the DMUs to become more efficient, the economic gains from efficiency

improvements can partly or fully crowd out economic losses resulting from environmental compliance.

Furthermore, our approach allows for net benefits of the environmental regulation by accounting for

the possibility that the profits under the regulation exceed the actual business-as-usual profits due to

the adaption of best-practices. Empirical evidence of net benefits would be supportive of the so-called

Porter hypothesis (Porter and van der Linde 1995).

We illustrate our approach with an empirical example from the U.S. power sector. Rather than

providing a complete assessment for all electricity generating units belonging to a state or several

states, covering a wide range of fuel types, we emphasize CO2 performance standards for bituminous-

fired generating units. According to the U.S. Energy Information Administration (EIA), bituminous

coal generates on average 2,236.8 kilograms of CO2 per short ton, and is therefore among the most

CO2-intensive fuels. Hence, the implementation of CO2 standards will therefore strongly affect the

bituminous coal using generating units. Our sample selection strategy also ensures the homogeneity

of the units under consideration to a much larger degree than most comparable studies.

We analyze the economic implications of performance standards for a sample of 144 bituminous-fired

generating units that were in operation in 2011 using a modification of the nonparametric Free Dis-

posable Hull (FDH) model by Deprins et al. (1984). Moreover, we evaluate benefits from averaging

emission intensities across multiple electricity generating units. Therefore, we propose a new method-

ological approach which is similar to the idea of a central planner which optimally divides resources

(see Nasrabadi et al. 2012) or costs and revenues (see Khodabakhshi and Aryavash 2014) among

subunits. Our analysis is comparable to other studies which use production analysis techniques to

analyze the economic benefits of emission trading (see Brännlund et al. 1998, Färe et al. 2013b, and

Färe et al. 2014). However, while the mentioned studies emphasize emission trading, our paper is, to

our knowledge, the first to present a detailed treatment on analyzing benefits from emission intensity

averaging under a performance standard regime.

Our results show that the generating units under consideration are profit inefficient, and could poten-

tially increase their combined profits by 27.5 percent in the case of no CO2 regulation. Performance

standards higher or equal to 1.03 tons of CO2 per Megawatt-hour are found not to lead to profit losses

2



given the adoption of best practices, while standards below 0.85 tons per Megawatt-hour lead to a

complete shutdown of the bituminous electricity generating units. We find that a state-wise electric

utility-specific averaging of emission intensities reduces profit losses relative to uniform generating

unit-specific performance standards, but at the expense of increased CO2 emissions.2 Moreover, we

find that profit efficiency improvements can allow the units to experience net economic gains for some

performance standards, but possibly at the expense of increased CO2 emissions compared to current

emissions.

This paper is structured as follows: Section 2 presents our methodological approach to optimal profits.

Section 3 presents the analysis of optimal profits for U.S. coal-fired power plants, while section 4

concludes the paper.

2 Theory

In this section we present the methodological background of our analysis. We start by discussing the

definition and estimation of environmental production technologies. Building upon the theoretical

concepts, we present nonparametric methods to calculate optimal profits and propose a new approach

to evaluate flexible performance standards based on the averaging of emission intensities.

2.1 Modeling and estimating environmental technologies

In our empirical analysis we consider the optimal short-run profits for coal-fired power plants in the

United States. The electricity generation is modeled as a production process in which a single polluting

input (bituminous coal) and a single non-polluting input (capacity) are used to produce a single good

output (electricity) and a single bad output (CO2).
3 This specification of the electricity generating

process follows previous studies on the efficiency of U.S. power plants, see e.g. Mekaroonreung and

Johnson (2012) and Hampf and Rødseth (2014). Defining xP ∈ R+ as the polluting input, xNP ∈ R+

as the non-polluting input and y ∈ R+ as the good output, the conventional technology which does

not account for the production of emissions comprises all technically feasible combinations of inputs

and good outputs and reads as:

TConv =
{(

xP , xNP , y
)

∈ R
3
+ :

(

xP , xNP
)

can produce y
}

. (2.1)

From the definition of the technology it is obvious that, when derived from empirical data, all ob-

servations belong to the technology since their input-output combinations are observed and, thus,

technically feasible. To construct a technology set based on empirical observations which satisfies

several economically and technically reasonable characteristics (e.g. inactivity) specific axioms have

to be imposed on the technology. For conventional technologies, a neoclassical axiomatic system has

been proposed by Shephard (1970). These axioms are (see Färe and Primont (1995) for a detailed

discussion):

2 In our analysis we refer to each generator located at coal-fired plants as a generating unit. Electric utilities are the
companies which own the plants and may therefore be owning and operating multiple generating units.

3 Note that our theoretical discussion can be easily extended to the case of more than two inputs and two outputs. For
the sake of notational simplicity we restrict this presentation to our empirical specification.
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1. Inactivity: (0, 0, 0) ∈ TConv.

It is possible to shut down operations.

2. No free-lunch: (0, 0, y) /∈ TConv if y > 0.

It is not possible to produce positive amounts of good outputs without using any inputs.

3. Strong disposability of inputs:

If
(

xP , xNP , y
)

∈ TConv then
(

x̃P ≥ xP , x̃NP ≥ xNP , y
)

∈ TConv.

It is always possible to produce the same amount of output using more inputs.

4. Strong disposability of good outputs:

If
(

xP , xNP , y
)

∈ TConv then
(

xP , xNP , ỹ ≤ y
)

∈ TConv.

It is always possible to produce less output for a given input mix.

5. Closeness: TConv is a closed set.

The boundary of the technology is thus also part of the technology.

In addition to inputs and good outputs, environmental technologies also account for the unintended

by-production of bad outputs (in our application CO2). Defining b ∈ R+ as the bad output, the

environmental technology reads as:

TEnv =
{(

xP , xNP , y, b
)

∈ R
4
+ :

(

xP , xNP
)

can produce (y, b)
}

. (2.2)

In contrast to conventional technologies, the axioms by Shephard (1970) cannot readily be imposed

on environmental technologies since it would lead to physically infeasible technology sets (Färe and

Grosskopf 2003). For example, assuming free disposability of bad outputs would imply that all DMUs

can reduce their emissions to zero at no costs (Førsund 2009). To overcome this issue various alter-

native axiomatic systems have been proposed (see Scheel (2001) for an overview). In most empirical

analyses the joint production (JP) or weak disposability model by Färe et al. (1989) is applied (see

e.g. Zhou et al. (2008) for a survey on empirical environmental efficiency studies). Färe et al. (1989)

proposed two additional axioms for modeling environmental technology sets: weak disposability and

null-jointness of good and bad outputs (for a more thorough discussion of these axioms see Färe and

Grosskopf 2004).

JP.1 Weak disposability of bad outputs:

If
(

xP , xNP , y, b
)

∈ TEnv and θb ≤ b with 0 ≤ θ ≤ 1, then
(

xP , xNP , θy, θb
)

∈ TEnv.

Bad outputs can only be reduced if the good ouputs are reduced by the same proportion.

Therefore, the reduction of bad outputs is costly (in terms of reduced good outputs).

JP.2 Null-jointness: If
(

xP , xNP , y, b
)

∈ TEnv and b = 0, then y = 0.

It is not possible to produce positive amounts of the good output without producing positive

amounts of the bad output.

An alternative approach to modeling environmental technologies has been introduced by Rødseth

(2014) which is based on the materials balance (MB) condition. The MB, introduced in the economic

literature by Ayers and Kneese (1969), states that the amount of materials bound in polluting inputs

is equal to the amount of materials bound in good and bad outputs. That is, materials can not

vanish during the production process (see Lauwers (2009) for a justification of applying the MB in

4



economic models). Rødseth (2014) proposes an axiomatic approach to environmental technologies

which explicitly accounts for the restrictions imposed by the MB.

MB.1 Weak g-disposability:

If
(

xP , xNP , y, b
)

∈ TEnv and sxgx + sygy = gb, then
(

xP + gx, x
NP , y − gy, b+ gb

)

∈ TEnv.

For a given input-output combination within T only changes which are in line with the MB are

valid to remain within T .

MB.2 Output essentiality:

If
(

xP , xNP , y, b
)

∈ TEnv and b = 0, then xP = 0.

It is not possible to produce zero bad outputs given positive amounts of the polluting input.

In this axiom gx, gy and gb represent changes in the inputs and bad outputs and sx and sy represent

the emission factor for polluting inputs and the recuperation factor for good outputs.4 Hence, in

our example of the electricity generation, sy = 0 because the output electricity does not contain any

materials. For a more detailed comparison of the JP and the MB model, as well as an empirical

application, see Hampf and Rødseth (2014).

To estimate the technology sets from empirical data we use nonparametric frontier methods. In

contrast to parametric methods (e.g. Stochastic Frontier Analysis), the nonparametric approach does

not assume a specific functional form of the production function enveloping the technology or impose

assumptions on the inefficiency distribution. Moreover, it is not restricted to a single output.5 Given

a sample of i = 1, . . . , n decision making units (DMUs) the nonparametric estimation of the JP model

reads as:

T JP =
{ (

xP , xNP , y, b
)

∈ R
4
+ : xNP ≥

n
∑

i=1

xNP
i λi, x

P ≥
n
∑

i=1

xPi λi, y ≤
n
∑

i=1

yiλiθ,

b =
n
∑

i=1

biλiθ, 0 ≤ θ ≤ 1,
n
∑

i=1

λi = 1, λ1, . . . , λn ∈ {0, 1}
}

.

(2.3)

In this formulation xNP
i (xPi , yi, bi) refers to the amount of non-polluting inputs (polluting inputs,

good outputs, bad outputs) of DMU i, with the inequalities for the inputs and the good output

indicating strong disposability while the equality on b implies weak disposability. θ denotes the weak

disposability factor to be endogenously determined for each DMU. λi represents the weighting factor

of DMU i. The summing-up condition on the λ-factors, as well as restricting them to be either equal

to zero or equal to one, implies the non-convexity of the technology. Therefore, our approach to the

technology estimation is an adaption of the Free Disposal Hull (FDH) estimator by Deprins et al.

(1984) to an analysis including weak disposable outputs. We use this model since the test of convexity

by Simar and Wilson (2011) rejects the hypothesis of a convex technology set (p-value: 0.053).6

4 Emission (recuperation) factors indicate the amount of materials bound in one unit of inputs (outputs).
5 See e.g. Greene (2008) for a discussion on issues with parametric models containing multiple outputs.
6 See Färe and Grosskopf (2004) and Hampf and Rødseth (2014) for discussions on convex, variable returns to scale

versions of the production models.
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The nonparametric estimation of the MB model reads as:

TMB =
{ (

xP , xNP , y, b
)

∈ R
4
+ : xNP ≥

n
∑

i=1

xNP
i λi, x

P =

n
∑

i=1

xPi λi + ǫx,

y =
n
∑

i=1

yiλi − ǫy, b =
n
∑

i=1

biλi + ǫb,

sxǫx + syǫy = ǫb,

n
∑

i=1

λi = 1,

λ1, . . . , λn ∈ {0, 1}, ǫx, ǫy, ǫb ≥ 0
}

.

(2.4)

In addition to the variables defined above, ǫx, ǫy and ǫb refer to the slacks in the inputs and outputs

which have to satisfy the materials balance condition.

The presented estimations of the technology sets are non-convex versions of the estimators presented

in Färe et al. (1989) and Hampf and Rødseth (2014). However, when estimated from empirical obser-

vations these technology estimates do not necessarily satisfy axiom 1 (inactivity).7 To allow for the

inactivity of the generating units, which implies the possibility to shut down operations, the dataset

needs to be modified. Inactivity is particularly important in our application since firms will not con-

tinue to operate generators if they cannot cover their variable costs. Following Tulkens and Vanden

Eeckaut (1995) we add a zero observation, an artificial observation with
(

xP0 , x
NP
0 , y0, b0

)

= (0, 0, 0, 0),

to the dataset to allow for inactivity.

2.2 Estimating optimal profits

Based on the nonparametric estimation of the technology sets we calculate the optimal profits for the

DMUs which in our application correspond to the electricity generating units (see e.g. Thanassoulis

et al. (2008) for a discussion on profit maximization subject to nonparametric technology estimation).

We assume that the DMUs maximize their short-run profits by considering the non-polluting input

(capacity as a proxy for the capital stock) as fixed.8 Furthermore, we assume that the profit opti-

mization is restricted by an exogenously given constraint on the maximal ratio of bad to good outputs

(the performance standard(s)). For example, such a regulation is given by EPA’s initial proposal for

carbon dioxide standards which restricts the maximal emission intensity to 1000 pounds of CO2 per

MWh of produced electricity, as well as the recently proposed state-specific standards.

In this setting both axiomatic approaches (the joint production and the materials balance model) lead

to the same results.9 A proof of this equivalence and a derivation of the following binary programming

problems can be found in the appendix. The unconstrained short-run profit optimization problem for

7 The estimated technologies only satisfy the inactivity axiom if an inactive unit is part of the dataset, which is rarely
the case given empirical data.

8 See Welch and Barnum (2009) for a similar methodological approach to a cost and environmental analysis of power
plants.

9 Moreover, due to an optimization approach which is not based on distance functions, the problems discussed by Chen
(2014) for the JP model do not arise.
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DMU i reads as:
max

λ1,...,λn

pi
∑n

j=1 yjλj − qi
∑n

j=1 x
P
j λj

s.t. xNP
i ≥

∑n
j=1 x

NP
j λj

∑n
j=1 λj = 1

λ1, . . . , λn ∈ {0, 1}.

(2.5)

This programming problem estimates the maximal profit of DMU i assuming that no environmental

regulation is imposed. pi ∈ R+ denotes the exogenously given price for the good output (in our

application electricity) while qi ∈ R+ denotes the price for the polluting input (in our case bituminous

coal). Note that we allow the prices to differ among the DMUs.

Adding the regulatory constraint on the maximal feasible emission to output ratio (b/y ≤ s, where s

is predetermined) leads to the modified, restricted binary programming problem

max
λ1,...,λn

pi
∑n

j=1 yjλj − qi
∑n

j=1 x
P
j λj

s.t. xNP
i ≥

∑n
j=1 x

NP
j λj

∑n
j=1 bjλj − s

∑n
j=1 yjλj ≤ 0
∑n

j=1 λj = 1

λ1, . . . , λn ∈ {0, 1}.

(2.6)

In this model we assume that each generating unit independently optimizes its profit subject to a fixed,

exogenous regulatory constraint. This constraint is the same for all DMUs located in the same state.

Hence, the EPA standard, which was discussed in the introduction, is implemented uniformly across all

generating units located in a state. To evaluate the benefits of a more flexible regulatory regime which

allows the utilities to average the emission to electricity ratio across their electricity generating units,

we propose a modified optimization approach. We assume that each utility simultaneously optimizes

the profit for all its generating units, subject to the constraint that the average ratio satisfies the given

regulatory standard. For example, this approach is in line with the NOx regulations under the Acid

Rain Program. Moreover, in line with the EPA’s recently proposed performance standards, we allow

averaging emission intensities across the generators located in the same state.

Therefore, the short-run profit is optimized given the constraint b̄/ȳ ≤ s where b̄ (ȳ) denotes the

average emissions (average amount of produced electricity) of all DMUs belonging to a utility in

a particular state. Note that we use the ratio of averages
(

(1/n)
∑n

i=1
bi

(1/n)
∑n

i=1
yi

)

as the constraint for this

aggregated optimization. This is done to avoid infeasible solutions which would occur if the average

ratio ((1/n)
∑n

i=1 bi/yi) is evaluated and some of the generating units shut down operations (yi =

bi = 0). Moreover, even if we account for this problem by adding a non-archimedean constant to

the denominator of the ratios, the average of ratios can lead to problematic results since it favors

corner solutions. Consider a utility with 4 efficient and one (relatively) inefficient generating unit. If

the inefficient unit has access to less costly coal it could be economically optimal to use solely the

inefficient unit under the constraint 1
5

(

bi
yi

)

≤ s. Hence, this approach is likely to lead to environmental

hotspots which should not be generated by regulatory actions (see e.g. Gruenspecht and Lave (1989)

for a discussion of this issue). In the light of these arguments we decided to use the ratio of averages

to quantify the economic benefits of emission intensity averaging.10

10 Note that if the ratio of averages is equal to c the average ratio can not be smaller than s since by Jensen’s inequality
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Assuming that the n DMUs can be attributed to l = 1, . . . , k utilities with nl denoting the number of

DMUs belonging to a utility in a given state, the optimization problem for the aggregated profit of a

utility l in this state reads as:

max
λ1,1,...,λn,nl

∑nl

z=1

(

pz
∑n

i=1 yiλi,z − qz
∑n

i=1 x
P
i λi,z

)

s.t. xNP
lz ≥

∑n
i=1 x

NP
i λi,z











z = 1, . . . , nl
∑n

i=1 λi,z = 1

λ1,z, . . . , λn,z ∈ {0, 1}
∑nl

z=1 (
∑n

i=1 biλi,z − s
∑n

i=1 yiλi,z) ≤ 0.

(2.7)

In this formulation, the objective function represents the sum of profits of all nl generating units

belonging to utility l. The first three restrictions model the technology constraints for the generating

units. Note that the reference DMUs and hence the λ-values may differ for all units. Hence, the

optimization problem contains n × nl λ-values.
11 The last constraint restricts the ratio of average

emissions to average electricity not to be larger than the exogenous standard s. To obtain results for

each of the n DMUs this programming problem has to be solved for each of the k utilities and for

each state. Note that if the averaging is allowed across all n units of all k utilities in all states, our

model collapses into a non-convex version of the model by Brännlund et al. (1998).

In the following empirical analysis we evaluate and compare the optimal profits for different standards.

Moreover, the economic benefit of averaging emission intensities is compared to the environmental

effects as quantified by the aggregated emissions.

3 Empirical analysis

In this section we present the data and results of our analysis of U.S. power plants. We start by

describing the construction of the dataset, highlighting our strategy to ensure that the generating units

under consideration are homogeneous. This description is followed by a presentation and discussion of

the results for the profit optimizations. We present results on the effects of emission intensity averaging

evaluating a grid of exogenously given performance standards, as well as for specific standards proposed

by the EPA.

3.1 Constructing the dataset

As explained in the theory section, we model a production process assuming that the electricity

generating units use two inputs (fuel and capacity) to produce a single good (electricity) and a single

bad (carbon dioxide) output. The short-run costs of the units are given by their fuel consumption

times the fuel price while their revenues consist of the produced electricity times the price of electricity.

We define the differences in the units’ revenues and the short-run costs as their short-run profits.12

it follows that E(b/y) = E(b) · E(1/y) ≥ E(b) · 1/E(y) = E(b)/E(y).
11 For more detailed discussions on network technologies modeling subunits see e.g. Färe and Grosskopf (2000).
12 Note that in line with the literature on profit efficiency we assume that the prices are not affected by the profit

optimization. If demand and supply functions are known, endogenous models (see Johnson and Ruggiero 2011) could
be estimated.
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The selection of the analyzed units is based on the file EIA-860 by the U.S. Energy Information

Administration (EIA) which provides data on the input variable capacity. Data on the fuel input,

the electricity generation as well as the CO2 emissions are collected from the Clean Air Markets

database provided by the U.S. Environmental Protection Agency (EPA). Finally, data on fuel prices

are obtained from file EIA-923, while data on sales prices for electricity are obtained from file EIA-861.

Following Färe et al. (2005), the sales price is equal to the average of the retail and resale prices for

electricity. Our sample covers generating units which were in operation during 2011.

Following Mekaroonreung and Johnson (2012) we restrict our sample to those generating units that

only use bituminous coal (measured in million british thermal units, MMBtu). With this selection

criterion we assure that the generating units are evaluated against a reference set which only contains

units operating under the same technological conditions. In contrast, previous studies (see e.g. Färe

et al. 2007) which include generating units that use different coal types and moreover additional fuel

types (e.g. oil, natural gas) are likely to lead to efficiency estimates which are biased, since they capture

efficiency differences as well as technological differences among the generating units.13 In our analysis

we assume that the fuel consumption is a variable input. Hence, it is endogenously determined by

profit maximization. As a second input we include the capacity of the generating units (measured in

megawatts) as a proxy of their capital stock. We use a proxy variable since studies which estimate the

capital stock directly by using data from the Federal Energy Regulatory Commission (FERC) are faced

with significant reductions in the number of observations leading to results which are questionable in

terms of their generalizability (see e.g. Hampf (2014) for such an analysis with a limited number

of observations). For the same reason we do not include labor in our analysis.14 However, Welch

and Barnum (2009) argue that the labor input of a plant is proportional to its generating capacity.

Therefore, by including the capacity of the plants we indirectly account for the labor input. In our

analysis we assume that the capacity and hence the capital stock is fixed in the short run. Hence,

the capacity of the generating units is an exogenous variable. In addition to the inputs, we include

the good output electricity (measured in megawatt hours, MWh) and the bad output carbon dioxide

(measured in tons), which are assumed to be variable and hence endogenously determined factors.

The total sample comprises 160 generating units operating in the United States in 2011.15 From this

sample we have to remove 16 observations due to missing data on the fuel or electricity prices. Hence,

the final analyzed sample contains 144 generating units (excluding the artificial “zero observation”).

These units can be attributed to 29 utilities as well as to 15 states where the plants are located.

Descriptive statistics of the analyzed sample are presented in table 1.

3.2 Aggregated results for the generating units

The aggregated results for the total sample of 144 generating units are depicted in figure 1 which

consists of two panels. The upper panel presents the sum of optimal profits of all generating units

(in billion dollars) calculated using programming problems (2.6) and (2.7) for a grid of emission

13 See Heshmati et al. (2012) for a discussion of the issues when estimating power plant efficiency with heterogeneous
technology sets.

14 See Färe et al. (2013a) for a discussion on the reduction of the number of observations due to missing data from U.S.
power plants.

15 See Hampf and Rødseth (2014) for more details on the data.
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Figure 1: Aggregated results of the profit maximization
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Table 1: Descriptive statistics of the data (144 units)

Variable Min. Mean Max. St.dev.

Capacity (MW) 112.50 345.42 1425.60 233.31
Fuel (MMBtu) 57417.69 16570772.62 74900000.00 14829299.04
Electricity (MWh) 5884.10 1754698.85 8541295.90 1632501.37
CO2 (tons) 5890.97 1702688.82 7686116.00 1521278.43
Electricity price ($ per MWh) 42.12 68.40 99.67 10.03
Fuel price ($ per MMBtu) 1.50 3.16 5.19 0.74

standards ranging from 0.8 to 1.25 tons of CO2 per MWh of produced electricity.16 The maximal

observed emission intensity in the sample is 1.23 tons per MWh. Therefore, standards larger than

1.23 tons per MWh are equal to a situation without any standards since the restriction on the emission

intensity is not binding for any of the evaluated generating units. In contrast, the minimal observed

emission intensity in the sample is 0.85 tons per MWh. Hence, imposing a standard lower than 0.85

tons per MWh leads to a shutdown of all units in the sample. Thus, the effective interval of the

performance standards is given by [0.85, 1.23] tons per MWh.

The solid line in the upper panel of figure 1 indicates the optimal profits for different performance

standards if they are fixed for each generating unit, hence if the optimal profit for each generator

cannot be associated with an emission intensity larger than the imposed standards. The dashed line

indicates the optimal profits if intensity averaging is allowed. In this setting the ratio of average

emissions to average produced electricity of all generating units owned by a utility in a state has to

be lower than or equal to the defined standard. Finally, the horizontal dotted line represents the

actual (or business-as-usual) short-run profits of the generating units, which amount to 10.46 billion

dollars.17 Note that to be able to generate this figure we have assumed that each state implements the

same standard. If standards differ across the states, the optimal profits will change. However, since

we assume that utilities cannot average the intensities across states, the benefits of the averaging will

not be biased in this situation.

From the figure it is obvious that without regulation (or with a standard larger than 1.23 tons per

MWh) considerable potentials to increase profits exist. The maximal aggregated profit in this setting

amounts to 13.31 billion dollars. Therefore, the profit efficiency is equal to (13.31/10.46) × 100% =

127.25% indicating that the generating units’ combined profits could be increased by 27.25% if best

practices would be adopted and efficiency improvement potential would be exploited.

The results for standards below 1.23 tons per MWh show that the introduction of the environmental

regulation does not necessarily lead to profit reductions if efficiency improvements are taken into

account. By adopting best practices the generating units can decrease their emission intensity and

thus are able to maintain a profit very close to the optimal profits down to a standard of 1.03 tons

per MWh if a uniform standard is imposed. In case of a regulation which allows for averaging among

generating units, these profits can be obtained even for standards smaller than 1.03 tons per MWh.

The dashed line indicates only small changes down to standards of 0.93 tons per MWh. If the standards

are further reduced, the optimal profits start to decline even if efficiency improvements are exploited.

16 Note that the grid is evaluated for steps of 0.01 tons per MWh.
17 We define the profits of the generating units given their inefficiencies as the business-as-usual profits.
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Figure 2: Aggregated carbon dioxide emissions

The intersections of the profit curves with the dotted line indicate the standard which is associated

with an optimal profit that is equal to the business-as-usual profits without any regulation. The figure

shows that if a fixed standard is imposed a restriction of approximately 0.91 tons per MWh would lead

to this equality of profits while the averaging approach leads to an intersection for a lower standard

of approximately 0.88 tons per MWh. This highlights the possibility to obtain larger profits if the

utilities are allowed to average emission intensities.

To visualize in more detail the additional profits due to emission averaging, the lower panel in figure 1

presents the differences in maximal profits between the averaging approach compared to the uniform

standard, hence depicts
∑k

l=1 (πl,avg − πl,unif)s ≥ 0, where πl,avg denotes the profit of utility l given

the possibility to average intensities while πl,unif represents the profit under a uniform standard. s

denotes the analyzed standard. Similar to the upper panel, this figure shows that due to the adaption

of best-practices there are profit decreases close to zero caused by the regulation and hence nearly no

profit gains from the intensity averaging for standards larger than 1.03 tons per MWh. For standards

smaller than 1.03 tons per MWh the averaging approach leads to additional profits compared to the

uniform standard with a maximal gain for a standard of 0.87 tons per MWh. Given this standard the

averaging leads to additional profits of 2.7 billion dollars. Stated differently, the averaging approach

leads to additional profits of approximately 26% of the business-as-usual profits of 10.46 billion dollars.

These numbers show that large economic benefits can be obtained when allowing utilities to average

their emission intensities.
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However, there is a trade-off between the economic benefits and the environmental damages of the

two regulatory approaches. Figure 2 depicts the aggregated carbon dioxide emissions (in million tons)

for different standards given the profit optimization of the generating units. The two different curves

indicate the emissions associated with the uniform standard and the averaging approach, while the

horizontal dotted line indicates the aggregate CO2 emissions resulting in the (non-optimized) business-

as-usual production situation. In addition, the horizontal dotdashed line represents the amount of

emissions resulting if the actual emissions are reduced by 30%. This emission reduction is expected

to result from the implementation of the regulatory plans of the EPA for the coal-fired power plants

in the United States as presented in the introduction.

The emission curves in this figure show very similar patterns to the profit curves in the upper panel

of figure 1. Therefore, the additional profits resulting from both the adoption of best practices and

the possibility to average emission intensities are associated with an increase in the total emissions.

Hence, our results indicate a trade-off between the environmental damages and the economic benefits

from profit optimization as well as intensity averaging. Furthermore, the figure highlights that the

implementation of standards may not lead to lower, but higher emissions if the generating units react

to the regulation by adopting best practices. In such a situation very tight standards of 0.92 (0.89) tons

per MWh in case of a fixed (averaging) standard would have to be imposed to be able to maintain the

current emission level, given that the electricity generating units reduce their inefficiencies. Moreover,

to achieve the reduction projections of the EPA even more restrictive standards of 0.88 (0.87) tons

per MWh have to be imposed if the DMUs exploit their efficiency enhancements possibilities.

The discussion of efficiency effects induced by the implementation of a regulation connects our analysis

to the economic discussion on potential positive effects of regulation for the regulated firms known in

the literature as the “Porter-Hypothesis” based on Porter and van der Linde (1995). This hypothesis

states that flexible environmental regulations can have positive economic implications for firms if the

economic gains by activities required to satisfy the regulations (e.g. by investing in new production

methods which reduce resource usage and therefore pollution) offset the costs associated with the

regulation (e.g. the payment for emission taxes). In our application the implementation of performance

standards could encourage the utilities to increase their efficiency by adopting best-practices to achieve

lower emission intensities and hence increase their profits. However, although the emission intensities

may improve, our results also suggest that the overall emissions can increase compared to the ex-ante

emissions.

3.3 Distributive effects

In the following we present the distributive effects of this regulation. That is, we examine how

many utilities will suffer decreases in their profits (πl,s) compared to their business-as-usual profits

(πl,act) and whether these decreases are offset by utilities which obtain larger profits due to efficiency

improvements. Therefore, we divide for each standard s ∈ [0.8, 1.25] the k = 29 utilities of our sample

into two groups: Ws = {l|πl,s − πl,act ≥ 0} and Ls = {l|πl,s − πl,act < 0}. The group Ws denotes all

“winners” for the standard s and contains all firms which do not suffer losses compared to their actual

profits if they adopt the best-practice under the regulatory standard s. Firms which face decreased

profits under this regulation, and hence can be considered as the “losers” of the regulation, are collected
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in the set Ls. Moreover, we define

πW,s =
∑

l∈Ws

(πl,s − πl,act) ≥ 0 (3.1)

πL,s =
∑

l∈Ls

(πl,s − πl,act) < 0 (3.2)

as the total wins and losses due to the regulatory standard s. Note that the wins and losses are defined

relative to the (non-optimized) actual profits. Negative short-run profits (πl,s < 0) are not possible in

our model since inactivity (πl,s = 0) is always a feasible option.

Based on these wins and losses we define the loser share as the number of utilities with losses due to

the regulation s divided by the total number of utilities in our sample (29). Furthermore, we define a

profit index Is as:

Is =
πW,s

πW,s + |πL,s|

=
2πW,s

2 (πW,s + |πL,s|)
=

πW,s + |πL,s|

2 (πW,s + |πL,s|)
+

πW,s − |πL,s|

2 (πW,s + |πL,s|)

=
1

2
+

1

2
·
πW,s − |πL,s|

(πW,s + |πL,s|)

(3.3)

where πW,s − |πL,s| can be interpreted as the net profit effect of the regulatory standard s with

πW,s − |πL,s| < 0 (> 0) indicating a net loss (win) compared to the current profit level. This index

is bound in the interval [0, 1] and takes the value 0 if all firms loose due to the regulation (πW,s = 0)

and the value 1 if all firms achieve profit gains compared to their business-as-usual profits (πL,s = 0).

Moreover, a value of 0.5 indicates that the profit gains of the “winners” are equally large as the profit

losses of the “losers”.

An additional interpretation of the index can be derived by calculating:

Is
1− Is

=
πW,s

πW,s + |πL,s|
·

(

1−
πW,s

πW,s + |πL,s|

)

−1

=
πW,s

πW,s + |πL,s|
·

(

|πL,s|

πW,s + |πL,s|

)

−1

=
πW,s

|πL,s|
.

(3.4)

Hence, Is/(1 − Is) · 100% indicates how much of the losses of the loosing utilities are gained by the

winning utilities with values larger (lower) than 100% indicating net wins (losses) of the regulation.

Figure 3 depicts the loser share (solid line) and the profit index Is for each s ∈ [0.8, 1.25]. The upper

panel presents the results assuming a uniform standard, while the lower panel presents the results

given the possibility to average emission intensities.

For the uniform standard, we find that the loser share is zero down to a standard of 1.19 tons per

MWh. This indicates that no utility will make smaller profits than its business-as-usual profit if

efficiency improvement potentials are exploited. Down to a standard of 0.94 tons per MWh this share

increases only slightly to 14%. Moreover, although some of the utilities suffer losses, the aggregated
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Figure 3: Profit index and loser share
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result is a net win of the regulation with an Is value of 0.97 indicating that the winning firms gain

0.97/(1 − 0.97) · 100% = 3233.3% of the losses. However, further tightening of the standard leads to

a sharp increase in the loser share with 70% of the utilities suffering losses compared to their current

profits for a standard of 0.89 tons per MWh. For this standard the Is is 0.17 which indicates that the

winner only gain 20.5% of the losses experienced by the losers. Hence, this fixed standard leads to net

losses. Interestingly, the profit index and the loser share curves cross at a value of 0.5. This indicates

that if a standard is chosen which leads to the same number of utilities winning from the regulation

as the number of utilities loosing from the regulation, then the regulation also leads to net losses of

zero which means the aggregated business-as-usual profits can be maintained in this situation.

The economic benefits from the intensity averaging approach are clearly visible from the lower panel

of figure 3. The loser share is 0% up to a standard of 1.11 tons per MWh indicating that compared to

a fixed standard tighter regulations can be imposed without leading to utility profits below the actual

profits. Moreover, the figure shows that the curves do not cross for a value of 0.5 for each curve. If

the regulator aims at implementing a standard which leads to the same number of winners and losers

(sl = 0.5), the index Is takes a value of 0.7. Therefore, for this standard the winners obtain larger

profit gains than the losses of the losers (233.3%) and hence this regulation would lead to net profits.

Furthermore, if a standard is implemented to achieve emission reductions of the EPA proposal (30%

reduction of CO2 emissions) a standard of 0.88 tons per MWh has to be imposed given a uniform

standard if efficiency improvement potential are taken into account (see the discussion above) and of

0.87 tons per MWh standard if emission intensity averaging is allowed. In case of a uniform standard

this leads to a loser share of nearly 90% and an Is of 0.08, indicating that a large net loss will occur

due to this regulation. In case of the possibility to average intensities, the loser share reduces to 82%

and the index increases to 0.1. The difference in the Is values shows that although both regulations

lead to net losses, the winners can gain 11.1% of the losses given an averaging approach compared to

only 8.7% if a fixed standard is implemented. This shows that the reduction target can be achieved

with smaller losses if the utilities are allowed to average emission intensities.

3.4 Results for EPA standards

While the above discussed results are based on the evaluation of a grid of possible performance

standards which were assumed to be equal for all states, we now present the results for EPA’s state-

specific standards. These standards are calculated based on the output-weighted historical emission

rates of different fossil fuels, with the weights adjusted for future increase in natural gas, renewable,

and nuclear power capacity, as well as demand side energy reductions. The average EPA standard

is 0.5 tons of CO2 per MWh produced, which according to our previous results implies that all

bituminous generating units in our sample would shut down (see Kotchen and Mansur (2014) and

Hampf and Rødseth (2014) for further evaluations of the technical feasibility of this standard for coal-

fired generating units). Hence, we do consider the final EPA standard to be an interesting case for

our paper.18

18 In principle, cost minimization implies allocating different standards to different fossil fuel types (that on average
amount to the EPA standards), in order to equalize marginal abatement costs across different fuel types. Hence, if
the fuel-specific abatement costs were known, it would be possible to assign fuel specific performance standards. The
emission standard for coal will intuitively be higher than the EPA standard.
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The EPA standards are based on the so-called Best System of Emission Reduction, which involves

considering a series of feasible measures for reducing carbon dioxide emission. One measure proposed

by the EPA is a 6% improvement in the emission intensities of the existing coal fleet, relative to their

current emission intensities. Our approach is well suited for evaluating the feasibility of this proposed

efficiency improvement, as well as its economic implications. Moreover, the EPA calculates separate

performance standards for each year between 2020 and 2030, under the assumption that the impact of

renewable energy and demand-side energy efficiency measures will increase over time. Since our dataset

contains generating units in operation in 2011 (i.e., long before the introduction of the renewables and

demand-side improvements), it would be more reasonable to evaluate the economic consequences of the

EPA 2020 standard, than the implications of its final standard in year 2030. By considering the EPA

2020 standard (a tight standard) and the standard concerning 6% emission intensity improvements

of current emission rates for coal (a lax standard), we are readily able to evaluate the economic

consequences of introducing performance standards of varying degrees of stringency.

The state-specific results are presented in table 2. The mass-based goals as well as the net profit

changes are presented for both standards (EPA 6% target, EPA 2020 standard) and both approaches

to performance standards (uniform, averaging). The mass-based goals refer to state-specific emis-

sion targets calculated as the sum of carbon dioxide pollution given the implementation of the EPA

standards and our results for the profit maximization. The net profits changes are calculated as the

state-specific sum of optimal profits minus the actual business-as-usual profits.

The difference in the stringency of the two EPA standards is clearly illustrated by table 2. Only

three states (Indiana, Kentucky, and West Virginia) have bituminous-fired units in operation if the

EPA 2020 standard is uniformly implemented for all fuel types, while there are bituminous units in

operation in all states if the EPA 6% target is implemented. The 6% target appears to be unambitious

for the coal fleet, as our results indicate that profit maximization leads to profit losses in only two

states (Colorado and Utah). In contrast, all other states can achieve larger profits if the utilities

exploit their efficiency enhancement potentials. Moreover, only few states show significant differences

in their profit changes if the utilities are allowed to average emission intensities across their generating

units compared to uniform standards. This also indicates that the emission standards under the EPA

6% target are rather lax since utilities do not have an incentive to reallocate production among their

generating units to mininize compliance costs. However, for states where utilities exploit averaging

possibilities, we again find that the larger profits due to emission intensity averaging are associated

with an increase in aggregated emissions.

In contrast to the results for the EPA 6% target, the EPA 2020 standard results show that the strict

standard leads to substantially higher profit gains due to emission intensitiy averaging. This can be

seen from the results for Indiana and Kentucky, where Indiana’s profit losses due to the regulation

drop from 542 million to 395 million dollars while Kentucky’s profits gains increase from 119 million

to 151 million dollars.

To show in more detail the different effects of the averaging approach for both standards, figure

4 presents the density functions of emission intensities in the cases where an uniform standard is

imposed and when utilities can average emission intensities. The panel to the left illustrates the

emission intensities under the 6-% coal efficiency standard, while the panel to the right illustrates the

17



Table 2: Results for proposed EPA standards

Mass-based goal (tons CO2) Net gains ($)

EPA 6% target EPA 2020 standard EPA 6% target EPA 2020 standard
State Uniform Averaging Uniform Averaging Uniform Averaging Uniform Averaging

Alabama 13,757,992 14,400,083 0 0 161,373,240 167,122,576 -415,719,580 -415,719,580
Colorado 2,785,016 2,785,016 0 0 -5,521,532 -5,521,532 -180,194,613 -180,194,613
Florida 35,037,605 35,037,605 0 0 435,831,905 435,831,905 -1,367,386,369 -1,367,386,369
Illinois 1,165,956 1,165,956 0 0 8,577,372 8,577,372 -49,067,962 -49,067,962
Indiana 49,094,959 49,094,959 23,798,943 26,910,863 417,033,583 417,033,583 -542,871,479 -395,211,453
Kentucky 40,631,394 42,130,982 39,997,133 41,968,155 125,590,647 150,813,385 118,640,083 150,527,856
Mississippi 2,331,912 2,331,912 0 0 39,388,297 39,388,297 -55,208,006 -55,208,006
North Carolina 49,076,058 49,710,319 0 0 343,856,711 349,201,213 -1,514,770,618 -1,514,770,618
Nevada 1,843,929 1,843,929 0 0 26,896,269 26,896,269 -53,235,740 -53,235,740
Ohio 29,700,964 32,716,556 0 0 281,588,878 325,769,034 -1,673,796,932 -1,673,796,932
South Carolina 17,187,510 17,187,510 0 0 282,762,040 282,762,040 -400,313,422 -400,313,422
Tennessee 4,663,824 4,663,824 0 0 82,528,906 82,528,906 -71,584,495 -71,584,495
Utah 2,548,246 2,548,246 0 0 -30,801,720 -30,801,720 -167,301,329 -167,301,329
Virginia 25,013,321 25,655,412 0 0 357,337,985 358,606,201 -684,397,711 -684,397,711
West Virginia 14,606,495 15,084,496 14,151,422 14,151,422 142,582,561 157,832,393 128,769,560 128,769,560
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Figure 4: Density functions of optimal emission intensities

emission intensities under the EPA 2020 standard. It is obvious that the emission intensities under

the 6-% coal efficiency standard do not differ much across the two analyzed approaches. This result

is caused by the fact that EPA’s proposed efficiency improvement of 6% appears to be unambitious

leading to ratios which are very similar to the ratios which result for optimal profits without any

regulation (unconstrained optimization). The EPA 2020 standard is, on the other hand, far more

restrictive, which leads to a larger difference in the distribution of emission intensities between the

two approaches. This is intuitively reasonable, since by allowing for averaging, the optimal emission

intensities are distributed across the utility’s generating units such that their marginal profit from

a change in the standard are equalized. Thus, when the generating-units’ characteristics differ, the

optimal standards will also differ widely across the generating units.
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4 Conclusion

In this paper we have developed a production analysis approach which allows examining economic im-

plications of environmental performance standards. By applying a modification of the FDH production

model to a sample of 144 bituminous generating units, we have examined the economic implications of

performance standards for CO2 emissions on bituminous-fired electricity generating units in the U.S.

Our results indicate that the economic consequences of CO2 performance standards may be severe,

as standards below 0.85 tons of CO2 per MWh induce shut down of all units under consideration.

However, for laxer standards there is even a potential for achieving profit increases if the electricity

generating units exploit the identified potential to improve their productive efficiency. We also find

that profit improvements generally lead to increases in CO2 emissions, which indicates that an impor-

tant environmental-economic trade-off exists. Moreover, our results for a regulatory regime that allows

for averaging emission intensities among the generating units shows that considerably larger profits

can be obtained compared to implementing uniform standards. However, these additional profits are

associated with larger overall emissions of CO2. Therefore, our results capture well the pros and cons

of performance standards as compared to mass-based emission targets. Performance standards pro-

vide flexibility to accommodate changes in the overall quantities of electricity generated in response to

shifts in electricity demand, while mass-based regulations make sure that absolute emission reductions

are achieved by the regulation.

While our empirical results offer insights to the economic consequences of performance standards for

CO2, additional research is needed to guide the development of the state plans recently commissioned

by the EPA. We limit our analysis to generating units that only consume bituminous coal, and con-

sequently leave out possibilities to average emissions among different coal types and among coal and

other fossil fuels. This is an important consideration because these other fuel types differ in terms of

their carbon intensities and prices, hence involving important environmental-economic trade-offs that

must be taken into account when developing the state plans.

By focusing on only one fuel type, our paper differs widely from most other studies on the efficiency

of U.S. power plants. The common practice is to account for a wide range of different fuel types

and qualities in the production model, which we consider inconsistent with the goal of securing that

the DMUs under consideration are homogeneous and, thus, comparable. In other words, we believe

that the common practice leads to biased estimates. Future research may therefore model the overall

energy supply using the fuel type-specific technologies as presented in this paper, but allow emission

intensity averaging across the fuel-specific technologies using the network-technology approach of Färe

and Grosskopf (2000).
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Färe, R., S. Grosskopf, D.-W. Noh, and W. Weber (2005). “Characteristics of a Polluting Technology:

Theory and Practice”. In: Journal of Econometrics 126, pp. 469–492.
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Appendix

Proof of the equivalence of the JP and the MB model:

To start consider the profit optimization subject to the non-convex JP model:

max
y,xP ,b,λ1,...,λn

piy − qix
P

s.t. xNP
i ≥

∑n
j=1 x

NP
j λj

xP ≥
∑n

j=1 x
P
j λj

y ≤
∑n

j=1 yjλjθ

b =
∑n

j=1 bjλjθ

b− sy ≤ 0

0 ≤ θ ≤ 1
∑n

j=1 λj = 1

λ1, . . . , λn ∈ {0, 1}.

(A.1)

In the optimum xP =
∑n

j=1 x
P
j λj and y =

∑n
j=1 yjλjθ hold since xP and y can be freely chosen and

b =
∑n

j=1 bjλjθ by construction. Moreover, θ can be set equal to one since y and b can be freely

chosen. Replacing the modified equalities in the objective function and the regulatory constraint leads

to:
max

λ1,...,λn

pi
∑n

j=1 yjλj − qi
∑n

j=1 x
P
j λj

s.t. xNP
i ≥

∑n
j=1 x

NP
j λj

∑n
j=1 bjλj − s

∑n
j=1 yjλj ≤ 0
∑n

j=1 λj = 1

λ1, . . . , λn ∈ {0, 1}.

(A.2)

The optimization problem under the non-convex MB model is given by:

max
y,xP p,b,ǫx,ǫb,λ1,...,λn

piy − qix
P

s.t. xNP
i ≥

∑n
j=1 x

NP
j λj

xP =
∑n

j=1 x
N
j λj + ǫx

y ≤
∑n

j=1 yjλj

b =
∑n

j=1 bjλj + ǫb

sxǫx = ǫb

b− sy ≤ 0

xP , y, b, ǫx, ǫb ≥ 0
∑n

j=1 λj = 1

λ1, . . . , λn ∈ {0, 1}.

(A.3)

In this formulation the slack on the good output ǫy is removed and the equality replaced by an

inequality since the output in our analysis (electricity) does not contain any materials. In the optimum

ǫx = ǫb = 0 since xP and b can be freely chosen. Hence, xP =
∑n

j=1 x
P
j λj and b =

∑n
j=1 bjλj .

Moreover, y =
∑n

j=1 yjλj since y can be freely chosen. Replacing these equalities in the objective
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function and the regulatory constraint leads to:

max
λ1,...,λn

pi
∑n

j=1 yjλj − qi
∑n

j=1 x
P
j λj

s.t. xNP
i ≥

∑n
j=1 x

NP
j λj

∑n
j=1 bjλj − s

∑n
j=1 yjλj ≤ 0
∑n

j=1 λj = 1

λ1, . . . , λn ∈ {0, 1}.

(A.4)

Therefore, the JP and the MB model lead to the same results for the profit maximization.
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