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Abstract

We propose an automatic model order selection procedure for k-factor GARMA pro-

cesses. The procedure is based on sequential tests of the maximum of the periodogram

and semiparametric estimators of the model parameters. As a byproduct, we introduce

a generalized version of Walker’s large sample g-test that allows to test for persistent

periodicity in stationary ARMA processes. Our simulation studies show that the proce-

dure performs well in identifying the correct model order under various circumstances.

An application to Californian electricity load data illustrates its value in empirical anal-

yses and allows new insights into the periodicity of this process that has been subject

of several forecasting exercises.
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1 Introduction

The increasing availability of high frequency data poses new challenges to the analysis

of cyclical time series, because intraday data often exhibits periodic behavior and poten-

tially contains multiple cycles such as daily and weekly seasonalities. Important exam-

ples of those series include intraday volatilities as discussed by Andersen and Bollerslev

(1997), Bisaglia et al. (2003), Bordignon et al. (2008) and Rossi and Fantazzini (2014) as

well as trading volumes and electricity data, where the aforementioned features are espe-

cially pronounced. Recent contributions such as Haldrup and Nielsen (2006), Soares and

Souza (2006) and Diongue et al. (2009) stress the long memory properties of electricity

time series and suggest that Gegenbauer models are useful to analyze these datasets,

because they allow for different degrees of long memory at arbitrary periodic frequen-

cies. An unresolved issue however, is how to select the number of cyclical components

that have to be modeled. This is why we propose a model selection procedure that

consistently estimates the required model order and demonstrate how it can be applied

to the analysis of electricity load data.

Intuitively speaking, cyclical long memory is an intermediate case between short memory

seasonal ARMA processes and the seasonally integrated model. While a time series

exhibits long memory if it has a hyperbolically decaying autocorrelation function - the

autocorrelation functions of cyclical long memory processes show sinusoidal patterns

with hyperbolically decaying amplitude, so that the dependence between observations

at distant periodic lags is relatively strong.

We will hereafter refer to the model class considered as k−factor GARMA models. These

were proposed by Gray et al. (1989) and generalized by Giraitis and Leipus (1995) and

Woodward et al. (1998). The k-factor GARMA model is given by

φ(L)
k∏

j=1

(1−2cosγ jL + L2)d j Xt = θ(L)εt, (1)

where φ(L) and θ(L) are the usual AR- and MA-polynomials, the lag-operator L is defined

through LXt = Xt−1 and εt is a white noise sequence. The filter (1− 2uL + L2)−d is the

generating function of the orthogonal Gegenbauer polynomials denoted by Cd
s (u):

(1−2uL + L2)−d =

∞∑
s=0

Cd
s (u)Ls,
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where the Gegenbauer polynomials are given by

Cd
s (u) =

bs/2c∑
g=0

(−1)g(2u)s−2gΓ(d−g + s)
g!(n−2g)!Γ(d)

.

In this representation the operator b.c returns the integer part of its argument and Γ(x)
denotes the gamma function. The process defined by applying this filter to a white noise

sequence vt is a general linear process with the MA(∞)-representation shown below:

Yt = (1−2cosγL + L2)−dvt (2)

=

∞∑
s=0

Ψsvt−s,

where the coefficients Ψs in this representation are the Gegenbauer polynomials Cd
s (cosγ).

The process is causal, invertible and has long memory, if

|d j|<

1/2, ∀ 0 < γ j < π

1/4, ∀ γ j = 0 or γ j = π,

given that all roots of φ(L) = 0 and θ(L) = 0 lie outside of the unit circle and φ(L) and

θ(L) have no roots in common (cf. Giraitis and Leipus (1995)). The spectral density of

(1) is given by

f (λ) =
σ2
ε

2π
|θ(eiλ)|2

|φ(eiλ)|2

k∏
j=1

∣∣∣∣2 (
cosλ− cosγ j

)∣∣∣∣−2d j
. (3)

As can be seen from (3) the spectral density has poles due to the long memory behavior

at the cyclical frequencies γ j with j = 1, ...,k.

Note that the k-factor GARMA model and the seasonal/cyclical long memory (SCLM)

model of Robinson (1994) are equivalent given appropriate parameter restrictions. They

generalize the ARFIMA class by allowing for poles in the spectral density at arbitrary

frequencies γ j and they nest most of the seasonal long memory models proposed in the

literature such as the (rigid) SARFIMA model of Porter-Hudak (1990) or the flexible

SARFIMA of Hassler (1994).

One method to choose the model order k and the locations γ j of the poles is based

on the LM tests of Robinson (1994) and Hassler et al. (2009) who test whether the

sample supports a given specification of (1). The null hypotheses are of the form H0 :
θ = θ0 versus H1 : θ , θ0, where θ = {γ1,d1, ...,γk,dk}

′. These procedures are useful in
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two situations. First, if the theory suggests a model for the process considered, or

the researcher wants to test whether one of the nested special cases such as a (rigid)

SARFIMA fits the data. Second, if the tests are applied on a grid of values for θ

to obtain ”model confidence sets” that contain the true model with a certain coverage

probability as suggested by Hassler et al. (2009). This second application of the LM-tests

allows to specify the location of periodic frequencies as well as their number, because

θ implicitly contains the model order k. The model confidence set should thus contain

models of the true model order k0. This grid search procedure has become the most

common specification method. Examples of its application include Gil-Alana (2002)

and Gil-Alana (2007).

For larger k however, this model selection procedure suffers from severe dimensionality

problems. Consider a sample of T observations. Assume that the grid for γ j has as

many points as there are periodogram ordinates and let nd denote the number of values

on the grid for the respective d j. Then the number of points on the combined grid for

a k-factor model is

nk
d

k∏
j=1

{bT/2c− ( j−1)} ,

which is O
(
{ndbT/2c}k

)
, so that the procedure quickly becomes unapplicable for models

with a larger number of relevant cyclical frequencies. In these situations the only feasible

procedure is to choose the model order k discretionary based on a visual inspection of

the periodogram. Unfortunately, this often leads to misspecifications as demonstrated

in our empirical application.

To overcome this problem we suggest a model order selection procedure based on iter-

ative filtering and periodogram based tests for cyclical behavior in a time series. It is

based on the observation that the residual series from a correctly specified model for Xt

given in (1) with k = k0 Gegenbauer filters has no poles in the periodogram whereas it

still exhibits poles if the selected model order k < k0 is too low. Consequently, we can

apply k-factor Gegenbauer filters of increasing order k, until no significant periodicity

can be detected anymore.

Section 2 discusses our model order selection procedure in more detail for the infeasible

case in which the γ j and d j are known. To make the procedure feasible, we need a

test that can be used after each filtering step to determine whether the residual process

still contains significant periodicity. Such a test for periodicity of unknown frequency

is suggested in Section 3. We also need estimators for γ j and d j that will be discussed

in Section 4. Subsequently, we provide a Monte Carlo analysis of the finite sample

properties of our model order selection procedure and apply it to a Californian electricity

load series.
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2 Infeasible Automatic Model Selection by Sequential

Filtering

Consider the k-factor GARMA process in equation (1) and denote the stationary ARMA

component by ut = φ(L)−1θ(L)εt, where εt
iid
∼ (0,σ2

ε) is a white noise sequence with finite

8th order moments.1 The fractional exponents are restricted to 0 < d j < 1/2 for γ j in the

open interval (0,π) and 0 < d j < 1/4 for γ j in the set {0,π} so that the process exhibits

stationary long memory.

Assume for now, that the true cyclical frequencies γ j,0 and the true fractional exponents

d j,0 at those frequencies were known for all j = 1, ...,k0. In addition to that, assume

that for every finite sample from a weakly dependent linear process Zt =
∑∞

j=0 a jzt− j with

zt
iid
∼ (0,σ2

z ) and
∑∞

j=0|a j|<∞ we are able to determine the probability P (Zt = ut|Z1, ...,ZT )

that Zt contains no Gegenbauer component and is a pure short memory ARMA process.

The main idea of our model order selection procedure is based on equation (5) below.

Let k(i) ≤ k0 denote a positive integer. If the filter

∆k(i)
=

k(i)∏
j=1

(1−2cosγ j,0L + L2)d j,0 (4)

is applied to the series Xt, we obtain the residual process ∆k(i)
Xt given by

∆k(i)
Xt =

k∏
j=k(i)+1

(1−2cosγ j,0L + L2)−d j,0ut. (5)

If Xt was indeed generated by a k(i)-factor GARMA process, then the right hand side

of (5) reduces to the ARMA sequence ut. If k0 > k(i) on the other hand, the process at

the right hand side is a (k0− k(i))-factor Gegenbauer process, with (k0− k(i)) poles in its

spectral density. We can thus use a sequence of periodogram based tests for a significant

periodicity in ∆k(i)
Xt to determine the model order of the Gegenbauer process.

Starting with k(1) = 0 we test the null hypothesis

H0 : k0 = k(i) vs. H1 : k0 > k(i) (6)

repeatedly for k(i) = k(i−1) +1 until the null hypothesis cannot be rejected anymore. That

means, we test whether a model of order k(i) is adequate to describe the data or whether

1Note that this assumption is only required for the consistency of the semiparametric estimator of
Hidalgo and Soulier (2004). All other methods employed do not require any additional moment
conditions.
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there are additional periodicities present that the k(i)-factor model does not account for.

The first k(i) for which the null of no significant periodicity cannot be rejected anymore

is than selected as the model order:

k̂ = min
{
k(i) such that P

(
∆k(i)

Xt = ut | X1, ...,XT

)
> α

}
, (7)

where α is the desired significance level.

So far we have assumed to know γ j,0, d j,0 and P (Zt = ut | Z1, ...,ZT ). To make this pro-

cedure feasible we need estimators for γ j,0 and d j,0 that are consistent under the null

hypothesis as well as under the alternative - otherwise the procedure could not be ap-

plied sequentially. The latter can be achieved using semiparametric estimators for the

fractional exponent d j as in Arteche and Robinson (2000) and semiparametric estima-

tors of the location of the pole as in Yajima (1996) and Hidalgo and Soulier (2004). A

test that allows to determine P (Zt = ut | Z1, ...,ZT ) is presented in the next section.

3 Testing for Periodicity of Unknown Frequency

Note that under the null hypothesis in equation (6) the filtered process ∆k(i)
Xt is a

short memory process. Define the periodogram of the weakly dependent linear process

Zt =
∑∞

j=0 a jzt− j with zt
iid
∼ (0,σ2

z ) as

I(λ) = (2πT )−1

∣∣∣∣∣∣∣
T∑

t=1

Zte−iλt

∣∣∣∣∣∣∣
2

, with λ ∈ [−π,π] .

Here [.] denotes the closed interval. Further denote by Iκ the periodogram evaluated at

the Fourier frequency λκ = 2πκ
T with κ = 1, ...,n and n = b(T −1)/2c.

Tests for periodicity at an unknown frequency are based on the well-known result that

the periodogram ordinates of weakly dependent linear processes are approximately equal

to f (λκ)/2 times an exponentially distributed random variable:

2Iκ
f (λκ)

appr.
∼ χ2

2. (8)

A detailed discussion of traditional periodogram based tests for periodicity can be found

in Priestley (1981). We will focus on Walker’s large sample g-test for the null hypothesis

of a Gaussian iid-sequence (H0 : Zt = zt). In this case the relationship in (8) holds without

an approximation error and we have f (λ) = σ2
z/(2π).
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Walker’s large sample g-statistic is based on the maximum of the periodogram and it is

defined as

g∗Z =
4πmax(Iκ)

σ̂2
z

, (9)

where σ̂2
z is a consistent estimator of σ2

z . Due to the consistency of σ̂2
z , the distribution

of g∗Z is asymptotically the same as if σ2
z was known. Since the periodogram ordinates

Iκ are independent for iid-sequences, the distribution of g∗Z is given by

p(g∗Z > z̃) = 1− (1− exp(−z̃/2))n.

Walker’s g-test can be extended to allow for stationary ARMA processes under the null

hypothesis, if σ̂2
z in (9) is replaced by a consistent estimate of f (λ). Then the modified

G∗-statistic is defined as

G∗Z = max
{

2Iκ
f̂ (λκ)

}
. (10)

Since the periodogram ordinates of the weakly dependent linear process Zt divided by

its spectral density Iκ/ f (λκ) are asymptotically independent at the Fourier frequencies,

the modified test has asymptotically the same limiting distribution as Walker’s original

g-test.

Usually the spectral density is estimated through smoothed versions of the periodogram

and in general we could use any consistent estimator from this class. For our purpose

however, it is important that the estimate f̂ (λκ) is very smooth in small samples and

a single large spike in the periodogram has little impact on the estimated spectrum

in its immediate neighborhood. Otherwise the G∗-test would have bad size and power

properties. This is why we use a logspline spectral density estimate as suggested by

Cogburn et al. (1974), who showed that this estimator can be interpreted as a kernel

density estimate, too.

Let PHT := {a = ω0 < ω1 < ... < ωHT = b} denote a partition of
[
a,b

]
, with distinct knots

ωh and denote the number of segments by HT . Then a function S ∆ :
[
a,b

]
→ R is said
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to be a spline of degree ν if

S ∆(x, ν) =



P1(x), ω0 ≤ x < ω1

P2(x), ω1 ≤ x < ω2

...

PHT (x), ωHT−1 ≤ x < ωHT ,

with Ph(x) = b0 +b1(x−ωh)+b2(x−ωh)2 + . . .+bν(x−ωh)ν and P( j)
h (ωh+1) = P( j)

h+1(ωh), where

P( j)
h (x) denotes the j-th derivative of Ph(x) and j = 1, ..., ν−1. That is S ∆(x, ν) is a piece-

wise polynomial of degree ν with support on [a,b] and (ν−1) continuous derivatives at

the knots ωh. If splines are used for spectral density estimation as suggested by Cogburn

et al. (1974), the interval of interest is
[
a,b

]
= [0,π] and a periodic spline is obtained

under the additional condition P(1)
1 (0) = P(1)

HT
(π) = 0.

The basis for the application of splines in spectral density estimation is the result in (8).

For weakly dependent linear processes Zt, the periodogram ordinates are asymptotically

uncorrelated and Iκ = f (λi)Qκ, where Qκ is exponential distributed with mean one. For

the logarithm of Iκ follows log Iκ = ϕ+ qκ, where qκ is the log of the exponential variable

Qκ and ϕ is the log-spectral density. This linearization allows to apply a smoothing

spline function to estimate ϕ. The spectral density estimate f̂ (λ) is then obtained after

reversing the log-transformation. Kooperberg et al. (1995) derive the maximum likeli-

hood estimator based on the basis spline representation and show that it consistently

estimates the log-spectral density ϕ.

By using this method to estimate f (λ), the modified G∗-test in equation (10) becomes

feasible. Details of the estimation procedure can be found in Kooperberg et al. (1995).

It is common in this literature to use cubic splines, where the degree of the local poly-

nomials is ν = 3. This is also the case that we consider in our simulation studies and

empirical application. The number of segments in the partition is determined according

to HT = b1 + T ζc, with 0 < ζ < 1.

With these modifications Walker’s g-statistic becomes applicable to test for periodicity in

the filtered series ∆k(i)
Xt from (5). To obtain consistency of the test against cyclical long

memory effects we require the following assumption that guarantees the identifiability

of the poles and is the same as in Hidalgo and Soulier (2004):

Assumption 1. The fractional exponents d j in (1) are bounded away from zero: d j >

c j > 0, where c j is a small constant ∀ j = 1, ...,k.

For the modified G∗-test we then obtain the following result:
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Proposition 1. Let f̂ (λ) be a consistent smoothed periodogram estimate of the spectral

density. Then for Xt characterized by (1):

1. p(G∗X > z̃) = 1− (1− exp(−z̃/2))n for k = 0.

2. limT→∞P
(
G∗X =∞

)
= 1, if k > 0 and Assumption 1 holds.

Proofs of the main results are given in the appendix. Since we have k0−k(i) = 0 under the

null hypothesis and k0− k(i) > 0 in each iteration step before, we can use this test to de-

termine whether all significant periodicity has been removed after the i-th iteration step.

Remark: The G∗-test allows to test for very general forms of persistent periodicity in

linear time series and is not restricted to the cyclical long memory case discussed here.

To our knowledge this is a new contribution to the literature on testing for cyclical

behavior at unknown frequencies, since traditional methods such as Walker’s g-test or

the exact test of Fisher (1929) assume iid-sequences under the null hypothesis.

4 Local Semiparametric Estimators of Cyclical Frequen-

cies and Memory Parameters

With the modified G∗-test at hand, we now turn to the estimation of the cyclical fre-

quency γ j and the memory parameter d j after a significant periodic effect is detected.

To ensure the consistency of these estimators the following assumptions are required in

addition to Assumption 1:

Assumption 2. The cyclical frequencies γ j are bounded away from each other: γ j−1 +

ε j < γ j, where ε j > 0 is a small constant for all j = 2, ...,k.

Assumption 3. For the bandwidth parameter m and some trimming parameter l we

have m
T + l

m log(m) +
log(m3)

l → 0, as T →∞.

Here m and l are the bandwidth and trimming parameters used by the generalized

local Whittle estimator that will be discussed below. Assumption 3 is a modification

of Assumption B.4 in Arteche and Robinson (2000) for the case of symmetric poles.

Assumption 2 is required to ensure that the effects from two neighboring poles can

be distinguished and that the spectral density has the typical shape of a long-memory

process in the neighborhood of every cyclical freqency γ j. This is required in addition

to Assumption 1 for an estimation of the location of the cyclical frequencies with the

method of Hidalgo and Soulier (2004). The local Whittle estimator of Arteche and
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Robinson (2000) is consistent for the k-factor GARMA process (1) under Assumptions

1 and 3.

If a significant periodicity is detected, we have to estimate the frequency at which it

occurs. The maximum of the periodogram was shown to be a consistent semiparametric

estimator for the cyclical frequencies γ j,0 in (1) by Yajima (1996) and Hidalgo and Soulier

(2004).

Due to the sequential nature of our model selection procedure, we only estimate the

location of one of the remaining (k(i)− k0) poles in every iteration of the procedure. To

estimate γ j,0 we use

γ̂ j = argmax
λκ

Ik(i)(λκ), (11)

where Ik(i)(λκ) denotes the periodogram of the residual process ∆k(i)
Xt. Hidalgo and

Soulier (2004) prove the consistency of the maximum of the periodogram as an estima-

tor of the cyclical frequencies in (1) under Assumptions 1 and 2.

To estimate the fractional exponents d j,0 we use a generalized local Whittle approach

similar to that suggested by Arteche and Robinson (2000). Since they consider an

asymmetric model that allows for different fractional exponents at each side of the

pole, they estimate the exponents separately with a generalized local Whittle estimator

using m frequencies on the respective side of the pole. The poles are assumed to be

known, but the results of Hidalgo and Soulier (2004) show that the estimation of the

cyclical frequencies leaves the semiparametric estimators asymptotically unaffected. The

estimators are defined as d̃ j,a = argminRa(d j,a) for a = 1,2, where Ra(d j,a) = logC̃a(d j,a)−
2d j,a
ma−l

∑ma
κ=l+1 logλκ, C̃1(d j,1) = 1

m1−l
∑m1
κ=l+1λ

2d j,1
κ I(γ j +λκ), C̃2(d j,2) = 1

m2−l
∑m2
κ=l+1λ

2d j,2
κ I(γ j−λκ)

and l is a trimming parameter.

For γ j close to 0 or π, there can be less than m Fourier frequencies on the respective

side of γ j that is close to the boundary. Therefore, we conduct the estimations using

ma ≤ m periodogram ordinates on the respective side of γ j. The pooled estimator d̂ j is

a weighted average of the d̃ j,a:

d̂ j =
m1

m1 + m2
d̃ j,1 +

m2

m1 + m2
d̃ j,2.

Note that the estimator of Arteche and Robinson (2000) is restricted to γ j ∈ (0,π). As

Hidalgo and Soulier (2004) point out, the power law of the spectral density is |λ−γ j|
−βd j ,

where β = 2 if γ j ∈ {0,π} and β = 1 otherwise. For this reason we define

d̂∗j = d̂ j/β̂, where (12)

β̂ = 1 + I(γ̂ j<λκ∗ or γ̂ j>π−λκ∗ )
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and the function I(γ̂ j<λκ∗ or γ̂ j>π−λκ∗ ) is an indicator function that takes on the value 1,

if γ̂ j is one of the κ∗ Fourier frequencies closest to 0 or to π. If κ∗

T + 1
κ∗ → 0, we have

λκ∗ → 0 and λn−κ∗ → π, so that β̂ is a consistent estimator for the power law coefficient

β. For our filtering procedure we determine the bandwidth m = b1+T ξc by changing the

bandwidth parameter 0 < ξ < 1.

The consistency and asymptotic normality of the pooled estimator for d j ∈ (−1/2,1/2)
follow immediately from Theorem 2 in Arteche and Robinson (2000) und Assumptions 2

and 3. For the case of a pole at 0, Velasco (1999) shows, that the consistency extends to

the interval d j ∈ (−1/2,1) under conditions very similar to those in Robinson (1995a) and

Arteche and Robinson (2000). This suggests that our procedure could also be applied

within this interval. For d j ∈ (−0.5,2) alternatively the exact local Whittle approach of

Shimotsu and Phillips (2005) can be used.

5 Feasible Automatic Model Order Selection

With the results from the previous sections we no longer need to assume that the true

cyclical frequencies γ j,0, the fractional exponents d j,0 and P
(
∆k(i)

Xt = ut | X1, ...,XT
)

were

known as we did in Section 2.

If we replace P
(
∆k(i)

Xt = ut | X1, ...,XT
)

in (7) by p(G∗X > z̃) from Proposition 1, we obtain

the feasible estimator:

k̂ = min
{
k(i) such that p(G∗X > z̃) > α

}
. (13)

The feasible model order selection procedure is carried out in the following steps:

Step 1: Apply the filter ∆k(i)
to the time series Xt.

Step 2: Test whether there are any significant poles in the spectrum of ∆k(i)
Xt using

the modified G∗-test in (10). Proceed to Step 3 if the null hypothesis H0 :
k0 = k(i) is rejected - otherwise go to Step 5.

Step 3: Estimate γ j and d j using the estimators defined in (11) and (12).

Step 4: Set i = i + 1 and go back to Step 1.

Step 5: Estimate k with the estimator given in (13).

Due to the consistency of the modified G∗-test established in Proposition 1, it asymp-

totically has a power of 1 if k(i) < k0, so that the test rejects until k(i) = k0. If k(i) = k0,

then there is a probability of α that a type I error occurs and our procedure selects

a model order of k̂ > k0. To achieve consistency for k̂, we follow Bai (1997) and make
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the size dependent on the sample size T so that αT → 0, but very slowly. Under these

conditions, we can establish the results in Proposition 2 below:

Proposition 2. Suppose that Xt is given in (1) and that the size αT converges to zero

slowly (αT → 0 yet limT→∞ inf TαT > 0). Let G∗, γ̂ j, d̂ j and k̂ be defined as in equations

(10), (11), (12) and (13). Then under Assumptions 1 to 3 and using the logspline

spectral density estimate f̂ (λ) we have P(k̂ = k0)→ 1, as T →∞.

As for Proposition 1, a proof for Proposition 2 can be found in the appendix. Of course

αT = α can be kept constant in empirical applications. After the selection of appropriate

long memory dynamics, the correct ARMA model orders p and q can be selected using

an information criterion if the selected model is re-estimated parametrically using an

approximate Whittle likelihood procedure. Giraitis and Leipus (1995) prove the consis-

tency of this estimator. The semiparametric estimation results can be used as starting

values for the numerical optimization.

As usual for semiparametric estimators there is the problem of an optimal bandwidth

choice. In this case we have to select ζ that determines the number of knots in the

smoothing spline via HT = b1 + T ζc and ξ that determines the usual bandwidth m =

b1 + T ξc. In the case of only a single pole at the origin the MSE-optimal bandwidth m

could be selected with the procedure of Henry and Robinson (1996) and Henry (2001).

For multiple poles however, no such results are available. An additional complication

in the k-factor GARMA model is, that the parameter estimates might be negatively

effected in small samples if the selected bandwidth is too large, so that Assumption 2

is not sufficient to inhibit that the effects from neighbouring poles interfere within the

selected bandwidth. Hassler and Olivares (2013) show that a conservative deterministic

bandwidth selection outperforms data-driven approaches in most situations.

In addition to that, simulation results not reported here show, that k̂ > k0 mainly occurs

in the presence of short memory dynamics if f̂ (λ) is not flexible enough to remove peaks

in the spectrum that originate from the short memory component. This typically leads

to a selection of several cyclical frequencies γ̂ j within a very narrow frequency interval.

We thus recommend to repeat the model selection procedure using a grid of different

values for ξ and ζ and then to select the largest model with clearly distinct cyclical

frequencies γ̂ j.

Situations with k̂ < k0 can be identified by plotting the autocorrelation function of the

filtered process ∆k̂Xt. If the selected model is specified correctly, the hyperbolically

decaying sinusoidal pattern should be removed. This is the strategy we will follow in

our empirical application in Section 7.
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6 Monte Carlo Study

In this section we conduct Monte Carlo experiments to evaluate the performance of our

model order selection procedure in various situations. To separate the performance of

the sequential filtering procedure from that of the modified G∗-test, we first use Walker’s

g-test to detect significant periodic behavior. In this setup we start by considering the

case of a single cyclical frequency and investigate how the performance of the selection

procedure depends on the location of the pole and the magnitude of the long memory

parameter. Then, we analyze how the procedure performs if the number of poles is

increased.

Subsequently, we replace Walker’s g-test with the modified G∗-test and analyze the

robustness of the selection procedure if short memory dynamics and conditional het-

eroscedasticity are present. All results shown are obtained with M=5000 Monte Carlo

repetitions. Simulations from the Gegenbauer process are generated using its AR(∞)-

representation with a truncation after 1000 lags and a burnin period of 1000 observations.

In all experiments the shorter series uses only the first T1 < T2 observations of the longer

series. The DGP is always the k-factor GARMA process from equation (1). The trim-

ming parameter is kept constant at l = 1 as in Arteche and Robinson (2000) and the

bandwidth parameter is kept at ξ = 0.7 if not stated differently. Hereafter, we will use

the term ”power” to refer to the ability of the procedure to identify the true model order

k0.

6.1 Power Depending on the Location of the Pole and the Number

of Cyclical Frequencies

First, we consider the 1-factor Gegenbauer process (1− 2cosγL + L2)dXt = εt that does

not contain any short memory dynamics. In this case the filtered process ∆k(i)
Xt equals

the white noise sequence εt under the null hypothesis in every step of the filtering proce-

dure. Consequently, we can use Walker’s original large sample statistic (9) instead of the

modified G∗-statistic (10) to determine whether the filtered process contains significant

periodicity. We allow the fractional exponent d that determines the shape of the pole to

increase in steps of 0.05 from 0 to 0.45 and we shift the location of the pole in 14 steps

from γ = 0 to γ = π.2 The sample sizes considered are given by T ∈ {500,1000,2000,5000}.
Table 2 in the appendix gives a detailed overview of the results obtained in these simu-

lations. A graphical summary of the results is depicted in Figure 1.

Since we are interested in the effects of γ, T and d, we always keep one of the parameters

2Because of the change of the power law parameter β discussed above the results for γ = 0 and γ = π
are simulated with half of the d reported.
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Figure 1: The DGP is (1−2cosγL + L2)dXt = εt. On the left the cyclical frequency is fixed to
γ = π/2 and T is increased. In the middle the sample size is fixed to T = 1000 and d is increased.
In the graph on the right d = 0.2 is fixed and T is increased.

fixed and show how the power depends on the other two. The graph on the left shows

power curves if the pole is fixed to the frequency γ = π/2. It can be seen, that the power

of the selection procedure is increasing in the magnitude of the fractional exponent d and

the sample size T . For d ≤ 0.05 however, it barely increases. This is because the location

of the pole can only be identified consistently if the fractional exponent is bounded away

from zero as stated in Assumption 1. Note that for the reasons discussed in Section 5,

the maximal power that the selection procedure can achieve in practical applications is

1−α. It is clear to see that the procedure is slightly conservative in the size case where

d = 0.

The graph in the middle shows the power for a fixed sample size of T = 1000 across

the spectrum of possible periodic frequencies γ and for different values of d. One can

see, that the conservativeness of the procedure and the non-existing power for small d

occur independent of the location of the periodic frequency. For smaller d the power

is increasing with increasing distance of γ from π/2. Only for γ ∈ {0,π} there is a drop

in power again. This is caused by the fact that the fractional exponents at frequencies

further away from the boundaries are estimated using 2m Fourier frequencies - that is

m frequencies on either side of the pole. At the boundaries however, we can only use

ma <m Fourier frequencies on one side of the pole so that the estimator for the fractional

exponent has a higher variance at these frequencies.

In the graph on the right in Figure 1 we keep d fixed at 0.2 and the curves show the

power across frequencies for increasing T , so that one can see that the increasing power

in T remains intact across all frequencies and the power does not depend on the cyclical

frequency γ asymptotically.

Since the purpose of our procedure is to select the true model order k0 if there are multiple

cyclical frequencies, we now allow the number of cyclical frequencies k to take values from
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Figure 2: The DGP is
∏k

j=1(1−2cosγ jL + L2)d j Xt = εt with γ j = (π j)/(k + 1). Power curves are
shown for k ∈ {1,2,3,4} and increasing sample sizes.

1 to 4. The DGP is given by
∏k

j=1(1−2cosγ jL+ L2)d j Xt = εt, but the specification of the

test, the sample sizes and the values of the fractional exponents considered are the same

as before. We set γ j = (π j)/(k + 1), so that the seasonal frequencies are equally spaced

and the outer minimal and maximal periodic frequencies have the distance π/(k + 1)
to the boundaries. All long memory parameters are kept equal at d j = d. To avoid

interference effects from neighboring poles we now use ξ = 0.55. The results of this

experiment are shown in Figure 2. If d and T remain constant, we can observe that the

power is lower for higher k. For k = 4 we also observe that the power starts to become

non-monotonic in d for smaller sample sizes. This is due to the interference effect from

neighboring poles discussed in Section 5. Nevertheless, asymptotically the procedure

selects the right model order with probability 1−αT . So the experiments show that the

sequential-g procedure also works well for larger k.

- 15 -



6.2 The Influence of Short Memory Dynamics and Conditional Het-

eroscedasticity

So far we have only considered the restricted version of the model selection procedure

that is based on Walker’s original g-test given in (9). Under the null hypothesis, this

test assumes that the process is iid. Since short memory dynamics are present in most

applications, we now consider the case in which the residuals from (5) show stationary

ARMA behavior.
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Figure 3: Power curves of the sequential G∗-procedure for (1−φL)(1−2cos π2 L+ L2)dXt = εt with
increasing autoregressive parameters φ.

It is well known that the semiparametric estimators of the fractional exponents d j are

asymptotically unaffected by the presence of short memory dynamics. The critical part

of our procedure is the performance of the g-test. As discussed in Section 5, the pro-

cedure tends to find several spurious seasonal peaks in a very narrow interval if the

spectral density is assumed to be that of an iid-process but in fact short memory dy-

namics are present. This is why we will now investigate the size and power properties

of the procedure if the modified G∗-test from (10) is used that allows for the presence

of stationary ARMA dynamics under the null hypothesis.

The simulated DGP is (1−φL)(1−2cos π2 L + L2)dXt = εt. This means the short memory

component of the process takes the form of an AR(1). We consider the case of one pole

at γ = π/2 with increasing fractional exponents and increasing persistence of the short

memory process. The bandwidth parameter that determines the number of knots used

for the logspline estimate is set to ζ = 0.1 and the spline used is a cubic spline. Figure 3

illustrates the key findings. The complete results are given in Table 3 in the appendix.

We can compare the size and power results for φ = 0 with those in Table 2 obtained

with the restricted g-test if the pole is at γ = π/2. As expected there are power losses if
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the unrestricted modified G∗-test is applied and no short memory dynamics are present

(φ = 0), but these are very small in magnitude. This means that Walker’s large sample

g-test can be replaced by the modified G∗-test at almost no costs. This can also be seen

by comparing the solid curves in Figure 3 with the dotted and the solid curve in the

graph on the left in Figure 1. These are virtually identical.

Figure 3 also shows, that the power of the test actually increases if there are weak AR(1)

dynamics present (for φ ≤ 0.3). This effect could appear because part of the flexibility of

the spline is used to fit the spectral density of the AR-part at the origin, so that there

is less flexibility to fit the cyclical pole. For stronger AR-dynamics the power starts

to drop for every given d and T and the model order is only correctly identified for

larger memory parameters. There are two intuitive explanations for this effect. First, a

smaller proportion of the variance of the process is attributed to the cyclical behavior if

the AR-dynamics are stronger, so that it is harder to identify the poles from the peri-

odogram. Second, it becomes harder to use the periodogram to distinguish peaks in the

spectral density due to short memory behavior from poles due to long memory behavior

if φ increases. Nevertheless, the sequential-G∗ procedure still works well as long as the

AR-dynamics remain moderate (φ ≤ 0.5). This is less restrictive than it might appear,

because the persistence of the k-factor GARMA process is first and foremost caused by

its long memory components and not by the ARMA component alone.

Since many of the potential applications of cyclical long memory models are in the area

of financial high frequency data, it is also of interest to investigate whether our selec-

tion procedure remains valid under conditional heteroscedasticity. Robinson and Henry

(1999) show that the consistency, the asymptotic normality and even the asymptotic

variance of the Gaussian semiparametric estimator for the fractional exponents remain

unaffected by conventional ARCH/GARCH type conditional heteroscedasticity and also

by long memory conditional heteroscedasticity. Additional simulation studies showed

that these results carry over to our model selection procedure, even though this also de-

pends on the semiparametric estimator of Hidalgo and Soulier (2004) and the modified

G∗-test. In fact, the power is virtually identical even with just 500 observations.3

7 Modeling Californian Electricity Loads with k-factor

GARMA Models

As discussed in the introduction, GARMA models are useful in high frequency datasets

that potentially exhibit multiple seasonalities. One such example are electricity load

3These results can be obtained from the authors upon request.

- 17 -



series. In particular the forecasting of the latter has attracted continued attention in

the literature, because electricity demand is very volatile and it has to be matched by

supply in real time. Since different means of electricity generation have very different

marginal costs, precise forecasts are of major importance for electricity producers to

schedule production capacities accordingly. Recently, GARMA models have been used

to generate such forecasts by Soares and Souza (2006) who apply a 1-factor GARMA

model to forecast electricity demand in the area of Rio de Janeiro (Brazil) and Diongue

et al. (2009) who use a 3-factor GIGARCH model to forecast German spot market

electricity prices.
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Figure 4: Californian system wide log-load series from 2000 to 2002 before and after deter-
ministic seasonality is removed.

In general, two different approaches can be distinguished in the literature on electricity

load forecasting. The global approach is to fit a relatively complex model to the hourly

series, whereas local approaches forecast all 24 hourly series with separately estimated

simpler models.

By applying our model selection procedure to electricity load series from the Californian

power system, we complement this literature with an in-sample perspective on model

selection in the global series.

The data is downloaded from UCEI4 and covers the period from 2000 to 2002, which

gives us 26304 hourly observations. A similar dataset was considered in Weron and

Misiorek (2008) who focus on prices in the period 1999-2000. To remove deterministic

seasonality upfront, we consider the residual series obtained from regressing the log of

each hourly series separately on a trend and dummy variables for the day of the week

and the month of the year. Insignificant dummies are discarded stepwise using a general-

to-specific procedure. A similar approach was suggested in Haldrup and Nielsen (2006).

This simple deterministic model already achieves an R2 of approximately 90.49 percent,

4www.ucei.berkeley.edu
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which implies that a large proportion of the seasonality in the series is deterministic.

The original series as well as the residual series from this regression are plotted in Figure

4. It is obvious, that the variance of the series is strongly reduced. The left side of Figure

5 depicts the autocorrelation function of the residual series. It shows clearly that the

series exhibits long memory and periodicity.
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Figure 5: Autocorrelation function of the original series (left) and the residual series of 14-
factor Gegenbauer process (right).

If one would discretionary fit a model based on a visual inspection of the periodogram

shown on the left side of Figure 6, one would probably consider a two factor model

with a pole at the origin and one in the neighborhood of λ = 0.25 which approximately

corresponds to the daily frequency 2π/24. Such a process could be approximated well by

an ARFIMA process, since the effect at λ = 0.25 seems to be of a small magnitude. In

sharp contrast to that, our model selection procedure indicates that a 14-factor GARMA

process should be used to model the series. The intuition for this unexpected result be-

comes obvious, if one considers the residual series ∆k(i)
Xt from (5) after filtering out the

effect of the pole at the origin. The periodogram of the filtered process is depicted on

the right hand side of Figure 6. The poles that become visible here are not visible in

the original periodogram on the left hand side, because of the magnitude of the Fourier

frequency closest to the origin. To include these effects, it is necessary to increase the

model order.

As discussed in Section 5, the bandwidth choice has a critical influence on the results

of the selection procedure. This is why we repeat the analysis using a grid of values

for ξ and ζ, that determine the number of frequencies m used in the estimation of

the long memory parameters d j and the number of segments HT used in the logspline

estimate of the spectral density. We allow ξ to increase from 0.5 to 0.65 in steps of
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0.01 and determine ζ so that the number of segments varies from 2 to 8. For every

parameter constellation we store all estimated cyclical frequencies γ̂ j. The histogram

in Figure 7 shows which frequencies are selected and how often they are found to be

significant. It can be seen, that not every of the cyclical frequencies is selected with

every combination of bandwidth parameters. However, 14 frequencies are selected in

the majority of parameter constellations. These are the zero frequency that corresponds
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to a non-seasonal long memory component, 2π/(24×7) - the frequency of a weekly cycle

and 2πυ/(24), with υ = 1, ...,12 which is the frequency of a daily cycle and its harmonics.

For better comparison, these theoretical frequencies are superimposed as dashed and

dotted vertical lines in Figure 7.

These findings indicate, that the data is best explained by the 14-factor GARMA model

with these respective frequencies, which confirms the initial expectation that there are

multiple cycles in the data generating process. To fit the 14-factor GARMA model we

estimate the relevant cyclical frequencies by the local modes in the histogram. These es-

timates γ̂ j along with the cycle length in days T̂ j and the estimated fractional exponents

d̂ j are given in Table 1. If one considers the estimated fractional exponents d̂ j, one ob-

serves that the exponent at the origin is larger than 0.25 which implies non-stationary

but mean reverting long memory. The memory parameter of the daily frequency is

0.5550 which is also in the non-stationary but mean reverting region.5 The other expo-

nents lie between 0.11 and 0.34 and tend to decrease for higher frequencies.

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

d̂ j 0.3373 0.2401 0.5550 0.3469 0.1314 0.3237 0.2441 0.2111 0.1902 0.2042 0.1979 0.1803 0.1241 0.0578

γ̂ j 0.0025 0.0425 0.2625 0.5325 0.8225 1.0425 1.2975 1.5625 1.8275 2.0925 2.3525 2.6125 2.8775 3.1375

Table 1: Fitted 13-factor Gegenbauer model. Standard errors for d j are 0.0233 for γ1 and γ14,
0.0200 for γ2, and 0.0166 for all other periodic frequencies.

The autocorrelation function of the residuals from the 14-factor model is plotted on

the right hand side of Figure 5. Even though there is still some unmodeled short term

dependence in the data, the total degree of dependence is greatly reduced. The R2

obtained is as high as 84.97 percent, which means that the deterministic model and the

Gegenbauer model together explain approximately 98.57 percent of the variation of the

original series.

Based on the visual inspection of the periodogram we would have chosen a 2-factor

GARMA model with non-seasonal long memory and a daily cycle. In contrast to that,

our model order selection procedure finds a 14-factor model that also includes cycles at

the weekly frequency and the harmonics of the daily frequency. These different model

choices have very different implications. In the case of the 2-factor model no weekly cycle

is detected and one would conclude that the weekly seasonality in the original series is

best modeled by deterministic dummies. Furthermore, considering the local series for

every hour of the day separately can be done with a relatively small loss of information

if there are no intraday cycles. Our findings on the other hand imply, that there is

5The non-stationary part of the parameter space for the d j was excluded from our analysis in the
preceding sections. However, we discussed in Section 4 that the results can be expected to carry over
to the mean reverting region where d j ∈ (0.5,1). This is also supported by simulations.
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indeed a stochastic weekly cycle and that there are several significant intraday cycles

at the harmonic frequencies that lead to a considerable loss of information when local

models are considered. In fact, the exemptional fit of the 14-factor model for the global

series shows that this series can indeed be modeled directly if the daily load profile is

accounted for by a suitable seasonal model.

8 Conclusion

We introduced an automatic model order selection procedure for k-factor GARMA mod-

els that is based on tests of the maximum of the periodogram and semiparametric esti-

mations of the locations of the poles as well as the fractional exponents and can be used

for general model selection in cyclical long-memory processes. As a byproduct we suggest

a modified test for persistent periodicity in stationary ARMA models. Our simulation

studies show that the procedure performs well if there is a single pole, with several poles,

under additional short memory dynamics and under conditional heteroscedasticity.

Our procedure allows an easier application of k-factor GARMA models in empirical

analyses and prevents the use of false model specifications that are based on discretionary

decisions after a visual analysis of the periodogram. As the example of the Californian

electricity load series in Section 7 shows, the periodogram can be very misleading if it

is used as a tool for the selection of the model order.

We also gain new insights into the behavior of electricity load series. It turns out that

the stochastic variation of the Californian electricity loads can be modeled very well by

a 14-factor GARMA process. The fit achieved suggests that it can indeed be a good

strategy to model the global series directly instead of fitting separate models for every

hour of the day. This is especially important for short term forecasts since the 1-hour-

ahead forecast of a local model only uses data up to 23 hours ago and does not utilize

the information contained in the most recent observations.

These insights demonstrate the potential of k-factor GARMA models for the modeling

of periodic time series like the electricity load example considered here or the intraday

trading volume and volatility series discussed in the introduction. The semiparametric

estimators used for the selection procedure require low computational effort since they

only utilize periodogram ordinates local to the respective pole, which makes them easy

to apply in large high frequency datasets.
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Appendix

T=500

d/γ 0 .22 .45 .67 .9 1.12 1.35 1.57 1.8 2.02 2.24 2.47 2.69 2.92 π

0 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01

.05 0.03 0.06 0.05 0.04 0.04 0.05 0.04 0.03 0.04 0.04 0.04 0.04 0.05 0.06 0.02

.1 0.10 0.36 0.24 0.18 0.16 0.15 0.14 0.13 0.14 0.15 0.16 0.20 0.24 0.35 0.08

.15 0.25 0.74 0.58 0.47 0.40 0.39 0.38 0.38 0.38 0.40 0.43 0.47 0.58 0.74 0.26

.2 0.52 0.91 0.84 0.77 0.72 0.69 0.69 0.67 0.66 0.68 0.72 0.75 0.84 0.91 0.48

.25 0.74 0.95 0.93 0.92 0.90 0.88 0.86 0.87 0.87 0.88 0.89 0.91 0.94 0.94 0.69

.3 0.87 0.95 0.95 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.94 0.78

.35 0.93 0.95 0.96 0.98 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.97 0.96 0.94 0.82

.4 0.95 0.95 0.96 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.96 0.95 0.83

.45 0.96 0.95 0.97 0.98 0.98 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.97 0.95 0.81

T=1000

d/γ 0 .22 .45 .67 .9 1.12 1.35 1.57 1.8 2.02 2.24 2.47 2.69 2.92 π

0 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

.05 0.03 0.09 0.07 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.05 0.07 0.09 0.04

.1 0.15 0.48 0.33 0.26 0.24 0.21 0.20 0.20 0.20 0.21 0.24 0.26 0.33 0.47 0.13

.15 0.41 0.86 0.73 0.65 0.57 0.55 0.52 0.53 0.54 0.55 0.59 0.65 0.74 0.86 0.39

.2 0.72 0.94 0.92 0.90 0.86 0.85 0.83 0.83 0.83 0.85 0.86 0.88 0.93 0.94 0.70

.25 0.90 0.94 0.96 0.96 0.96 0.95 0.96 0.95 0.95 0.96 0.96 0.96 0.96 0.95 0.85

.3 0.94 0.95 0.96 0.97 0.98 0.97 0.98 0.97 0.97 0.98 0.97 0.97 0.96 0.95 0.88

.35 0.96 0.95 0.97 0.98 0.98 0.97 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.95 0.88

.4 0.95 0.95 0.97 0.97 0.98 0.98 0.99 0.99 0.98 0.98 0.98 0.98 0.97 0.95 0.88

.45 0.96 0.95 0.97 0.98 0.98 0.98 0.99 0.99 0.98 0.99 0.98 0.98 0.97 0.94 0.87

T=2000

d/γ 0 .22 .45 .67 .9 1.12 1.35 1.57 1.8 2.02 2.24 2.47 2.69 2.92 π

0 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

.05 0.03 0.12 0.08 0.06 0.06 0.06 0.05 0.05 0.06 0.06 0.07 0.07 0.09 0.12 0.04

.1 0.22 0.61 0.45 0.36 0.33 0.28 0.27 0.28 0.28 0.29 0.32 0.37 0.45 0.62 0.21

.15 0.59 0.91 0.85 0.80 0.75 0.71 0.69 0.69 0.70 0.73 0.75 0.79 0.86 0.93 0.58

.2 0.88 0.95 0.95 0.96 0.94 0.94 0.94 0.93 0.93 0.95 0.94 0.94 0.95 0.95 0.85

.25 0.95 0.96 0.96 0.97 0.97 0.97 0.98 0.97 0.97 0.98 0.97 0.97 0.97 0.96 0.90

.3 0.95 0.96 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.95 0.92

.35 0.96 0.95 0.97 0.98 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.97 0.98 0.96 0.91

.4 0.97 0.96 0.97 0.98 0.98 0.98 0.99 0.99 0.98 0.99 0.98 0.97 0.97 0.95 0.91

.45 0.97 0.95 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.95 0.90

T=5000

d/γ 0 .22 .45 .67 .9 1.12 1.35 1.57 1.8 2.02 2.24 2.47 2.69 2.92 π

0 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

.05 0.06 0.16 0.11 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.08 0.11 0.15 0.06

.1 0.35 0.78 0.60 0.51 0.46 0.42 0.41 0.40 0.41 0.43 0.46 0.52 0.62 0.79 0.36

.15 0.82 0.94 0.92 0.93 0.90 0.89 0.89 0.88 0.87 0.90 0.90 0.91 0.94 0.94 0.81

.2 0.95 0.96 0.96 0.97 0.98 0.97 0.98 0.97 0.97 0.97 0.97 0.96 0.97 0.96 0.93

.25 0.97 0.96 0.97 0.98 0.97 0.98 0.98 0.98 0.97 0.98 0.98 0.97 0.97 0.96 0.94

.3 0.96 0.96 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.99 0.98 0.98 0.98 0.97 0.94

.35 0.96 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.96 0.95

.4 0.97 0.96 0.98 0.98 0.98 0.98 0.99 0.99 0.98 0.99 0.98 0.98 0.98 0.96 0.95

.45 0.97 0.96 0.98 0.98 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.98 0.98 0.96 0.95

Table 2: shows how often the sequential-g procedure selects the right model order k = 1 for
different d and at different frequencies γ.
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T=500

d/φ 0 .1 .2 .3 .4 .5

0 0.02 0.02 0.03 0.03 0.03 0.02

.05 0.04 0.06 0.06 0.06 0.03 0.01

.1 0.13 0.18 0.20 0.17 0.08 0.03

.15 0.37 0.43 0.45 0.41 0.28 0.10

.2 0.64 0.69 0.70 0.70 0.58 0.33

.25 0.84 0.86 0.88 0.87 0.82 0.65

.3 0.94 0.94 0.93 0.93 0.94 0.87

.35 0.98 0.97 0.95 0.95 0.97 0.96

.4 0.98 0.97 0.96 0.97 0.98 0.99

.45 0.99 0.97 0.96 0.97 0.99 0.99

T=1000

d/φ 0 .1 .2 .3 .4 .5

0 0.02 0.03 0.03 0.03 0.03 0.01

.05 0.04 0.07 0.09 0.05 0.03 0.01

.1 0.19 0.26 0.27 0.21 0.08 0.02

.15 0.50 0.57 0.61 0.54 0.33 0.11

.2 0.81 0.85 0.86 0.84 0.69 0.42

.25 0.95 0.95 0.94 0.95 0.92 0.77

.3 0.98 0.97 0.96 0.97 0.98 0.95

.35 0.98 0.97 0.97 0.98 0.99 0.99

.4 0.99 0.98 0.97 0.98 0.99 0.99

.45 0.99 0.98 0.98 0.99 0.99 1.00

T=200

d/φ 0 .1 .2 .3 .4 .5

0 0.02 0.03 0.03 0.03 0.03 0.01

.05 0.05 0.08 0.10 0.05 0.02 0.01

.1 0.26 0.34 0.36 0.24 0.08 0.01

.15 0.67 0.74 0.75 0.67 0.38 0.13

.2 0.92 0.94 0.93 0.92 0.81 0.51

.25 0.97 0.97 0.96 0.98 0.97 0.87

.3 0.98 0.97 0.97 0.98 0.99 0.98

.35 0.98 0.98 0.97 0.98 0.99 0.99

.4 0.98 0.98 0.98 0.99 0.99 0.99

.45 0.99 0.98 0.98 0.99 0.99 0.99

T=5000

d/φ 0 .1 .2 .3 .4 .5

0 0.02 0.03 0.04 0.02 0.02 0.01

.05 0.07 0.11 0.11 0.05 0.02 0.01

.1 0.38 0.48 0.49 0.29 0.08 0.02

.15 0.86 0.89 0.89 0.79 0.50 0.17

.2 0.98 0.96 0.96 0.97 0.92 0.67

.25 0.98 0.97 0.97 0.98 0.99 0.96

.3 0.98 0.97 0.98 0.98 0.99 0.99

.35 0.99 0.98 0.98 0.99 0.99 0.99

.4 0.99 0.98 0.98 0.99 0.99 0.99

.45 0.98 0.98 0.98 0.99 0.99 0.99

Table 3: shows how often the sequential-G∗ procedure selects the right model order in presence
of AR(1)-dynamics with the autoregressive parameter φ. The DGP has k=1 at frequency
γ = π/2.
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Proof of Proposition 1:

1. For the linear process Zt with
∑∞

j=0|a j|<∞ and the smoothed periodogram estimator

with a ”lag window” of M∗ covariances we have f̂ (λ) = f (λ)+O(
√

M∗/T ) as a direct

consequence of Theorem 10.4.1 in Brockwell and Davis (2009), so that we have

pointwise consistency for 1
M∗ + M∗

T → ∞ and the asymptotic distribution of G∗

only depends on that of I(λκ). Theorem 10.3.2 in Brockwell and Davis (2009)

further implies that
(

I(λ1)
f (λ1) , ...,

I(λn)
f (λn)

) d
→ (Q1, ...,Qn), where Q1, ...,Qn are independent

exponential variables, so that p(G∗X > z̃) = 1− (1− exp(−z̃/2))n still holds under the

null hypothesis of a short memory process.

2. To prove the consistency of the G∗-test, first consider max(Iκ). From Hidalgo and

Soulier (2004) we have that γ̂ j = argmaxλκ(I(λκ))→ γ j with rate T logb̃(T ), for any

b̃ > c j/2, where c j is the constant that bounds away d j from 0 in Assumption 1. It

is known that for long memory processes limT→∞E
(

Iκ
f (λκ)

)
, 1. However, Theorem

1 of Robinson (1995b) states that limT→∞E (I(λκ)) ∝ f (λκ). In addition to that,

Lemma 2 of Hidalgo and Soulier (2004) states, that Iκ√
E(Iκ)

= Uκ converges weakly

to a distribution without mass at 0. Together this implies that I(λκ) ∝ Uκ f (λκ).
Since f (γ j) =∞ this implies that limT→∞P(I(γ̂ j) < c̃) = 0 ∀ c̃ <∞.

Now consider the logspline estimate f̂ (λ). If f̂ (λ) remained a consistent estimate,

it would converge with rate
√

HT/T which is much more slowly than T logb̃(T ).
This means that asymptotically f̂ (γ̂ j) remains bounded relative to I(γ̂ j), so that

limT→∞P
(
max

(
Iκ

f (λκ)

)
=

max(Iκ)
f (λκ)

)
= 1 and consequently limT→∞P (G∗ =∞) = 1. �
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Proof of Proposition 2:

The consistency of the model selection procedure can be established in analogy to that

of the sequential structural break test in Bai (1997).

Consider the event k(i) < k0 and denote by cT the critical value associated with the

significance level αT . If the estimated number of poles is less than the true number,

there exists at least one pole in the spectrum. Due to the result in Proposition 1, we

know that in this situation P(G∗ > cT )→ 1 as T →∞. The null hypothesis of no seasonal

long memory will thus be rejected with probability tending to 1 and the next iteration

of the model selection procedure begins. This implies that P(k̂ < k0) converges to zero

as the sample size increases.

Alternatively, consider the event k̂ > k0. This event can arise if there is a type I error

in the k0 + 1th iteration of the G∗-test or if there are multiple consecutive type I errors

with the first one occurring in the k0 + 1th iteration. We thus have P(k̂ = k0 + r)→ αr
T ,

∀ r ≥ 1. Consistency is achieved since αT → 0, so that P(k̂ = k + r)→ 0 ∀ r , 0. From

P(k̂ < k0)→ 0 and P(k̂ > k0)→ 0 ∀ r = 0,1,2, ... follows immediately P(k̂ = k0)→ 1. �
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