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Inferen
e on the Long-Memory Properties of TimeSeries with Non-Stationary Volatility∗Matei Demetres
u† and Philipp Sibbertsen‡Abstra
tMany time series exhibit un
onditional heteroskedasti
ity, often in addition to 
ondi-tional one. But su
h time-varying volatility of the data generating pro
ess 
an haverather adverse e�e
ts when inferring about its persisten
e; e.g. unit root and station-arity tests possess null distributions depending on the so-
alled varian
e pro�le. Onthe 
ontrary, this is not the 
ase in stationary autoregressions, and 
orre
tly sizedinferen
e is guaranteed if taking prote
tive a
tions as simple as using White stan-dard errors (whi
h are employed anyway to deal with 
onditional heteroskedasti
ity).The paper explores the in�uen
e of time-varying volatility on fra
tionally integratedpro
esses. Con
retely, we dis
uss how to model long memory in the presen
e of time-varying volatility, and analyze the e�e
ts of su
h nonstationarity on several existinginferential pro
edures for the fra
tional integration parameter. Based on asymptoti
arguments and Monte Carlo simulations, we show that periodogram-based estima-tors, su
h as the lo
al Whittle or the log-periodogram regression estimator, remain
onsistent, but have asymptoti
 distributions whose varian
e depends on the varian
epro�le. Time-domain, regression-based tests for fra
tional integration retain theirvalidity if White standard errors are used. Finally, the modi�ed range-s
ale statisti
is only a�e
ted if the series require adjustment for deterministi
 
omponents.Key wordsTime-varying varian
e, Heteroskedasti
ity, Persisten
e, Fra
tional integration,Modulated pro
essJEL Classi�
ationC12 (Hypothesis Testing), C22 (Time-Series Models)
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1 Introdu
tionThere is an in
reasing body of eviden
e indi
ating that a standard assumption of many testpro
edures, un
onditional homoskedasti
ity, is violated for many types of data. Indeed,ma
roe
onometri
ians 
ould immediately name the Great Moderation as an example.Finan
ial time series have been found to exhibit un
onditional heteroskedasti
ity too, inaddition to 
onditional heteroskedasti
ity (see e.g. Amado and Teräsvirta, 2008).The e�e
t of deterministi
 (un
onditional) heteroskedasti
ity has already been ana-lyzed for 
ommon e
onometri
 tools su
h as stationarity, unit root, and 
ointegrationtests; see Cavaliere (2004), Cavaliere and Taylor (2005), and Cavaliere et al. (2010). The�nding 
ommon to these papers is that the null distributions of virtually all examinedtest statisti
s are distorted whenever so-
alled global homoskedasti
ity is violated (seealso Cavaliere and Taylor, 2009). The reason for su
h behavior is as follows. The asymp-toti
 null distributions of the respe
tive test statisti
s 
an be expressed as fun
tionalsof Wiener pro
esses, relying on invarian
e prin
iples for 
umulated sums of sto
hasti
pro
esses. But under time-varying varian
e of the in
rements, modi�ed invarian
e prin-
iples hold: intuitively, the 
hanging varian
e transforms time in the limit, whi
h in turna�e
ts the limiting distributions. The exa
t me
hanism 
an be seen e.g. in Hall (1977),who shows that weak 
onvergen
e to Brownian motion of 
umulative sums of square-integrable, possibly heteroskedasti
, triangular martingale di�eren
e arrays holds only ifnormalizing appropriately (i.e. using an estimate of the quadrati
 variation).Su
h examinations, however, are a
tually s
ar
e in the 
ontext of fra
tionally inte-grated series (I(d)). On the one hand, the modi�ed range/s
ale statisti
 dis
ussed byLo (1991) has an asymptoti
 distribution expressed in terms of Wiener pro
esses underun
onditional homoskedasti
ity, so it 
ould be 
onje
tured that it is a�e
ted by time-varying varian
e in the same manner as stationarity and unit root tests. On the otherhand, Kew and Harris (2009) provided an analysis of regression-based fra
tional inte-gration tests applied to linear pro
esses with heteroskedasti
 innovations (sho
ks). Thee�
ient Wald test of Lobato and Velas
o (2007) or the augmented LM [ALM℄ test ofDemetres
u et al. (2008) fall in the examined 
ategory. Kew and Harris (2009) show that,if using White standard errors (re
ommended by Demetres
u et al. (2008) to deal with
onditional heteroskedasti
ity), some types of deterministi
 heteroskedasti
ity are allowedfor; their assumptions ex
lude, for instan
e, a simple break in the varian
e, but they 
on-je
ture that the results 
an be extended in that parti
ular dire
tion. Finally, Cavaliereet al. (2013) propose wild bootstrap implementations of Wald, LR and LM tests for thefra
tional integration parameter in a parametri
 ARFIMA(p, d, q) model (see Cavaliereand Taylor, 2007a, for the unit root 
ase) and show them to be robust to both 
onditionaland un
onditional heteroskedasti
ity of unknown form in the sho
ks.2



But the behavior of the equally popular frequen
y-domain pro
edures su
h as the lo
alWhittle or the log-periodogram regression estimator is not known at all in the presen
eof time-varying varian
e. Provided that the varian
e varies smoothly enough, a possi-ble approa
h to deal with time-varying varian
es is the 
on
ept of lo
al stationarity assuggested in Dahlhaus (2000). Lo
al versions of fra
tionally integrated pro
esses are dis-
ussed among others in Beran (2009) or Palma and Olea (2010). These authors workwith lo
alized versions of linear time series and de�ne the spe
trum of the time seriesas an averaged lo
al spe
trum. This leads to a higher �exibility in the sense that modelparameters 
an depend on time (whi
h thus robusti�es against time-varying varian
e) butintrodu
es an additional bandwidth parameter in the analysis based on spe
tral densities.Con
retely, the lo
alized version of the lo
al Whittle estimator relies on the usual band-width parameter determining the amount of frequen
ies used for the estimation but hasa se
ond smoothing parameter 
oming from the lo
alization. As the 
hoi
e of the band-width parameter is 
ru
ial in spe
tral-based long memory estimation, the e�e
t of theintrodu
tion of a se
ond bandwidth parameter is un
lear. Pra
titioners are thus likelyto 
hoose to work with lo
alized versions of the estimators only if there is 
ompellingeviden
e against weak stationarity.The paper therefore dis
usses the e�e
t of time-varying varian
e on the (non-lo
alized)estimation of the fra
tional integration parameter and onto the related tests. The fo
us ison �nding pro
edures that are robust to time-varying volatility, i.e. that do not require ade
ision between the basi
 form of an estimator or test and its heteroskedasti
ity-
orre
tedversion. We emphasize the need for robustness, sin
e, in order to apply some 
orre
tion(if available), one has to be aware that the 
orre
tion is ne
essary.Con
retely, our 
ontributions are as follows. Se
tion 2 des
ribes our setting in de-tail and provides a dis
ussion of the intera
tions of time-varying varian
e with the longmemory properties of time series, as well as of the 
onsequen
es of using di�erent vari-ants of the heteroskedasti
 long memory model we work with. In Se
tion 3, we showthat periodogram-based pro
edures are still asymptoti
ally unbiased but have typi
allyan in�ated varian
e whi
h a�e
ts inferen
e based on the distributional properties of theseestimators. At the same time, regression-based pro
edures are shown to be robust againsttime-varying varian
e as modeled here. The modi�ed range-s
ale statisti
 turns out tobe robust if adjustment for deterministi
s is not required, but is a�e
ted otherwise. The�nal se
tion 
on
ludes, and the proofs have all been gathered in the appendix.Let us set some notation before providing the framework of our analysis and themain �ndings and results. Denote by fy the spe
trum of a weakly stationary pro
ess yt,
fy(λ) =

1
2π

∣∣E
(
yte

iλt
)∣∣2, by Iy the periodogram of a series yt, Iy(λ) = 1

2πT

∣∣∣
∑T

t=1 yte
iλt
∣∣∣
2,and by λj the jth Fourier frequen
y, λj = 2πj/T . Further, let C be a generi
 
onstant and

‖·‖2 the L2 norm of a random variable; d→ denotes 
onvergen
e in distribution, and p→3



denotes 
onvergen
e in probability. Finally, the Op symbol has its usual meaning of anupper bound for the magnitude order of a sto
hasti
 sequen
e.2 Heteroskedasti
ity and long memoryA very popular model for long memory and antipersisten
e is given by the fra
tionallyintegrated pro
ess
yt = µ+ (1− L)−d utI(t > 0), t ∈ Z (1)where the fra
tional integration �lter is given by the usual series expansion and ut is a shortmemory 
omponent. The paper assumes without loss of generality that µ = 0. Underregularity 
onditions for ut�in parti
ular, weak stationarity or asymptoti
ally negligibledepartures from weak stationarity (see e.g. Phillips, 1987, in the unit root 
ase)�, well-known invarian
e prin
iples hold. If d ∈ (−0.5; 0.5), suitably normalized 
umulated sumsof yt 
onverge weakly to fra
tional Brownian motion of type I; if d ∈ (0.5; 1.5), it is ytitself that, suitably normalized, 
onverges weakly to fra
tional Brownian motion (of typeII). For sets of su�
ient 
onditions see e.g. Davydov (1970) or Marinu

i and Robinson(2000), respe
tively.Alternatively, the behavior of the spe
trum of the pro
ess in a neighborhood of theorigin 
an be used to 
hara
terize the memory properties

λ2dfy(λ) → C as λ→ 0.If ut has a 
ontinuous spe
trum, bounded and bounded away from 0 at the origin, thespe
trum of yt from (1) behaves like in the above equation.Motivated e.g. by the literature dis
ussing 
hanges in the persisten
e of pro
esses withlong-range dependen
e (see Leybourne et al., 2007, or the more re
ent 
ontributions ofSibbertsen and Kruse, 2009, and Hassler and S
heithauer, 2011), one 
ould allow fordeterministi
 
hanges in d: they ne
essarily in�uen
e the varian
e of yt. Su
h a model,however, is not too 
onvenient be
ause it mingles the variability of the varian
e with thepersisten
e of the pro
ess.Virtually all existing papers assume a 
omponent model for introdu
ing heteroskedas-ti
ity, where the sto
hasti
 
omponent is weakly stationary and the heteroskedasti
ity isindu
ed by multipli
ation with a sequen
e of 
onstants; typi
ally, a triangular array stru
-ture is allowed for in order to model e.g. a stru
tural break o

urring at a �xed positionrelative to the sample size. This stru
ture is nothing else than a uniformly modulatedpro
ess in the terminology of Priestley (1988, p. 165).Looking ba
k at the unit root 
ase, the natural 
hoi
e for the nonstationary fra
tional
ase seems to be to fo
us on the short memory in
rements; for them, Cavaliere (2004)4



assumes that ut = σtυt for ea
h t = 1, . . . , T , where υt is (short-memory) weakly station-ary and the so-
alled varian
e pattern σt is given by the sampling at t/T of a pie
ewise
ontinuous fun
tion with a �nite number of dis
ontinuities ful�lling a uniform Lips
hitz
ondition at all 
ontinuity points.But from an e
onomi
 modeling perspe
tive, say, the more 
onvenient way to introdu
eheteroskedasti
ity relies on spe
ifying the short-memory 
omponent ut as a linear pro
ess.Under weak stationarity, su
h a linear Wold representation exists and the assumption isnot restri
tive. So one 
an require�as do Phillips and Xu (2006) and Cavaliere and Taylor(2007b)�that the innovations of the linear pro
ess be modulated, instead of the pro
essitself, ut = ∑
j≥0 bjεt−j with εt = σtǫt, where ǫt is un
orrelated with 
onstant varian
eand the 
oe�
ients bj satisfy some summability 
ondition.The assumption of a linear pro
ess is quite general and is standard in the unit rootliterature; a very similar assumption is made e.g. by Marinu

i and Robinson (2000) inthe fra
tional integration 
ontext. It allows of 
ourse for �nite-order ARMA pro
esses,whose Wold 
oe�
ients de
ay exponentially. Su
h an assumption allows for the ni
erinterpretation that innovations, and not the entire pro
ess, have a 
hanging varian
e inresponse to 
hanging environment 
onditions instead of a 
hange a�e
ting all previousinnovations as well. It also allows for a 
lear distin
tion between dynami
s and volatilityof the series.By fo
using on the short memory 
omponent, however, the dis
ussion ignores the �in-termediate position� of fra
tional integration between stationarity and integration: whendealing with stationary long memory, the pro
ess itself 
ould be modulated, as opposedto having modulated innovations or modulated short-run 
omponents.All these are di�erent data generating pro
esses [DGPs℄. In pra
ti
e, one may howeverbe tempted to pi
k that DGP that 
an be more easily dealt with analyti
ally. So the ques-tion relevant at this point is, what is the relation between them? Do they have di�erentimpli
ations? More pre
ise assumptions are required for answering these questions.The varian
e pattern examined here relies on Cavaliere's (2004) assumption but allowsfor unbounded, trending varian
es. See also Cavaliere and Taylor (2009) and Cavaliereet al. (2013). As pointed out by Cavaliere (2004), assuming the varian
e pattern tobe deterministi
 is a simple way of ensuring it to be exogenous; if σt is random, butmeasurable w.r.t. the remote σ-�eld ⋂∞

s=−∞{ǫs, ǫs−1, . . .}, the results are not a�e
ted.Assumption 1 There exists a non-negative fun
tion σ (s) with real support satisfying auniform Lips
hitz 
ondition at all but a �nite number of (jump) dis
ontinuity points, and
α ≥ 0, su
h that σt = T ασ

(
t
T

).The assumption allows e.g. for deterministi
 jumps in the varian
e (with α = 0),but also for a linear trend in the varian
e (with σ(s) = sI(s > 0) and α = 1). The5



nonnegativity requirement keeps the interpretability of σ as an exogenous varian
e s
alingfa
tor. The assumption also implies σ(·) to be bounded, with boundedness being helpfulwhen 
onsidering t < 0. Assumption 1 basi
ally requires that the properly s
aled varian
edoes not vary too wildly in the limit.Let us now examine the di�eren
es between the two dis
ussed DGPs. The proposi-tion below examines the inter
hangeability of linear �ltering and varian
e modulation asimplied by Assumption 1.Proposition 1 Let ut =∑j≥0 bjǫt−jσt−j, and ũt = σt

(∑
j≥0 bjǫt−j

) where ‖ǫt‖2 < C <

∞ ∀t ∈ Z and {bj}j≥0 is 1-summable. It then holds true under Assumption 1 that
∥∥u[sT ] − ũ[sT ]

∥∥
2
< CT α−1at all 
ontinuity points s ∈ [0, 1] of σ(·).Proof: See Appendix C.The proposition is very general in that it does not require spe
i�
 assumptions aboutthe innovations ǫt ex
ept uniform L2 boundedness, not even short memory or weak sta-tionarity. As 
an be seen from the proof, the di�eren
e between u[sT ] and ũ[sT ] is Op(T

α)at the dis
ontinuity points of σ(·). If σt obeys Assumption 1 with α < 1, u[sT ] 
onverges inmean square to ũ[sT ] at a rate uniform in s. The rate depends on the trending behavior ofthe varian
e; if the varian
e trend is too strong, there is no equivalen
e. This 
an also bethe 
ase if σt indu
es �lo
al heteroskedasti
ity,� under whi
h the di�eren
es do not vanishin general; seasonal MA �lters, for instan
e, never lead to asymptoti
 equivalen
e underlo
al heteroskedasti
ity of the sho
ks. In 
ontrast, bj = 0 ∀j > 0 is an obvious parti
ular
ase where equivalen
e o

urs.The result assumes a short-memory type summability 
ondition on the �lter 
oe�-
ients. For the 
ase of more persistent �lters, we have the following proposition.Proposition 2 Let ut be fra
tionally integrated of order d, and yt = ∑t−1
j=0 φ

(d1)
j ut−jσt−jand ỹt = σt

∑t−1
j=0 φ

(d1)
j ut−j where φ(d1)

j are the 
oe�
ients of the fra
tional di�eren
e �lterwith parameter d1, not ne
essarily equal to d. Then,
∥∥y[sT ] − ỹ[sT ]

∥∥
2
≤ C T α+(d−d1)−0.5.at all 
ontinuity points s ∈ [0, 1] of σ(·).Proof: See Appendix C.Thus, the 
onsidered DGPs are equivalent in a 
ertain sense. But do not know yetwhat the exa
t properties of the DGPs are with respe
t to serial dependen
e. The het-eroskedasti
 stru
ture of the series does in�uen
e the theoreti
al long memory properties:6



sin
e the series is not stationary, one has time-varying auto
ovarian
es,
γt,Th (yt) = γhσtσt−h.Obviously, if the varian
e fun
tion is trending, the auto
ovarian
e γt,Th (yt) does not evenhave to vanish as h→ ∞.In spite of this behavior of the auto
ovarian
es, the persisten
e properties of yt are still
hara
terized by d, as it is reviewed in Appendix B. The remaining question is, whethertime-varying heteroskedasti
ity a�e
ts inferen
e on d. Se
tion 3 examines the e�e
ts ofmodulation on 
orresponding estimators and tests.Moreover, Appendix A uses Propositions 1 and 2 to argue that the test statisti
s
onsidered in Se
tion 3.1 are themselves not a�e
ted asymptoti
ally by the 
hoi
e of theDGP when regarding short memory. For long memory, this is not warranted, however.The derivations are pro
edure-spe
i�
 anyway, so one might want to 
he
k the e�e
ts ofinter
hanging modulation and �ltration in ea
h spe
i�
 
ase. Given the positive resultsin Appendix A, we pi
k the more 
onvenient DGP and model the innovations εt as beingmodulated.For the derivations in the following se
tion related to the regression-based tests, thestationary 
omponent is required to be a stable, �nite-order AR pro
ess with martingaledi�eren
e innovations.Assumption 2 Let ut be a stable autoregression of order p driven by modulated sho
ks

εt = σtǫt su
h that σt obeys Assumption 1 and ǫt is a weakly stationary martingale di�er-en
e sequen
e with absolutely summable 8th-order 
umulants.The assumption allows for the in
orporation of 
onditional heteroskedasti
ity in themodel. In fa
t, even more general 
onditions for ut are feasible (e.g. ARMA models,a

ommodated for by using autoregressive approximations), but the paper sti
ks with a�nite autoregression for 
larity of the exposition.3 Inferen
e on the fra
tional integration parameter3.1 Pro
eduresWhen the interest lies in testing hypotheses about the fra
tional integration parameter
d, one basi
ally has the 
hoi
e between time-domain based tests and frequen
y-domainbased tests.

7



For the time domain, we shall examine here regression-based tests of the form
xt = φ̂x∗t−1 +

p∑

j=1

âjxt−j + ε̂t, t = p + 1, . . . , T, (2)where x∗t−1 =
∑t−1

j=1 ψjxt−j for suitably 
hosen weights ψj and xt = ∆d0yt. This formulationen
ompasses the fra
tional Di
key-Fuller test of Dolado et al. (2002), the e�
ient Waldtest of Lobato and Velas
o (2007), or the ALM test due to Demetres
u et al. (2008),depending on the 
hoi
e of the �lter {ψj}j≥1. For the ALM test for instan
e, one has
ψj = 1/j, whi
h is motivated by the LM prin
iple. Dolado et al. suggest to 
hoose ψjas the 
oe�
ients of the fra
tional integration �lter having as integration parameter the(possibly estimated) distan
e between the null and the alternative. Lobato and Velas
omodify the latter to a
hieve e�
ien
y. Throughout the paper, �xed weights are assumedto keep the 
omplexity of the proofs under 
ontrol.Under the null hypothesis d = d0, one has xt ≡ ut, and, 
onsequently, φ = 0; eviden
ein favor of φ < 0 points toward the alternative d < d0, and eviden
e in favor of φ > 0points toward the alternative d > d0. Standard asymptoti
s apply for the t statisti
 of
φ as long as ψj is square summable; letting p → ∞ at an appropriate rate, one 
an evenapproximate linear pro
esses in an autoregressive manner and maintain the standardasymptoti
s. The approximation order p, however, should be a deterministi
 fun
tionof T , in order to avoid problems asso
iated with post-model sele
tion inferen
e. SeeDemetres
u et al. (2008) for a dis
ussion of the ALM situation, dis
ussion extending tosquare summable 
oe�
ients ψj .Demetres
u et al. also suggest to use White standard errors, as they ensure 
orre
tinferen
e under 
onditional heteroskedasti
ity of εt on the one hand, and there is little, ifnothing, to lose under 
onditional homoskedasti
ity on the other hand. (This applies of
ourse for the fra
tional Di
key-Fuller test or the e�
ient Wald test as well.)In order to deal with deterministi
 
omponents su
h as a non-zero mean, one sim-ply removes from xt = ∆d0yt the 
orrespondingly di�eren
ed deterministi
 
omponentbefore applying the ALM test; it would not a�e
t the asymptoti
 standard normal dis-tribution under homoskedasti
ity. See Demetres
u et al. (2008, Proposition 4), and it isstraightforward to show that the result holds under un
onditional heteroskedasti
ity aswell.Also in the time domain, one 
an resort to the modi�ed range/s
ale statisti
 dis
ussedby Lo (1991). It relies as well on building di�eren
es under the null hypothesis. Shouldthe di�eren
es require no adjustment for deterministi
 
omponents, the statisti
 is givenby

Q =
1√
T

max1≤t≤T St −min1≤t≤T St

ω̂8



where St are the partial sums of the series of interest di�eren
ed under the null, St =
∑t

j=1 xj , and ω̂2 is an estimator of the long-run varian
e of xt (
f. Lo, 1991). Underhomoskedasti
ity, the limiting distribution is
Q

d→ max
s∈[0,1]

W (s)− min
s∈[0,1]

W (s)with W a standard Wiener pro
ess. In the 
ase with adjustment for deterministi
s, sayfor the prototypi
al 
onstant, the statisti
 Q is 
omputed with demeaned series xt − xand the limiting distribution is given in terms of standard Brownian bridges rather thanWiener pro
esses.In the frequen
y domain, the paper looks at the lo
al Whittle estimator d̂lw and at thelog-periodogram regression. The asymptoti
 distribution of the lo
al Whittle estimatorwas �rst derived for d < 0.5 by Robinson (1995a) assuming homoskedasti
ity:
√
4m
(
d̂lw − d0

)
d→ N (0, 1) ,where m is the bandwidth, m/T → 0 as m, T → ∞ (regularity 
onditions assumed). Thelo
al Whittle estimator is given by

d̂lw = argmin
d

[
log

(
1

m

m∑

j=1

λ2dj Iy (λj)

)
− 2d

m

m∑

j=1

log λj

]
,with Iy (·) being the periodogram of yt and λj = 2πj/T the jth Fourier frequen
y. A non-zero mean is a

ommodated by 
onstru
tion. Shao and Wu (2007) show the asymptoti
distribution above to be robust to a 
ertain degree of 
onditional heteroskedasti
ity, andalso study the behavior of d̂lw for values of the fra
tional di�eren
e parameter up to

d < 1.5.For the log-periodogram regression of Geweke and Porter-Hudak (1983) [GPH℄, d̂gphis obtained from the regression
log Iy(λj) = C − 2d λj + log ξj , j = 1, . . . , m.For d̂gph, Hurvi
h et al. (1998) show that

√
m
24

π2

(
d̂gph − d

)
d→ N (0, 1),again under weak stationarity of the short-memory 
omponent.The robustness properties of these inferential pro
edures is analyzed in small samplesin the following subse
tion, and analyti
al results are provided in Subse
tion 3.3.9



3.2 Experimental eviden
eThe examined null hypotheses are d0 ∈ {−0.2,−0.1, 0, 0.1, 0.2}, and the true fra
tionalintegration parameter d is taken to belong to {−0.2,−0.1, 0, 0.1, 0.2} as well, leading to 25possible 
ombinations. The ALM test examined is representative for the regression-basedtests; for the entire 
lass, one 
ould restri
t oneself to d0 = 0, as the test is based ondi�eren
es under the null. But all null hypotheses are looked at: slight di�eren
es in thebehavior of the ALM test may appear, sin
e the fra
tional di�eren
e operator is sample-size dependent in �nite samples. To fo
us on the e�e
ts of nonstationary volatility, welet the short-memory 
omponent ut be un
orrelated via independen
e of the Gaussianstandardized innovations ǫt.Heteroskedasti
ity is in
orporated in the Monte Carlo study by suitably 
hoosing σt.We study four varian
e patterns: a 
onstant one, σ2
t = 1, as ben
hmark, a break in thevarian
e, σ2

t = 1 + 4I(t > T/2) and a linear trend in the varian
e, all three obeyingAssumption 1, as well as a varian
e pattern swit
hing periodi
ally between 1 and 5 withperiod S = 2, σ2
t = 3 + 2(−1)t, as a 
ounter-example.The 
onsidered sample size is T = 500. The samples were a
tually generated with

T+200 observations, of whi
h the �rst 200 were then dis
arded; a number of 10 000MonteCarlo repli
ations were run for ea
h studied 
ase. All tests are two-sided. The ALM testapplied to the di�eren
es xt = ∆d0yt with a lag order 
hoi
e of p = 4[(T/100)0.25], forthe modi�ed R/S statisti
 relying on a long-run varian
e estimator with the quadrati
spe
tral kernel and bandwidth b = 4[(T/100)0.25]. The lo
al Whittle test is 
omputedwith deterministi
 bandwidth m = 0.25 T 0.8 and 
orre
ted varian
e

4

m∑

j=1

(
lnλj −

1

m

m∑

j=1

lnλj

)2



−1

, (3)as dis
ussed in Robinson's (1995a) derivations; it is asymptoti
ally equivalent to 1/4m, butperforms better in small samples. See Hurvi
h and Chen (2000) for the examination of avariant of (3) using 2 sin λj/2 instead of λj . Finally, the GPH estimator is 
omputed withbandwidth m = T 0.79. The results are reported in Table 1.When there is no un
onditional heteroskedasti
ity, we learn that the tests based onthe lo
al Whittle and the GPH estimators 
an be oversized, with the LW test having areje
tion frequen
y between 6% and 7%, and the GPH test reje
ting between 7% and 8% ofthe times. In 
ontrast, the ALM and the modi�ed R/S tests hold size. In terms of power,the GPH test dominates 
learly, whi
h is mostly due to the larger bandwidth. The lo
alWhittle test is slightly more powerful than the ALM test, perhaps due to the overreje
tionunder the null. Finally, the power of the ALM test is higher against alternatives of lowerpersisten
e (the asymmetry of the power fun
tion of many LM tests has been observed10



Table 1: Size and power of fra
tional integration tests without adjustment for deterministi
s for di�erent varian
e patterns in theinnovations

d = −.2 d = −.1 d = 0 d = .1 d = .2

σt d0 ALM RS LW GPH ALM RS LW GPH ALM RS LW GPH ALM RS LW GPH ALM RS LW GPH
−.2 5.4 5.2 6.7 7.2 13.3 17.2 16.3 45.3 32.1 39.3 51.1 92.8 51.9 62 83.9 99.9 63.1 78.5 97.1 100
−.1 14.3 7.7 19.1 42.2 4.9 4.6 6.4 7.5 13.1 17.5 15.5 46.1 33.6 40.3 51.2 93.3 52.4 62.3 83.8 99.9
o 0 46.1 23.7 54.4 93.7 15.6 7.5 20.8 43.6 4.9 4.8 6.2 7.2 13.1 17.9 16 45.8 35.4 41.6 51.5 93.2
.1 83.4 54 87.2 100 46.7 24.4 55.3 94.2 15.6 7.9 21.3 43.4 4.8 4.9 6.3 6.9 14.1 18.1 16.8 46.4
.2 97.8 81.6 98.5 100 83.5 53.7 87.7 100 47.5 24.2 55.4 94.3 14.8 7.9 20.3 42.7 4.8 4.5 6.2 7.7

−.2 5 4.5 10.3 11.1 10 14.4 20.1 46.2 24 34.7 50.5 91.1 37.8 55.2 80 99.7 46.4 70.8 95.4 100
−.1 12 6.4 23.1 43.5 5.1 4.6 10.4 10.5 10.6 15.1 20.3 45.9 23.4 34 50.8 91.1 38.7 55.5 81.6 99.6br 0 36.9 18.2 55.9 91.8 12.5 6.4 24.4 44.1 5.1 4.5 10.1 10.5 10.1 14.7 20.2 47.1 24 35.3 50.6 91.6
.1 70.2 37.4 85.6 99.9 35.6 17.5 55.4 91.6 13.2 6.2 25.4 44.8 5.1 4.5 9.9 9.8 10.1 15.3 19.8 46.9
.2 92.5 60.9 97.6 100 69 37.9 85 99.9 36 18.2 56.9 92.2 11.8 6.1 22.4 43.5 4.9 4.2 10.1 10.6

−.2 5.5 4.6 9.3 10.2 9.3 14.2 19.5 46.3 24.2 34.8 50.5 91.5 38.4 54.5 80.8 99.7 47.7 72.6 95.6 100
−.1 13.1 7.2 22.2 43.7 5.3 4.3 9.6 10.3 10 13.7 18.6 46.4 24.2 34.3 49.7 91.5 37.9 55.6 81.1 99.7tr 0 36.7 17.9 53.8 91.7 12.9 6.7 23.2 43.5 5.4 4.6 9.5 9.6 9.6 13.9 19.5 47.3 22.9 34.3 50.2 91.9
.1 70.4 37.7 84.8 99.9 37.7 18.2 56 92.3 12.9 6.9 23.3 43.2 4.8 4.5 9.5 10 9.9 15 19.7 45.7
.2 91.7 60.5 97.7 100 70.2 38.8 85.1 99.9 37.8 18.7 56.2 92 13.4 6.8 23.8 44.5 5 4.3 9.2 10.7

−.2 5.5 5.6 6.5 9.2 13.8 17.9 17.5 47.5 34.7 40.4 50.9 92.7 54 62 83.1 99.8 66.4 78.9 96.7 100
−.1 12.6 8.6 20 41.9 5.2 5.2 6.2 8.7 13.4 16.5 15.7 45.3 34.8 41.2 50.9 93 54.9 62.2 84.4 99.7pe 0 39.6 24.7 55 92.4 14.1 9.1 20.7 43.2 4.6 4.5 5.7 8.9 13.4 17.2 16.3 47.1 34.8 42.3 51.4 92.8
.1 72.9 49.3 87.3 99.9 39.8 25 54.7 92.9 13.4 8.6 20.9 43.2 5.1 5.2 6.3 9 13.6 18.1 17.1 47.5
.2 92.9 71.1 98.6 100 73 50 88.1 99.9 40 25.1 56.7 92.6 13.8 8.8 21.1 42.9 4.8 4.9 6.2 8.9Note: The nominal size is 5% and the varian
e patterns are denoted as 
o: 
onstant, br: break, tr: linear trend, pe: periodi
 
hanges. The ALM test is
omputed with p = 4[(T/100)0.25] and White standard errors, and the modi�ed range-s
ale statisti
 uses as long-run varian
e estimator the periodogram atthe origin smoothed with the quadrati
 spe
tral kernel and a bandwidth of p = 4[(T/100)0.25]. The lo
al Whittle test is 
omputed with bandwidth

m = 0.25T 0.8 and varian
e as in (3), while the test based on the GPH estimator uses as bandwidth m = T 0.79 and the asymptoti
 varian
e. The series yt arefra
tional white noise integrated of order d with varian
e-modulated sho
ks, and the sample size is T = 500. For further details, in parti
ular regarding thevarian
e patterns, see the text.
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before), whereas the exa
t opposite is observed for the modi�ed R/S statisti
, whi
h
an be explained by the di�erent behavior of the long-run varian
e estimator under therespe
tive alternatives (Teverovsky et al., 1999).The pi
ture 
hanges dramati
ally for the lo
al Whittle and the log-periodogram re-gression based tests under time-varying varian
e. Under the varian
e patterns with breakor trend, their size 
an be as high as 12%, and is never below 9%. In 
ontrast, the sizeof the ALM test is pra
ti
ally not a�e
ted by time-varying varian
e, in fa
t it is in most
ases 
loser to the nominal level of 5% than in the homoskedasti
 
ase. The reje
tionfrequen
ies under the 
onsidered alternatives do not 
hange signi�
antly when 
omparedto the un
onditionally homoskedasti
 
ase, with the ex
eption of the ALM test for whi
hthe power drops a bit, 
ompared to the un
onditionally homoskedasti
 
ase. (Thus, theliberality does not even lead to higher reje
tion frequen
ies under the alternative.)For the periodi
 pattern, the size of the LW test is slightly 
loser to the nominal 5%than in the ben
hmark 
ase, while the GPH test rea
ts more sensitively. The empiri
alpower of all tests does not 
hange signi�
antly either.When the innovations are a�e
ted by heteroskedasti
ity, it appears that the ALMand the modi�ed R/S tests are robust to heteroskedasti
ity, but the lo
al Whittle test isrobust to periodi
 heteroskedasti
ity only (the lo
al Whittle estimator apparently 
onfusessu
h patterns with 
onditional heteroskedasti
ity to some extent). The di�eren
e liespresumably in the �persisten
e� of the pattern, the lo
ally homoskedasti
 one being stillglobally heteroskedasti
, whereas for the periodi
 pattern �u
tuations average out as tin
reases. This does not appear to hold for the GPH based test, at least not for thissample size.We also examined the four tests under a DGP where the persistent pro
ess itself ismodulated, rather than the sho
ks εt; see Table 2.As suggested by the arguments of Appendix A, the pi
ture is essentially the same asin Table 1, up to Monte Carlo variability. There is one important di�eren
e, however: inthe 
ase of periodi
 varian
e 
hanges not 
overed by 2, all four tests are seriously oversizedfor d0 = d < 0. This puzzling fa
t has a simple explanation: the pro
ess 
an be writtenas the sum of two 
omponents, both integrated of negative order, but with one only beingobserved every se
ond period. It is known (see e.g. Hassler, 2011) that overdi�eren
edpro
esses be
ome integrated of order zero upon skip sampling, shifting the DGP towardsthe alternative, so the tests reje
t as long as d0 = d < 0.For the lo
al Whittle and the GPH pro
edures, additional experimental eviden
e sug-gests that the estimator d̂ itself is still 
onsistent under both lo
al homoskedasti
ity andperiodi
 heteroskedasti
ity, although its distribution is distorted under lo
al homoskedas-ti
ity. The results are reported in Table 3 for T = 500, T = 1000, T = 1500 and T = 2000.The bias of the two estimators for d dis
losed in Table 3 are quite small, in fa
t the12



Table 2: Size and power of fra
tional integration tests without adjustment for deterministi
s for di�erent varian
e patterns in the levels
d = −.2 d = −.1 d = 0 d = .1 d = .2

σt d0 ALM RS LW GPH ALM RS LW GPH ALM RS LW GPH ALM RS LW GPH ALM RS LW GPH
−.2 5.2 5.1 6.3 7.3 13.5 17.6 16.7 46.8 33.4 39.6 51.4 93.3 53 64.1 83.9 99.9 63.4 78.6 96.9 100
−.1 14.7 8.1 19.6 42.7 4.9 4.8 5.9 7 12.7 16.4 15.9 45 34.4 40.9 51.2 93.1 53.7 63 83.9 99.9
o 0 46.8 23.8 54.7 93.4 15 7.7 20.5 43.5 5 4.7 6.3 7.3 13.1 17 16 46 34.2 40.9 50.5 93.1
.1 82.9 52.7 87.4 100 46.8 24.5 55 93.7 15.7 8.3 21.1 44.2 4.8 4.4 6.1 7.7 13.7 17.6 16.6 46.4
.2 98.1 81 98.5 100 83.8 54.9 88.6 100 48 24.4 56.3 93.8 14.9 7.8 20.5 44.1 5.4 4.9 6.6 8.1

−.2 4.9 4.4 9.7 10.1 10.2 15.8 20 46.5 23.3 34 50 91.8 39.6 56.6 80.9 99.6 49.6 74 95.4 100
−.1 12.5 6.4 22.9 43.2 4.7 4.1 9.7 10.4 10.4 15.1 19.8 47.1 25.1 35.9 50.1 91.3 41.1 58 82.1 99.7br 0 34.7 16.8 54 91.9 12.7 6.4 23.6 43.9 5.4 4.4 10 10.6 10.4 15.7 20.3 46.5 26.2 37.8 51.4 92.5
.1 69 36.7 84.7 99.9 35.9 17.8 55.4 91.8 12.5 6.3 24.2 43.6 5 4.6 10.3 10.5 11 16.2 20.5 47.6
.2 91.5 59.5 97.1 100 68.5 37.3 85.7 99.8 35.3 17.2 56.7 92.1 11.9 6.6 23.2 44.6 4.9 5.1 9.4 10.3

−.2 5.3 4.1 9.4 10.3 9.2 13.1 19.4 46.1 23.5 34 51.5 91.4 39.7 56.5 81 99.6 51.2 74.1 95.7 100
−.1 13.5 7 22.2 43.2 4.5 3.7 9.1 10.2 9.3 14.6 18.3 46.1 25.5 36.5 50.9 91.8 43.7 60.8 81.6 99.8tr 0 37.8 19.4 54.3 91.8 13.9 6.9 23.8 44.7 4.8 4.4 8.9 10.4 10.1 15.7 19.1 46.8 26.9 39.3 51.4 91.4
.1 71 38.9 84.9 99.9 37.6 18.7 55.7 92.3 12.7 6.8 23.2 43.2 5.4 5.2 9.5 10.1 11.7 18.3 19.4 46.6
.2 92.3 60.2 97.6 100 70.8 39.1 85.8 99.9 38.2 18.8 56.9 92.6 13.4 6.6 23.5 44.8 5.3 5.5 9.3 10.1

−.2 21.2 25.5 20.8 50.7 23.7 28.4 30.2 71.9 34.1 40.1 50.4 92.6 52.7 58.2 79.2 99.5 69 76.4 95.2 100
−.1 6.4 8 6 8.9 7.2 9.1 7.2 16.7 12.8 16.9 16 46.7 31.2 36 42.7 85.5 55.3 59.8 77.8 99pe 0 10.5 6.2 15.7 39.5 7.8 5.5 11 20.1 4.7 4.3 6.1 8.9 11.5 14.4 11.9 31.4 34.5 37.1 41.1 80.1
.1 34.6 20.6 48.3 91.4 26.9 16.3 38.2 77.8 13.6 8.9 20.7 42.2 5.3 4.1 7.2 11.2 12.7 14.6 11 23.4
.2 68.4 43.7 84.2 99.9 60.5 38.8 77.1 99.1 41 25.1 56 92.9 16.5 10.5 26.5 59.5 5.3 4.4 7.4 14.8Note: The pro
ess itself rather than the sho
ks are modulated. See otherwise Table 1.
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Table 3: Mean (m) and standard deviation (s) of the lo
al Whittle and log-periodogram regression estimator for di�erent varian
epatterns in the innovations

d = −.2 d = −.1 d = 0 d = .1 d = .2

σt T mlw slw mgph sgph mlw slw mgph sgph mlw slw mgph sgph mlw slw mgph sgph mlw slw mgph sgph500 −0.21 0.101 −0.2 0.060 −0.11 0.102 −0.1 0.061 −0.01 0.101 0.0 0.061 0.09 0.102 0.10 0.061 0.19 0.105 0.20 0.061
o 1000 −0.20 0.073 −0.2 0.045 −0.10 0.074 −0.1 0.045 −0.01 0.073 0.0 0.045 0.09 0.073 0.10 0.044 0.20 0.072 0.20 0.0451500 −0.20 0.060 −0.2 0.037 −0.10 0.060 −0.1 0.038 0.0 0.060 0.0 0.038 0.10 0.060 0.10 0.038 0.20 0.061 0.20 0.0382000 −0.20 0.053 −0.2 0.033 −0.10 0.052 −0.1 0.033 0.0 0.052 0.0 0.034 0.10 0.053 0.10 0.033 0.20 0.053 0.20 0.034500 −0.21 0.117 −0.2 0.068 −0.11 0.117 −0.1 0.067 −0.01 0.118 0.0 0.067 0.09 0.116 0.10 0.066 0.19 0.114 0.20 0.067br 1000 −0.21 0.088 −0.2 0.051 −0.11 0.090 −0.1 0.051 −0.01 0.089 0.0 0.052 0.09 0.090 0.10 0.051 0.19 0.089 0.20 0.0521500 −0.20 0.076 −0.2 0.044 −0.11 0.078 −0.1 0.045 −0.01 0.076 0.0 0.045 0.10 0.076 0.10 0.044 0.20 0.076 0.20 0.0452000 −0.20 0.068 −0.2 0.040 −0.11 0.067 −0.1 0.040 −0.01 0.068 0.0 0.040 0.09 0.066 0.10 0.040 0.20 0.068 0.20 0.040500 −0.21 0.113 −0.2 0.066 −0.11 0.113 −0.1 0.066 −0.01 0.113 0.0 0.066 0.09 0.114 0.10 0.066 0.19 0.114 0.20 0.066tr 1000 −0.21 0.086 −0.2 0.051 −0.11 0.086 −0.1 0.051 −0.01 0.086 0.0 0.051 0.09 0.087 0.10 0.050 0.19 0.087 0.20 0.0511500 −0.20 0.073 −0.2 0.044 −0.11 0.073 −0.1 0.044 −0.01 0.073 0.0 0.044 0.10 0.074 0.10 0.044 0.20 0.073 0.20 0.0442000 −0.20 0.065 −0.2 0.039 −0.10 0.066 −0.1 0.040 −0.01 0.065 0.0 0.039 0.10 0.065 0.10 0.039 0.20 0.066 0.20 0.039500 −0.20 0.104 −0.2 0.063 −0.11 0.101 −0.1 0.063 −0.01 0.102 0.0 0.063 0.09 0.104 0.10 0.063 0.19 0.103 0.20 0.064pe 1000 −0.20 0.073 −0.2 0.044 −0.11 0.073 −0.1 0.045 −0.01 0.074 0.0 0.045 0.10 0.073 0.10 0.045 0.20 0.074 0.20 0.0451500 −0.20 0.061 −0.2 0.038 −0.10 0.061 −0.1 0.037 −0.01 0.060 0.0 0.038 0.10 0.061 0.10 0.038 0.20 0.061 0.20 0.0372000 −0.20 0.054 −0.2 0.034 −0.10 0.052 −0.1 0.033 0.0 0.052 0.0 0.033 0.10 0.053 0.10 0.033 0.20 0.053 0.20 0.033Note: The sample sizes vary form T = 500 to T = 2000. See otherwise Table 1
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GPH estimator is pra
ti
ally unbiased. (This is not really surprising, given that there isno short-run dynami
s.) Moreover, the bias, small as it is, de
reases as T in
reases from
500 to 2000, as does the varian
e of the estimators. Most of the distortions of the LWtest in the ben
hmark homoskedasti
 
ase (see Table 1) 
an be tra
ed ba
k to the bias ofthe lo
al Whittle estimator, while the distortions of the GPH test are apparently due tothe imperfe
t asymptoti
 approximation of its varian
e (its bias being pra
ti
ally 0). Theadditional distortions due to heteroskedasti
ity (for the break and the trend patterns) aremost likely 
aused by the in�ated varian
e of the estimator. For the periodi
 pattern,bias and varian
e are ba
k at the values in the ben
hmark 
ase (this suggests that itis the shape of the small-sample distribution of the GPH estimator that indu
es theoversizedness).3.3 Limiting resultsIn the 
ase of regression-based tests, the robustness illustrated in the previous subse
tionis easily explained for the 
ase of square summable ψj . The asymptoti
 distribution ofthe t statisti
 is standard normal due to a martingale di�eren
e 
entral limit theorem,and White standard errors used to 
apture serial dependen
e in the squares of εt, 
aptureun
onditional heteroskedasti
ity as well. See Phillips and Xu (2006) for an analysis ofheteroskedasti
, �nite-order, autoregressions. This is shown in the following Proposition,whi
h is intimately related to the result of Kew and Harris (2009).1Proposition 3 Under the null hypothesis d = d0 and Assumptions 1 and 2, it holds as
T → ∞ for the t statisti
 with White standard errors tφ from regression (2) that

tφ
d→ N (0, 1),provided that ∑j≥0 ψ

2
j <∞.Proof: See Appendix C.Remark 1 The extension of the proposition to deterministi
 
omponents is straightfor-ward as outlined in Proposition 4 of Demetres
u et al. (2008). The extension for p→ ∞,or for �lter 
oe�
ients ψj based on estimated fra
tional integration parameters arguablyholds as well.Note, however, that White standard errors do not work always: the Di
key-Fuller testis one su
h 
ase (
f. Demetres
u, 2010). More generally, when the asymptoti
 distribution1We 
onsider a triangular array stru
ture of the modulated innovations, while Kew and Harris (2009)
onsider sequen
es of (�xed) heterogenous varian
es; the di�eren
es are mainly te
hni
al in nature butwe in
lude the result to keep this paper self-
ontained.15



of the test statisti
 is expressed as a fun
tional of (fra
tional) Brownian motions, as 
an bethe 
ase with parti
ular 
hoi
es of ψj for the fra
tional Di
key-Fuller test (Dolado et al.,2002), White standard errors fail in a

ounting for un
onditional heteroskedasti
ity. Forthe same reason, distortions appear for the fra
tional 
ointegration test of �asak (2010) aswell, whi
h is not the 
ase for the regression-based tests for 
ointegration due to Avaru

iand Velas
o (2009) and Demetres
u et al. (2013).The behavior of the modi�ed R/S statisti
 depends under time-varying volatility onwhether deterministi
 
omponents are a

ounted for or not. Con
retely, if no adjustmentis ne
essary, the limiting distribution of the modi�ed R/S statisti
 is invariant to thevarian
e pro�le, whereas, under e.g. demeaning, it is not.Proposition 4 Under the null hypothesis d = d0 and Assumptions 1 and 2, it holds as
T → ∞ for the R/S statisti
 without demeaning that

Q
d→ max

s∈[0,1]
W (s)− min

s∈[0,1]
W (s)whereas under demeaning

Q
d→ max

s∈[0,1]
H (s)− min

s∈[0,1]
H (s)with H (s) =W (η (s))− sW (1).Proof: See Appendix C.So the modi�ed R/S statisti
 
ould only be used to robustly test the persisten
e of seriesthat do not require adjustment for deterministi
 
omponents. This is either the 
ase whenthe mean fun
tion of the di�eren
ed series is known, or when the di�eren
ed deterministi

omponent is zero or negligible. If e.g. the null hypothesis is for instan
e d = 1, a 
onstantnon-zero mean of the series is di�eren
ed away; and it 
an be shown that, as long as d > 0.5under the null, a 
onstant non-zero mean is negligible after di�eren
ing so one 
an applythe R/S test without worrying about the di�eren
ed deterministi
s.In the 
ase of the log-periodogram or the lo
al Whittle estimator, the analysis ishandi
apped by the fa
t that the spe
trum of yt is not properly de�ned, sin
e yt is notweakly stationary, not even for d < 0.5. But examining the periodogram, whi
h 
an stillbe 
omputed, the rate at whi
h it vanishes or explodes at the origin is not a�e
ted; seethe following Proposition.Proposition 5 Under Assumptions 1 and 2, it holds for yt from (1) with uniformlybounded 4th order moments of ǫt that

T−2αIy(λ)

λ−2d
= Op(1)16



as T → ∞ where the Op(1) term is uniform for λ ∈ (0, λ) with �xed λ > 0.Proof: See Appendix C.Sin
e a multipli
ative fa
tor T−2α does not a�e
t the minimum of the lo
al Whit-tle approximation or the log-periodogram regression, the proposition would explain theapparent 
onsisten
y of the LW and GPH estimators. When modulating the pro
ess,however, the formulae for their varian
e are obviously not delivering the right numbersanymore; see Table 3. It is as if the wrong bandwidth were used with Equation (3); one
ould say that the distortions in the asymptoti
 distribution appear be
ause the e�e
tivebandwidth 
hanges due to the distortion of the time s
ale implied by the modulation.Proposition 6 Under Assumptions 1 and 2, it holds for the log-periodogram regressionestimator
√
m
24

π2

(
d̂gph − d

)
d→ N (0,

∫ 1

0

σ2
t dt/σ

2).Proof: See Appendix C.4 Con
luding remarksThe paper dis
ussed modeling and inferen
e for long memory time series under un
ondi-tional heteroskedasti
ity.Varian
e modulation has an e�e
t on invarian
e prin
iples for 
umulative sums underAssumption 1, as is well-known in time series e
onometri
s sin
e the work of Cavaliere(2004). In the seasonal 
ase, however, the limit is not a�e
ted (Burridge and Taylor,2001). It is tempting to 
onje
ture that, just as in the integer integration 
ase, the limitin the fra
tional 
ase is a time-transformed fra
tional Brownian motion. Dealing withthis topi
, however, goes beyond the s
ope of the paper and is left for further resear
h.It was found using Monte Carlo simulations that the ALM test is robust, as are relatedregression-based tests under weak additional 
onditions, but the tests based on the lo
alWhittle or the log-periodogram estimators are not. The modi�ed range/s
ale statisti
 isrobust only if no adjustment for deterministi
 
omponents is required after di�eren
ingunder the null. Moreover, the paper provided asymptoti
 arguments as to why robustnessis given for the time-domain but not for the frequen
y-domain tests.For robustifying the modi�ed range/s
ale statisti
 in the 
ase where adjustment fordeterministi
s is required, one 
ould resort to the solutions 
onsidered for unit roottests, sin
e the limiting distribution is expressed just like for the latter, in terms oftime-transformed Wiener pro
esses. For robustifying frequen
y-domain tests, the wild17



bootstrap suggests itself for getting a 
orre
t estimate of the varian
e of the estimators.Demodulation of the series (Cavaliere and Taylor, 2008) prior to estimating the longmemory parameter would provide an alternative, but would require an estimation of thevarian
e pro�le. Finally, inferen
e based on averaged lo
al periodogram as developed forlo
ally stationary series would apply immediately, but at the 
ost of an additional band-width parameter. The question, whi
h robusti�
ation strategy would be preferable, is
urrently under investigation.AppendixA Asymptoti
 equivalen
e of DGPsA.1 Regression-based testsWe distinguish two situations. First, we show that modulation and �ltration are ex-
hangeable in the short memory 
omponent.Denote by tφ the regression-based test statisti
 
omputed with xt ≡ ut under the null,and tφ̃ the one 
omputed with x̃t ≡ ũt. Then tφ̃ = tφ + op(1).Note that we may set α = 0 be
ause T α 
an
els out in the expression of the t statisti
.Note also that, as a 
onsequen
e, outliers 
aused by dis
ontinuities of σ do not havein�uen
e in
reasing with T and 
an be negle
ted.With the notation of the proof of Proposition 3 we have to show that
1√
T

T∑

t=p+1

x̃t−1x̃t −
1√
T

T∑

t=p+1

xt−1xt
p→ 0and

1

T

T∑

t=p+1

x̃t−1x̃
′
t−1 −

1

T

T∑

t=p+1

xt−1x
′
t−1

p→ 0.To this end note that the �rst di�eren
e is given by
1√
T

T∑

t=p+1

(x̃t−1 − xt−1) xt +
1√
T

T∑

t=p+1

xt−1 (x̃t − xt) +
1√
T

T∑

t=p+1

(x̃t−1 − xt−1) (x̃t − xt) .Let us examine the �rst term. Then, the Cau
hy-S
hwarz inequality leads for the �rstterm and any j = 1, . . . , p to
∣∣∣∣∣
1√
T

T∑

t=p+1

(x̃t−j − xt−j) xt

∣∣∣∣∣ ≤

√√√√
T∑

t=p+1

(x̃t−j − xt−j)
2 1

T

T∑

t=p+1

x2t (4)18



where 1
T

∑T
t=p+1 x

2
t = Op(1), as well as

∣∣∣∣∣
1√
T

T∑

t=p+1

(
x̃∗t−1 − x∗t−1

)
xt

∣∣∣∣∣ ≤

√√√√
T∑

t=p+1

(
x̃∗t−1 − x∗t−1

)2 1

T

T∑

t=p+1

x2t (5)For (4) and any j = 1, . . . , p, we have with Markov's inequality that∑T
t=p+1 (x̃t−j − xt−j)

2 =

op (1) sin
e E(∑T
t=p+1 (x̃t−j − xt−j)

2
)
≤∑T

t=p+1 E
(
(x̃t−j − xt−j)

2) ≤ CT−1 due to Propo-sition 1, while for (5) it follows with the Cau
hy-S
hwarz inequality that
∣∣x̃∗t−1 − x∗t−1

∣∣ ≤
t−1∑

j=1

|ψj | |x̃t−j − xt−j | ≤

√√√√
t−1∑

j=1

ψ2
j

t−1∑

j=1

(x̃t−j − xt−j)
2so

E
((
x̃∗t−1 − x∗t−1

)2) ≤
t−1∑

j=1

ψ2
j

t−1∑

j=1

E
(
(x̃t−j − xt−j)

2) = o
(
T−1

)thanks to the square summability of the series ψj . It follows with Markov's inequalitythat ∑T
t=p+1

(
x̃∗t−1 − x∗t−1

)2
= op (1) as required.The remaining relations are established along the same lines, and so does the Whiteexpression for standard errors.When it 
omes to ex
hangeability of long memory �ltration and modulation, we notethat Proposition 2 does not o�er a tight enough bound on the di�eren
e between thetwo pro
esses. In fa
t, the dis
ussion in Hassler and Breitung (2006) suggests that thetests 
an't be asymptoti
ally equivalent. If letting p → ∞ at suitable rates, however,Demetres
u et al. (2013) show that the di�eren
e between xt and x̃t is approximatedaway; we do not go into details here. The simulations in Se
tion 3.2, where p is 
hosen as

O
(
T 1/4

) for the ALM test (with ψj = j−1), support the intuition, however.A.2 The R/S statisti
Just like for regression-based tests, short memory pro
esses pose no di�
ulty. To see why,assume that Proposition 1 applies and note that it su�
es to show that
1√
T
sup
t

∣∣∣St − S̃t

∣∣∣ p→ 0with S̃t =
∑t

j=1 ũt under the null. We have for all t < T that
∣∣∣St − S̃t

∣∣∣ ≤
t∑

j=1

|ut − ũt| ≤
T∑

t=1

|ut − ũt| ;19



sin
e ‖ut − ũt‖1 ≤ ‖ut − ũt‖2, it follows with Markov's inequality that ∑T
t=1 |ut − ũt| =

Op (T ‖ut − ũt‖2) and 
onsequently that
1√
T
sup
t

∣∣∣St − S̃t

∣∣∣ = Op

(
T−0.5

)as required.Note however that the bounds delivered by Proposition 2 do not su�
e, and the resultdoes not appear to be improvable ; see the proof of Proposition 2 below. Thus, it likelymakes a di�eren
e whether a pro
ess is modulated then integrated of order d or the otherway round, even if the simulations in Se
tion 3.2 suggest that the di�eren
e is minor.B Long memory properties of modulated pro
essesLong memory is often de�ned in terms of the behavior of the spe
trum of the pro
essin the neighborhood of 0, or, equivalently, in terms of the asymptoti
 behavior of theauto
ovarian
e fun
tion. Neither is properly de�ned with nonstationary series as assumedhere. On the other hand, looking at model (1), there is a strong tenden
y to say, �fra
tional�lter, long memory.�Given the results in Propositions 1 and 2, we fo
us on modulated levels. Then we maystate that E (ỹtỹt−h) = E (ỹtỹt−h) + o(1) as T → ∞.For now, we shall assume that α=0, i.e. that the varian
e fun
tion σ2
t is bounded. Butif assuming the varian
e fun
tion to be bounded, we obtain immediately that

|γh| σ2
min ≤

∣∣∣γt,Th (yt)
∣∣∣ ≤ |γh|σ2

max.This implies that at least the de
ay rate of the auto
ovarian
e fun
tions is not a�e
ted.So we 
ould still speak of the same type of persisten
e in our situation. Similarly, oneobtains for the spe
trum that
f (λ)σ2

min ≤ ft,T (λ) ≤ f (λ)σ2
max.Moreover, if allowing T → ∞, some additional statements 
an be made about averagespe
tra. (Nonstationary spe
tra have been dis
ussed e.g. in Priestley, 1988, Chapter 6.)And what about neighboring auto
ovarian
es (spe
tra)? We have namely that

γt+1,T
h (yt)− γt,Th (yt) = γh (σt+1σt+1−h − σtσt−h) = γh +O

(
T−1

)
,at all 
ontinuity points of σ so the auto
ovarian
e sequen
e is 
hanging smoothly enough(hopefully) to allow for average statements.20



On the average, it holds that
1

T

T∑

t=h+1

γt,Th (yt) → γh

∫ 1

κ

σ(s)σ(s− κ)dswhere κ = lim h/T . This has the ni
e impli
ation that the average auto
orrelations of order
h, 0 ≤ h ≤ H , 
onverge to the stationary ones when H/T → 0. And, more interestingly,the pseudospe
trum 
onsidered as

lim
T,H,H/T→0

H∑

−H

γ
[sT ],T
h (yt) cos{λh}also has a limit proportional to f (λ) at all s. This allows us to state that the trendingproperties of the pro
ess are 
hara
terized by d alone and the modulation does not interferewith this property of the DGP.C ProofsBefore proving the main results of the paper, a preliminary lemma required for the proofof Proposition 3 is stated and proved.Lemma 1 Under the assumptions of Proposition 3, it holds for some r > 2 thata) E

(
|T−αεt|2r

)
< C,b) E

(
|T−αut−j|4

)
< C, and
) E

(∣∣T−αu∗∗t−1

∣∣4
)
< C,where u∗∗t−1 =

∑
j≥1 ψjut−j and ∑j≥1 ψ

2
j <∞.Proof: Item a) is obvious given the properties of σt and ǫt. Item b) is a parti
ular 
ase of 
)with absolutely summable �ltering; but item 
) requires some more 
are. Note that u∗∗t−1 =∑

j≥1 ψ̃jεt−j−1 where the 
oe�
ients sequen
e ψ̃j is the (square summable) 
onvolutionof {ψj} and {bj}. Then, the �niteness of E(∣∣∣∑j≥0 ψ̃j
σt−j

Tα ǫt−j−1

∣∣∣
4
) redu
es to �nitenessof E(∣∣∣∑j≥0 ψ̃jǫt−j−1

∣∣∣
4
), sin
e σt−j

Tα is uniformly bounded. Note that ψ̃j = O(j−0.5); atedious, yet straightforward modi�
ation of the proof of Lemma 8 in Demetres
u et al.(2008) leads to the desired preliminary result.
21



Proof of Proposition 1a) Examine �rst the 
ase of no dis
ontinuities of σ (s). For this proof only, let t beshorthand for [sT ], and note that
‖ut − ũt‖2 =

∥∥∥∥∥
∑

j≥0

bjǫt−j (σt − σt−j)

∥∥∥∥∥
2

≤
∑

j≥0

|bj | |σt − σt−j | ‖ǫt−j‖2 .Due to the assumed Lips
hitz 
ondition on σ(·), ∃C su
h that |σt − σt−j | ≤ CT α |j/T |, so
‖ut − ũt‖2 ≤ CT α−1

∑

j≥0

|jbj|as required (re
all, the 
oe�
ients bj are 1-summable). Let now there be exa
tly onedis
ontinuity of σ (·), at λ < 1. There are two possibilities, t < [λT ] and t > [λT ] (thethird, t = [λT ], is ex
luded by assumption). If t < [λT ], the result from the 
ase with nodis
ontinuity applies. If t > [λT ], we have that
‖ut − ũt‖2 ≤

t−[λT ]∑

j=0

|bj | |σt − σt−j | ‖ǫt−j‖2 +
∑

j≥t−[λT ]+1

|bj | |σt − σt−j | ‖ǫt−j‖2 .The arguments used in the 
ase with no dis
ontinuity apply dire
tly for the �rst summandon the r.h.s., while, for the se
ond summand, we make use of the uniform boundedness of
σ (·) and of ‖ǫt−j‖2 to arrive at

∑

j≥t−λT+1

|bj | |σt − σt−j | ‖ǫt−j‖2 ≤ CT α
∑

j≥t−λT+1

|bj | .Note now that∑j≥p |jbj | ≤ p
∑

j≥p |bj | leading due to 1-summability of bj to∑j≥p |bj | =
O(p−1), and the r.h.s. of the above equation is thus bounded by CTα

t−λT+1
. The desired resultfollows sin
e t = [sT ]. One pro
eeds similarly if there is more than one dis
ontinuity of

σ (s) (but a �nite number thereof).Proof of Proposition 2Assume �rst that there are no dis
ontinuity points and let again t be shorthand for [sT ].Then, having assumed a zero mean,
∥∥y[sT ] − ỹ[sT ]

∥∥2
2
= Var (yt − ỹt) =

t−1∑

j=0

t−1∑

k=0

φ
(d)
j φ

(d)
k γ|j−k| (σt − σt−j) (σt − σt−k) .22



With the Lips
hitz property, φ(d)
j ∼ 1

Γ(d)
j−1−d, and γh ∼ Γ(1−d)

Γ(d)
h2d−1, we have that, for asuitable C,

Var (yt − ỹt) ≤
C

T 2

t−1∑

j=0

t−1∑

k=0

j−d1k−d1 |j − k|2d−1 .Rearrange the sum terms to obtain that
Var (yt − ỹt) ≤

C

T 2

t−1∑

h=0

t−h−1∑

i=0

h−d1 (h+ i)−d1 h2d−1.If d1 > 0, h−d1 (h + i)−d1 < h−2d1 , if d1 < 0 we have that h−d1 (h + i)−d1 < (h+ i)−2d1 . Inthe �rst 
ase, we have that
Var (yt − ỹt) ≤ C

T 2

t−1∑

h=0

(t− h)h2(d−d1)−1

≤ C

T

t−1∑

h=0

h2(d−d1)−1

≤ CT 2(d−d1)−1.In the se
ond, we have that
Var (yt − ỹt) ≤ C

T 2

t−1∑

h=0

h2d−1
t−h−1∑

i=0

(h+ i)−2d1 .We further have that ∑t−h−1
i=0 (h+ i)−2d1 ≤ C (t− h) (t− 1)−2d1 . Hen
e,
Var (yt − ỹt) ≤ CT−2d1−1

t−1∑

h=0

h2d−1.With the known approximation, we have the same
Var (yt − ỹt) ≤ CT 2(d−d1)−1as required for the result. Dis
ontinuities are handled as in the proof of Proposition 1.Proof of Proposition 3The proof is 
ompleted in two steps.First, it is shown that employing x∗∗t−1 =

∑
j≥1 ψjxt−j as a regressor instead of its �nite-sample 
ounterpart x∗t−1 =

∑t−1
j=1 ψjxt−j has no asymptoti
 e�e
t on the distribution of theestimators. This is a

omplished by noting that the varian
e of the di�eren
es between the23



two vanishes at an appropriate rate. It holds namely for the di�eren
es δ̃t =∑j≥t ψjxt−jthat
1

T α

(
δ̃t

)
=
∑

j≥t

ψj
1

T α
ut−j;use now Proposition 1 to 
on
lude that the varian
e is given, up to an Op (T

−1) term,by ∑j≥t

∑
k≥t ψjψk

σt−jσt−k

T 2α γj−k, where γj−k is the auto
ovarian
e of (∑j≥0 bjǫt−j

). Theauto
ovarian
e is exponentially de
aying, and tedious, yet straightforward algebra yieldsthat δ̃t = Op (t
−0.5), whi
h does not a�e
t the asymptoti
s as shown e.g. in Demetres
uet al. (2008) Lemma 2 for the ALM test. So let the regressor ve
tor xt−1 
ontain x∗∗t−1 =∑

j≥1 ψjxt−j , i.e. xt−1 =
(
x∗∗t−1, xt−1, . . . , xt−p

)′.Se
ond, let us examine the expression
1

T 0.5+2α

T∑

t=p+1

xt−1εt, (6)the numerator (so-to-say) of the estimators in regression (2) and of the 
orresponding tstatisti
s. Sin
e xt−1εt is a martingale di�eren
e, a 
entral limit theorem applies underregularity 
onditions, see below. Then, what is needed for the regression-based test tobe una�e
ted is to use the 
orre
t standard errors when 
omputing the t statisti
 for
φ. Using a 
entral limit theorem from Davidson (1994, p. 383), su�
ient 
onditions formultivariate asymptoti
 normality of (6) area) maxp+1≤t≤T

1
T 0.5+2α |xt−1εt| p→ 0b) 1

T 1+4α

∑T
t=p+1 xt−1x

′
t−1ε

2
t

p→ Σ where Σ is some �xed positive semi-de�nite (p+ 1)×
(p+ 1) matrix.The key to robustness is that one uses pre
isely this matrix Σ (or rather a sample
ounterpart) for building test statisti
s with White standard errors.a) We have due to Markov's inequality for some 2 < r < 4 and any positive η

Pr

(
max

p+1≤t≤T

1

T 0.5+2α
|xt−1εt| > η

)
≤

T∑

t=p+1

Pr
(∣∣T−2α

xt−1εt
∣∣ > ηT 0.5

)

≤
T∑

t=p+1

E
(
|T−2α

xt−1εt|r
)

(ηT 0.5)r
.Apply now Hölder's inequality to show that E (|T−2α

xt−1εt|r
) is uniformly bounded in tif E(|T−αεt|4r/(4−r)

) and E
(
|T−α

xt−1|4
) are �nite; this is indeed the 
ase, see Lemma 1.Then, the sum∑T

t=p+1

E(|T−2α
xt−1εt|r)

(ηT 0.5)r
is of order O (T 1−r/2

)
= o(1) for any η, as requiredfor the 
entral limit theorem. 24



b) This is only slightly more 
ompli
ated. Let ψ̃j = (ψ̃j , bj, . . . , bj−p)
′ with {ψ̃j} the
onvolution of {ψj} and {bj} and bj = 0 for j > 0. Then,

1

T 1+4α

T∑

t=p+1

(
∑

j≥0

ψ̃jεt−j−1

)(
∑

k≥0

ψ̃kεt−k−1

)′

ε2t

=
1

T

T∑

t=p+1

∑

j≥0

∑

k≥0

ψ̃jψ̃
′
k

σt−k−1σt−j−1σ
2
t

T 4α
ǫt−k−1ǫt−j−1ǫ

2
t .Adding and subtra
ting the un
onditional expe
tation κjkt = E (ǫt−k−1ǫt−j−1ǫ

2
t ), we obtaintwo 
omponents of the sum,

1

T

T∑

t=p+1

∑

j≥0

∑

k≥0

ψ̃jψ̃
′
k

σt−k−1σt−j−1σ
2
t

T 4α

(
ǫt−k−1ǫt−j−1ǫ

2
t − κjkt

)
,and

1

T

T∑

t=p+1

∑

j≥0

∑

k≥0

ψ̃jψ̃
′
k

σt−k−1σt−j−1σ
2
t

T 4α
κjkt.For the �rst, note that the quotient σt−k−1σt−j−1σ2

t

T 4α is uniformly bounded, and we 
an usethe absolute summability of 8th order 
umulants and the arguments of Demetres
u et al.(2008, proof of Proposition 1) to show the �rst summand to disappear, while, for these
ond, we need to show that a limit exists. To this end, re
all e.g. from Demetres
uet al. (2008) that
1

T

T∑

t=p+1

∑

j≥0

∑

k≥0

ψ̃jψ̃
′
kκjkt (7)does have a proper limit. Knowing that σt−k−1σt−j−1σ2
t

T 4α is bounded, is would be no surpriseif the limit existed indeed. To establish the existen
e of the limit, we �rst need to showthat∑j≥0

∑
k≥0 ψ̃jψ̃

′
k
σt−k−1σt−j−1σ

2
t

T 4α κjkt 
onverges to a fun
tion of t, say φ(t). This followsfrom (7) and the pie
ewise Lips
hitz property of σ(·).Then we show that
1

T

T∑

t=p+1

φ(t)has a proper limit. Note that this is a Riemann sum, whi
h 
onverges if the total variationof φ on [0, 1] is bounded.The average of φ(t) will 
onverge if φ(t) varies slowly enough. Write σt−k−1σt−j−1σ
2
t

T 4α =

σ
(
t−k−1

T

)
σ
(
t−j−1

T

)
σ2
(

t
T

). Due to the smoothness of σ, σ ( t−k−1
T

)
σ
(
t−j−1

T

)
σ2
(

t
T

)
=

σ
(
t−k−2

T

)
σ
(
t−j−2

T

)
σ2
(
t−1
T

)
+ o(1), of 
ourse uniformly with the ex
eption where σ hasdis
ontinuities. But σ is integrable, so the dis
ontinuities won't matter in the end. Thus,25



φ(t) has the same smoothness properties as σ(t), and as su
h the average will 
onverge.It is easily shown along the lines of b) that
1

T 1+2α

T∑

t=p+1

xt−1x
′
t−1

p→ Σ
xwhere the probability limit Σ

x
is a 
onstant, positive de�nite, matrix; hen
e,

T 0.5+α
(
β̂ − β

)
d→ N

(
0, (Σ

x
)−1Σ (Σ

x
)−1) .But looking at the expression of the White standard errors, and at the probabilitylimits of its 
omponents derived above, the heteroskedasti
ity-robust estimator of the
ovarian
e matrix of β̂ is seen to 
onverge to pre
isely (Σ

x
)−1Σ (Σ

x
)−1, as required forthe result.Proof of Proposition 4The R/S statisti
 is given in the �rst 
ase by

Q =
1√
T

max1≤t≤T St −min1≤t≤T St

ω̂
.Under time-varying varian
e, the xt = ut is generated a

ording to Assumptions 1 and 2.Letting ut have for simpli
ity unity long-run varian
e, we have that

1

σT 0.5+α
S[sT ] ⇒W (η (s)) ,where σ2 =

∫ 1

0
σ2 (s) ds, η (s) = σ−2

∫ s

0
σ2 (r) dr and W is a standard Wiener pro
ess;

W (η (s)) is a so-
alled time-transformed Wiener pro
ess; see Cavaliere (2004). Consider-ing the linearity of ω̂ in T α, we 
an use Cavaliere (2004) to 
on
lude that
1

T 2α
ω̂2 p→ σ2.Then,

Q
d→ max

s∈[0,1]
W (η (s))− min

s∈[0,1]
W (η (s)) .For any given path of W, the value the extremum points does not 
hange; it is just thelo
ation that depends on the varian
e pro�le. So the distribution of the modi�ed RSstatisti
 is not a�e
ted by the time transformation. Note too that, sin
e 
onvergen
e isweak, it is the limiting distribution of the modi�ed RS statisti
 that is invariant to η, andnot the statisti
 itself. 26



Considering the 
ase with demeaning, prototypi
al for adjusting series for deterministi

omponents, the situation 
hanges dramati
ally. The partial sums are built over demeaned
xs,

St =

t∑

j=1

(xj − x)and 
onsequently
1

σT 0.5+α
S[rT ] ⇒W (η (s))− sW (1) .Under global homoskedasti
ity, the limit is nothing else than the �rst-order Brownianbridge, say B1 (s). The invarian
e from the 
ase with no demeaning does not 
arry over,however, sin
e, under heteroskedasti
ity, the above limit is not the time-transformedBrownian bridge:

B1 (η (s)) = W (η (s))− η (s) W (1) 6=W (η (s))− sW (1) ,where W (η (s))− sW (1) 
annot be expressed as a time-transformed pro
ess.Proof of Proposition 5Assume �rst for Assumption 1 that α = 0, 
ase in whi
h σt is uniformly bounded. Theproof then modi�es the proof of Theorem 6.2.2 from Priestley (1981) suitably. Denoteby ζx (λ) the �nite Fourier transform of some pro
ess xt, ζx (λ) = 1/
√
2πT

∑T
t=1 xte

−iλtfor λ ∈ [−π, π]. The periodogram Ix (λ) of xt is then given by Ix (λ) = ζx (λ) ζ
∗
x (λ),where ∗ denotes the 
omplex 
onjugate. Denote by ϕ(d)

j the 
oe�
ients of the fra
tionalintegration �lter with parameter d and |Γd (λ)| the 
orresponding transfer fun
tion. Re
allthat ϕ(d)
j ≤ C jd−1 and |Γd (λ)| ∼ λ−d as λ→ 0.It shall be �rst shown that

ζy (λ) = Γd (λ) ζu (λ) +Op

(
T d
)
,where the Op term is uniform in λ. To this end, note that

ζy (λ) =
1√
2πT

T∑

t=1

yte
−iλt =

1√
2πT

T∑

t=1

(
t−1∑

j=0

ϕ
(d)
j ut−j

)
e−iλt;
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by rearranging the terms of the sum and reindexing 
orrespondingly, one obtains
ζy (λ) =

1√
2πT

T−1∑

k=0

ϕ
(d)
k

(
T−k∑

t=1

ut−je
−iλ(t+k)

)

=

(
T−1∑

k=0

ϕ
(d)
k e−iλk

)(
1√
2πT

T∑

t=1

ut−je
−iλt

)
+RT

= Γd (λ) ζu (λ) +RT ,where RT = 1√
2πT

∑T−1
k=0 ϕ

(d)
k e−iλk

(∑T
t=T−k+1 ut−je

−iλt
). In order to examine the behaviorof RT , note that, due to the short memory of ut it holds that

E

∣∣∣∣∣

T∑

t=T−k+1

ut−je
−iλt

∣∣∣∣∣

2

≤ Ckuniformly in λ. Then,
E |RT | ≤ 1√

2πT

T−1∑

k=0

E

∣∣∣∣∣ϕ
(d)
k e−iλk

(
T∑

t=T−k+1

ut−je
−iλt

)∣∣∣∣∣

≤ C√
T

T−1∑

k=0

∣∣∣ϕ(d)
k

∣∣∣

√√√√E

(
T∑

t=T−k+1

ut−je−iλt

)2

≤ C√
T

T−1∑

k=0

∣∣∣ϕ(d)
k

∣∣∣
√
k

= Op

(
T d
)
.Consider now

Iy (λ) = ζy (λ) ζ
∗
y (λ) =

(
Γd (λ) ζu (λ) +Op

(
T d
)) (

Γd (λ) ζu (λ) +Op

(
T d
))∗at the harmoni
 frequen
ies λj = j/T . Note at this point that ζu (λ) ≤ Cζσǫ (λ) uniformlyin λ, sin
e the the �lter bj is 1-summable; the �nite Fourier transform ζσǫ (λ) of themodulated innovations, σtǫt, behaves itself as follows

E |ζσǫ (λ)|2 = E

[(
1√
2πT

T∑

t=1

σtǫte
−iλt

)(
1√
2πT

T∑

t=1

σtǫte
−iλt

)∗]

=
1

2πT

T∑

t=1

σ2
t E
(
ǫ2t
)
≤ Cdue to the un
orrelatedness of the innovations ǫt and the uniform boundedness of theirvarian
e. Sin
e T d > (T/j)d, and 
onsidering the behavior of the transfer fun
tion |Γd (λ)|in the neighborhood of the origin, it follows that Iy (λ) = |Γd (λ)|2 |ζu (λ)|2 +Op

(
λ−2d

) atthe harmoni
 frequen
ies j/T . 28



Note that all derivations above are linear, so premultiplying the �nite Fourier trans-forms with T α in the 
ase α > 0 leads to the desired result.Proof of Proposition 6The GPH-estimator is obtained as the least squares estimator for the parameter d in thelinear regression model
log(Ij) = log f ∗

0 − C − 2dXj + log

(
f ∗
j

f ∗
0

)
+ εj, j = 1, 2, . . . , mwith εj = log(Ij/fj) + C and C = −0.577216... is Eulers 
onstant. Furthermore, Xjdenotes the j− th Fourier frequen
y and Ij = 1

2πn
|∑T−1

t=0 ytexp(
i2πjt
T

)|2 is the periodogramof the underlying series yt. The term f ∗ origins from the spe
tral density of a stationarylong-memory model given by
f(λ) = σ2|1− exp(−iλ)|−2df ∗(λ), −π ≤ λ ≤ π.In this set-up the remaining spe
tral density f ∗(λ) is s
ale independent. This proves tobe handy later as the varian
e is assumed to be time dependent in our model. Due to thetime varying varian
e, however, the pro
ess yt is not a stationary long-memory pro
ess.Proving the proposition 
omes now from �tting a stationary model to a non-stationarypro
ess and evaluating the 
onsequen
es. This is done by employing the approa
h ofDahlhaus (1997) by appli
ation of the lo
al spe
tral density or lo
al periodogram respe
-tively. Denoting u = t/T and T being the sample size the lo
al spe
tral density of ourmodulated long-memory pro
ess is

f(u, λ) = σ(u)2f(λ).Following the arguments in Robinson (1995b) and Hurvi
h et al. (1998) the asymptoti
normality of the log-periodogram regression is derived from the term
Uj = εj + log

(
f ∗(λj)

f ∗(0)

)
− 2d log

( |1− exp(−iλj)|
λj

)
.Fitting a stationary model to a non-stationary means that f(u, λ) = f(λ) independent

29



of u. Thus we obtain for Uj:
Uj = log

(∫ 1

0
I(u, λj)du

σ2f(λj)

)
+ C + log

(
f ∗(λj)

f ∗(0)

)
− 2d log

( |1− exp(−iλj)|
λj

)

= log

(∫ 1

0
σ(u)2du

∫ 1

0
I(λj)du

σ2f(λj)

)
+ C + log

(
f ∗(λj)

f ∗(0)

)
− 2d log

( |1− exp(−iλj)|
λj

)

= log

(∫ 1

0
σ(u)2duI(λj)

σ2f(λj)

)
+ C + log

(
f ∗(λj)

f ∗(0)

)
− 2d log

( |1− exp(−iλj)|
λj

)To obtain the limit distribution of the log-periodogram regression we have to 
onsiderthe term
1

m1/2

m∑

j=1

ajεj = T1 + T2 + T3with aj = Xj − X̄ . The terms T1 to T3 are given in Hurvi
h et al. (1998) equation (A9). From Hurvi
h et al. (1998) equation (A 10) and (A 11) we dire
tly have T1 = oP (1)and T2 = oP (1). The remaining term 
an as in Hurvi
h et al. (1998) equation (A 12) bewritten as T3 = T31+T32+T33 where the terms T32 and T33 are not e�e
ted our modulationof the time series. Thus, we 
an dire
tly 
on
lude from Hurvi
h et al. (1998) equation (A14) and (A 15) that T32 = o(1) and T33 = o(1).As the modulation does not e�e
t the 
oe�
ients aj they still ful�ll 
ondition (5.15)in Robinson (1995b) and thus we have
T31

D→ N

(
0,

∫ 1

0

σ2
udu

π2

6σ2
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