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Inferene on the Long-Memory Properties of TimeSeries with Non-Stationary Volatility∗Matei Demetresu† and Philipp Sibbertsen‡AbstratMany time series exhibit unonditional heteroskedastiity, often in addition to ondi-tional one. But suh time-varying volatility of the data generating proess an haverather adverse e�ets when inferring about its persistene; e.g. unit root and station-arity tests possess null distributions depending on the so-alled variane pro�le. Onthe ontrary, this is not the ase in stationary autoregressions, and orretly sizedinferene is guaranteed if taking protetive ations as simple as using White stan-dard errors (whih are employed anyway to deal with onditional heteroskedastiity).The paper explores the in�uene of time-varying volatility on frationally integratedproesses. Conretely, we disuss how to model long memory in the presene of time-varying volatility, and analyze the e�ets of suh nonstationarity on several existinginferential proedures for the frational integration parameter. Based on asymptotiarguments and Monte Carlo simulations, we show that periodogram-based estima-tors, suh as the loal Whittle or the log-periodogram regression estimator, remainonsistent, but have asymptoti distributions whose variane depends on the varianepro�le. Time-domain, regression-based tests for frational integration retain theirvalidity if White standard errors are used. Finally, the modi�ed range-sale statistiis only a�eted if the series require adjustment for deterministi omponents.Key wordsTime-varying variane, Heteroskedastiity, Persistene, Frational integration,Modulated proessJEL Classi�ationC12 (Hypothesis Testing), C22 (Time-Series Models)
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1 IntrodutionThere is an inreasing body of evidene indiating that a standard assumption of many testproedures, unonditional homoskedastiity, is violated for many types of data. Indeed,maroeonometriians ould immediately name the Great Moderation as an example.Finanial time series have been found to exhibit unonditional heteroskedastiity too, inaddition to onditional heteroskedastiity (see e.g. Amado and Teräsvirta, 2008).The e�et of deterministi (unonditional) heteroskedastiity has already been ana-lyzed for ommon eonometri tools suh as stationarity, unit root, and ointegrationtests; see Cavaliere (2004), Cavaliere and Taylor (2005), and Cavaliere et al. (2010). The�nding ommon to these papers is that the null distributions of virtually all examinedtest statistis are distorted whenever so-alled global homoskedastiity is violated (seealso Cavaliere and Taylor, 2009). The reason for suh behavior is as follows. The asymp-toti null distributions of the respetive test statistis an be expressed as funtionalsof Wiener proesses, relying on invariane priniples for umulated sums of stohastiproesses. But under time-varying variane of the inrements, modi�ed invariane prin-iples hold: intuitively, the hanging variane transforms time in the limit, whih in turna�ets the limiting distributions. The exat mehanism an be seen e.g. in Hall (1977),who shows that weak onvergene to Brownian motion of umulative sums of square-integrable, possibly heteroskedasti, triangular martingale di�erene arrays holds only ifnormalizing appropriately (i.e. using an estimate of the quadrati variation).Suh examinations, however, are atually sare in the ontext of frationally inte-grated series (I(d)). On the one hand, the modi�ed range/sale statisti disussed byLo (1991) has an asymptoti distribution expressed in terms of Wiener proesses underunonditional homoskedastiity, so it ould be onjetured that it is a�eted by time-varying variane in the same manner as stationarity and unit root tests. On the otherhand, Kew and Harris (2009) provided an analysis of regression-based frational inte-gration tests applied to linear proesses with heteroskedasti innovations (shoks). Thee�ient Wald test of Lobato and Velaso (2007) or the augmented LM [ALM℄ test ofDemetresu et al. (2008) fall in the examined ategory. Kew and Harris (2009) show that,if using White standard errors (reommended by Demetresu et al. (2008) to deal withonditional heteroskedastiity), some types of deterministi heteroskedastiity are allowedfor; their assumptions exlude, for instane, a simple break in the variane, but they on-jeture that the results an be extended in that partiular diretion. Finally, Cavaliereet al. (2013) propose wild bootstrap implementations of Wald, LR and LM tests for thefrational integration parameter in a parametri ARFIMA(p, d, q) model (see Cavaliereand Taylor, 2007a, for the unit root ase) and show them to be robust to both onditionaland unonditional heteroskedastiity of unknown form in the shoks.2



But the behavior of the equally popular frequeny-domain proedures suh as the loalWhittle or the log-periodogram regression estimator is not known at all in the preseneof time-varying variane. Provided that the variane varies smoothly enough, a possi-ble approah to deal with time-varying varianes is the onept of loal stationarity assuggested in Dahlhaus (2000). Loal versions of frationally integrated proesses are dis-ussed among others in Beran (2009) or Palma and Olea (2010). These authors workwith loalized versions of linear time series and de�ne the spetrum of the time seriesas an averaged loal spetrum. This leads to a higher �exibility in the sense that modelparameters an depend on time (whih thus robusti�es against time-varying variane) butintrodues an additional bandwidth parameter in the analysis based on spetral densities.Conretely, the loalized version of the loal Whittle estimator relies on the usual band-width parameter determining the amount of frequenies used for the estimation but hasa seond smoothing parameter oming from the loalization. As the hoie of the band-width parameter is ruial in spetral-based long memory estimation, the e�et of theintrodution of a seond bandwidth parameter is unlear. Pratitioners are thus likelyto hoose to work with loalized versions of the estimators only if there is ompellingevidene against weak stationarity.The paper therefore disusses the e�et of time-varying variane on the (non-loalized)estimation of the frational integration parameter and onto the related tests. The fous ison �nding proedures that are robust to time-varying volatility, i.e. that do not require adeision between the basi form of an estimator or test and its heteroskedastiity-orretedversion. We emphasize the need for robustness, sine, in order to apply some orretion(if available), one has to be aware that the orretion is neessary.Conretely, our ontributions are as follows. Setion 2 desribes our setting in de-tail and provides a disussion of the interations of time-varying variane with the longmemory properties of time series, as well as of the onsequenes of using di�erent vari-ants of the heteroskedasti long memory model we work with. In Setion 3, we showthat periodogram-based proedures are still asymptotially unbiased but have typiallyan in�ated variane whih a�ets inferene based on the distributional properties of theseestimators. At the same time, regression-based proedures are shown to be robust againsttime-varying variane as modeled here. The modi�ed range-sale statisti turns out tobe robust if adjustment for deterministis is not required, but is a�eted otherwise. The�nal setion onludes, and the proofs have all been gathered in the appendix.Let us set some notation before providing the framework of our analysis and themain �ndings and results. Denote by fy the spetrum of a weakly stationary proess yt,
fy(λ) =

1
2π

∣∣E
(
yte

iλt
)∣∣2, by Iy the periodogram of a series yt, Iy(λ) = 1

2πT

∣∣∣
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∣∣∣
2,and by λj the jth Fourier frequeny, λj = 2πj/T . Further, let C be a generi onstant and

‖·‖2 the L2 norm of a random variable; d→ denotes onvergene in distribution, and p→3



denotes onvergene in probability. Finally, the Op symbol has its usual meaning of anupper bound for the magnitude order of a stohasti sequene.2 Heteroskedastiity and long memoryA very popular model for long memory and antipersistene is given by the frationallyintegrated proess
yt = µ+ (1− L)−d utI(t > 0), t ∈ Z (1)where the frational integration �lter is given by the usual series expansion and ut is a shortmemory omponent. The paper assumes without loss of generality that µ = 0. Underregularity onditions for ut�in partiular, weak stationarity or asymptotially negligibledepartures from weak stationarity (see e.g. Phillips, 1987, in the unit root ase)�, well-known invariane priniples hold. If d ∈ (−0.5; 0.5), suitably normalized umulated sumsof yt onverge weakly to frational Brownian motion of type I; if d ∈ (0.5; 1.5), it is ytitself that, suitably normalized, onverges weakly to frational Brownian motion (of typeII). For sets of su�ient onditions see e.g. Davydov (1970) or Marinui and Robinson(2000), respetively.Alternatively, the behavior of the spetrum of the proess in a neighborhood of theorigin an be used to haraterize the memory properties

λ2dfy(λ) → C as λ→ 0.If ut has a ontinuous spetrum, bounded and bounded away from 0 at the origin, thespetrum of yt from (1) behaves like in the above equation.Motivated e.g. by the literature disussing hanges in the persistene of proesses withlong-range dependene (see Leybourne et al., 2007, or the more reent ontributions ofSibbertsen and Kruse, 2009, and Hassler and Sheithauer, 2011), one ould allow fordeterministi hanges in d: they neessarily in�uene the variane of yt. Suh a model,however, is not too onvenient beause it mingles the variability of the variane with thepersistene of the proess.Virtually all existing papers assume a omponent model for introduing heteroskedas-tiity, where the stohasti omponent is weakly stationary and the heteroskedastiity isindued by multipliation with a sequene of onstants; typially, a triangular array stru-ture is allowed for in order to model e.g. a strutural break ourring at a �xed positionrelative to the sample size. This struture is nothing else than a uniformly modulatedproess in the terminology of Priestley (1988, p. 165).Looking bak at the unit root ase, the natural hoie for the nonstationary frationalase seems to be to fous on the short memory inrements; for them, Cavaliere (2004)4



assumes that ut = σtυt for eah t = 1, . . . , T , where υt is (short-memory) weakly station-ary and the so-alled variane pattern σt is given by the sampling at t/T of a pieewiseontinuous funtion with a �nite number of disontinuities ful�lling a uniform Lipshitzondition at all ontinuity points.But from an eonomi modeling perspetive, say, the more onvenient way to introdueheteroskedastiity relies on speifying the short-memory omponent ut as a linear proess.Under weak stationarity, suh a linear Wold representation exists and the assumption isnot restritive. So one an require�as do Phillips and Xu (2006) and Cavaliere and Taylor(2007b)�that the innovations of the linear proess be modulated, instead of the proessitself, ut = ∑
j≥0 bjεt−j with εt = σtǫt, where ǫt is unorrelated with onstant varianeand the oe�ients bj satisfy some summability ondition.The assumption of a linear proess is quite general and is standard in the unit rootliterature; a very similar assumption is made e.g. by Marinui and Robinson (2000) inthe frational integration ontext. It allows of ourse for �nite-order ARMA proesses,whose Wold oe�ients deay exponentially. Suh an assumption allows for the nierinterpretation that innovations, and not the entire proess, have a hanging variane inresponse to hanging environment onditions instead of a hange a�eting all previousinnovations as well. It also allows for a lear distintion between dynamis and volatilityof the series.By fousing on the short memory omponent, however, the disussion ignores the �in-termediate position� of frational integration between stationarity and integration: whendealing with stationary long memory, the proess itself ould be modulated, as opposedto having modulated innovations or modulated short-run omponents.All these are di�erent data generating proesses [DGPs℄. In pratie, one may howeverbe tempted to pik that DGP that an be more easily dealt with analytially. So the ques-tion relevant at this point is, what is the relation between them? Do they have di�erentimpliations? More preise assumptions are required for answering these questions.The variane pattern examined here relies on Cavaliere's (2004) assumption but allowsfor unbounded, trending varianes. See also Cavaliere and Taylor (2009) and Cavaliereet al. (2013). As pointed out by Cavaliere (2004), assuming the variane pattern tobe deterministi is a simple way of ensuring it to be exogenous; if σt is random, butmeasurable w.r.t. the remote σ-�eld ⋂∞

s=−∞{ǫs, ǫs−1, . . .}, the results are not a�eted.Assumption 1 There exists a non-negative funtion σ (s) with real support satisfying auniform Lipshitz ondition at all but a �nite number of (jump) disontinuity points, and
α ≥ 0, suh that σt = T ασ

(
t
T

).The assumption allows e.g. for deterministi jumps in the variane (with α = 0),but also for a linear trend in the variane (with σ(s) = sI(s > 0) and α = 1). The5



nonnegativity requirement keeps the interpretability of σ as an exogenous variane salingfator. The assumption also implies σ(·) to be bounded, with boundedness being helpfulwhen onsidering t < 0. Assumption 1 basially requires that the properly saled varianedoes not vary too wildly in the limit.Let us now examine the di�erenes between the two disussed DGPs. The proposi-tion below examines the interhangeability of linear �ltering and variane modulation asimplied by Assumption 1.Proposition 1 Let ut =∑j≥0 bjǫt−jσt−j, and ũt = σt

(∑
j≥0 bjǫt−j

) where ‖ǫt‖2 < C <

∞ ∀t ∈ Z and {bj}j≥0 is 1-summable. It then holds true under Assumption 1 that
∥∥u[sT ] − ũ[sT ]

∥∥
2
< CT α−1at all ontinuity points s ∈ [0, 1] of σ(·).Proof: See Appendix C.The proposition is very general in that it does not require spei� assumptions aboutthe innovations ǫt exept uniform L2 boundedness, not even short memory or weak sta-tionarity. As an be seen from the proof, the di�erene between u[sT ] and ũ[sT ] is Op(T

α)at the disontinuity points of σ(·). If σt obeys Assumption 1 with α < 1, u[sT ] onverges inmean square to ũ[sT ] at a rate uniform in s. The rate depends on the trending behavior ofthe variane; if the variane trend is too strong, there is no equivalene. This an also bethe ase if σt indues �loal heteroskedastiity,� under whih the di�erenes do not vanishin general; seasonal MA �lters, for instane, never lead to asymptoti equivalene underloal heteroskedastiity of the shoks. In ontrast, bj = 0 ∀j > 0 is an obvious partiularase where equivalene ours.The result assumes a short-memory type summability ondition on the �lter oe�-ients. For the ase of more persistent �lters, we have the following proposition.Proposition 2 Let ut be frationally integrated of order d, and yt = ∑t−1
j=0 φ

(d1)
j ut−jσt−jand ỹt = σt

∑t−1
j=0 φ

(d1)
j ut−j where φ(d1)

j are the oe�ients of the frational di�erene �lterwith parameter d1, not neessarily equal to d. Then,
∥∥y[sT ] − ỹ[sT ]

∥∥
2
≤ C T α+(d−d1)−0.5.at all ontinuity points s ∈ [0, 1] of σ(·).Proof: See Appendix C.Thus, the onsidered DGPs are equivalent in a ertain sense. But do not know yetwhat the exat properties of the DGPs are with respet to serial dependene. The het-eroskedasti struture of the series does in�uene the theoretial long memory properties:6



sine the series is not stationary, one has time-varying autoovarianes,
γt,Th (yt) = γhσtσt−h.Obviously, if the variane funtion is trending, the autoovariane γt,Th (yt) does not evenhave to vanish as h→ ∞.In spite of this behavior of the autoovarianes, the persistene properties of yt are stillharaterized by d, as it is reviewed in Appendix B. The remaining question is, whethertime-varying heteroskedastiity a�ets inferene on d. Setion 3 examines the e�ets ofmodulation on orresponding estimators and tests.Moreover, Appendix A uses Propositions 1 and 2 to argue that the test statistisonsidered in Setion 3.1 are themselves not a�eted asymptotially by the hoie of theDGP when regarding short memory. For long memory, this is not warranted, however.The derivations are proedure-spei� anyway, so one might want to hek the e�ets ofinterhanging modulation and �ltration in eah spei� ase. Given the positive resultsin Appendix A, we pik the more onvenient DGP and model the innovations εt as beingmodulated.For the derivations in the following setion related to the regression-based tests, thestationary omponent is required to be a stable, �nite-order AR proess with martingaledi�erene innovations.Assumption 2 Let ut be a stable autoregression of order p driven by modulated shoks

εt = σtǫt suh that σt obeys Assumption 1 and ǫt is a weakly stationary martingale di�er-ene sequene with absolutely summable 8th-order umulants.The assumption allows for the inorporation of onditional heteroskedastiity in themodel. In fat, even more general onditions for ut are feasible (e.g. ARMA models,aommodated for by using autoregressive approximations), but the paper stiks with a�nite autoregression for larity of the exposition.3 Inferene on the frational integration parameter3.1 ProeduresWhen the interest lies in testing hypotheses about the frational integration parameter
d, one basially has the hoie between time-domain based tests and frequeny-domainbased tests.

7



For the time domain, we shall examine here regression-based tests of the form
xt = φ̂x∗t−1 +

p∑

j=1

âjxt−j + ε̂t, t = p + 1, . . . , T, (2)where x∗t−1 =
∑t−1

j=1 ψjxt−j for suitably hosen weights ψj and xt = ∆d0yt. This formulationenompasses the frational Dikey-Fuller test of Dolado et al. (2002), the e�ient Waldtest of Lobato and Velaso (2007), or the ALM test due to Demetresu et al. (2008),depending on the hoie of the �lter {ψj}j≥1. For the ALM test for instane, one has
ψj = 1/j, whih is motivated by the LM priniple. Dolado et al. suggest to hoose ψjas the oe�ients of the frational integration �lter having as integration parameter the(possibly estimated) distane between the null and the alternative. Lobato and Velasomodify the latter to ahieve e�ieny. Throughout the paper, �xed weights are assumedto keep the omplexity of the proofs under ontrol.Under the null hypothesis d = d0, one has xt ≡ ut, and, onsequently, φ = 0; evidenein favor of φ < 0 points toward the alternative d < d0, and evidene in favor of φ > 0points toward the alternative d > d0. Standard asymptotis apply for the t statisti of
φ as long as ψj is square summable; letting p → ∞ at an appropriate rate, one an evenapproximate linear proesses in an autoregressive manner and maintain the standardasymptotis. The approximation order p, however, should be a deterministi funtionof T , in order to avoid problems assoiated with post-model seletion inferene. SeeDemetresu et al. (2008) for a disussion of the ALM situation, disussion extending tosquare summable oe�ients ψj .Demetresu et al. also suggest to use White standard errors, as they ensure orretinferene under onditional heteroskedastiity of εt on the one hand, and there is little, ifnothing, to lose under onditional homoskedastiity on the other hand. (This applies ofourse for the frational Dikey-Fuller test or the e�ient Wald test as well.)In order to deal with deterministi omponents suh as a non-zero mean, one sim-ply removes from xt = ∆d0yt the orrespondingly di�erened deterministi omponentbefore applying the ALM test; it would not a�et the asymptoti standard normal dis-tribution under homoskedastiity. See Demetresu et al. (2008, Proposition 4), and it isstraightforward to show that the result holds under unonditional heteroskedastiity aswell.Also in the time domain, one an resort to the modi�ed range/sale statisti disussedby Lo (1991). It relies as well on building di�erenes under the null hypothesis. Shouldthe di�erenes require no adjustment for deterministi omponents, the statisti is givenby

Q =
1√
T

max1≤t≤T St −min1≤t≤T St

ω̂8



where St are the partial sums of the series of interest di�erened under the null, St =
∑t

j=1 xj , and ω̂2 is an estimator of the long-run variane of xt (f. Lo, 1991). Underhomoskedastiity, the limiting distribution is
Q

d→ max
s∈[0,1]

W (s)− min
s∈[0,1]

W (s)with W a standard Wiener proess. In the ase with adjustment for deterministis, sayfor the prototypial onstant, the statisti Q is omputed with demeaned series xt − xand the limiting distribution is given in terms of standard Brownian bridges rather thanWiener proesses.In the frequeny domain, the paper looks at the loal Whittle estimator d̂lw and at thelog-periodogram regression. The asymptoti distribution of the loal Whittle estimatorwas �rst derived for d < 0.5 by Robinson (1995a) assuming homoskedastiity:
√
4m
(
d̂lw − d0

)
d→ N (0, 1) ,where m is the bandwidth, m/T → 0 as m, T → ∞ (regularity onditions assumed). Theloal Whittle estimator is given by

d̂lw = argmin
d

[
log

(
1

m

m∑

j=1

λ2dj Iy (λj)

)
− 2d

m

m∑

j=1

log λj

]
,with Iy (·) being the periodogram of yt and λj = 2πj/T the jth Fourier frequeny. A non-zero mean is aommodated by onstrution. Shao and Wu (2007) show the asymptotidistribution above to be robust to a ertain degree of onditional heteroskedastiity, andalso study the behavior of d̂lw for values of the frational di�erene parameter up to

d < 1.5.For the log-periodogram regression of Geweke and Porter-Hudak (1983) [GPH℄, d̂gphis obtained from the regression
log Iy(λj) = C − 2d λj + log ξj , j = 1, . . . , m.For d̂gph, Hurvih et al. (1998) show that

√
m
24

π2

(
d̂gph − d

)
d→ N (0, 1),again under weak stationarity of the short-memory omponent.The robustness properties of these inferential proedures is analyzed in small samplesin the following subsetion, and analytial results are provided in Subsetion 3.3.9



3.2 Experimental evideneThe examined null hypotheses are d0 ∈ {−0.2,−0.1, 0, 0.1, 0.2}, and the true frationalintegration parameter d is taken to belong to {−0.2,−0.1, 0, 0.1, 0.2} as well, leading to 25possible ombinations. The ALM test examined is representative for the regression-basedtests; for the entire lass, one ould restrit oneself to d0 = 0, as the test is based ondi�erenes under the null. But all null hypotheses are looked at: slight di�erenes in thebehavior of the ALM test may appear, sine the frational di�erene operator is sample-size dependent in �nite samples. To fous on the e�ets of nonstationary volatility, welet the short-memory omponent ut be unorrelated via independene of the Gaussianstandardized innovations ǫt.Heteroskedastiity is inorporated in the Monte Carlo study by suitably hoosing σt.We study four variane patterns: a onstant one, σ2
t = 1, as benhmark, a break in thevariane, σ2

t = 1 + 4I(t > T/2) and a linear trend in the variane, all three obeyingAssumption 1, as well as a variane pattern swithing periodially between 1 and 5 withperiod S = 2, σ2
t = 3 + 2(−1)t, as a ounter-example.The onsidered sample size is T = 500. The samples were atually generated with

T+200 observations, of whih the �rst 200 were then disarded; a number of 10 000MonteCarlo repliations were run for eah studied ase. All tests are two-sided. The ALM testapplied to the di�erenes xt = ∆d0yt with a lag order hoie of p = 4[(T/100)0.25], forthe modi�ed R/S statisti relying on a long-run variane estimator with the quadratispetral kernel and bandwidth b = 4[(T/100)0.25]. The loal Whittle test is omputedwith deterministi bandwidth m = 0.25 T 0.8 and orreted variane

4

m∑

j=1

(
lnλj −

1

m

m∑

j=1

lnλj

)2



−1

, (3)as disussed in Robinson's (1995a) derivations; it is asymptotially equivalent to 1/4m, butperforms better in small samples. See Hurvih and Chen (2000) for the examination of avariant of (3) using 2 sin λj/2 instead of λj . Finally, the GPH estimator is omputed withbandwidth m = T 0.79. The results are reported in Table 1.When there is no unonditional heteroskedastiity, we learn that the tests based onthe loal Whittle and the GPH estimators an be oversized, with the LW test having arejetion frequeny between 6% and 7%, and the GPH test rejeting between 7% and 8% ofthe times. In ontrast, the ALM and the modi�ed R/S tests hold size. In terms of power,the GPH test dominates learly, whih is mostly due to the larger bandwidth. The loalWhittle test is slightly more powerful than the ALM test, perhaps due to the overrejetionunder the null. Finally, the power of the ALM test is higher against alternatives of lowerpersistene (the asymmetry of the power funtion of many LM tests has been observed10



Table 1: Size and power of frational integration tests without adjustment for deterministis for di�erent variane patterns in theinnovations

d = −.2 d = −.1 d = 0 d = .1 d = .2

σt d0 ALM RS LW GPH ALM RS LW GPH ALM RS LW GPH ALM RS LW GPH ALM RS LW GPH
−.2 5.4 5.2 6.7 7.2 13.3 17.2 16.3 45.3 32.1 39.3 51.1 92.8 51.9 62 83.9 99.9 63.1 78.5 97.1 100
−.1 14.3 7.7 19.1 42.2 4.9 4.6 6.4 7.5 13.1 17.5 15.5 46.1 33.6 40.3 51.2 93.3 52.4 62.3 83.8 99.9o 0 46.1 23.7 54.4 93.7 15.6 7.5 20.8 43.6 4.9 4.8 6.2 7.2 13.1 17.9 16 45.8 35.4 41.6 51.5 93.2
.1 83.4 54 87.2 100 46.7 24.4 55.3 94.2 15.6 7.9 21.3 43.4 4.8 4.9 6.3 6.9 14.1 18.1 16.8 46.4
.2 97.8 81.6 98.5 100 83.5 53.7 87.7 100 47.5 24.2 55.4 94.3 14.8 7.9 20.3 42.7 4.8 4.5 6.2 7.7

−.2 5 4.5 10.3 11.1 10 14.4 20.1 46.2 24 34.7 50.5 91.1 37.8 55.2 80 99.7 46.4 70.8 95.4 100
−.1 12 6.4 23.1 43.5 5.1 4.6 10.4 10.5 10.6 15.1 20.3 45.9 23.4 34 50.8 91.1 38.7 55.5 81.6 99.6br 0 36.9 18.2 55.9 91.8 12.5 6.4 24.4 44.1 5.1 4.5 10.1 10.5 10.1 14.7 20.2 47.1 24 35.3 50.6 91.6
.1 70.2 37.4 85.6 99.9 35.6 17.5 55.4 91.6 13.2 6.2 25.4 44.8 5.1 4.5 9.9 9.8 10.1 15.3 19.8 46.9
.2 92.5 60.9 97.6 100 69 37.9 85 99.9 36 18.2 56.9 92.2 11.8 6.1 22.4 43.5 4.9 4.2 10.1 10.6

−.2 5.5 4.6 9.3 10.2 9.3 14.2 19.5 46.3 24.2 34.8 50.5 91.5 38.4 54.5 80.8 99.7 47.7 72.6 95.6 100
−.1 13.1 7.2 22.2 43.7 5.3 4.3 9.6 10.3 10 13.7 18.6 46.4 24.2 34.3 49.7 91.5 37.9 55.6 81.1 99.7tr 0 36.7 17.9 53.8 91.7 12.9 6.7 23.2 43.5 5.4 4.6 9.5 9.6 9.6 13.9 19.5 47.3 22.9 34.3 50.2 91.9
.1 70.4 37.7 84.8 99.9 37.7 18.2 56 92.3 12.9 6.9 23.3 43.2 4.8 4.5 9.5 10 9.9 15 19.7 45.7
.2 91.7 60.5 97.7 100 70.2 38.8 85.1 99.9 37.8 18.7 56.2 92 13.4 6.8 23.8 44.5 5 4.3 9.2 10.7

−.2 5.5 5.6 6.5 9.2 13.8 17.9 17.5 47.5 34.7 40.4 50.9 92.7 54 62 83.1 99.8 66.4 78.9 96.7 100
−.1 12.6 8.6 20 41.9 5.2 5.2 6.2 8.7 13.4 16.5 15.7 45.3 34.8 41.2 50.9 93 54.9 62.2 84.4 99.7pe 0 39.6 24.7 55 92.4 14.1 9.1 20.7 43.2 4.6 4.5 5.7 8.9 13.4 17.2 16.3 47.1 34.8 42.3 51.4 92.8
.1 72.9 49.3 87.3 99.9 39.8 25 54.7 92.9 13.4 8.6 20.9 43.2 5.1 5.2 6.3 9 13.6 18.1 17.1 47.5
.2 92.9 71.1 98.6 100 73 50 88.1 99.9 40 25.1 56.7 92.6 13.8 8.8 21.1 42.9 4.8 4.9 6.2 8.9Note: The nominal size is 5% and the variane patterns are denoted as o: onstant, br: break, tr: linear trend, pe: periodi hanges. The ALM test isomputed with p = 4[(T/100)0.25] and White standard errors, and the modi�ed range-sale statisti uses as long-run variane estimator the periodogram atthe origin smoothed with the quadrati spetral kernel and a bandwidth of p = 4[(T/100)0.25]. The loal Whittle test is omputed with bandwidth

m = 0.25T 0.8 and variane as in (3), while the test based on the GPH estimator uses as bandwidth m = T 0.79 and the asymptoti variane. The series yt arefrational white noise integrated of order d with variane-modulated shoks, and the sample size is T = 500. For further details, in partiular regarding thevariane patterns, see the text.
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before), whereas the exat opposite is observed for the modi�ed R/S statisti, whihan be explained by the di�erent behavior of the long-run variane estimator under therespetive alternatives (Teverovsky et al., 1999).The piture hanges dramatially for the loal Whittle and the log-periodogram re-gression based tests under time-varying variane. Under the variane patterns with breakor trend, their size an be as high as 12%, and is never below 9%. In ontrast, the sizeof the ALM test is pratially not a�eted by time-varying variane, in fat it is in mostases loser to the nominal level of 5% than in the homoskedasti ase. The rejetionfrequenies under the onsidered alternatives do not hange signi�antly when omparedto the unonditionally homoskedasti ase, with the exeption of the ALM test for whihthe power drops a bit, ompared to the unonditionally homoskedasti ase. (Thus, theliberality does not even lead to higher rejetion frequenies under the alternative.)For the periodi pattern, the size of the LW test is slightly loser to the nominal 5%than in the benhmark ase, while the GPH test reats more sensitively. The empirialpower of all tests does not hange signi�antly either.When the innovations are a�eted by heteroskedastiity, it appears that the ALMand the modi�ed R/S tests are robust to heteroskedastiity, but the loal Whittle test isrobust to periodi heteroskedastiity only (the loal Whittle estimator apparently onfusessuh patterns with onditional heteroskedastiity to some extent). The di�erene liespresumably in the �persistene� of the pattern, the loally homoskedasti one being stillglobally heteroskedasti, whereas for the periodi pattern �utuations average out as tinreases. This does not appear to hold for the GPH based test, at least not for thissample size.We also examined the four tests under a DGP where the persistent proess itself ismodulated, rather than the shoks εt; see Table 2.As suggested by the arguments of Appendix A, the piture is essentially the same asin Table 1, up to Monte Carlo variability. There is one important di�erene, however: inthe ase of periodi variane hanges not overed by 2, all four tests are seriously oversizedfor d0 = d < 0. This puzzling fat has a simple explanation: the proess an be writtenas the sum of two omponents, both integrated of negative order, but with one only beingobserved every seond period. It is known (see e.g. Hassler, 2011) that overdi�erenedproesses beome integrated of order zero upon skip sampling, shifting the DGP towardsthe alternative, so the tests rejet as long as d0 = d < 0.For the loal Whittle and the GPH proedures, additional experimental evidene sug-gests that the estimator d̂ itself is still onsistent under both loal homoskedastiity andperiodi heteroskedastiity, although its distribution is distorted under loal homoskedas-tiity. The results are reported in Table 3 for T = 500, T = 1000, T = 1500 and T = 2000.The bias of the two estimators for d dislosed in Table 3 are quite small, in fat the12



Table 2: Size and power of frational integration tests without adjustment for deterministis for di�erent variane patterns in the levels
d = −.2 d = −.1 d = 0 d = .1 d = .2

σt d0 ALM RS LW GPH ALM RS LW GPH ALM RS LW GPH ALM RS LW GPH ALM RS LW GPH
−.2 5.2 5.1 6.3 7.3 13.5 17.6 16.7 46.8 33.4 39.6 51.4 93.3 53 64.1 83.9 99.9 63.4 78.6 96.9 100
−.1 14.7 8.1 19.6 42.7 4.9 4.8 5.9 7 12.7 16.4 15.9 45 34.4 40.9 51.2 93.1 53.7 63 83.9 99.9o 0 46.8 23.8 54.7 93.4 15 7.7 20.5 43.5 5 4.7 6.3 7.3 13.1 17 16 46 34.2 40.9 50.5 93.1
.1 82.9 52.7 87.4 100 46.8 24.5 55 93.7 15.7 8.3 21.1 44.2 4.8 4.4 6.1 7.7 13.7 17.6 16.6 46.4
.2 98.1 81 98.5 100 83.8 54.9 88.6 100 48 24.4 56.3 93.8 14.9 7.8 20.5 44.1 5.4 4.9 6.6 8.1

−.2 4.9 4.4 9.7 10.1 10.2 15.8 20 46.5 23.3 34 50 91.8 39.6 56.6 80.9 99.6 49.6 74 95.4 100
−.1 12.5 6.4 22.9 43.2 4.7 4.1 9.7 10.4 10.4 15.1 19.8 47.1 25.1 35.9 50.1 91.3 41.1 58 82.1 99.7br 0 34.7 16.8 54 91.9 12.7 6.4 23.6 43.9 5.4 4.4 10 10.6 10.4 15.7 20.3 46.5 26.2 37.8 51.4 92.5
.1 69 36.7 84.7 99.9 35.9 17.8 55.4 91.8 12.5 6.3 24.2 43.6 5 4.6 10.3 10.5 11 16.2 20.5 47.6
.2 91.5 59.5 97.1 100 68.5 37.3 85.7 99.8 35.3 17.2 56.7 92.1 11.9 6.6 23.2 44.6 4.9 5.1 9.4 10.3

−.2 5.3 4.1 9.4 10.3 9.2 13.1 19.4 46.1 23.5 34 51.5 91.4 39.7 56.5 81 99.6 51.2 74.1 95.7 100
−.1 13.5 7 22.2 43.2 4.5 3.7 9.1 10.2 9.3 14.6 18.3 46.1 25.5 36.5 50.9 91.8 43.7 60.8 81.6 99.8tr 0 37.8 19.4 54.3 91.8 13.9 6.9 23.8 44.7 4.8 4.4 8.9 10.4 10.1 15.7 19.1 46.8 26.9 39.3 51.4 91.4
.1 71 38.9 84.9 99.9 37.6 18.7 55.7 92.3 12.7 6.8 23.2 43.2 5.4 5.2 9.5 10.1 11.7 18.3 19.4 46.6
.2 92.3 60.2 97.6 100 70.8 39.1 85.8 99.9 38.2 18.8 56.9 92.6 13.4 6.6 23.5 44.8 5.3 5.5 9.3 10.1

−.2 21.2 25.5 20.8 50.7 23.7 28.4 30.2 71.9 34.1 40.1 50.4 92.6 52.7 58.2 79.2 99.5 69 76.4 95.2 100
−.1 6.4 8 6 8.9 7.2 9.1 7.2 16.7 12.8 16.9 16 46.7 31.2 36 42.7 85.5 55.3 59.8 77.8 99pe 0 10.5 6.2 15.7 39.5 7.8 5.5 11 20.1 4.7 4.3 6.1 8.9 11.5 14.4 11.9 31.4 34.5 37.1 41.1 80.1
.1 34.6 20.6 48.3 91.4 26.9 16.3 38.2 77.8 13.6 8.9 20.7 42.2 5.3 4.1 7.2 11.2 12.7 14.6 11 23.4
.2 68.4 43.7 84.2 99.9 60.5 38.8 77.1 99.1 41 25.1 56 92.9 16.5 10.5 26.5 59.5 5.3 4.4 7.4 14.8Note: The proess itself rather than the shoks are modulated. See otherwise Table 1.
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Table 3: Mean (m) and standard deviation (s) of the loal Whittle and log-periodogram regression estimator for di�erent varianepatterns in the innovations

d = −.2 d = −.1 d = 0 d = .1 d = .2

σt T mlw slw mgph sgph mlw slw mgph sgph mlw slw mgph sgph mlw slw mgph sgph mlw slw mgph sgph500 −0.21 0.101 −0.2 0.060 −0.11 0.102 −0.1 0.061 −0.01 0.101 0.0 0.061 0.09 0.102 0.10 0.061 0.19 0.105 0.20 0.061o 1000 −0.20 0.073 −0.2 0.045 −0.10 0.074 −0.1 0.045 −0.01 0.073 0.0 0.045 0.09 0.073 0.10 0.044 0.20 0.072 0.20 0.0451500 −0.20 0.060 −0.2 0.037 −0.10 0.060 −0.1 0.038 0.0 0.060 0.0 0.038 0.10 0.060 0.10 0.038 0.20 0.061 0.20 0.0382000 −0.20 0.053 −0.2 0.033 −0.10 0.052 −0.1 0.033 0.0 0.052 0.0 0.034 0.10 0.053 0.10 0.033 0.20 0.053 0.20 0.034500 −0.21 0.117 −0.2 0.068 −0.11 0.117 −0.1 0.067 −0.01 0.118 0.0 0.067 0.09 0.116 0.10 0.066 0.19 0.114 0.20 0.067br 1000 −0.21 0.088 −0.2 0.051 −0.11 0.090 −0.1 0.051 −0.01 0.089 0.0 0.052 0.09 0.090 0.10 0.051 0.19 0.089 0.20 0.0521500 −0.20 0.076 −0.2 0.044 −0.11 0.078 −0.1 0.045 −0.01 0.076 0.0 0.045 0.10 0.076 0.10 0.044 0.20 0.076 0.20 0.0452000 −0.20 0.068 −0.2 0.040 −0.11 0.067 −0.1 0.040 −0.01 0.068 0.0 0.040 0.09 0.066 0.10 0.040 0.20 0.068 0.20 0.040500 −0.21 0.113 −0.2 0.066 −0.11 0.113 −0.1 0.066 −0.01 0.113 0.0 0.066 0.09 0.114 0.10 0.066 0.19 0.114 0.20 0.066tr 1000 −0.21 0.086 −0.2 0.051 −0.11 0.086 −0.1 0.051 −0.01 0.086 0.0 0.051 0.09 0.087 0.10 0.050 0.19 0.087 0.20 0.0511500 −0.20 0.073 −0.2 0.044 −0.11 0.073 −0.1 0.044 −0.01 0.073 0.0 0.044 0.10 0.074 0.10 0.044 0.20 0.073 0.20 0.0442000 −0.20 0.065 −0.2 0.039 −0.10 0.066 −0.1 0.040 −0.01 0.065 0.0 0.039 0.10 0.065 0.10 0.039 0.20 0.066 0.20 0.039500 −0.20 0.104 −0.2 0.063 −0.11 0.101 −0.1 0.063 −0.01 0.102 0.0 0.063 0.09 0.104 0.10 0.063 0.19 0.103 0.20 0.064pe 1000 −0.20 0.073 −0.2 0.044 −0.11 0.073 −0.1 0.045 −0.01 0.074 0.0 0.045 0.10 0.073 0.10 0.045 0.20 0.074 0.20 0.0451500 −0.20 0.061 −0.2 0.038 −0.10 0.061 −0.1 0.037 −0.01 0.060 0.0 0.038 0.10 0.061 0.10 0.038 0.20 0.061 0.20 0.0372000 −0.20 0.054 −0.2 0.034 −0.10 0.052 −0.1 0.033 0.0 0.052 0.0 0.033 0.10 0.053 0.10 0.033 0.20 0.053 0.20 0.033Note: The sample sizes vary form T = 500 to T = 2000. See otherwise Table 1
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GPH estimator is pratially unbiased. (This is not really surprising, given that there isno short-run dynamis.) Moreover, the bias, small as it is, dereases as T inreases from
500 to 2000, as does the variane of the estimators. Most of the distortions of the LWtest in the benhmark homoskedasti ase (see Table 1) an be traed bak to the bias ofthe loal Whittle estimator, while the distortions of the GPH test are apparently due tothe imperfet asymptoti approximation of its variane (its bias being pratially 0). Theadditional distortions due to heteroskedastiity (for the break and the trend patterns) aremost likely aused by the in�ated variane of the estimator. For the periodi pattern,bias and variane are bak at the values in the benhmark ase (this suggests that itis the shape of the small-sample distribution of the GPH estimator that indues theoversizedness).3.3 Limiting resultsIn the ase of regression-based tests, the robustness illustrated in the previous subsetionis easily explained for the ase of square summable ψj . The asymptoti distribution ofthe t statisti is standard normal due to a martingale di�erene entral limit theorem,and White standard errors used to apture serial dependene in the squares of εt, aptureunonditional heteroskedastiity as well. See Phillips and Xu (2006) for an analysis ofheteroskedasti, �nite-order, autoregressions. This is shown in the following Proposition,whih is intimately related to the result of Kew and Harris (2009).1Proposition 3 Under the null hypothesis d = d0 and Assumptions 1 and 2, it holds as
T → ∞ for the t statisti with White standard errors tφ from regression (2) that

tφ
d→ N (0, 1),provided that ∑j≥0 ψ

2
j <∞.Proof: See Appendix C.Remark 1 The extension of the proposition to deterministi omponents is straightfor-ward as outlined in Proposition 4 of Demetresu et al. (2008). The extension for p→ ∞,or for �lter oe�ients ψj based on estimated frational integration parameters arguablyholds as well.Note, however, that White standard errors do not work always: the Dikey-Fuller testis one suh ase (f. Demetresu, 2010). More generally, when the asymptoti distribution1We onsider a triangular array struture of the modulated innovations, while Kew and Harris (2009)onsider sequenes of (�xed) heterogenous varianes; the di�erenes are mainly tehnial in nature butwe inlude the result to keep this paper self-ontained.15



of the test statisti is expressed as a funtional of (frational) Brownian motions, as an bethe ase with partiular hoies of ψj for the frational Dikey-Fuller test (Dolado et al.,2002), White standard errors fail in aounting for unonditional heteroskedastiity. Forthe same reason, distortions appear for the frational ointegration test of �asak (2010) aswell, whih is not the ase for the regression-based tests for ointegration due to Avaruiand Velaso (2009) and Demetresu et al. (2013).The behavior of the modi�ed R/S statisti depends under time-varying volatility onwhether deterministi omponents are aounted for or not. Conretely, if no adjustmentis neessary, the limiting distribution of the modi�ed R/S statisti is invariant to thevariane pro�le, whereas, under e.g. demeaning, it is not.Proposition 4 Under the null hypothesis d = d0 and Assumptions 1 and 2, it holds as
T → ∞ for the R/S statisti without demeaning that

Q
d→ max

s∈[0,1]
W (s)− min

s∈[0,1]
W (s)whereas under demeaning

Q
d→ max

s∈[0,1]
H (s)− min

s∈[0,1]
H (s)with H (s) =W (η (s))− sW (1).Proof: See Appendix C.So the modi�ed R/S statisti ould only be used to robustly test the persistene of seriesthat do not require adjustment for deterministi omponents. This is either the ase whenthe mean funtion of the di�erened series is known, or when the di�erened deterministiomponent is zero or negligible. If e.g. the null hypothesis is for instane d = 1, a onstantnon-zero mean of the series is di�erened away; and it an be shown that, as long as d > 0.5under the null, a onstant non-zero mean is negligible after di�erening so one an applythe R/S test without worrying about the di�erened deterministis.In the ase of the log-periodogram or the loal Whittle estimator, the analysis ishandiapped by the fat that the spetrum of yt is not properly de�ned, sine yt is notweakly stationary, not even for d < 0.5. But examining the periodogram, whih an stillbe omputed, the rate at whih it vanishes or explodes at the origin is not a�eted; seethe following Proposition.Proposition 5 Under Assumptions 1 and 2, it holds for yt from (1) with uniformlybounded 4th order moments of ǫt that

T−2αIy(λ)

λ−2d
= Op(1)16



as T → ∞ where the Op(1) term is uniform for λ ∈ (0, λ) with �xed λ > 0.Proof: See Appendix C.Sine a multipliative fator T−2α does not a�et the minimum of the loal Whit-tle approximation or the log-periodogram regression, the proposition would explain theapparent onsisteny of the LW and GPH estimators. When modulating the proess,however, the formulae for their variane are obviously not delivering the right numbersanymore; see Table 3. It is as if the wrong bandwidth were used with Equation (3); oneould say that the distortions in the asymptoti distribution appear beause the e�etivebandwidth hanges due to the distortion of the time sale implied by the modulation.Proposition 6 Under Assumptions 1 and 2, it holds for the log-periodogram regressionestimator
√
m
24

π2

(
d̂gph − d

)
d→ N (0,

∫ 1

0

σ2
t dt/σ

2).Proof: See Appendix C.4 Conluding remarksThe paper disussed modeling and inferene for long memory time series under unondi-tional heteroskedastiity.Variane modulation has an e�et on invariane priniples for umulative sums underAssumption 1, as is well-known in time series eonometris sine the work of Cavaliere(2004). In the seasonal ase, however, the limit is not a�eted (Burridge and Taylor,2001). It is tempting to onjeture that, just as in the integer integration ase, the limitin the frational ase is a time-transformed frational Brownian motion. Dealing withthis topi, however, goes beyond the sope of the paper and is left for further researh.It was found using Monte Carlo simulations that the ALM test is robust, as are relatedregression-based tests under weak additional onditions, but the tests based on the loalWhittle or the log-periodogram estimators are not. The modi�ed range/sale statisti isrobust only if no adjustment for deterministi omponents is required after di�ereningunder the null. Moreover, the paper provided asymptoti arguments as to why robustnessis given for the time-domain but not for the frequeny-domain tests.For robustifying the modi�ed range/sale statisti in the ase where adjustment fordeterministis is required, one ould resort to the solutions onsidered for unit roottests, sine the limiting distribution is expressed just like for the latter, in terms oftime-transformed Wiener proesses. For robustifying frequeny-domain tests, the wild17



bootstrap suggests itself for getting a orret estimate of the variane of the estimators.Demodulation of the series (Cavaliere and Taylor, 2008) prior to estimating the longmemory parameter would provide an alternative, but would require an estimation of thevariane pro�le. Finally, inferene based on averaged loal periodogram as developed forloally stationary series would apply immediately, but at the ost of an additional band-width parameter. The question, whih robusti�ation strategy would be preferable, isurrently under investigation.AppendixA Asymptoti equivalene of DGPsA.1 Regression-based testsWe distinguish two situations. First, we show that modulation and �ltration are ex-hangeable in the short memory omponent.Denote by tφ the regression-based test statisti omputed with xt ≡ ut under the null,and tφ̃ the one omputed with x̃t ≡ ũt. Then tφ̃ = tφ + op(1).Note that we may set α = 0 beause T α anels out in the expression of the t statisti.Note also that, as a onsequene, outliers aused by disontinuities of σ do not havein�uene inreasing with T and an be negleted.With the notation of the proof of Proposition 3 we have to show that
1√
T

T∑

t=p+1

x̃t−1x̃t −
1√
T

T∑

t=p+1

xt−1xt
p→ 0and

1

T

T∑

t=p+1

x̃t−1x̃
′
t−1 −

1

T

T∑

t=p+1

xt−1x
′
t−1

p→ 0.To this end note that the �rst di�erene is given by
1√
T

T∑

t=p+1

(x̃t−1 − xt−1) xt +
1√
T

T∑

t=p+1

xt−1 (x̃t − xt) +
1√
T

T∑

t=p+1

(x̃t−1 − xt−1) (x̃t − xt) .Let us examine the �rst term. Then, the Cauhy-Shwarz inequality leads for the �rstterm and any j = 1, . . . , p to
∣∣∣∣∣
1√
T

T∑

t=p+1

(x̃t−j − xt−j) xt

∣∣∣∣∣ ≤

√√√√
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t=p+1

(x̃t−j − xt−j)
2 1

T

T∑

t=p+1

x2t (4)18



where 1
T

∑T
t=p+1 x

2
t = Op(1), as well as

∣∣∣∣∣
1√
T

T∑

t=p+1

(
x̃∗t−1 − x∗t−1

)
xt

∣∣∣∣∣ ≤

√√√√
T∑

t=p+1

(
x̃∗t−1 − x∗t−1

)2 1

T

T∑

t=p+1

x2t (5)For (4) and any j = 1, . . . , p, we have with Markov's inequality that∑T
t=p+1 (x̃t−j − xt−j)

2 =

op (1) sine E(∑T
t=p+1 (x̃t−j − xt−j)

2
)
≤∑T

t=p+1 E
(
(x̃t−j − xt−j)

2) ≤ CT−1 due to Propo-sition 1, while for (5) it follows with the Cauhy-Shwarz inequality that
∣∣x̃∗t−1 − x∗t−1

∣∣ ≤
t−1∑

j=1

|ψj | |x̃t−j − xt−j | ≤

√√√√
t−1∑

j=1

ψ2
j

t−1∑

j=1

(x̃t−j − xt−j)
2so

E
((
x̃∗t−1 − x∗t−1

)2) ≤
t−1∑

j=1

ψ2
j

t−1∑

j=1

E
(
(x̃t−j − xt−j)

2) = o
(
T−1

)thanks to the square summability of the series ψj . It follows with Markov's inequalitythat ∑T
t=p+1

(
x̃∗t−1 − x∗t−1

)2
= op (1) as required.The remaining relations are established along the same lines, and so does the Whiteexpression for standard errors.When it omes to exhangeability of long memory �ltration and modulation, we notethat Proposition 2 does not o�er a tight enough bound on the di�erene between thetwo proesses. In fat, the disussion in Hassler and Breitung (2006) suggests that thetests an't be asymptotially equivalent. If letting p → ∞ at suitable rates, however,Demetresu et al. (2013) show that the di�erene between xt and x̃t is approximatedaway; we do not go into details here. The simulations in Setion 3.2, where p is hosen as

O
(
T 1/4

) for the ALM test (with ψj = j−1), support the intuition, however.A.2 The R/S statistiJust like for regression-based tests, short memory proesses pose no di�ulty. To see why,assume that Proposition 1 applies and note that it su�es to show that
1√
T
sup
t

∣∣∣St − S̃t

∣∣∣ p→ 0with S̃t =
∑t

j=1 ũt under the null. We have for all t < T that
∣∣∣St − S̃t

∣∣∣ ≤
t∑

j=1

|ut − ũt| ≤
T∑

t=1

|ut − ũt| ;19



sine ‖ut − ũt‖1 ≤ ‖ut − ũt‖2, it follows with Markov's inequality that ∑T
t=1 |ut − ũt| =

Op (T ‖ut − ũt‖2) and onsequently that
1√
T
sup
t

∣∣∣St − S̃t

∣∣∣ = Op

(
T−0.5

)as required.Note however that the bounds delivered by Proposition 2 do not su�e, and the resultdoes not appear to be improvable ; see the proof of Proposition 2 below. Thus, it likelymakes a di�erene whether a proess is modulated then integrated of order d or the otherway round, even if the simulations in Setion 3.2 suggest that the di�erene is minor.B Long memory properties of modulated proessesLong memory is often de�ned in terms of the behavior of the spetrum of the proessin the neighborhood of 0, or, equivalently, in terms of the asymptoti behavior of theautoovariane funtion. Neither is properly de�ned with nonstationary series as assumedhere. On the other hand, looking at model (1), there is a strong tendeny to say, �frational�lter, long memory.�Given the results in Propositions 1 and 2, we fous on modulated levels. Then we maystate that E (ỹtỹt−h) = E (ỹtỹt−h) + o(1) as T → ∞.For now, we shall assume that α=0, i.e. that the variane funtion σ2
t is bounded. Butif assuming the variane funtion to be bounded, we obtain immediately that

|γh| σ2
min ≤

∣∣∣γt,Th (yt)
∣∣∣ ≤ |γh|σ2

max.This implies that at least the deay rate of the autoovariane funtions is not a�eted.So we ould still speak of the same type of persistene in our situation. Similarly, oneobtains for the spetrum that
f (λ)σ2

min ≤ ft,T (λ) ≤ f (λ)σ2
max.Moreover, if allowing T → ∞, some additional statements an be made about averagespetra. (Nonstationary spetra have been disussed e.g. in Priestley, 1988, Chapter 6.)And what about neighboring autoovarianes (spetra)? We have namely that

γt+1,T
h (yt)− γt,Th (yt) = γh (σt+1σt+1−h − σtσt−h) = γh +O

(
T−1

)
,at all ontinuity points of σ so the autoovariane sequene is hanging smoothly enough(hopefully) to allow for average statements.20



On the average, it holds that
1

T

T∑

t=h+1

γt,Th (yt) → γh

∫ 1

κ

σ(s)σ(s− κ)dswhere κ = lim h/T . This has the nie impliation that the average autoorrelations of order
h, 0 ≤ h ≤ H , onverge to the stationary ones when H/T → 0. And, more interestingly,the pseudospetrum onsidered as

lim
T,H,H/T→0

H∑

−H

γ
[sT ],T
h (yt) cos{λh}also has a limit proportional to f (λ) at all s. This allows us to state that the trendingproperties of the proess are haraterized by d alone and the modulation does not interferewith this property of the DGP.C ProofsBefore proving the main results of the paper, a preliminary lemma required for the proofof Proposition 3 is stated and proved.Lemma 1 Under the assumptions of Proposition 3, it holds for some r > 2 thata) E

(
|T−αεt|2r

)
< C,b) E

(
|T−αut−j|4

)
< C, and) E

(∣∣T−αu∗∗t−1

∣∣4
)
< C,where u∗∗t−1 =

∑
j≥1 ψjut−j and ∑j≥1 ψ

2
j <∞.Proof: Item a) is obvious given the properties of σt and ǫt. Item b) is a partiular ase of )with absolutely summable �ltering; but item ) requires some more are. Note that u∗∗t−1 =∑

j≥1 ψ̃jεt−j−1 where the oe�ients sequene ψ̃j is the (square summable) onvolutionof {ψj} and {bj}. Then, the �niteness of E(∣∣∣∑j≥0 ψ̃j
σt−j

Tα ǫt−j−1

∣∣∣
4
) redues to �nitenessof E(∣∣∣∑j≥0 ψ̃jǫt−j−1

∣∣∣
4
), sine σt−j

Tα is uniformly bounded. Note that ψ̃j = O(j−0.5); atedious, yet straightforward modi�ation of the proof of Lemma 8 in Demetresu et al.(2008) leads to the desired preliminary result.
21



Proof of Proposition 1a) Examine �rst the ase of no disontinuities of σ (s). For this proof only, let t beshorthand for [sT ], and note that
‖ut − ũt‖2 =

∥∥∥∥∥
∑

j≥0

bjǫt−j (σt − σt−j)

∥∥∥∥∥
2

≤
∑

j≥0

|bj | |σt − σt−j | ‖ǫt−j‖2 .Due to the assumed Lipshitz ondition on σ(·), ∃C suh that |σt − σt−j | ≤ CT α |j/T |, so
‖ut − ũt‖2 ≤ CT α−1

∑

j≥0

|jbj|as required (reall, the oe�ients bj are 1-summable). Let now there be exatly onedisontinuity of σ (·), at λ < 1. There are two possibilities, t < [λT ] and t > [λT ] (thethird, t = [λT ], is exluded by assumption). If t < [λT ], the result from the ase with nodisontinuity applies. If t > [λT ], we have that
‖ut − ũt‖2 ≤

t−[λT ]∑

j=0

|bj | |σt − σt−j | ‖ǫt−j‖2 +
∑

j≥t−[λT ]+1

|bj | |σt − σt−j | ‖ǫt−j‖2 .The arguments used in the ase with no disontinuity apply diretly for the �rst summandon the r.h.s., while, for the seond summand, we make use of the uniform boundedness of
σ (·) and of ‖ǫt−j‖2 to arrive at

∑

j≥t−λT+1

|bj | |σt − σt−j | ‖ǫt−j‖2 ≤ CT α
∑

j≥t−λT+1

|bj | .Note now that∑j≥p |jbj | ≤ p
∑

j≥p |bj | leading due to 1-summability of bj to∑j≥p |bj | =
O(p−1), and the r.h.s. of the above equation is thus bounded by CTα

t−λT+1
. The desired resultfollows sine t = [sT ]. One proeeds similarly if there is more than one disontinuity of

σ (s) (but a �nite number thereof).Proof of Proposition 2Assume �rst that there are no disontinuity points and let again t be shorthand for [sT ].Then, having assumed a zero mean,
∥∥y[sT ] − ỹ[sT ]

∥∥2
2
= Var (yt − ỹt) =

t−1∑

j=0

t−1∑

k=0

φ
(d)
j φ

(d)
k γ|j−k| (σt − σt−j) (σt − σt−k) .22



With the Lipshitz property, φ(d)
j ∼ 1

Γ(d)
j−1−d, and γh ∼ Γ(1−d)

Γ(d)
h2d−1, we have that, for asuitable C,

Var (yt − ỹt) ≤
C

T 2

t−1∑

j=0

t−1∑

k=0

j−d1k−d1 |j − k|2d−1 .Rearrange the sum terms to obtain that
Var (yt − ỹt) ≤

C

T 2

t−1∑

h=0

t−h−1∑

i=0

h−d1 (h+ i)−d1 h2d−1.If d1 > 0, h−d1 (h + i)−d1 < h−2d1 , if d1 < 0 we have that h−d1 (h + i)−d1 < (h+ i)−2d1 . Inthe �rst ase, we have that
Var (yt − ỹt) ≤ C

T 2

t−1∑

h=0

(t− h)h2(d−d1)−1

≤ C

T

t−1∑

h=0

h2(d−d1)−1

≤ CT 2(d−d1)−1.In the seond, we have that
Var (yt − ỹt) ≤ C

T 2

t−1∑

h=0

h2d−1
t−h−1∑

i=0

(h+ i)−2d1 .We further have that ∑t−h−1
i=0 (h+ i)−2d1 ≤ C (t− h) (t− 1)−2d1 . Hene,
Var (yt − ỹt) ≤ CT−2d1−1

t−1∑

h=0

h2d−1.With the known approximation, we have the same
Var (yt − ỹt) ≤ CT 2(d−d1)−1as required for the result. Disontinuities are handled as in the proof of Proposition 1.Proof of Proposition 3The proof is ompleted in two steps.First, it is shown that employing x∗∗t−1 =

∑
j≥1 ψjxt−j as a regressor instead of its �nite-sample ounterpart x∗t−1 =

∑t−1
j=1 ψjxt−j has no asymptoti e�et on the distribution of theestimators. This is aomplished by noting that the variane of the di�erenes between the23



two vanishes at an appropriate rate. It holds namely for the di�erenes δ̃t =∑j≥t ψjxt−jthat
1

T α

(
δ̃t

)
=
∑

j≥t

ψj
1

T α
ut−j;use now Proposition 1 to onlude that the variane is given, up to an Op (T

−1) term,by ∑j≥t

∑
k≥t ψjψk

σt−jσt−k

T 2α γj−k, where γj−k is the autoovariane of (∑j≥0 bjǫt−j

). Theautoovariane is exponentially deaying, and tedious, yet straightforward algebra yieldsthat δ̃t = Op (t
−0.5), whih does not a�et the asymptotis as shown e.g. in Demetresuet al. (2008) Lemma 2 for the ALM test. So let the regressor vetor xt−1 ontain x∗∗t−1 =∑

j≥1 ψjxt−j , i.e. xt−1 =
(
x∗∗t−1, xt−1, . . . , xt−p

)′.Seond, let us examine the expression
1

T 0.5+2α

T∑

t=p+1

xt−1εt, (6)the numerator (so-to-say) of the estimators in regression (2) and of the orresponding tstatistis. Sine xt−1εt is a martingale di�erene, a entral limit theorem applies underregularity onditions, see below. Then, what is needed for the regression-based test tobe una�eted is to use the orret standard errors when omputing the t statisti for
φ. Using a entral limit theorem from Davidson (1994, p. 383), su�ient onditions formultivariate asymptoti normality of (6) area) maxp+1≤t≤T

1
T 0.5+2α |xt−1εt| p→ 0b) 1

T 1+4α

∑T
t=p+1 xt−1x

′
t−1ε

2
t

p→ Σ where Σ is some �xed positive semi-de�nite (p+ 1)×
(p+ 1) matrix.The key to robustness is that one uses preisely this matrix Σ (or rather a sampleounterpart) for building test statistis with White standard errors.a) We have due to Markov's inequality for some 2 < r < 4 and any positive η

Pr

(
max

p+1≤t≤T

1

T 0.5+2α
|xt−1εt| > η

)
≤

T∑

t=p+1

Pr
(∣∣T−2α

xt−1εt
∣∣ > ηT 0.5

)

≤
T∑

t=p+1

E
(
|T−2α

xt−1εt|r
)

(ηT 0.5)r
.Apply now Hölder's inequality to show that E (|T−2α

xt−1εt|r
) is uniformly bounded in tif E(|T−αεt|4r/(4−r)

) and E
(
|T−α

xt−1|4
) are �nite; this is indeed the ase, see Lemma 1.Then, the sum∑T

t=p+1

E(|T−2α
xt−1εt|r)

(ηT 0.5)r
is of order O (T 1−r/2

)
= o(1) for any η, as requiredfor the entral limit theorem. 24



b) This is only slightly more ompliated. Let ψ̃j = (ψ̃j , bj, . . . , bj−p)
′ with {ψ̃j} theonvolution of {ψj} and {bj} and bj = 0 for j > 0. Then,

1

T 1+4α

T∑

t=p+1

(
∑

j≥0

ψ̃jεt−j−1

)(
∑

k≥0

ψ̃kεt−k−1

)′

ε2t

=
1

T

T∑

t=p+1

∑

j≥0

∑

k≥0

ψ̃jψ̃
′
k

σt−k−1σt−j−1σ
2
t

T 4α
ǫt−k−1ǫt−j−1ǫ

2
t .Adding and subtrating the unonditional expetation κjkt = E (ǫt−k−1ǫt−j−1ǫ

2
t ), we obtaintwo omponents of the sum,

1

T

T∑

t=p+1

∑

j≥0

∑

k≥0

ψ̃jψ̃
′
k

σt−k−1σt−j−1σ
2
t

T 4α

(
ǫt−k−1ǫt−j−1ǫ

2
t − κjkt

)
,and

1

T

T∑

t=p+1

∑

j≥0

∑

k≥0

ψ̃jψ̃
′
k

σt−k−1σt−j−1σ
2
t

T 4α
κjkt.For the �rst, note that the quotient σt−k−1σt−j−1σ2

t

T 4α is uniformly bounded, and we an usethe absolute summability of 8th order umulants and the arguments of Demetresu et al.(2008, proof of Proposition 1) to show the �rst summand to disappear, while, for theseond, we need to show that a limit exists. To this end, reall e.g. from Demetresuet al. (2008) that
1

T

T∑

t=p+1

∑

j≥0

∑

k≥0

ψ̃jψ̃
′
kκjkt (7)does have a proper limit. Knowing that σt−k−1σt−j−1σ2
t

T 4α is bounded, is would be no surpriseif the limit existed indeed. To establish the existene of the limit, we �rst need to showthat∑j≥0

∑
k≥0 ψ̃jψ̃

′
k
σt−k−1σt−j−1σ

2
t

T 4α κjkt onverges to a funtion of t, say φ(t). This followsfrom (7) and the pieewise Lipshitz property of σ(·).Then we show that
1

T

T∑

t=p+1

φ(t)has a proper limit. Note that this is a Riemann sum, whih onverges if the total variationof φ on [0, 1] is bounded.The average of φ(t) will onverge if φ(t) varies slowly enough. Write σt−k−1σt−j−1σ
2
t

T 4α =

σ
(
t−k−1

T

)
σ
(
t−j−1

T

)
σ2
(

t
T

). Due to the smoothness of σ, σ ( t−k−1
T

)
σ
(
t−j−1

T

)
σ2
(

t
T

)
=

σ
(
t−k−2

T

)
σ
(
t−j−2

T

)
σ2
(
t−1
T

)
+ o(1), of ourse uniformly with the exeption where σ hasdisontinuities. But σ is integrable, so the disontinuities won't matter in the end. Thus,25



φ(t) has the same smoothness properties as σ(t), and as suh the average will onverge.It is easily shown along the lines of b) that
1

T 1+2α

T∑

t=p+1

xt−1x
′
t−1

p→ Σ
xwhere the probability limit Σ

x
is a onstant, positive de�nite, matrix; hene,

T 0.5+α
(
β̂ − β

)
d→ N

(
0, (Σ

x
)−1Σ (Σ

x
)−1) .But looking at the expression of the White standard errors, and at the probabilitylimits of its omponents derived above, the heteroskedastiity-robust estimator of theovariane matrix of β̂ is seen to onverge to preisely (Σ

x
)−1Σ (Σ

x
)−1, as required forthe result.Proof of Proposition 4The R/S statisti is given in the �rst ase by

Q =
1√
T

max1≤t≤T St −min1≤t≤T St

ω̂
.Under time-varying variane, the xt = ut is generated aording to Assumptions 1 and 2.Letting ut have for simpliity unity long-run variane, we have that

1

σT 0.5+α
S[sT ] ⇒W (η (s)) ,where σ2 =

∫ 1

0
σ2 (s) ds, η (s) = σ−2

∫ s

0
σ2 (r) dr and W is a standard Wiener proess;

W (η (s)) is a so-alled time-transformed Wiener proess; see Cavaliere (2004). Consider-ing the linearity of ω̂ in T α, we an use Cavaliere (2004) to onlude that
1

T 2α
ω̂2 p→ σ2.Then,

Q
d→ max

s∈[0,1]
W (η (s))− min

s∈[0,1]
W (η (s)) .For any given path of W, the value the extremum points does not hange; it is just theloation that depends on the variane pro�le. So the distribution of the modi�ed RSstatisti is not a�eted by the time transformation. Note too that, sine onvergene isweak, it is the limiting distribution of the modi�ed RS statisti that is invariant to η, andnot the statisti itself. 26



Considering the ase with demeaning, prototypial for adjusting series for deterministiomponents, the situation hanges dramatially. The partial sums are built over demeaned
xs,

St =

t∑

j=1

(xj − x)and onsequently
1

σT 0.5+α
S[rT ] ⇒W (η (s))− sW (1) .Under global homoskedastiity, the limit is nothing else than the �rst-order Brownianbridge, say B1 (s). The invariane from the ase with no demeaning does not arry over,however, sine, under heteroskedastiity, the above limit is not the time-transformedBrownian bridge:

B1 (η (s)) = W (η (s))− η (s) W (1) 6=W (η (s))− sW (1) ,where W (η (s))− sW (1) annot be expressed as a time-transformed proess.Proof of Proposition 5Assume �rst for Assumption 1 that α = 0, ase in whih σt is uniformly bounded. Theproof then modi�es the proof of Theorem 6.2.2 from Priestley (1981) suitably. Denoteby ζx (λ) the �nite Fourier transform of some proess xt, ζx (λ) = 1/
√
2πT

∑T
t=1 xte

−iλtfor λ ∈ [−π, π]. The periodogram Ix (λ) of xt is then given by Ix (λ) = ζx (λ) ζ
∗
x (λ),where ∗ denotes the omplex onjugate. Denote by ϕ(d)

j the oe�ients of the frationalintegration �lter with parameter d and |Γd (λ)| the orresponding transfer funtion. Reallthat ϕ(d)
j ≤ C jd−1 and |Γd (λ)| ∼ λ−d as λ→ 0.It shall be �rst shown that

ζy (λ) = Γd (λ) ζu (λ) +Op

(
T d
)
,where the Op term is uniform in λ. To this end, note that

ζy (λ) =
1√
2πT

T∑

t=1

yte
−iλt =

1√
2πT

T∑

t=1

(
t−1∑

j=0

ϕ
(d)
j ut−j

)
e−iλt;

27



by rearranging the terms of the sum and reindexing orrespondingly, one obtains
ζy (λ) =

1√
2πT

T−1∑

k=0

ϕ
(d)
k

(
T−k∑

t=1

ut−je
−iλ(t+k)

)

=

(
T−1∑

k=0

ϕ
(d)
k e−iλk

)(
1√
2πT

T∑

t=1

ut−je
−iλt

)
+RT

= Γd (λ) ζu (λ) +RT ,where RT = 1√
2πT

∑T−1
k=0 ϕ

(d)
k e−iλk

(∑T
t=T−k+1 ut−je

−iλt
). In order to examine the behaviorof RT , note that, due to the short memory of ut it holds that

E

∣∣∣∣∣

T∑

t=T−k+1

ut−je
−iλt

∣∣∣∣∣

2

≤ Ckuniformly in λ. Then,
E |RT | ≤ 1√

2πT

T−1∑

k=0

E

∣∣∣∣∣ϕ
(d)
k e−iλk

(
T∑

t=T−k+1

ut−je
−iλt

)∣∣∣∣∣

≤ C√
T

T−1∑

k=0

∣∣∣ϕ(d)
k

∣∣∣

√√√√E

(
T∑

t=T−k+1

ut−je−iλt

)2

≤ C√
T

T−1∑

k=0

∣∣∣ϕ(d)
k

∣∣∣
√
k

= Op

(
T d
)
.Consider now

Iy (λ) = ζy (λ) ζ
∗
y (λ) =

(
Γd (λ) ζu (λ) +Op

(
T d
)) (

Γd (λ) ζu (λ) +Op

(
T d
))∗at the harmoni frequenies λj = j/T . Note at this point that ζu (λ) ≤ Cζσǫ (λ) uniformlyin λ, sine the the �lter bj is 1-summable; the �nite Fourier transform ζσǫ (λ) of themodulated innovations, σtǫt, behaves itself as follows

E |ζσǫ (λ)|2 = E

[(
1√
2πT

T∑

t=1

σtǫte
−iλt

)(
1√
2πT

T∑

t=1

σtǫte
−iλt

)∗]

=
1

2πT

T∑

t=1

σ2
t E
(
ǫ2t
)
≤ Cdue to the unorrelatedness of the innovations ǫt and the uniform boundedness of theirvariane. Sine T d > (T/j)d, and onsidering the behavior of the transfer funtion |Γd (λ)|in the neighborhood of the origin, it follows that Iy (λ) = |Γd (λ)|2 |ζu (λ)|2 +Op

(
λ−2d

) atthe harmoni frequenies j/T . 28



Note that all derivations above are linear, so premultiplying the �nite Fourier trans-forms with T α in the ase α > 0 leads to the desired result.Proof of Proposition 6The GPH-estimator is obtained as the least squares estimator for the parameter d in thelinear regression model
log(Ij) = log f ∗

0 − C − 2dXj + log

(
f ∗
j

f ∗
0

)
+ εj, j = 1, 2, . . . , mwith εj = log(Ij/fj) + C and C = −0.577216... is Eulers onstant. Furthermore, Xjdenotes the j− th Fourier frequeny and Ij = 1

2πn
|∑T−1

t=0 ytexp(
i2πjt
T

)|2 is the periodogramof the underlying series yt. The term f ∗ origins from the spetral density of a stationarylong-memory model given by
f(λ) = σ2|1− exp(−iλ)|−2df ∗(λ), −π ≤ λ ≤ π.In this set-up the remaining spetral density f ∗(λ) is sale independent. This proves tobe handy later as the variane is assumed to be time dependent in our model. Due to thetime varying variane, however, the proess yt is not a stationary long-memory proess.Proving the proposition omes now from �tting a stationary model to a non-stationaryproess and evaluating the onsequenes. This is done by employing the approah ofDahlhaus (1997) by appliation of the loal spetral density or loal periodogram respe-tively. Denoting u = t/T and T being the sample size the loal spetral density of ourmodulated long-memory proess is

f(u, λ) = σ(u)2f(λ).Following the arguments in Robinson (1995b) and Hurvih et al. (1998) the asymptotinormality of the log-periodogram regression is derived from the term
Uj = εj + log

(
f ∗(λj)

f ∗(0)

)
− 2d log

( |1− exp(−iλj)|
λj

)
.Fitting a stationary model to a non-stationary means that f(u, λ) = f(λ) independent

29



of u. Thus we obtain for Uj:
Uj = log

(∫ 1

0
I(u, λj)du

σ2f(λj)

)
+ C + log

(
f ∗(λj)

f ∗(0)

)
− 2d log

( |1− exp(−iλj)|
λj

)

= log

(∫ 1

0
σ(u)2du

∫ 1

0
I(λj)du

σ2f(λj)

)
+ C + log

(
f ∗(λj)

f ∗(0)

)
− 2d log

( |1− exp(−iλj)|
λj

)

= log

(∫ 1

0
σ(u)2duI(λj)

σ2f(λj)

)
+ C + log

(
f ∗(λj)

f ∗(0)

)
− 2d log

( |1− exp(−iλj)|
λj

)To obtain the limit distribution of the log-periodogram regression we have to onsiderthe term
1

m1/2

m∑

j=1

ajεj = T1 + T2 + T3with aj = Xj − X̄ . The terms T1 to T3 are given in Hurvih et al. (1998) equation (A9). From Hurvih et al. (1998) equation (A 10) and (A 11) we diretly have T1 = oP (1)and T2 = oP (1). The remaining term an as in Hurvih et al. (1998) equation (A 12) bewritten as T3 = T31+T32+T33 where the terms T32 and T33 are not e�eted our modulationof the time series. Thus, we an diretly onlude from Hurvih et al. (1998) equation (A14) and (A 15) that T32 = o(1) and T33 = o(1).As the modulation does not e�et the oe�ients aj they still ful�ll ondition (5.15)in Robinson (1995b) and thus we have
T31

D→ N

(
0,

∫ 1

0

σ2
udu

π2

6σ2
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