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Inference on the Long-Memory Properties of Time
Series with Non-Stationary Volatility™

Matei Demetrescu’ and Philipp Sibbertsen?

Abstract

Many time series exhibit unconditional heteroskedasticity, often in addition to condi-
tional one. But such time-varying volatility of the data generating process can have
rather adverse effects when inferring about its persistence; e.g. unit root and station-
arity tests possess null distributions depending on the so-called variance profile. On
the contrary, this is not the case in stationary autoregressions, and correctly sized
inference is guaranteed if taking protective actions as simple as using White stan-
dard errors (which are employed anyway to deal with conditional heteroskedasticity).
The paper explores the influence of time-varying volatility on fractionally integrated
processes. Concretely, we discuss how to model long memory in the presence of time-
varying volatility, and analyze the effects of such nonstationarity on several existing
inferential procedures for the fractional integration parameter. Based on asymptotic
arguments and Monte Carlo simulations, we show that periodogram-based estima-
tors, such as the local Whittle or the log-periodogram regression estimator, remain
consistent, but have asymptotic distributions whose variance depends on the variance
profile. Time-domain, regression-based tests for fractional integration retain their
validity if White standard errors are used. Finally, the modified range-scale statistic
is only affected if the series require adjustment for deterministic components.
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1 Introduction

There is an increasing body of evidence indicating that a standard assumption of many test
procedures, unconditional homoskedasticity, is violated for many types of data. Indeed,
macroeconometricians could immediately name the Great Moderation as an example.
Financial time series have been found to exhibit unconditional heteroskedasticity too, in
addition to conditional heteroskedasticity (see e.g. Amado and Terésvirta, 2008).

The effect of deterministic (unconditional) heteroskedasticity has already been ana-
lyzed for common econometric tools such as stationarity, unit root, and cointegration
tests; see Cavaliere (2004), Cavaliere and Taylor (2005), and Cavaliere et al. (2010). The
finding common to these papers is that the null distributions of virtually all examined
test statistics are distorted whenever so-called global homoskedasticity is violated (see
also Cavaliere and Taylor, 2009). The reason for such behavior is as follows. The asymp-
totic null distributions of the respective test statistics can be expressed as functionals
of Wiener processes, relying on invariance principles for cumulated sums of stochastic
processes. But under time-varying variance of the increments, modified invariance prin-
ciples hold: intuitively, the changing variance transforms time in the limit, which in turn
affects the limiting distributions. The exact mechanism can be seen e.g. in Hall (1977),
who shows that weak convergence to Brownian motion of cumulative sums of square-
integrable, possibly heteroskedastic, triangular martingale difference arrays holds only if
normalizing appropriately (i.e. using an estimate of the quadratic variation).

Such examinations, however, are actually scarce in the context of fractionally inte-
grated series (I(d)). On the one hand, the modified range/scale statistic discussed by
Lo (1991) has an asymptotic distribution expressed in terms of Wiener processes under
unconditional homoskedasticity, so it could be conjectured that it is affected by time-
varying variance in the same manner as stationarity and unit root tests. On the other
hand, Kew and Harris (2009) provided an analysis of regression-based fractional inte-
gration tests applied to linear processes with heteroskedastic innovations (shocks). The
efficient Wald test of Lobato and Velasco (2007) or the augmented LM [ALM] test of
Demetrescu et al. (2008) fall in the examined category. Kew and Harris (2009) show that,
if using White standard errors (recommended by Demetrescu et al. (2008) to deal with
conditional heteroskedasticity), some types of deterministic heteroskedasticity are allowed
for; their assumptions exclude, for instance, a simple break in the variance, but they con-
jecture that the results can be extended in that particular direction. Finally, Cavaliere
et al. (2013) propose wild bootstrap implementations of Wald, LR and LM tests for the
fractional integration parameter in a parametric ARFIMA(p, d, q) model (see Cavaliere
and Taylor, 2007a, for the unit root case) and show them to be robust to both conditional

and unconditional heteroskedasticity of unknown form in the shocks.



But the behavior of the equally popular frequency-domain procedures such as the local
Whittle or the log-periodogram regression estimator is not known at all in the presence
of time-varying variance. Provided that the variance varies smoothly enough, a possi-
ble approach to deal with time-varying variances is the concept of local stationarity as
suggested in Dahlhaus (2000). Local versions of fractionally integrated processes are dis-
cussed among others in Beran (2009) or Palma and Olea (2010). These authors work
with localized versions of linear time series and define the spectrum of the time series
as an averaged local spectrum. This leads to a higher flexibility in the sense that model
parameters can depend on time (which thus robustifies against time-varying variance) but
introduces an additional bandwidth parameter in the analysis based on spectral densities.
Concretely, the localized version of the local Whittle estimator relies on the usual band-
width parameter determining the amount of frequencies used for the estimation but has
a second smoothing parameter coming from the localization. As the choice of the band-
width parameter is crucial in spectral-based long memory estimation, the effect of the
introduction of a second bandwidth parameter is unclear. Practitioners are thus likely
to choose to work with localized versions of the estimators only if there is compelling
evidence against weak stationarity.

The paper therefore discusses the effect of time-varying variance on the (non-localized)
estimation of the fractional integration parameter and onto the related tests. The focus is
on finding procedures that are robust to time-varying volatility, i.e. that do not require a
decision between the basic form of an estimator or test and its heteroskedasticity-corrected
version. We emphasize the need for robustness, since, in order to apply some correction
(if available), one has to be aware that the correction is necessary.

Concretely, our contributions are as follows. Section 2 describes our setting in de-
tail and provides a discussion of the interactions of time-varying variance with the long
memory properties of time series, as well as of the consequences of using different vari-
ants of the heteroskedastic long memory model we work with. In Section 3, we show
that periodogram-based procedures are still asymptotically unbiased but have typically
an inflated variance which affects inference based on the distributional properties of these
estimators. At the same time, regression-based procedures are shown to be robust against
time-varying variance as modeled here. The modified range-scale statistic turns out to
be robust if adjustment for deterministics is not required, but is affected otherwise. The
final section concludes, and the proofs have all been gathered in the appendix.

Let us set some notation before providing the framework of our analysis and the
main findings and results. Denote by f, the spectrum of a weakly stationary process v,
fN) = 5 | (ye™)
and by \; the j% Fourier frequency, \; = 27i/r. Further, let C be a generic constant and
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? by I, the periodogram of a series y;, I,(\) = 527 ’ZL et

. d . . . . D
||-|, the Ly norm of a random variable; — denotes convergence in distribution, and =



denotes convergence in probability. Finally, the O, symbol has its usual meaning of an

upper bound for the magnitude order of a stochastic sequence.

2 Heteroskedasticity and long memory

A very popular model for long memory and antipersistence is given by the fractionally
integrated process
y=p+1—L0) "ult>0), teZ (1)

where the fractional integration filter is given by the usual series expansion and u; is a short
memory component. The paper assumes without loss of generality that ¢ = 0. Under
regularity conditions for u;—in particular, weak stationarity or asymptotically negligible
departures from weak stationarity (see e.g. Phillips, 1987, in the unit root case)—, well-
known invariance principles hold. If d € (—0.5;0.5), suitably normalized cumulated sums
of y; converge weakly to fractional Brownian motion of type I; if d € (0.5;1.5), it is y
itself that, suitably normalized, converges weakly to fractional Brownian motion (of type
IT). For sets of sufficient conditions see e.g. Davydov (1970) or Marinucci and Robinson
(2000), respectively.

Alternatively, the behavior of the spectrum of the process in a neighborhood of the

origin can be used to characterize the memory properties
NN = C  as A — 0.

If u; has a continuous spectrum, bounded and bounded away from 0 at the origin, the
spectrum of y; from (1) behaves like in the above equation.

Motivated e.g. by the literature discussing changes in the persistence of processes with
long-range dependence (see Leybourne et al., 2007, or the more recent contributions of
Sibbertsen and Kruse, 2009, and Hassler and Scheithauer, 2011), one could allow for
deterministic changes in d: they necessarily influence the variance of y;. Such a model,
however, is not too convenient because it mingles the variability of the variance with the
persistence of the process.

Virtually all existing papers assume a component model for introducing heteroskedas-
ticity, where the stochastic component is weakly stationary and the heteroskedasticity is
induced by multiplication with a sequence of constants; typically, a triangular array struc-
ture is allowed for in order to model e.g. a structural break occurring at a fixed position
relative to the sample size. This structure is nothing else than a uniformly modulated
process in the terminology of Priestley (1988, p. 165).

Looking back at the unit root case, the natural choice for the nonstationary fractional

case seems to be to focus on the short memory increments; for them, Cavaliere (2004)



assumes that u; = o0y for each t = 1,..., T, where v, is (short-memory) weakly station-
ary and the so-called variance pattern oy is given by the sampling at t/7 of a piecewise
continuous function with a finite number of discontinuities fulfilling a uniform Lipschitz
condition at all continuity points.

But from an economic modeling perspective, say, the more convenient way to introduce
heteroskedasticity relies on specifying the short-memory component u; as a linear process.
Under weak stationarity, such a linear Wold representation exists and the assumption is
not restrictive. So one can require—as do Phillips and Xu (2006) and Cavaliere and Taylor
(2007b)—that the innovations of the linear process be modulated, instead of the process
itself, u; = ijo bje;—; with ¢, = o6, where ¢ is uncorrelated with constant variance
and the coefficients b; satisfy some summability condition.

The assumption of a linear process is quite general and is standard in the unit root
literature; a very similar assumption is made e.g. by Marinucci and Robinson (2000) in
the fractional integration context. It allows of course for finite-order ARMA processes,
whose Wold coefficients decay exponentially. Such an assumption allows for the nicer
interpretation that innovations, and not the entire process, have a changing variance in
response to changing environment conditions instead of a change affecting all previous
innovations as well. It also allows for a clear distinction between dynamics and volatility
of the series.

By focusing on the short memory component, however, the discussion ignores the “in-
termediate position” of fractional integration between stationarity and integration: when
dealing with stationary long memory, the process itself could be modulated, as opposed
to having modulated innovations or modulated short-run components.

All these are different data generating processes [DGPs|. In practice, one may however
be tempted to pick that DGP that can be more easily dealt with analytically. So the ques-
tion relevant at this point is, what is the relation between them? Do they have different
implications? More precise assumptions are required for answering these questions.

The variance pattern examined here relies on Cavaliere’s (2004) assumption but allows
for unbounded, trending variances. See also Cavaliere and Taylor (2009) and Cavaliere
et al. (2013). As pointed out by Cavaliere (2004), assuming the variance pattern to
be deterministic is a simple way of ensuring it to be exogenous; if o, is random, but

measurable w.r.t. the remote o-field (2 __ {€s, €5-1, ...}, the results are not affected.

Assumption 1 There ezists a non-negative function o (s) with real support satisfying a
uniform Lipschitz condition at all but a finite number of (jump) discontinuity points, and
a >0, such that oy = T% (%)

The assumption allows e.g. for deterministic jumps in the variance (with o = 0),

but also for a linear trend in the variance (with o(s) = sl(s > 0) and o = 1). The



nonnegativity requirement keeps the interpretability of o as an exogenous variance scaling
factor. The assumption also implies o(-) to be bounded, with boundedness being helpful
when considering ¢ < 0. Assumption 1 basically requires that the properly scaled variance
does not vary too wildly in the limit.

Let us now examine the differences between the two discussed DGPs. The proposi-
tion below examines the interchangeability of linear filtering and variance modulation as

implied by Assumption 1.

Proposition 1 Let u; = ijo bje_jor_j, and Uy = oy <Zj20 bjet,j) where ||, < C <
oo Vt € Z and {bj};>o is 1-summable. It then holds true under Assumption 1 that

[ ugsr) = Tper ||, < CT

at all continuity points s € [0,1] of o(+).
Proof: See Appendiz C.

The proposition is very general in that it does not require specific assumptions about
the innovations ¢; except uniform L, boundedness, not even short memory or weak sta-
tionarity. As can be seen from the proof, the difference between u ) and @y is O, (T%)
at the discontinuity points of o(-). If o, obeys Assumption 1 with o < 1, ufsp) converges in
mean square to 7] at a rate uniform in s. The rate depends on the trending behavior of
the variance; if the variance trend is too strong, there is no equivalence. This can also be
the case if g, induces “local heteroskedasticity,” under which the differences do not vanish
in general; seasonal MA filters, for instance, never lead to asymptotic equivalence under
local heteroskedasticity of the shocks. In contrast, b; = 0 ¥j > 0 is an obvious particular
case where equivalence occurs.

The result assumes a short-memory type summability condition on the filter coeffi-

cients. For the case of more persistent filters, we have the following proposition.

Proposition 2 Let u; be fractionally integrated of order d, and y, = Z;B gbg»dl)ut,jat,j
and y; = oy Zz;lo ¢§-d1)ut_j where ¢§-d1) are the coefficients of the fractional difference filter

with parameter dy, not necessarily equal to d. Then,
Hy[sT] - g[sT]HQ < ¢ Totld=d)=05

at all continuity points s € [0,1] of o(+).
Proof: See Appendiz C.
Thus, the considered DGPs are equivalent in a certain sense. But do not know yet

what the exact properties of the DGPs are with respect to serial dependence. The het-

eroskedastic structure of the series does influence the theoretical long memory properties:



since the series is not stationary, one has time-varying autocovariances,

W (W) = T
Obviously, if the variance function is trending, the autocovariance fy,’i’T (y:) does not even
have to vanish as h — oo.

In spite of this behavior of the autocovariances, the persistence properties of y; are still
characterized by d, as it is reviewed in Appendix B. The remaining question is, whether
time-varying heteroskedasticity affects inference on d. Section 3 examines the effects of
modulation on corresponding estimators and tests.

Moreover, Appendix A uses Propositions 1 and 2 to argue that the test statistics
considered in Section 3.1 are themselves not affected asymptotically by the choice of the
DGP when regarding short memory. For long memory, this is not warranted, however.
The derivations are procedure-specific anyway, so one might want to check the effects of
interchanging modulation and filtration in each specific case. Given the positive results
in Appendix A, we pick the more convenient DGP and model the innovations ¢; as being
modulated.

For the derivations in the following section related to the regression-based tests, the
stationary component is required to be a stable, finite-order AR, process with martingale

difference innovations.

Assumption 2 Let u; be a stable autoregression of order p driven by modulated shocks
g, = o6 such that o, obeys Assumption 1 and €; is a weakly stationary martingale differ-

ence sequence with absolutely summable 8" -order cumulants.

The assumption allows for the incorporation of conditional heteroskedasticity in the
model. In fact, even more general conditions for u, are feasible (e.g. ARMA models,
accommodated for by using autoregressive approximations), but the paper sticks with a

finite autoregression for clarity of the exposition.

3 Inference on the fractional integration parameter

3.1 Procedures

When the interest lies in testing hypotheses about the fractional integration parameter
d, one basically has the choice between time-domain based tests and frequency-domain
based tests.



For the time domain, we shall examine here regression-based tests of the form

p
xt:¢x:71+zajxt—]+é\ta t:p+1aaT7 (2)

J=1

where 27 | = Zﬁ;ll ¥;x,_; for suitably chosen weights ¢; and z; = A%y,. This formulation
encompasses the fractional Dickey-Fuller test of Dolado et al. (2002), the efficient Wald
test of Lobato and Velasco (2007), or the ALM test due to Demetrescu et al. (2008),
depending on the choice of the filter {¢;};>;. For the ALM test for instance, one has
Y; = 1/j, which is motivated by the LM principle. Dolado et al. suggest to choose v,
as the coefficients of the fractional integration filter having as integration parameter the
(possibly estimated) distance between the null and the alternative. Lobato and Velasco
modify the latter to achieve efficiency. Throughout the paper, fixed weights are assumed
to keep the complexity of the proofs under control.

Under the null hypothesis d = dy, one has x; = u;, and, consequently, ¢ = 0; evidence
in favor of ¢ < 0 points toward the alternative d < dy, and evidence in favor of ¢ > 0
points toward the alternative d > dy. Standard asymptotics apply for the ¢ statistic of
¢ as long as v; is square summable; letting p — oo at an appropriate rate, one can even
approximate linear processes in an autoregressive manner and maintain the standard
asymptotics. The approximation order p, however, should be a deterministic function
of T', in order to avoid problems associated with post-model selection inference. See
Demetrescu et al. (2008) for a discussion of the ALM situation, discussion extending to
square summable coefficients ;.

Demetrescu et al. also suggest to use White standard errors, as they ensure correct
inference under conditional heteroskedasticity of €; on the one hand, and there is little, if
nothing, to lose under conditional homoskedasticity on the other hand. (This applies of
course for the fractional Dickey-Fuller test or the efficient Wald test as well.)

In order to deal with deterministic components such as a non-zero mean, one sim-
ply removes from z; = A%y, the correspondingly differenced deterministic component
before applying the ALM test; it would not affect the asymptotic standard normal dis-
tribution under homoskedasticity. See Demetrescu et al. (2008, Proposition 4), and it is
straightforward to show that the result holds under unconditional heteroskedasticity as
well.

Also in the time domain, one can resort to the modified range/scale statistic discussed
by Lo (1991). It relies as well on building differences under the null hypothesis. Should
the differences require no adjustment for deterministic components, the statistic is given
by

1 maxi<g<T St — minlStST St

VT w

Q=



where S; are the partial sums of the series of interest differenced under the null, S; =
22':1 z;, and @? is an estimator of the long-run variance of z; (cf. Lo, 1991). Under
homoskedasticity, the limiting distribution is

d .

— max W (s) — min W (s

Q s€[0,1] ( ) s€[0,1] ( )
with W a standard Wiener process. In the case with adjustment for deterministics, say
for the prototypical constant, the statistic () is computed with demeaned series x; — @
and the limiting distribution is given in terms of standard Brownian bridges rather than

Wiener processes.

In the frequency domain, the paper looks at the local Whittle estimator C/l\lw and at the
log-periodogram regression. The asymptotic distribution of the local Whittle estimator

was first derived for d < 0.5 by Robinson (1995a) assuming homoskedasticity:
Vim (le — do> 4 N(0,1),

where m is the bandwidth, m/7 — 0 as m, T — oo (regularity conditions assumed). The

local Whittle estimator is given by

m

~ , 1 0d 2d -
dyy = arg;mn llog (E Z A, ()\j)> - Z;log )\j] ,
=

J=1

with I, (-) being the periodogram of y; and \; = 27/r the j™ Fourier frequency. A non-
zero mean is accommodated by construction. Shao and Wu (2007) show the asymptotic
distribution above to be robust to a certain degree of conditional heteroskedasticity, and
also study the behavior of c/l\lw for values of the fractional difference parameter up to
d<1.5.

For the log-periodogram regression of Geweke and Porter-Hudak (1983) [GPH], (jgph

is obtained from the regression

log I,(A\;)) =C —2d\; +1log&;, j=1,...,m.

-~

For dg,;,, Hurvich et al. (1998) show that

mi—4 (o — ) 5 N(0,1),

2

again under weak stationarity of the short-memory component.
The robustness properties of these inferential procedures is analyzed in small samples

in the following subsection, and analytical results are provided in Subsection 3.3.



3.2 Experimental evidence

The examined null hypotheses are dy € {—0.2,—0.1,0,0.1,0.2}, and the true fractional
integration parameter d is taken to belong to {—0.2, —0.1,0,0.1,0.2} as well, leading to 25
possible combinations. The ALM test examined is representative for the regression-based
tests; for the entire class, one could restrict oneself to dy = 0, as the test is based on
differences under the null. But all null hypotheses are looked at: slight differences in the
behavior of the ALM test may appear, since the fractional difference operator is sample-
size dependent in finite samples. To focus on the effects of nonstationary volatility, we
let the short-memory component u; be uncorrelated via independence of the Gaussian
standardized innovations e;.

Heteroskedasticity is incorporated in the Monte Carlo study by suitably choosing o;.

We study four variance patterns: a constant one, 02 = 1, as benchmark, a break in the

variance, 07 = 1+ 4I(t > T/2) and a linear trend in the variance, all three obeying
Assumption 1, as well as a variance pattern switching periodically between 1 and 5 with
period S = 2, 02 = 3+ 2(—1), as a counter-example.

The considered sample size is 7' = 500. The samples were actually generated with
T+ 200 observations, of which the first 200 were then discarded; a number of 10 000 Monte
Carlo replications were run for each studied case. All tests are two-sided. The ALM test
applied to the differences z; = A%y, with a lag order choice of p = 4[(T/100)%%°], for
the modified R/S statistic relying on a long-run variance estimator with the quadratic
spectral kernel and bandwidth b = 4[(7/100)%?°]. The local Whittle test is computed

with deterministic bandwidth m = 0.257°%% and corrected variance

-1

2
m 1 m
4y <1nAj—E21nAj> , (3)
j=1 j=1

as discussed in Robinson’s (1995a) derivations; it is asymptotically equivalent to 1/am, but
performs better in small samples. See Hurvich and Chen (2000) for the examination of a
variant of (3) using 2sin %i/2 instead of A;. Finally, the GPH estimator is computed with
bandwidth m = T%™. The results are reported in Table 1.

When there is no unconditional heteroskedasticity, we learn that the tests based on
the local Whittle and the GPH estimators can be oversized, with the LW test having a
rejection frequency between 6% and 7%, and the GPH test rejecting between 7% and 8% of
the times. In contrast, the ALM and the modified R/S tests hold size. In terms of power,
the GPH test dominates clearly, which is mostly due to the larger bandwidth. The local
Whittle test is slightly more powerful than the ALM test, perhaps due to the overrejection
under the null. Finally, the power of the ALM test is higher against alternatives of lower

persistence (the asymmetry of the power function of many LM tests has been observed
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Table 1: Size and power of fractional integration tests without adjustment for deterministics for different variance patterns in the

innovations
d=—.2 d=-.1 d=0 d=.1 d=.2

Ot do ALM RS LW GPH ALM RS LW GPH ALM RS LW GPH ALM RS LW GPH ALM RS LW GPH
—.2 5.4 5.2 6.7 7.2 13.3 172 16.3 45.3 32.1 39.3 51.1 92.8 51.9 62 83.9 99.9 63.1 785 97.1 100

—.1 14.3 7.7 19.1  42.2 4.9 4.6 6.4 7.5 13.1 175 155 46.1 33.6 40.3 51.2 93.3 52.4 62.3 83.8 999

co 0 46.1 23.7 54.4 93.7 15.6 7.5 20.8 43.6 4.9 4.8 6.2 7.2 13.1 17.9 16 45.8 35.4 416 515 93.2
Nl 83.4 54 87.2 100 46.7 244 553 94.2 15.6 79 21.3 434 4.8 4.9 6.3 6.9 14.1 181 16.8 464

2 97.8 81.6 98.5 100 83.5 53.7 87.7 100 47.5 242 554 94.3 14.8 7.9 203 427 4.8 4.5 6.2 7.7

—.2 5 4.5 10.3 11.1 10 144 20.1 46.2 24 34.7 50.5 91.1 37.8 55.2 80 99.7 46.4 70.8 954 100

—.1 12 6.4 23.1 43.5 5.1 4.6 104 10.5 10.6 151 20.3 459 23.4 34 50.8 91.1 38.7 555 &81.6 99.6

br 0 36.9 18.2 559 91.8 12.5 6.4 244 44.1 5.1 4.5 10.1 10.5 10.1 14.7 20.2 47.1 24 35.3 50.6 91.6
Nl 70.2 374 85.6 99.9 35.6 175 554 91.6 13.2 6.2 254 44.8 5.1 4.5 9.9 9.8 10.1 15.3 19.8 46.9

2 92.5 60.9 97.6 100 69 37.9 85 99.9 36 18.2 56.9 92.2 11.8 6.1 22.4  43.5 4.9 4.2 10.1 10.6

-2 5.5 4.6 9.3 10.2 9.3 14.2 19.5 46.3 24.2 34.8 50.5 91.5 384 545 &80.8 99.7 477 726 95.6 100

—.1 13.1 7.2 222 43.7 5.3 4.3 9.6 10.3 10 13.7 18.6 46.4 24.2 34.3 49.7 91.5 37.9 556 &1.1 99.7

tr 0 36.7 179 53.8 91.7 12.9 6.7 232 435 5.4 4.6 9.5 9.6 9.6 13.9 195 47.3 229 343 50.2 919
1 704 377 84.8 99.9 37.7 18.2 56 92.3 12.9 6.9 23.3 43.2 4.8 4.5 9.5 10 9.9 15 19.7 45.7

2 91.7 60.5 97.7 100 70.2 38.8 &85.1 999 37.8 18.7 56.2 92 13.4 6.8 23.8 44.5 5 4.3 9.2 10.7

—.2 5.5 5.6 6.5 9.2 13.8 179 175 475 34.7 40.4 509 92.7 54 62 83.1 99.8 66.4 789 96.7 100

—.1 12.6 8.6 20 41.9 5.2 5.2 6.2 8.7 134 16.5 15.7 453 34.8 41.2 50.9 93 54.9 62.2 844 99.7

pe 0 39.6 24.7 55 92.4 14.1 9.1 20.7 43.2 4.6 4.5 5.7 8.9 13.4 17.2 16.3 47.1 34.8 42.3 51.4 92.8
Nl 72.9 493 &7.3 999 39.8 25 54.7 929 134 8.6 209 43.2 5.1 5.2 6.3 9 13.6 181 17.1 475

2 92.9 71.1 98.6 100 73 50 88.1 99.9 40 25.1 56.7 92.6 13.8 8.8 21.1 429 4.8 4.9 6.2 8.9

Note: The nominal size is 5% and the variance patterns are denoted as co: constant, br: break, tr: linear trend, pe: periodic changes. The ALM test is

computed with p = 4[(7/100)%2%] and White standard errors, and the modified range-scale statistic uses as long-run variance estimator the periodogram at

the origin smoothed with the quadratic spectral kernel and a bandwidth of p = 4[(7'/100)%2%]. The local Whittle test is computed with bandwidth

m = 0.25T°8 and variance as in (3), while the test based on the GPH estimator uses as bandwidth m = T°™ and the asymptotic variance. The series y; are

fractional white noise integrated of order d with variance-modulated shocks, and the sample size is T' = 500. For further details, in particular regarding the

variance patterns, see the text.



before), whereas the exact opposite is observed for the modified R/S statistic, which
can be explained by the different behavior of the long-run variance estimator under the
respective alternatives (Teverovsky et al., 1999).

The picture changes dramatically for the local Whittle and the log-periodogram re-
gression based tests under time-varying variance. Under the variance patterns with break
or trend, their size can be as high as 12%, and is never below 9%. In contrast, the size
of the ALM test is practically not affected by time-varying variance, in fact it is in most
cases closer to the nominal level of 5% than in the homoskedastic case. The rejection
frequencies under the considered alternatives do not change significantly when compared
to the unconditionally homoskedastic case, with the exception of the ALM test for which
the power drops a bit, compared to the unconditionally homoskedastic case. (Thus, the
liberality does not even lead to higher rejection frequencies under the alternative.)

For the periodic pattern, the size of the LW test is slightly closer to the nominal 5%
than in the benchmark case, while the GPH test reacts more sensitively. The empirical
power of all tests does not change significantly either.

When the innovations are affected by heteroskedasticity, it appears that the ALM
and the modified R/S tests are robust to heteroskedasticity, but the local Whittle test is
robust to periodic heteroskedasticity only (the local Whittle estimator apparently confuses
such patterns with conditional heteroskedasticity to some extent). The difference lies
presumably in the “persistence” of the pattern, the locally homoskedastic one being still
globally heteroskedastic, whereas for the periodic pattern fluctuations average out as t
increases. This does not appear to hold for the GPH based test, at least not for this
sample size.

We also examined the four tests under a DGP where the persistent process itself is
modulated, rather than the shocks ¢;; see Table 2.

As suggested by the arguments of Appendix A, the picture is essentially the same as
in Table 1, up to Monte Carlo variability. There is one important difference, however: in
the case of periodic variance changes not covered by 2, all four tests are seriously oversized
for dy = d < 0. This puzzling fact has a simple explanation: the process can be written
as the sum of two components, both integrated of negative order, but with one only being
observed every second period. It is known (see e.g. Hassler, 2011) that overdifferenced
processes become integrated of order zero upon skip sampling, shifting the DGP towards
the alternative, so the tests reject as long as dy = d < 0.

For the local Whittle and the GPH procedures, additional experimental evidence sug-
gests that the estimator d itself is still consistent under both local homoskedasticity and
periodic heteroskedasticity, although its distribution is distorted under local homoskedas-
ticity. The results are reported in Table 3 for T" = 500, T" = 1000, T" = 1500 and T" = 2000.

The bias of the two estimators for d disclosed in Table 3 are quite small, in fact the

12
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Table 2: Size and power of fractional integration tests without adjustment for deterministics for different variance patterns in the levels

d=-.2 d=-.1 d=20 d=.1 d=.2

or do ALM RS LW GPH ALM RS LW GPH ALM RS LW GPH ALM RS LW GPH ALM RS LW GPH
-2 5.2 5.1 6.3 7.3 135 176 16.7 468 334 396 514 933 53 64.1 839 999 634 786 96.9 100

-1 147 81 19.6 427 4.9 4.8 5.9 7 12.7 164 159 45 344 409 51.2 931 53.7 63 839 999

co 0 46.8 23.8 54.7 934 15 7.7 205 435 5 4.7 6.3 7.3 13.1 17 16 46 342 409 505 931
1 829 527 874 100 46.8 245 55 93.7 15,7 83 21.1 442 4.8 44 6.1 7.7 13.7 176 166 464

2 98.1 81 985 100 83.8 549 88.6 100 48 244 563 938 149 78 205 44.1 5.4 49 6.6 8.1

-2 49 44 97 101 10.2  15.8 20 46.5 233 34 50 91.8 39.6 56.6 809 99.6 49.6 74 954 100

-1 125 6.4 229 432 4.7 41 97 104 104 151 198 471 251 359 50.1 913 41.1 58 821 99.7

br 0 34.7 168 54 919 127 64 236 439 5.4 4.4 10 10.6 104 157 203 46.5 26.2 378 514 925
1 69 36.7 84.7 999 359 178 554 91.8 125 63 242 43.6 5 4.6 103 10.5 11 16.2 20.5 47.6

2 91.5 59.5 97.1 100 68.5 373 8.7 998 353 172 56.7 921 119 6.6 23.2 446 4.9 5.1 94 10.3

-2 53 41 94 103 9.2 131 194 46.1 235 34 515 914 39.7 56.5 81 99.6 51.2 741 95.7 100

-1 135 7 222 432 4.5 3.7 9.1 10.2 9.3 146 183 46.1 255 365 509 91.8 43.7 60.8 81.6 998

tr 0 37.8 194 543 918 139 6.9 238 447 4.8 44 89 104 101 157 19.1 468 269 393 514 914
1 71 389 849 999 376 187 557 923 127 6.8 23.2 43.2 5.4 52 95 101 117 183 194 46.6

2 92.3 60.2 97.6 100 70.8 39.1 858 999 382 188 569 926 134 6.6 23.5 4438 5.3 55 93 101

-2 212 255 208 507 237 284 302 719 341 40.1 504 92.6 527 582 79.2 99.5 69 76.4 952 100

-1 64 8 6 8.9 7.2 91 72 167 128 169 16 46.7  31.2 36 427 855 553 598 778 99

pe O 105 6.2 157 39.5 7.8 5.5 11 20.1 4.7 43 6.1 8.9 115 144 119 314 345 371 411 80.1
.1 346 206 483 914 269 163 382 77.8 136 89 207 422 5.3 41 72 11.2 127 146 11 234

2 68.4 43.7 842 999 605 388 771 99.1 41 25.1 56 929 165 105 26.5 59.5 5.3 44 74 1438

Note: The process itself rather than the shocks are modulated. See otherwise Table 1.
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Table 3: Mean (m) and standard deviation (s) of the local Whittle and log-periodogram regression estimator for different variance
patterns in the innovations
d=—.2 d=—-.1 d=0 d=. d=.
gt T Miw Slw Mgph Sgph Miw Slw Mgph Sgph Miw Slw Mgph Sgph Miw Slw Mgph Sgph Miw Slw Mgph Sgph
500 -0.21 0.101 -0.2 0.060 -0.11 0.102 -0.1 0.061 -—0.01 0.101 0.0 0.061 0.09 0.102 0.10 0.061 0.19 0.105 0.20 0.061
co 1000 -0.20 0.073 -0.2 0.045 -0.10 0.074 -0.1 0.045 -0.01 0.073 0.0 0.045 0.09 0.073 0.10 0.044 0.20 0.072 0.20 0.045
1500 —-0.20 0.060 -0.2 0.037 -=0.10 0.060 —-0.1 0.038 0.0 0.060 0.0 0.038 0.10 0.060 0.10 0.038 0.20 0.061 0.20 0.038
2000 —-0.20 0.053 -—-0.2 0.033 —-0.10 0.052 —-0.1 0.033 0.0 0.052 0.0 0.034 0.10 0.053 0.10 0.033 0.20 0.053 0.20 0.034
500 -0.21 0.117 -0.2 0.068 -0.11 0.117 -0.1 0.067 -=0.01 0.118 0.0 0.067 0.09 0.116 0.10 0.066 0.19 0.114 0.20 0.067
br 1000 -0.21 0.088 -0.2 0.061 —-0.11 0.090 -0.1 0.0561 -—-0.01 0.089 0.0 0.052 0.09 0.090 0.10 0.0561 0.19 0.089 0.20 0.052
1500 —-0.20 0.076 -0.2 0.044 -0.11 0.078 -—-0.1 0.045 -—-0.01 0.076 0.0 0.045 0.10 0.076 0.10 0.044 0.20 0.076 0.20 0.045
2000 —-0.20 0.068 —-0.2 0.040 -0.11 0.067 -0.1 0.040 -0.01 0.068 0.0 0.040 0.09 0.066 0.10 0.040 0.20 0.068 0.20 0.040
500 -0.21 0.113 -0.2 0.066 -0.11 0.113 -0.1 0.066 —0.01 0.113 0.0 0.066 0.09 0.114 0.10 0.066 0.19 0.114 0.20 0.066
tr 1000 —-0.21 0.086 —0.2 0.051 —-0.11 0.086 —0.1 0.051 —0.01 0.086 0.0 0.051 0.09 0.087 0.10 0.050 0.19 0.087 0.20 0.051
1500 —-0.20 0.073 -0.2 0.044 -0.11 0.07v3 -—-0.1 0.044 -0.01 0.073 0.0 0.044 0.10 0.074 0.10 0.044 0.20 0.073 0.20 0.044
2000 —-0.20 0.065 -—-0.2 0.039 -0.10 0.066 —0.1 0.040 -—0.01 0.065 0.0 0.039 0.10 0.065 0.10 0.039 0.20 0.066 0.20 0.039
500 —-0.20 0.104 -0.2 0.063 -0.11 0.101 -0.1 0.063 -=0.01 0.102 0.0 0.063 0.09 0.104 0.10 0.063 0.19 0.103 0.20 0.064
pe 1000 —-0.20 0.073 -0.2 0.044 -0.11 0.073 —-0.1 0.045 -0.01 0.074 0.0 0.045 0.10 0.073 0.10 0.045 0.20 0.074 0.20 0.045
1500 -0.20 0.061 -0.2 0.038 -0.10 0.061 -0.1 0.037 -—0.01 0.060 0.0 0.038 0.10 0.061 0.10 0.038 0.20 0.061 0.20 0.037
2000 —0.20 0.0564 -0.2 0.034 -0.10 0.052 -0.1 0.033 0.0 0.052 0.0 0.033 0.10 0.053 0.10 0.033 0.20 0.053 0.20 0.033

Note: The sample sizes vary form 7" = 500 to 7" = 2000. See otherwise Table 1



GPH estimator is practically unbiased. (This is not really surprising, given that there is
no short-run dynamics.) Moreover, the bias, small as it is, decreases as T" increases from
500 to 2000, as does the variance of the estimators. Most of the distortions of the LW
test in the benchmark homoskedastic case (see Table 1) can be traced back to the bias of
the local Whittle estimator, while the distortions of the GPH test are apparently due to
the imperfect asymptotic approximation of its variance (its bias being practically 0). The
additional distortions due to heteroskedasticity (for the break and the trend patterns) are
most likely caused by the inflated variance of the estimator. For the periodic pattern,
bias and variance are back at the values in the benchmark case (this suggests that it
is the shape of the small-sample distribution of the GPH estimator that induces the

oversizedness).

3.3 Limiting results

In the case of regression-based tests, the robustness illustrated in the previous subsection
is easily explained for the case of square summable v;. The asymptotic distribution of
the t statistic is standard normal due to a martingale difference central limit theorem,
and White standard errors used to capture serial dependence in the squares of ¢;, capture
unconditional heteroskedasticity as well. See Phillips and Xu (2006) for an analysis of
heteroskedastic, finite-order, autoregressions. This is shown in the following Proposition,
which is intimately related to the result of Kew and Harris (2009).!

Proposition 3 Under the null hypothesis d = dy and Assumptions 1 and 2, it holds as
T — oo for the t statistic with White standard errors ty from regression (2) that

to 5 N(0,1),

provided that )., 7 < oo.

Proof: See Appendiz C.

Remark 1 The extension of the proposition to deterministic components is straightfor-
ward as outlined in Proposition 4 of Demetrescu et al. (2008). The extension for p — oo,
or for filter coefficients 1; based on estimated fractional integration parameters arguably

holds as well.

Note, however, that White standard errors do not work always: the Dickey-Fuller test

is one such case (cf. Demetrescu, 2010). More generally, when the asymptotic distribution

'We consider a triangular array structure of the modulated innovations, while Kew and Harris (2009)
consider sequences of (fixed) heterogenous variances; the differences are mainly technical in nature but
we include the result to keep this paper self-contained.
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of the test statistic is expressed as a functional of (fractional) Brownian motions, as can be
the case with particular choices of ¢; for the fractional Dickey-Fuller test (Dolado et al.,
2002), White standard errors fail in accounting for unconditional heteroskedasticity. For
the same reason, distortions appear for the fractional cointegration test of Lasak (2010) as
well, which is not the case for the regression-based tests for cointegration due to Avarucci
and Velasco (2009) and Demetrescu et al. (2013).

The behavior of the modified R/S statistic depends under time-varying volatility on
whether deterministic components are accounted for or not. Concretely, if no adjustment
is necessary, the limiting distribution of the modified R/S statistic is invariant to the

variance profile, whereas, under e.g. demeaning, it is not.

Proposition 4 Under the null hypothesis d = dy and Assumptions 1 and 2, it holds as
T — oo for the R/S statistic without demeaning that

d .
— Wis) — w
T e

whereas under demeaning

d .
— H(s) — H
QTN

with H (s) =W (n(s)) —sW (1).
Proof: See Appendiz C.

So the modified R/S statistic could only be used to robustly test the persistence of series
that do not require adjustment for deterministic components. This is either the case when
the mean function of the differenced series is known, or when the differenced deterministic
component is zero or negligible. If e.g. the null hypothesis is for instance d = 1, a constant
non-zero mean of the series is differenced away; and it can be shown that, as longas d > 0.5
under the null, a constant non-zero mean is negligible after differencing so one can apply
the R/S test without worrying about the differenced deterministics.

In the case of the log-periodogram or the local Whittle estimator, the analysis is
handicapped by the fact that the spectrum of y; is not properly defined, since y; is not
weakly stationary, not even for d < 0.5. But examining the periodogram, which can still
be computed, the rate at which it vanishes or explodes at the origin is not affected; see

the following Proposition.

Proposition 5 Under Assumptions 1 and 2, it holds for y; from (1) with uniformly

bounded jth order moments of €; that

T2 1, (A)

)\—Qd = Op(l)
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as T — oo where the O,(1) term is uniform for A € (0, \) with fived X > 0.
Proof: See Appendiz C.

Since a multiplicative factor 7-2% does not affect the minimum of the local Whit-
tle approximation or the log-periodogram regression, the proposition would explain the
apparent, consistency of the LW and GPH estimators. When modulating the process,
however, the formulae for their variance are obviously not delivering the right numbers
anymore; see Table 3. It is as if the wrong bandwidth were used with Equation (3); one
could say that the distortions in the asymptotic distribution appear because the effective

bandwidth changes due to the distortion of the time scale implied by the modulation.

Proposition 6 Under Assumptions 1 and 2, it holds for the log-periodogram regression

estimator

24 [~ d !
m= (dgph - d) 4 N(o,/ o2dt/o?).
Q 0

Proof: See Appendiz C.

4 Concluding remarks

The paper discussed modeling and inference for long memory time series under uncondi-
tional heteroskedasticity.

Variance modulation has an effect on invariance principles for cumulative sums under
Assumption 1, as is well-known in time series econometrics since the work of Cavaliere
(2004). In the seasonal case, however, the limit is not affected (Burridge and Taylor,
2001). Tt is tempting to conjecture that, just as in the integer integration case, the limit
in the fractional case is a time-transformed fractional Brownian motion. Dealing with
this topic, however, goes beyond the scope of the paper and is left for further research.

It was found using Monte Carlo simulations that the ALM test is robust, as are related
regression-based tests under weak additional conditions, but the tests based on the local
Whittle or the log-periodogram estimators are not. The modified range/scale statistic is
robust only if no adjustment for deterministic components is required after differencing
under the null. Moreover, the paper provided asymptotic arguments as to why robustness
is given for the time-domain but not for the frequency-domain tests.

For robustifying the modified range/scale statistic in the case where adjustment for
deterministics is required, one could resort to the solutions considered for unit root
tests, since the limiting distribution is expressed just like for the latter, in terms of

time-transformed Wiener processes. For robustifying frequency-domain tests, the wild
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bootstrap suggests itself for getting a correct estimate of the variance of the estimators.
Demodulation of the series (Cavaliere and Taylor, 2008) prior to estimating the long
memory parameter would provide an alternative, but would require an estimation of the
variance profile. Finally, inference based on averaged local periodogram as developed for
locally stationary series would apply immediately, but at the cost of an additional band-
width parameter. The question, which robustification strategy would be preferable, is

currently under investigation.

Appendix

A Asymptotic equivalence of DGPs

A.1 Regression-based tests

We distinguish two situations. First, we show that modulation and filtration are ex-
changeable in the short memory component.

Denote by t, the regression-based test statistic computed with z; = u; under the null,
and t; the one computed with z; = u;. Then {5 = 1 + 0,(1).

Note that we may set & = 0 because T* cancels out in the expression of the t statistic.
Note also that, as a consequence, outliers caused by discontinuities of ¢ do not have
influence increasing with 7" and can be neglected.

With the notation of the proof of Proposition 3 we have to show that

- R
ﬁ E Xi_1T¢ — ﬁ E X1t 20
t=p+1

t=p+1

and
T T
! E X 1X, ! E X X 50
m t—18%¢—1 — + t—18¢— .
T t—1 T t—1
t=p+1 t=p+1

To this end note that the first difference is given by

T T T
1 1 1
—_— (it,1 — thl) Tt + — E Xt—1 (j’]?t — .Tt) + — E (itfl — Xt,1> (:ft — .C(It) .
VT tz VT VT
=p+1 t=p+1 t=p+1

Let us examine the first term. Then, the Cauchy-Schwarz inequality leads for the first

term and any j =1,...,p to

T T T
1 - - 1
JT Y @ —m)m| < 4| D @y —xt—j)zf > a? (4)
t=p+1 t=p+1 t=p+1
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where 7 Zf:pﬂ z7 = 0,(1), as well as

T T T
1 s -, . 1
ﬁ Z (SL’t*l 'rtfl) Ty < Z ('Tt—l _SUt—l)QT Z xf (5)
t=p+1 t=p+1 t=p+1

For (4) and any j = 1,..., p, we have with Markov’s inequality that ZtT:pH (T — xt,j)z =
0, (1) since E (Zf:pﬂ (Tp—j — x—j) ) < Zt —pil E (Ty—j — 21—j) ) < CT~!due to Propo-
sition 1, while for (5) it follows with the Cauchy-Schwarz inequality that

t—1 t—

t—1 1
75— | <D T — o] < de (Trj —215)"

j=1 = 7j=1

thanks to the square summability of the series v;. It follows with Markov’s inequality
that ZtT:pH (T;_, — xfﬁl)z = 0, (1) as required.

The remaining relations are established along the same lines, and so does the White
expression for standard errors.

When it comes to exchangeability of long memory filtration and modulation, we note
that Proposition 2 does not offer a tight enough bound on the difference between the
two processes. In fact, the discussion in Hassler and Breitung (2006) suggests that the
tests can’t be asymptotically equivalent. If letting p — oo at suitable rates, however,
Demetrescu et al. (2013) show that the difference between x; and z; is approximated
away; we do not go into details here. The simulations in Section 3.2, where p is chosen as
O (T"*) for the ALM test (with ¢; = j='), support the intuition, however.

A.2 The R/S statistic

Just like for regression-based tests, short memory processes pose no difficulty. To see why,

assume that Proposition 1 applies and note that it suffices to show that

St_gt ﬁ)O

1
— sup
t

VT

with gt = Z;Zl u; under the null. We have for all ¢t < T that

t T
t SZ‘Ut—ﬁt‘ §Z|Ut—ﬂt‘;
j=1 t=1
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since ||uy — Wl < |lug — Uy, it follows with Markov’s inequality that S, |u; — | =

O, (T ||uy — ut]|,) and consequently that

S =8| =0, (1709)

1
—sup
VT
as required.

Note however that the bounds delivered by Proposition 2 do not suffice, and the result
does not appear to be improvable ; see the proof of Proposition 2 below. Thus, it likely
makes a difference whether a process is modulated then integrated of order d or the other

way round, even if the simulations in Section 3.2 suggest that the difference is minor.

B Long memory properties of modulated processes

Long memory is often defined in terms of the behavior of the spectrum of the process
in the neighborhood of 0, or, equivalently, in terms of the asymptotic behavior of the
autocovariance function. Neither is properly defined with nonstationary series as assumed
here. On the other hand, looking at model (1), there is a strong tendency to say, “fractional
filter, long memory.”

Given the results in Propositions 1 and 2, we focus on modulated levels. Then we may
state that E (7:9:—n) = E (0:9t—n) + 0o(1) as T' — 0.

For now, we shall assume that a=0, i.e. that the variance function o7 is bounded. But

if assuming the variance function to be bounded, we obtain immediately that

< h/h| Ur2nax'

v (ye)

|7h‘ Ur2nin <

This implies that at least the decay rate of the autocovariance functions is not affected.
So we could still speak of the same type of persistence in our situation. Similarly, one

obtains for the spectrum that

F ) o < fer (N) < f(N) 0

Moreover, if allowing T' — 0o, some additional statements can be made about average
spectra. (Nonstationary spectra have been discussed e.g. in Priestley, 1988, Chapter 6.)
And what about neighboring autocovariances (spectra)? We have namely that

T

A W) — v (W) = Y (Oe10041-0 — 04004—n) = 1 + O (T_l) )

Th

at all continuity points of ¢ so the autocovariance sequence is changing smoothly enough

(hopefully) to allow for average statements.
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On the average, it holds that

1 T

W () = %/ o(s)o(s — k)ds

t=h+1

where £ = lim #/7. This has the nice implication that the average autocorrelations of order
h, 0 < h < H, converge to the stationary ones when /7 — 0. And, more interestingly,

the pseudospectrum considered as

H
lim Z AETLT (4,) cos{Ah}
—H

T,H,H/T—0

also has a limit proportional to f (A) at all s. This allows us to state that the trending
properties of the process are characterized by d alone and the modulation does not interfere
with this property of the DGP.

C Proofs

Before proving the main results of the paper, a preliminary lemma required for the proof

of Proposition 3 is stated and proved.

Lemma 1 Under the assumptions of Proposition 3, it holds for some r > 2 that
a) E <|T*°‘5t|2r) <C,
b) E (\T‘O‘ut,j|4> < C, and
¢) E (]T*au;*jl 4) <C,

where uf*y =37y jupj and Y, YF < o0.

Proof: Item a) is obvious given the properties of o, and ¢;. Item b) is a particular case of ¢)
with absolutely summable filtering; but item ¢) requires some more care. Note that u;*; =

> s @ij—:t_j_l where the coefficients sequence {/;j is the (square summable) convolution

- 4
of {1;} and {b;}. Then, the finiteness of E (‘ijo Vite ) reduces to finiteness

4 -
) , since 2= is uniformly bounded. Note that ¢; = O(j7%%); a

of E ()Z]ZO wjet_j_l
tedious, yet straightforward modification of the proof of Lemma 8 in Demetrescu et al.

(2008) leads to the desired preliminary result.

21



Proof of Proposition 1

a) Examine first the case of no discontinuities of o (s). For this proof only, let ¢ be
shorthand for [sT], and note that

lus =aell, = ||>_ bjerj (00— o1-))
Jj=0 2
< > bl — o] el
70

Due to the assumed Lipschitz condition on o(-), 3C such that |0y — oy_;| < CT* /1|, so

lue = Tell, < CTH ) 1jby

=0

as required (recall, the coefficients b; are l-summable). Let now there be exactly one
discontinuity of o (-), at A < 1. There are two possibilities, ¢ < [A\T] and ¢ > [AT] (the
third, ¢ = [AT], is excluded by assumption). If ¢ < [AT], the result from the case with no
discontinuity applies. If ¢ > [AT], we have that

lue = wll, < Z bl low = aejlllecslly + Y Ibilloe = ouyl el

J>t—[AT]+1

The arguments used in the case with no discontinuity apply directly for the first summand
on the r.h.s., while, for the second summand, we make use of the uniform boundedness of

o (-) and of ||e_;]|, to arrive at

. bllee—oslllall, <CT* > bl

F>t—AT+1 G>t—AT+1

Note now that .. [ib;| <p>_;. [b;| leading due to 1-summability of b; to > .. [b;| =

O(p~1), and the r.h.s. of the above equation is thus bounded by - C/\?il The desired result

follows since t = [sT]. One proceeds similarly if there is more than one discontinuity of
o (s) (but a finite number thereof).

Proof of Proposition 2

Assume first that there are no discontinuity points and let again ¢ be shorthand for [sT].

Then, having assumed a zero mean,

t

1 t-1

Y1577 — y[ST]H2 = Var (y; — <Z5 ¢k Vij—k (00 — 01—j) (04 — Ov—p) .
7 k=0

I\
o
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With the Lipschitz property, gb;d) ~ 7174 and p ~ %hmfl, we have that, for a

T J
suitable C,
t—1 t—1

C < dyg—dy |- _
Var (g~ 5) < g O O | — B

=0 k=0

Rearrange the sum terms to obtain that

_COy
Var (y; — ﬁ Z h=h (b4 i)~ p2a1,
h=0 =0
Ifdy >0, b~ (h+4)"" < h=2%if d; < 0 we have that h~% (h +i)"" < (h+4) . In

the first case, we have that

_ C < )
Var(yt_yt) < ﬁZ(t_h) hZ(d di)—1
h=0
o &
T h=0
In the second, we have that
o =l t—h—1
Var (yt — gt) < ﬁ h2d ! Z h + 'l —2d1 .
h=0 =0

We further have that > '_; P40 < O (t—h) (t—1)7*". Hence,

t—1

Var (y, — ;) < OT*h~! Z h2L,
h=0

With the known approximation, we have the same
Var (y, — 7)) < CT2d-d0-1

as required for the result. Discontinuities are handled as in the proof of Proposition 1.

Proof of Proposition 3

The proof is completed in two steps.
First, it is shown that employing x;*; = > i>1 Yje—j as aregressor instead of its finite-
sample counterpart zy | = Z;;ll Yz ; has no asymptotic effect on the distribution of the

estimators. This is accomplished by noting that the variance of the differences between the
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two vanishes at an appropriate rate. It holds namely for the differences gt =5 >t VT

that . .
72 () = 2 v
jzt

use now Proposition 1 to conclude that the variance is given, up to an O, (T~') term,

by Dot D okse Vit T Faa= i -k, Where 7,y is the autocovariance of <2j20 bjet_j). The
autocovariance is exponentially decaying, and tedious, yet straightforward algebra yields

that &, = O, (t7%%), which does not affect the asymptotics as shown e.g. in Demetrescu
et al. (2008) Lemma 2 for the ALM test. So let the regressor vector x;_; contain z;*; =

!/
: _ *ok
D o1 YiTi—j, 1e. Xpy = (257 i1, Typ)

Second, let us examine the expression

T
1
T0.542a Z Xi—1E¢, (6)

t=p+1

the numerator (so-to-say) of the estimators in regression (2) and of the corresponding ¢
statistics. Since x;_1&; is a martingale difference, a central limit theorem applies under
regularity conditions, see below. Then, what is needed for the regression-based test to
be unaffected is to use the correct standard errors when computing the ¢ statistic for
¢. Using a central limit theorem from Davidson (1994, p. 383), sufficient conditions for

multivariate asymptotic normality of (6) are
1 P
a) MaXp1<t<T T0572a |xi—18¢] = 0

b) 7= ZtT:pH x¢_1%,_,e2 % ¥ where ¥ is some fixed positive semi-definite (p+ 1) x

(p+ 1) matrix.

The key to robustness is that one uses precisely this matrix X (or rather a sample
counterpart) for building test statistics with White standard errors.

a) We have due to Markov’s inequality for some 2 < r < 4 and any positive 7

T

Pr( max L |x;_18¢] > n) < Z Pr (’T_Qo‘xt_let’ > nTO'5)

p+1<t<T TO5+20¢
== t=p+1

IA

i E (‘T_ZaXt,1€t‘r)

0.5)"
S (1)
Apply now Holder’s inequality to show that E (|T*2axt_15t|r) is uniformly bounded in ¢
if B <|T*aet|4r/(4fr)> and E <|T*axt_1|4> are finite; this is indeed the case, see Lemma 1.

—2 T
Then, the sum ZthpH w

for the central limit theorem.

is of order O (T"'~"/?) = o(1) for any 7, as required
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b) This is only slightly more complicated. Let 17)]» = ({/;j, bj,...,bj—,)" with {12]} the
convolution of {¢;} and {b;} and b; =0 for j > 0. Then,

T !

t=p+1 \j>0 k>0

T 2
o 1 Z : Z :2 :~ ~! Ot—k—-10t—j—-10¢ 2
— T '(p]’(pk T4a Et,k,1€t,j,1€t.

t=p+1 j>0 k>0

Adding and subtracting the unconditional expectation x;i; = E (et,k,let,j,lef), we obtain

two components of the sum,

1 T o o o?
~ 5! Ot—f—-10t—j—10y 2
T E E E Tbjlbk Tia (€tfk71€tfj71€t - l‘ijkt) )

t=p+1 j>0 k>0

and

T o ' 2
EDIP I I

t=p+1 j>0 k>0

. 0'2 . .
For the first, note that the quotient Z=*~%=I=°t is uniformly bounded, and we can use

the absolute summability of 8 order cumulants and the arguments of Demetrescu et al.
(2008, proof of Proposition 1) to show the first summand to disappear, while, for the
second, we need to show that a limit exists. To this end, recall e.g. from Demetrescu
et al. (2008) that
T
3D ) (7
t=p+1 j>0 k>0

2
Ot—k—10t—5—10¢
T4a

if the limit existed indeed. To establish the existence of the limit, we first need to show

~ ~ . 0_2 . .
that 30D ks VP~ Kk converges to a function of ¢, say ¢(¢). This follows
from (7) and the piecewise Lipschitz property of o(-).

Then we show that

does have a proper limit. Knowing that is bounded, is would be no surprise

has a proper limit. Note that this is a Riemann sum, which converges if the total variation
of ¢ on [0,1] is bounded.
The average of ¢(t) will converge if ¢(t) varies slowly enough. Write %f;ﬂ‘”’? =

o (EE) o (5) 0% (L). Due to the smoothness of o, o (F=L) o (52E) o (L) =

o (552) 0 (552) 02 (52) + o(1), of course uniformly with the exception where o has

discontinuities. But o is integrable, so the discontinuities won’t matter in the end. Thus,
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¢(t) has the same smoothness properties as o(t), and as such the average will converge.

It is easily shown along the lines of b) that

1 T
E / p
m thlxtil — EX

t=p+1

where the probability limit ¥, is a constant, positive definite, matrix; hence,
o7 (B—B) 5 N (0.(S)7 (50 7).

But looking at the expression of the White standard errors, and at the probability
limits of its components derived above, the heteroskedasticity-robust estimator of the
covariance matrix of 3 is seen to converge to precisely (2x) '8 (Ze) 7, as required for
the result.

Proof of Proposition 4
The R/S statistic is given in the first case by

1 maxlStST St — minlStST St

VT W

Under time-varying variance, the x; = u; is generated according to Assumptions 1 and 2.

Q=

Letting u; have for simplicity unity long-run variance, we have that

1
—ro57a 2l = W (s)),

—2 1
where 32 = fo

W (n(s)) is a so-called time-transformed Wiener process; see Cavaliere (2004). Consider-

0% (s)ds, n(s) = 72 [; 0*(r)dr and W is a standard Wiener process;

ing the linearity of @ in 7%, we can use Cavaliere (2004) to conclude that

Then,

d .
@ max W (n(s)) — Jnin W (n(s)) -

For any given path of W, the value the extremum points does not change; it is just the
location that depends on the variance profile. So the distribution of the modified RS
statistic is not affected by the time transformation. Note too that, since convergence is
weak, it is the limiting distribution of the modified RS statistic that is invariant to n, and

not the statistic itself.

26



Considering the case with demeaning, prototypical for adjusting series for deterministic
components, the situation changes dramatically. The partial sums are built over demeaned

xs,
t

Sp=> (v, -7)

j=1

and consequently
1

ETO.5+a

Under global homoskedasticity, the limit is nothing else than the first-order Brownian

Sy = W (51 (s) — s W (1).

bridge, say Bj (s). The invariance from the case with no demeaning does not carry over,
however, since, under heteroskedasticity, the above limit is not the time-transformed

Brownian bridge:

By(n(s)) =W n(s)) —nls) W) #Wn(s)) —sW(1),

where W (1 (s)) — s W (1) cannot be expressed as a time-transformed process.

Proof of Proposition 5

Assume first for Assumption 1 that o = 0, case in which o; is uniformly bounded. The
proof then modifies the proof of Theorem 6.2.2 from Priestley (1981) suitably. Denote
by (. (A) the finite Fourier transform of some process x;, (, (A\) = 1/v2xT Zle zie” N

for A € [—m,7]. The periodogram I, (\) of x; is then given by I, (\) = (. (A)(E (M),
(d)
J
integration filter with parameter d and |I'; (\)| the corresponding transfer function. Recall
that gpﬁ»d) <Cj¥land |Ty(\)| ~X%as A — 0.

It shall be first shown that

where % denotes the complex conjugate. Denote by .~ the coefficients of the fractional

G N =Ta(N) (N + 0, (T7),

where the O, term is uniform in A. To this end, note that

T T
1 ) 1 )
2\ = 671)\25 — (d)u iy efz)\t;
) m; v mz (Z Pyt



by rearranging the terms of the sum and reindexing correspondingly, one obtains
_ RS ( —iX(t+k)
G(A) = \/ﬁkz k (Z“t i€ )
«— (d) —iXk . o it
- () () o

= T'q(A) Cu(A) + Rr, i

—i\k T —iAt : :
where Rp = \/QTT Sy <pk ’ (Zt:T_kH U e ) In order to examine the behavior

of Ry, note that, due to the short memory of u; it holds that

2

T
Z ut,je’i)‘t < Ck
t=T—k+1

uniformly in A. Then,

= T
E |RT| S E Spéd)e—ﬁ\k < Z ut_je—i)\t>
2rT s t=T—k+1
2

IN
l0
;
EN
~~
Il
M
IS
[
<
SN——
IN
/0

Consider now

L) =¢GN GO = (LaN) G +0, (T9) (Ta (V) ¢ (V) + 0, (T9)

at the harmonic frequencies \; = /7. Note at this point that ¢, (A\) < C(ye (A) uniformly
in A, since the the filter b; is 1-summable; the finite Fourier transform (,. () of the

modulated innovations, o.¢;, behaves itself as follows

T T *
Ly A>< Ly A”
—_— Ot€r€ Ot€r€
<\/27TT p— VerTl =

T

1
= ﬁZO’?E 62
t=1

due to the uncorrelatedness of the innovations ¢ and the uniform boundedness of their

E|Ge V] =

variance. Since T > (7/;)?, and considering the behavior of the transfer function [Ty (A)]
in the neighborhood of the origin, it follows that I, (\) = [Ty (A)]* ¢, (A)]* + 0, (A729) at

the harmonic frequencies /7.
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Note that all derivations above are linear, so premultiplying the finite Fourier trans-

forms with 7% in the case o > 0 leads to the desired result.

Proof of Proposition 6
The GPH-estimator is obtained as the least squares estimator for the parameter d in the
linear regression model

*

log(1;) = log fi — C — 2dX,; + log (;
0

with ¢; = log(I;/f;) + C and C = —0.577216... is Eulers constant. Furthermore, X;
denotes the j — th Fourier frequency and I; = 5| Zt 0 ytexp(ﬁmtﬂ? is the periodogram

)+€J, 7=12....m

of the underlying series y;. The term f* origins from the spectral density of a stationary

long-memory model given by
FO) =1 —eap(—=iN)[ 1 f*(N), —m<A<m

In this set-up the remaining spectral density f*()) is scale independent. This proves to
be handy later as the variance is assumed to be time dependent in our model. Due to the
time varying variance, however, the process y; is not a stationary long-memory process.
Proving the proposition comes now from fitting a stationary model to a non-stationary
process and evaluating the consequences. This is done by employing the approach of
Dahlhaus (1997) by application of the local spectral density or local periodogram respec-
tively. Denoting u = t/T and T being the sample size the local spectral density of our

modulated long-memory process is

flu, N) = a(u)2f(N).

Following the arguments in Robinson (1995b) and Hurvich et al. (1998) the asymptotic

normality of the log-periodogram regression is derived from the term

Uy = &5+ log (¢<(0))) — 2dlog (‘1 = exf;_Mj)‘) .

Fitting a stationary model to a non-stationary means that f(u, A) = f()\) independent
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of u. Thus we obtain for Uj:

L .
Uj = log %)+C+log( )—2d10 ( 6?( Mj)l)

= log fol U(u)jg;b({i)[uj ) + C +log (‘7; ) dlog ('1 — exi(_i)\m)

~ og Jo U(U)2dul()\j)> +C+log( ) Codlo (|1 — efo—iAj)|)

o’ f(A)
To obtain the limit distribution of the log-periodogram regression we have to consider

the term

1 m
Wzaﬁj:TﬁTﬁTB

with a; = X; — X. The terms T; to T3 are given in Hurvich et al. (1998) equation (A
9). From Hurvich et al. (1998) equation (A 10) and (A 11) we directly have T} = op(1)
and Ty = op(1). The remaining term can as in Hurvich et al. (1998) equation (A 12) be
written as T3 = T31+T35+133 where the terms T3, and 733 are not effected our modulation
of the time series. Thus, we can directly conclude from Hurvich et al. (1998) equation (A
14) and (A 15) that T3, = o(1) and T33 = o(1).

As the modulation does not effect the coefficients a; they still fulfill condition (5.15)
in Robinson (1995b) and thus we have

D 1 7T2
T31 = N (O,/ Uzdu—z)
0 6o

which proves the proposition.
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