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Abstract 
 
We estimate by means of indirect inference a structural economic model where firms’ exit 
and investment decisions are the solution to a discrete-continuous dynamic programming 
problem. In the model the exit probability depends on the current capital stock and a measure 
of short-run profitability, where the latter is a state variable which is unobserved to the 
econometrician. We estimate the model on all start-up firms in the Norwegian manufacturing 
sector during 1994-2012, and find that both increased short-run profitability and a higher 
capital stock lowers the exit probability - this effect is statistically significant in all industries. 
We show that the difference in annual exit probability between firms that exited during the 
observation period and firms that did not exit is highly persistent over time, and there is no 
tendency for a sharp increase in the estimated exit probability just prior to exit. Hence, it is 
the cumulated effect of higher risk of exit over several years - compared with the average firm 
- that causes exits. 
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1 Introduction

Reallocation of resources from old, ine¢ cient �rms to new �rms with superior technology

is often considered to be the dynamo in a market economy; through creative destruction

the exit of �rms is a means to ensure growth and prosperity. New �rms have to invest to

build up an optimal stock of capital, but new �rms are also characterized by a high exit

rate: in our data set, which covers �rms in Norwegian manufacturing industries over the

period 1994-2012, the average probability that an one-year old �rm exits during the next

three years is 17 percent, compared to 7�8 percent for a 10-year old �rm. For a rational

�rm, choosing the investment pro�le over time is interrelated with the decision of whether

to exit today or continue production. Still, most theoretical as well as empirical studies

solely examine either exit or investment. One contribution of the present paper is to

derive a theory-based econometric model of �rm exit and investment that is structurally

estimated to obtain exit probabilities of �rms.

In our dynamic model, the �rm�s investment decision is determined simultaneously

with the decision of whether to exit. In contrast, almost all theoretical models of in-

vestment under uncertainty either rule out the possibility of exit or consider the value of

exit �the "scrap value" �as exogenous. One important example is Dixit and Pindyck

(1994; Chapter 7) who introduce the simplifying assumption that an investment project

can be abandoned at a lump-sum cost, and also restarted at another lump-sum cost. Thus

the �rm can switch from one discrete state to another. Because none of these states are

absorbing, the �rm never really exits.

In the investment model in Bloom, Bond and van Reenen (2007), it is explicitly stated

that exit is not an option. In Abel and Eberly (1994; 1996) a �rm chooses positive, zero

or negative investment according to the value of a state variable �the shadow price of

capital. The �rm may disinvest its entire stock of capital, but such an action does not

lead to an absorbing state for the �rm. Thus exit is de facto ruled out.

In another strand of the literature, exit and investment are considered simultaneously.

Some prominent examples are Olley and Pakes (1996), whose method to estimate produc-

tion functions is implemented in Stata and widely used, and Levinsohn and Petrin (2003).

These authors specify models in which exit and investment are endogenous decisions, but

if the �rm exits it obtains a scrap value which is state independent, that is, independent
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of the �rm�s capital stock. In our model we replace this simplifying assumption by mod-

eling a trade-o¤ between the value of installed capital if production is continued and the

value of installed capital if the �rms exits �this is how we make the decision to exit truly

endogenous.

While modeling of exit may seem simple � according to standard economic theory

negative pro�tability is the key reason for �rms to exit � our data indicate that exit

behavior of �rms may be more complicated: for the period 1994-2012 the data reveal that

i) 27 percent of �rms that exited had positive pro�t (here de�ned as operating surplus

less capital costs) in every year before they exited, ii) there is no negative pro�tability

shock just prior to exit; around 65 percent of the �rms that exited had positive pro�t

in the last year prior to exit, and iii) �rms may continue production even though they

repeatedly experience negative pro�t; 30 percent of the �rm-year observations for the non-

exiting �rms �one observation for each �rm in each year �had negative pro�t. These

observations raise the following questions: Is pro�tability of key importance for explaining

�rm exit? What cause �rms to exit? What are the characteristics that distinguish �rms

that exit from �rms that continue production? Thus one purpose of the present paper is

to identify, through estimating a dynamic structural microeconometric model, the answers

to these questions.

Empirical papers on dynamic structural models of �rms�investment or exit typically do

not lead to numerically tractable criterion functions that can form the basis for estimation.

Instead they often apply the simulated method of moments to estimate the structural

parameters, see, for example, Cooper and Haltiwanger (2006), Hennessy and Whited

(2007), Acemoglu et al. (2013) and Asphjell et al. (2014). Here the econometrician selects

a set of moments ad hoc and let the parameters be determined such that the distance

between the data moments and the corresponding model-based (simulated) moments are

minimized according to some metric.

We are neither able to derive a likelihood function from our structural model that

is numerically tractable. However, instead of using the simulated method of moments

we introduce an auxiliary model that closely mimics the properties of the underlying

structural, i.e., data-generating, model. In the auxiliary model, the probability to exit

depends on a measure of (short-run) pro�tability and the stock of capital. The likelihood
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of the auxiliary model �the quasi-likelihood function �can be derived and therefore we

estimate the parameters in the auxiliary model by maximum likelihood. The likelihood

function of the auxiliary model � the quasi-likelihood function � can be derived and

quasi-maximum likelihood estimates are combined with the structural model through

simulations to estimate the parameters of the structural model.

The idea of combining estimation of an auxiliary model with simulations from an

underlying "true" model is called indirect inference; see Gourieroux et al. (1993). One

speci�c implementation of indirect inference is the e¢ cient method of moments. In the

present paper we draw on this approach, which was originally proposed by Gallant and

Tauchen (1996). Indirect inference seems appropriate for our study because computing the

exact likelihood is not feasible, whereas simulation of the model is fairly simple. Indirect

inference is widely used in �nancial econometrics; some examples are stochastic volatility-

, exchange rate-, asset price- and interest rate modeling, see, for example, Gallant and

Long (1997), Andersen and Lund (1997), Andersen et al. (1999), Bansal et. al. (2007)

and Raknerud and Skare (2012). However, indirect inference is not commonly used to

estimate structural models of �rm dynamics. We demonstrate that indirect inference is a

viable approach also in this case.

We make three contributions to the literature. First, we present a novel theory-

consistent econometric model that within the framework of stochastic dynamic program-

ming determines both exit and investment. As noted above, in the literature the interre-

lationship between investment and exit has been neglected or it has been assumed that

the value to exit is state independent, that is, independent of the �rm�s stock of capital.

As demonstrated in the present study, this is hardly a suitable assumption.

Second, we contribute to the literature on the causal relationship between pro�tability

and exit: we examine whether pro�tability is of key importance for explaining �rm exit

and we also identify the characteristics that distinguish �rms that exit from �rms that

continue production. According to economic theory, exit is closely related to pro�tability,

although the exact relationship varies between theories. The simplest theory suggests a

myopic exit rule: "production is likely to come to a sharp stop ...[when] ... the price falls so

low that is does not pay for the out of pocket expenses", Marshall (1966, p. 349). A more

sophisticated theory suggests that the exit decision is based on both present and expected
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pro�ts. The most re�ned theory derives the exit rule from stochastic dynamic program-

ming: under the assumption that the �rm takes into account that it will always make

optimal decisions in the future, it will stay operative as long as the expected present value

of continuing production exceeds the value to exit, see, for example, Hopenhayn (1992).

We use a dynamic model that builds on stochastic dynamic programming, and show that

it is the cumulated e¤ect over several years of a high risk to exit that distinguishes �rms

that exit from �rms that continue production; if this cumulated e¤ect is su¢ ciently high,

a �rm exits.

Surprisingly, there is not much evidence in the literature on the relationship between

pro�tability and exit. Some studies provide descriptive statistics on exit rates, see Dunne

et al. (1988) for U.S. manufacturing industries and Disney et al. (2003) for UK man-

ufacturing, but these studies do not provide information on the relationship between

pro�tability and exit �the reason may be lack of data.

There is, however, a literature where reduced form probit models are used to examine

how pro�t components have impact on �rm exit. For example, Olley and Pakes (1996)

analyze the evolution of plant-level productivity, but they also estimate how �rm exit

depends on age, the stock of capital and productivity. They �nd that a higher stock of

capital, and also improved productivity, tend to decrease the exit probability. Foster et

al. (2008) use a probit model and �nd that improved physical productivity, higher output

prices and a higher stock of capital all tend to decrease the probability to exit.1

In contrast to Olley and Pakes (1996) and Foster et al. (2008), our analysis focuses

on entrepreneurial �rms. Thus new �rms are included from the year they are born, while

incumbent �rms (at the start of the sample period) are excluded. The reason is that the

exit probability of an incumbent �rm may di¤er systematically from that of a new �rm

due to self-selection: the surviving �rms are not a random sample of the population of all

�rms. In the literature, this selection problem is largely ignored. Estimates of the partial

e¤ect on �rm exit of variables that are correlated with survival, such as productivity, age

and size (capital stock), may therefore be biased.

Third, we shed new light on the role of size as an exit determinant. Typically, earlier

1The Foster et al. study is part of a growing literature where rich data bases are used to examine
di¤erent aspects of �rm productivity; two recent examples are Hsieh et al. (2009) and Bartelsman et al.
(2013).
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studies found that the probability to exit is higher the smaller the �rm; some examples

are Mata et al. (1995), Olley and Pakes (1996), Agarwal and Audretsch (2001), Klepper

(2002), Disney et al. (2003), Pérez et al. (2004) and Foster et al. (2008). In our theory

model that integrates investment and exit, a higher stock of capital has two opposite

e¤ects: More capital will increase production, and therefore raise the value of the �rm

if it continues to operate �this tends to lower the exit probability. On the other hand,

more capital increases the scrap value of the �rm, that is, the amount of money obtained

if the �rm sells its entire stock of capital �this tends to increase the exit probability. We

show that with costly reversibility of investment, the �rst e¤ect always dominates.

The rest of this paper is organized as follows: In Section 2, we identify stylized facts

about the �rms in the data set: these are �rms in manufacturing industries (1994-2012).

We show that adjustments of labor and materials from one year to the next exhibit a

di¤erent pattern than adjustment of capital. Further, in all industries we observe huge

aggregated pro�ts over time. This suggests �rms have market power, and we therefore

assume imperfect competition (here modeled as monopolistic competition).

In Section 3 we introduce a production model �production requires input of labor,

materials (including energy) and capital. The empirical observations in Section 2 justify

to model materials and labor as fully �exible factors of production, whereas capital is

assumed to be quasi-�xed with costly reversibility of investment; see Abel and Eberly

(1996).

In Section 4 we explain how stochastic dynamic programming can be used to simul-

taneously determine (in each period) whether the �rm will exit or not and how much

the �rm will invest if it does not exit. We extend Rust (1994) by allowing for, like in

his original model, a discrete decision variable �whether or not to exit �in addition to

a continuous decision variable � investment. We allow for both positive and negative

investment. In particular, if a �rm exits, it sells its entire stock of capital. Under the

standard assumption that the state vector is Markovian, we derive the exit probability

function of the �rm. This is a function of the �rm�s scrap value �obtained if the �rm

exits �and the net present value of the �rm if it continues production at least one more

year and makes optimal decisions now and in the future.

We discuss the stochastic speci�cation of the auxiliary econometric model in Section 5
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and derive the quasi-likelihood function. The indirect inference estimator of the structural

coe¢ cients are presented in Section 6. The model estimates are reported in Section 7.

We �nd that for a given level of capital, improved short-run pro�tability reduces the

exit probability and this e¤ect is statistically signi�cant in all industries. The e¤ect of

a higher stock of capital (for a given level of short-run pro�tability) depends on two

opposite e¤ects, but our results con�rm the theoretical prediction that the net e¤ect is a

lower exit probability. We also show that �rms that exited during the observation period

have a substantially higher estimated exit probability than �rms that did not exit. The

di¤erence between estimated annual exit probabilities is highly persistent over time and

is not limited to the year just prior to exit. In fact, the exit probabilities do not increase

sharply just prior to exit, which re�ects that there are no (negative) pro�tability shocks

in the last years prior to exit. Therefore, it is the cumulated e¤ect of higher risk of exit

over several years �compared with the average �rm �that causes exits. Finally, Section

8 concludes.

2 Data

Our main data source is a database from Statistics Norway based on register data �

the Capital database �which covers the entire population of Norwegian limited liability

companies in manufacturing. The main statistical unit in this database is the �rm: A �rm

is de�ned as �the smallest legal unit comprising all economic activities engaged in by one

and the same owner�. We use data from the Capital database for the period 1993-2012.

We analyze the survival and dynamics of new �rms as opposed to incumbent �rms. A

�rm is de�ned to have entered in year t � 1 if it was �rst registered in the Capital data

base in t� 1 and it was recorded also in year t. Further, a �rm is de�ned to have exited

in year t if it is recorded in the Capital database in year t � 1, but not in year t, and is

registered as either bankrupt or having closed down for an unspeci�ed reason after t� 1

according to the Central Register of Establishments and Enterprises (REE).2 Note that

a �rm is removed from the Capital data base if it is no longer classi�ed to belong to a

manufacturing sector.
2There may be a delay in the registration of close downs in the REE �typically one or two years after

the �rm drops out from the Capital data base. This is the reason we have 2012 as our last data year.
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We limit attention to new �rms that were operative in at least two years. For each

�rm (that was operative at least two years), we use the �rst observation year solely to

obtain information about the initial stock of capital of �rms (at the end of that year).

We only include �rms that are single-plant �rm in the start-up year because newly

established multi-plant �rms are likely to be continuation of existing establishments under

a new organization number (our �rm identi�er). In the period 2004-12, about 90 percent

of the start-up manufacturing �rms were single-plant units. These �rms accounted for

about two-third of total employment of all start-up �rms in their �rst year. Finally, if a

(single-plant) �rm A acquires a (single-plant) �rm B, then the new multi-plant �rm A is

kept in the data (whereas B is of course removed).

The Capital database contains annual observations on revenue, wage costs, interme-

diates expenses (including energy), �xed capital (tangible �xed assets) and many other

variables for all Norwegian limited liability manufacturing �rms for the period 1993-2012.3

The database combines information from two sources: (i) accounts statistics for all Nor-

wegian limited liability companies, and (ii) structural statistics for the manufacturing

sector. In general, all costs and revenues are measured in nominal prices, and incorporate

taxes and subsidies, except VAT. Labor costs include salaries and wages in cash and kind,

social security and other costs incurred by the employer.

A unique feature of the database is that it contains the net capital stock in both

current and �xed prices at the �rm level. The data set distinguishes between two types

of capital goods: (i) buildings and land, and (ii) other tangible �xed assets. The latter

group consists of machinery, equipment, vehicles, movables, furniture, tools, etc., and is

therefore quite heterogeneous. The method for calculating capital stocks in current prices

is based on combining gross investment data and book values of the two categories of �xed

tangible assets from the balance sheet, see Raknerud, Rønningen and Skjerpen (2007).

Our econometric model contains only a single aggregate capital variable. It has been

constructed using a Törnqvist volume index, where each type of capital is proportional

to the sum of: (i) the user cost of capital owned by the �rm, and (ii) total leasing costs.

This aggregation corresponds to a constant returns to scale Cobb-Douglas aggregation

function for di¤erent types of capital (see OECD, 2001).4

3See Raknerud, Rønning and Skjerpen (2004).
4Formally, the aggregate capital stock is calculated using the Törnqvist volume index Kit =
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Table 1 presents summary statistics for the �ve largest manufacturing industries and

for the whole manufacturing sector when all �rms are lumped together. The four indus-

tries we examine are Wood products (NACE 16), Metal products (NACE 25), Electrical

equipment (NACE 27), Machinery (NACE 28), and Transport equipment (NACE 29-30).

In the table the �rst and second column shows number of �rms and number of exits by

industry for the period 1994-2012. Column three depicts annual exit frequencies; these

are typically 4-5 percent. The fourth column in Table 1 shows both the average and the

median number of man-years in the entry year of �rms. For total manufacturing, the

mean is 14 and the median is 3. Among the individual industries, Transport equipment

stands out with a high mean (38) and a median of 6 (man-years). Thus most �rms are

small �this is a typical feature of Norwegian manufacturing.

Firms in the manufacturing industries compete extensively at international markets.

We therefore follow the standard in the international trade literature and assume imperfect

competition, here speci�ed as monopolistic competition. The basic idea of this assumption

is that �rms have some degree of market power, yet there are so many �rms in the industry

that it is reasonable to assume that each �rm neglects that its choice of price has impact

on the demand curve of its competitors.

Standard economic theory suggests that pro�t is (much) larger under imperfect com-

petition - price exceeds marginal cost - than under perfect competition - price equal to

marginal cost. As an informal test of our market structure assumption (monopolistic

competition) we calculated wage costs, capital costs and pro�t aggregated over all �rms

in all periods (for each industry), and divided each of these by aggregated value added;

the corresponding shares are shown in Table 1.5 We �nd that pro�t make up between

8 and 12 percent of value added in the six industries.6 Because perfect competition can

(Kb
it)
�(Ko

it)
(1��) where Kb

it and K
o
it are the stocks of buildings and land (b) and other tangible �xed

assets (o). Further, v =
P

itR
b
it=
P

it(R
b
it + R

o
it) where R

k
it = (r + �k)K

k
it; k = b; o, is the annualized

(user) cost of capital (including leased capital). In the latter expression r is the real rate of return, which
we calculated from the average real return on 10-years government bonds for the period 1994-2009 (4 per
cent), and �k is the median depreciation rate obtained from accounts statistics, see Raknerud, Rønningen
and Skjerpen (2007). Because we have a single capital variable in the econometric model, we also have
a single depreciation rate. This rate (� = 12 percent) is a weighted average of �k and �k with v as the
weight.

5Capital costs are here calculated from the standard user cost formula with interest rate equal to the
average yield on 10-years government bonds (see also footnote 4).

6According to the seminal paper by Mehra and Prescott (1985), risk aversion explains at most one
percentage point of the US equity premium, that is, the di¤erence between the return on equities and
risk free bonds. This suggests that correcting for risk aversion will not alter the general picture in Table
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be seen as a special case of the monopolistic competition model (in�nitely large demand

elasticity and a homogeneous good), in Section 7.1 we use our estimates to provide more

evidence that perfect competition is not an adequate description of the market structure.

1.
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In Figure 1 we have examined how the use of labor (measured as man-hours), materials

(intermediate inputs, including energy) and capital change over time. For each factor of

production and each �rm in each year, we �rst calculate the use of a factor in year t

(t = 1995; :::; 2012) relative to the use of this factor in year t � 1. In Figure 1, the

horizontal axis measures the log of this ratio, that is, the relative change in the use of

inputs, and the vertical axis measures frequency. As seen from the �gure, the graphs for

man-hours and materials are almost identical and resemble the normal distribution. At

�rst glance the graphs may give the impression that changes in man-hours and materials

follow each other almost perfectly. There is, however, substitution possibilities between

these two inputs: when comparing, for each industry, the within-�rm variation in (log of)

the materials-labor ratio to the within-�rm variation in (log of) man-hours, we �nd that

this ratio is around 50 percent. If materials and labor were used in a �xed ratio, speci�c

to each �rm, this ratio would have been 0. (This would also hold if the �rm-speci�c

ratios change proportionally over time for all �rms). In Section 3 we therefore assume

substitution possibilities between labor and materials.

Figure 1 also shows the graph for log of changes in the stock of capital. This graph

has somewhat thicker tails than the graphs for man-hours and materials. The thicker

tails mean that observations with large (negative or positive) changes are more frequent.

Moreover, the thicker right tail �the graph is skewed to the right �re�ects the intermittent

and lumpy nature of investment in Norwegian manufacturing, see Nilsen and Schiantarelli

(2003).

We see that net investment takes negative values for roughly 50 percent of the ob-

servations. A �rm with negative net investment has lower acquisition of capital than

depreciation. In particular, strongly negative net investment re�ects sales of capital. In

our data the value of annual sales of capital amount to around 10 percent of gross (annual)

investment, which is substantial relative to aggregate depreciation. The distinct pattern

of investment calls for another modeling of capital than of labor and materials, see Section

3.

In our data set a substantial share of the observations has negative pro�tability. This is

the case both for i) �rms that did not exit in the observation period (�non-exiting �rms�),

and ii) �rms that did exit during the observation period (�exiting �rms�). In fact, almost
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Figure 1: Distribution of log of annual changes in capital, man-hours and materials.
Kernel density estimates. Total manufacturing, 1994-2012.
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Figure 2: Distribution of share of observations (for each �rm) with positive pro�ts. Total
manufacturing, 1994-2012.
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20 percent of the �rm-year observations of the non-exiting �rms (one observation for each

operating �rm in each year), and more than 25 percent of the observations of the exiting

�rms, have negative operating surplus. The corresponding numbers for pro�t, that is,

operating surplus less of capital costs, are 30 percent for non-exiting �rms and 35 percent

for exiting �rms. Our model should therefore allow for negative pro�tability, in particular

negative operating surplus.

The share of observations with negative pro�tability may be unevenly distributed

over �rms; some �rms may have no, or just a few, observations with negative pro�tability,

whereas others may have several observations with negative pro�tability. Figure 2 shows,

for non-exiting and exiting �rms, how the observations with positive pro�tability are

distributed over �rms. Each curve is constructed as follows: For each �rm we �nd its share

of observations with positive pro�tability, henceforth termed the positive pro�tability

share. We then sort �rms by their positive pro�tability share (from 0 to 1), and group

�rms with the same positive pro�tability share together. In Figure 2 the horizontal axis

measures the cumulative share of �rms, whereas the vertical axis measures the positive

pro�tability share. Each curve consists of a number of steps. The length of each step

shows the share of �rms with the same positive pro�tability share, and the height of the

step shows the positive pro�tability share.

Figure 2 shows that when measuring pro�tability by pro�t, about 22 per cent of the

exiting �rms have a positive pro�tability share of zero, that is, all their observations have

negative pro�t. The corresponding number for the non-exiting �rms is 12 percent. Almost

45 percent of the exiting �rms have a positive pro�tability share that is 0.5 or lower, i.e.,

at least half of their observations have negative pro�t. We also see that around 27 (38)

percent of the exiting (non-exiting) �rms have a positive pro�tability share of 1, that is,

they have positive pro�t in every year.

Figure 2 gives a mixed picture of the importance of pro�tability relative to exit. On

the one hand, a substantial share of the exiting �rms (27 percent) always have positive

pro�t. Moreover, most exiting �rms are pro�table the last years before the exit: The

share of exiting �rms with positive operating surplus three years, two years and one year

prior to exit was 86 percent, 82 percent and 75 percent, respectively. The corresponding

shares with positive pro�ts are about 10 percentage points lower. On the other hand,
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the graph of the non-exiting �rms lies above that of the exiting �rms, re�ecting that the

former group on average has the highest pro�tability. The area between the two graphs

is considerable, suggesting that there is a negative relationship between pro�tability and

exit. We return to the question of whether there is a signi�cant relationship between

pro�tability and exit in Section 7.2.

3 Short-run factor demand

In this section we present our model for price decisions by �rms: We consider an industry

with monopolistic competition. Each producer faces a demand function of the following

form:

Qit = �tP
�e
it (1)

where Qit is output from �rm i at time t, Pit is the output price and �t is an exogenous

demand-shift parameter characterizing the size of the market. Furthermore, e > 1 is the

absolute value of the direct price elasticity. The price elasticity is common to all �rms

and constant over time.

Let Mit denote materials, Lit labor, and Kit capital. In Section 2 we argued that the

modeling of materials and labor should be similar, but this modeling should di¤er from

the one for capital. We now assume that the use of materials and labor are determined

at the beginning of a time period (variable inputs), whereas capital services in year t are

determined by the capital stock at the end of t� 1; Ki;t�1. However, through investment

in period t the capital stock at the end of period t increases (capital is quasi-�xed �see

discussion below). The production function of producer i is assumed to be:

Qit = AitK


i;t�1 [M

�
it + (wtLit)

�]
�
� , � < 1 (2)

where the elasticity of scale is equal to "+
, the elasticity of substitution between materials

and labor is 1=(1 � �) and wt is a time-varying distribution parameter. Our production

function is a nested Cobb-Douglas function de�ned over capital and a CES aggregate over

labor and materials. The speci�cation (2) allows for heterogeneity in productivity across

�rms: Hicks-neutral changes in e¢ ciency are picked up by Ait, which may shift over time

and vary across �rms, whereas a positive change in wt can be interpreted as a labor-

augmenting innovation. Thus wt captures that the skill-composition of labor typically
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changes over time. Whereas Lit is the use of labor measured in man hours, wtLit should

be interpreted as the use of labor measured in e¢ ciency units.

Let qit = (qMt; qLit) be a vector of the unit price of materials and labor, respectively.

The unit price of labor is �rm speci�c, which re�ects that the composition of di¤erent

types of labor may vary across �rms. All prices have been de�ated and are thus real

prices. We de�ate all prices by the same index, so that in any time period one dollar of

any cost component has the same value as one dollar of a revenue component. (If pro�t

components are de�ated by di¤erent indexes, nominal pro�t and de�ated pro�t may have

di¤erent signs.) We use the price index of capital, qKt, as the de�ator to re�ect the

opportunity cost of investment.

Producers are assumed to be price takers in all factor markets. Using Shephard�s

lemma, the short-run cost function can be shown to be

C(qit; Ki;t�1; Qit) = cit

�
Qit

AitK


i;t�1

� 1
"

(3)

where

cit = [q
%
Mt + (qLit=wt)

%]
1
% , % =

�

�� 1 . (4)

Here, cit is a �rm-speci�c price index of variable inputs, i.e., it is derived from the CES-

aggregate of materials and labor. Note that cit depends on the distribution parameter wt;

qLit=wt is the e¢ ciency corrected price of labor.

The short-run optimization problem of �rm i in the beginning of period t, when the

producer knows qit; �t, Ait and wt (and also e, 
; � and " ), is to choose - for a given

stock of capital - the price that maximizes operating surplus:

�it = max
Pit

(
�tP

1�e
it � cit

�
�tP

�e
it

AitK


i;t�1

� 1
"

)
(5)

where �tP 1�eit = PitQit (from (1)) is the revenue of the �rm. Solving the resulting �rst-

order condition gives the following equations for revenue Rit = PitQit and short-run factor

costs qMtMit and qLitLit:

24 lnRit

ln(qMtMit)
ln(qLitLit)

35 =

24 �2
�2 � %
�2 � %

35 ln cit +
24 00
%

35 ln(qLit=wt) + 1�1 lnAit
+1
�1 lnKi;t�1 + %

24 0
ln qMt

0

35+ 1dt; (6)
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where 1 is a vector of ones,

dt =
�1

e� 1 ln�t :

and

�1 =
(e� 1)

("+ e� e")
> 0; �2 =

�"(e� 1)
("+ e� e")

< 0: (7)

We see that �1 is the coe¢ cient of the Hicks-neutral e¢ ciency term lnAit; which is common

in all the three equations in (6). In contrast, a change in the �rm-speci�c price index of

variable inputs, cit; will have a di¤erent impact on revenues (�2) than on factor costs

(�2� %). Note that an increase in wt (for given qLit) increases revenue Rit because �2 < 0,

see (6) and (7). An increase in wt has no direct impact on material costs, see (6), but

will, through a drop in the �rm-speci�c price index cit (see (4)), increase material costs if

�2 < %, see (6). An increase in wt has an identical indirect e¤ect, through cit, on material

costs as on labor costs (�2 � %), but has in addition a direct impact on labor costs (%). If

% > 0 , an increase in wt will therefore lower the short-run cost share of labor, i.e., the

innovation is labor saving.

Note that if the demand parameter is allowed to be �rm-time speci�c, denoted �it,

the system (6) is unaltered except that Ait is replaced by A�it = �
1=(e�1)
it Ait: Thus, neutral

e¢ ciency shocks (Ait) and (idiosyncratic) demand shocks (�it) enter the two alternative

systems in a completely symmetric way, and we would not be able to distinguish between

them in the empirical analysis. Therefore, Ait captures both technology shocks and de-

mand shocks, but we will still refer to Ait as �e¢ ciency�. This should be kept in mind

when interpreting the results reported in Section 7.

Operating surplus �it de�ned in (5) has the closed form

�it = (1� e%(ln qMt�ln(cit)) � e%(ln(qLit=wt)�ln(cit)))edtc�2it A
�1
itK


�1
i;t�1 (8)

� �itK

�1
i;t�1;

where

ln �it = bit + �2 ln cit + d1t + �1 lnAit (9)

and

bit = ln(1� e%(ln qMt�ln(cit)) � e%(ln(qLit=wt)�ln(cit))): (10)
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In order to ensure that the optimization with respect to capital is well-de�ned, we need

to have 
�1 < 1. (Our model meets this requirement, see below). In Section 5 we describe

in detail how we identify �it using data on revenue, variable factor costs and capital.

From the implicit de�nition of �it in (8) we see that this variable depends on a number

of factors that have impact on the pro�tability of a �rm. Below we will therefore refer to

�it as a measure of pro�tability. Finally, note that �it does not depend on the stock of

capital, see (8); it is a measure of short-run pro�tability.

4 Exit and investment dynamics

The producer invests in capital during year t. We follow the standard assumption that it

takes one period until the stock of capital is adjusted. If there were no costs of adjusting

capital, then the stock of capital is found from maximizing

�it � (r + �)Ki;t�1 (11)

with respect to Ki;t�1 where �it is a function of Ki;t�1 given by (8) and (r + �)Ki;t�1 is

the (neoclassical) user cost of capital (r is the real interest rate, � the depreciation rate

and the price of capital is normalized to one because capital is the numeraire good, see

discussion above). In this paper we will, however, allow for capital adjustment costs.

At the beginning of each year t; the �rm makes an investment decision. Investment It

can be positive or negative. In particular, if the �rm decides to exit during year t, it will

sell its remaining stock of capital at the end of year t; It = �(1� �)Kt�1.

Let zt be a dummy variable which is one if the �rm continues to operate throughout

year t and zero if the �rm exits during year t. We take the Markovian discrete choice

model of Rust (1994) as a starting point and assume that the period t utility from the

choice (It; zt); given the state vector St = (�t; Kt�1), can be written as:

u(St; It; zt) + "(zt) (12)

where u(St; It; zt) is operating surplus minus capital expenditures and "(zt) is a random

component associated with the discrete choice zt. By de�nition we have

u(St; It; zt) =

�
�t � c(It) zt = 1
�t � c(�(1� �)Kt�1) zt = 0

(13)
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where the function c(It) denotes total cost of capital. Below we will assume that there is

one type of capital adjustment costs, namely that the resale price of capital is lower than

the purchaser price of capital, i.e., costly reversibility (see Abel and Eberly, 1996).7 Then

c(It) is weakly convex with a kink at zero. Operating surplus �t follows from St and is

therefore not a¤ected by zt and It. If zt = 0, t is the terminal period and the �rm sells its

remaining capital stock, It = �(1� �)Kt�1; and obtains a scrap value, �c(�(1� �)Kt�1),

at the end of the year.

Following Rust (1994) we assume that the state vector St is Markovian with transi-

tion probability g(dSt+1jSt; It) and that "(z) = ("(0); "(1)) has a bivariate extreme value

distribution with scale parameter � and location parameters 
z = (
0; 
1):
8

h(") =
Y

z2f0;1g

� expf��"(z) + 
z)g exp f� expf��"(z) + 
zgg . (14)

Further, the �rm�s choice of whether to continue production, and if so, how much to

invest, follows from the solution of the Bellman equation:

V (St; "t) = max
zt; It

�
u(St; It; zt) + "(zt) +

1

1 + r
Et [V (St+1; "t+1)]

�
. (15)

The value function V (St; "t) is characterized in Proposition 1, which is an extension of

the discrete choice model of Rust (1994), that is, we allow for a discrete and a continuous

decision variable.

Proposition 1 Assume (12)-(14) and that St is Markovian with transition probability

g(dSt+1jSt; It): Then the expected net present value of the �rm is

V (St; "t) = max
zt2f0;1g

[�t + v(St; zt) + "(zt)] (16)

where

v(St; 0) = �c(�(1� �)Kt�1) (17)

and

v(St; 1) = max
It

�
�c(It) +

1

1 + r
� (18)Z �

�t+1 +
1

�
ln [exp(��c(�(1� �)Kt) + 
0) + exp(�v(St+1; 1) + 
1)]

�
g(dSt+1jSt; It)

�
:

7An alternative assumption is that total cost of capital also includes resources to adjust to a higher
stock of capital. Under the standard assumption that this type of cost of adjusment is decreasing in the
initial stock of capital (for a given level of investment), see Abel and Eberly (1994), all our results go
through.

8Because E(�"(z)� 
z) = 
 where 
 is Eulers�constant, we have E("(z)) = (
 + 
z)=� .
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Finally, the exit probability is given by

Pr(zt = 0jSt; zt�1 = 1) =
1

1 + exp f� (�� [v(St; 1)� v(St; 0)] + �)g
, (19)

where � = 
0 � 
1.

The proof of Proposition 1 is given in the Appendix. In Proposition 1, v(St; 1) is the

net present value of the �rm if it does not exit in the current period (zt = 1) and makes

optimal investment decisions now (It) and in the future:

v(St; 1) = max
It

�
�c(It) +

1

1 + r
Et [V (St+1; "t+1)]

�
.

Above we assumed that the resale price of capital is lower than the purchaser price of

capital. This assumption is now speci�ed as

c(I) =

�
I if I � 0
sI if I < 0

s � 1: (20)

According to (20), upon selling capital (I < 0) the �rm may not obtain the purchaser price

of capital: Markets for old capital may be imperfect, or there may be large transaction

costs, that is, s < 1. For parts of the capital stock there may even be no market (i.e., zero

price) because of, for example, asymmetric information. In that case the �rm will face

clean-up costs when the old capital is removed from the production site. The assumption

that s < 1 may be particularly relevant for a small country like Norway because of thin

second-hand markets for capital. The special case s = 1 corresponds to the neoclassical

theory of investment.

Let St = (�t; Kt�1) and S 0t;= (�t; K
0
t�1) with K

0
t�1 > Kt�1. Then

v(S 0t; 1) � s(1� �)(K 0
t�1 �Kt�1) + v(St; 1):

We conclude that
v(S 0t; 1)� v(St; 1)

K 0
t�1 �Kt�1

� s(1� �):

Because v(St; 0) = s(1� �)Kt�1, we must have

@(v(St; 1)� v(St; 0))=@Kt�1 � 0; (21)

implying that v(St; 1) � v(St; 0) is non-decreasing in the current stock of capital. This

suggests that the probability to exit is lower the higher the stock of capital. It is easy to
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Figure 3: The net value of continuing as functions of capital (Kt�1) for three levels of
adjustment costs (s) and two leveks of short-run pro�tability (�t).

show that if g(dSt+1jS 0t; It) stochastically dominates g(dSt+1jSt; It) for all St = (�t; Kt�1)

and S 0t = (�
0
t; Kt�1) with �0t > �t,9 then @v(St; 1)=@�t � 0.

Figure 3 illustrates typical solutions of the value functions V (St; 0) and V (St; 1) and

depicts the di¤erence V (St; 1) � V (St; 0) (the net value of continuing production) as a

function of Kt�1 for di¤erent values of s (s = 0; :5; 1) and �t ("low pro�tability" and

"high pro�tability"). In particular, we see that when s = 1 (no adjustment costs/full

reversibility), v(St; 1)�v(St; 0) does not depend on Kt�1. Furthermore, we see that when

s < 1, v(St; 1) � v(St; 0) is increasing in Kt�1 for a given level of short-run pro�tability

(�t).

9That is, G(St+1jS0t) � G(St+1jSt) for any St+1, where G(St+1jSt) is the c.d.f. corresponding to the
p.d.f. g(St+1jSt). In our model this means that a higher current pro�tability, �t ,uniformly shifts the
cumulative distribution function of next year�s pro�taility, �t+1, rightwards.
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5 Quasi-likelihood estimation

Our estimation strategy consists of two steps. In the �rst step, we specify an auxiliary

model that approximates our structural model. The auxiliary model forms the basis

for estimating the structural parameters by indirect inference. We denote the likelihood

function of the auxiliary model for the quasi-likelihood function. The maximizer of the

parameters, say  , of this quasi-likelihood function is the quasi-likelihood estimator, b .
In the second step, the parameters of the structural model, say �, is estimated by

simulating from the underlying "true" (data-generating) model. Our indirect inference

estimator draws on the e¢ cient method of moments estimator, see Gallant and Tauchen

(1996). The estimator �nds, through simulations of the economic model for a given �,

the value of � that minimizes (in a weighted mean squared error sense) the score vector

of the quasi-likelihood function for the simulated data when this score vector is evaluated

at the quasi-likelihood estimator, b , obtained from the real data.

Measurement and identi�cation issues Whereas the solution to (6) corresponds

to an ex ante production plan that is based on the information available to the �rm at

the beginning of t, the ex post realizations, i.e., the data, are also determined by other

(unpredictable) factors, for example, measurement errors and new information obtained

during the year. In practice, the observed variables corresponding to the vector of theo-

retical variables will not satisfy the strong restrictions imposed by (6). Therefore, we will

incorporate (non-structural) error terms into our model. Let

yit =
�
ln bRit; ln(qMt

cMit); ln(qLit
bLit)�0 :

We assume that yit is equal to the corresponding structural variables except for additive

white noise error terms. That is

yit =

24 lnRit

ln(qMtMit)
ln(qLitLit)

35+
24 eRit
eMit

eLit

35 . (22)

In our data we observe �rm speci�c wages, qLit, but only a price index for material costs

qMt, which is normalized to one in the base year. Note that this is not a problem for our

model. To see this, de�ne q�Mt = �qMt for an arbitrary normalizing constant �. Then
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de�ne w�t = wt=�, d
�
t = (�1=e� 1) ln�t � �2 ln�, and

c�it = [(qLit=w
�
t )
% + q�Mt

%]
1
% :

It is easy to show that (6) still holds with (qMt; wt; dt; cit) replaced by (q
�
Mt; w

�
t ; d

�
t ; c

�
it).

Thus (6) is valid for any normalization of qMt.

Because Ait is unobserved, we cannot identify �1: De�ne ait = lnAit=ek for an arbitrary
proportionality factor ek and let e�1 = ek�1. Then

e�1ait = �1 lnAit (23)

regardless of ek. The parameter e�1 can be identi�ed only by making stochastic assumptions
about ait. To obtain identi�cation we assume that

ait = 'ai;t�1 + �it, t = 2; :::; � i (24)

ai1 � IN (0; �2a); �it � IN (0; 1) : (25)

These assumptions enable us to identify the loading coe¢ cient e�1, but tells us nothing
about the structural parameter �1 since ek is unidenti�ed. By a similar argument, any
non-zero mean in ait would be absorbed into the term dt, hence the assumption that ait

has zero mean is also a purely identifying restriction.

The variable ai1 represents the productivity of �rm i in its start-up year relative

to the average productivity of all new �rms in that year, and the variance �2a of ai1

characterizes the cross-sectional heterogeneity across �rms in their �rst observation year.

Observed productivity di¤erences among operative �rms in a later year is the result of

initial heterogeneity, ai, cumulated innovations,
P

t=2 �it, and self-selection (the most

productive �rms survive). In order to obtain identi�cation, both the initial value of ai1

and the subsequent innovations �it must have zero mean since any non-zero mean will be

indistinguishable from the industry-wide intercept dt in (9). Moreover, the variance of

the innovation �it is set to one to obtain identi�cation of e�1.
Below we show how to consistently estimate �2 = �"(e� 1)=(" + e� e"), see (7), by

indirect inference. Still we we cannot identify both " and e. To obtain identi�cation of

both " and e we need to impose an additional condition. For example, if markets are

assumed to be competitive, that is, e ! 1, then �2 = �"=(1 � ") and 
�1 = 
=(1 � "),
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so both " and 
 are identi�ed. Alternatively, we can assume that the elasticity of scale is

"+ 
 = 1. Then �2=
�1 = �"=(1� "), so " is identi�ed and then e follows from �2.

An auxiliary model of exit There are two problems using the exit probability (19)

to estimate the structural parameters. First, to solve the functional �xed point equation

(18) for given St: This problem is di¢ cult, but tractable. Second, St contains a latent

state variable, �t. To handle the second problem we approximate the structural model by

an auxiliary model, that is, we approximate v(St; 1) � v(St; 0) by a parametric function

of observable variables:

v(bSt; 1)� v(bSt; 0) ' ��0 + ��KK

K
i;t�1 + ���b�
�i;t�1: (26)

Here bSit = (b�i;t�1; Ki;t�1) is the observable equivalent of the state vector Sit, and

b�it = max(b�it=K
�1
i;t�1; 0)

with b�it being observed operating surplus in the data year t. Because b�it is not de�ned
when zit = 0, we use b�i;t�1 instead of b�it in (26). This can be justi�ed if ln �it is a
Gaussian AR(1) process, see below. Then E(�itj�i;t�1) will be a power function in �i;t�1,

which motivates the use of a power function in (26). The restriction b�it � 0 is imposed
because �it cannot be negative; this is a well-known property of the (nested) Cobb-Douglas

production function.

Combining (20) and (26) we can rewrite (19) as

Pr(zit = 0j Sit; zi;t�1 = 1) '
1

1 + exp
�
�
�
�0 + �KK


K
i;t�1 + ��b�
�i;t�1�	 (27)

� P (zit = 0j Ki;t�1; b�i;t�1); (28)

where �0 = ����0 + �, �K = ����K and �2� = ����2�. In Section 4 we derived that

@ (v(St; 1)� v(St; 0)) =@Kt�1 � 0 (and independent of Kt�1 if s = 1) and @v(St; 1)=@�t �

0. This suggests that ��K > 0 and ��� > 0, and hence �K < 0 and �� < 0; both a higher

capital stock and improved pro�tability lower the probability to exit. Note that if there

are no adjustment costs of capital (s = 1), then �K = 0.
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Initial estimation We now consider the estimation of % and wt. From (6) we have

ln

�
qLitLit
qMtMit

�
= �% lnwt + % ln

�
qLit
qMt

�
+ eLit � eMit: (29)

We can utilize (29) to get simple regression estimates of % and wt; (b%; bwt). Hence, cit
can be estimated as: bcit = h(qLit= bwt)b% + qb%Mt

i 1b%
(30)

and bit as bbit = ln(1� eb%(ln qMt�ln(bcit)) � eb%(ln(qLit= bwt)�ln(bcit))): (31)

Henceforth, in all expressions where cit and bit enter we will replace them by bcit and bbit,
respectively, ignoring the approximation error.

Quasi-likelihood estimation Given the estimates obtained in the initial estimation

and the reduced form structural model derived from the short-run factor adjustment, we

can write:

yit =

264 e�1e�1e�1
375 ait +

24 �2
�2 � %
�2 � %

35 lnbcit +
24 0

% ln qMt

% ln(qLit=bwt)
35

+

24 
�1

�1

�1

35 lnKi;t�1 +

24 dt
dt
dt

35+ eit for t = 1; :::; � i: (32)

where

eit � IN (0;�e): (33)

In general, let the parameters of the quasi-likelihood be denoted  . In our model,

 =
�e�1; �2; 
�1; �21; �2a; d1; :::; dT ; vech(�e)� .

Given the estimates b% and bwt obtained in the �rst step of the estimation, our data on
�rm i can be seen as the realization of a stochastic process (yi1; :::;yi� i) and � i � T i �

2012 is the stopping time. Here, T i is the �rm-speci�c year of right censoring, which is

exogenous. For simplicity of notation we have assumed that the �rm enters at t = 1. The

reason for stopping is either censoring or exit; in the latter case zi;� i+1 = 0. Note that
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zit = 1 for t � � i, while zi;� i+1 = 1 (the �rm is censored) or zi;� i+1 = 0 (the �rm has

exited). The last observed value of zit is at t = min(� i + 1; T i).

By a standard factorization (see Billingsley, 1986), the log probability density function

of yi = (yi1; :::;yi� i ; � i = k; zi;min(� i+1;T i) = j) can be written as:

ln Pr(zi2 = 1; :::; zik = 1; zi;k+1 = jjyi1; :::;yik) + ln f(yi1; :::;yik)

=

T iX
t=1

(zit ln Pr(zit = 1jyi;t�1; zi;t�1 = 1) + (1� zit) ln Pr(zit = 0jyi;t�1; zi;t�1 = 1))

+

T iX
t=1

zit ln f(yitjyi1; :::;yi;t�1) + ln f(yi1)

'
T iX
t=1

�
zit lnP (zit = 1j Ki;t�1; b�i;t�1) + (1� zit) lnP (zit = 0j Ki;t�1; b�i;t�1)�

+

T iX
t=1

zit ln f(yitjyi1; :::;yi;t�1) + ln f(yi1)

� ln g(yi; ) (34)

where f(yi1; :::;yik) is the density of (yi1; :::;yik) corresponding to the approximate linear

model (32) when k is �xed, i.e., not a stopping time, and the approximation in the

third equation re�ects that Pr(zit = 0jyi;t�1; zi;t�1 = 1) has been replaced by P (zit = 0j

Ki;t�1; b�i;t�1) de�ned in (27).
To calculate ln f(yitjyi1; ::; yi;t�1) we cast our model in a state space form with yit as

the observation vector and ait as the state variable, and use the one-step ahead predictions

and the predicted variances of the state variable (see Shumway and Sto¤er, 2000). To

obtain analytical derivatives, we use a decomposition of ln f(yi1; :::;yik) which is well-

known from the EM-algorithm; see Koopman and Shephard (1992).

The quasi-likelihood estimator is given by

b N = argmax
 

L( ;�!y N), (35)

where �!y N = fy1; ::; yNg and

L( ;�!y N) =

NX
n=1

ln g(yi; ): (36)
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6 Estimation of structural parameters by indirect in-
ference

Parameters and simulations from the structural model Let �0 denote the vector

of the true parameter values of the structural (data-generating) model and  � the vector

of pseudo-true parameters in the quasi-likelihood (cf. (34)); i.e., the probability limit ofb N . From (35)-(36),  � is determined by the asymptotic �rst-order condition

E�0

�
@ ln g(yi; 

�)

@ 

�
= 0;

where the notation E�(�) means that the expected value refers to the data-generating

(structural) model evaluated at the parameter value �.

In indirect inference the purpose of simulations is to establish a link between �0 and

 �, which enables estimation of �0 from b N . To this end we simulate S sequences yi for
each of the N �rms, i.e., SN sequences in total. Let y(s)i (�) denote an arbitrary simulated

sequence for �rm i. We will now show how y
(s)
i (�) can be simulated for given �.

We start by listing the structural parameters, �, needed to carry out the simulations.

First, the parameters needed to simulate yit given Ki;t�1 and ait are e�1, �2 
�1, dt and �e,
see (32). To simulate ait we need ' and �2a. To simulate �it we use

ln �it = bbit + �2 lnbcit + dt + e�1ait. (37)

The variables denoted byb are �xed during the estimation, with bbit and bcit given in (31)
and (30), respectively. The simulated sequence �it then follows from the simulated ait.

To simulate Iit given Ki;t�1 and �it we need to evaluate v(St; 1), which requires the pa-

rameter s and also the parameters in the distribution of g(dSt+1jSt; It). This distribution

is determined by the relations

Kit = (1� �)Ki;t�1 + Iit

and

ln �it�bbit��2 lnbcit�dt = e�1ait = 'e�1ai;t�1+e�1�it = '(ln�i;t�1�bbi;t�1��2 lnbci;t�1�d1;t�1)+e�1�it
where we have used (24). Under our assumption that ln �it is an AR(1) process, which

is the simplest process consistent with the assumption of a Markovian state process in
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Section 3, we have

ln �it = ' ln �i;t�1 + �+ � it

where

ln �i1 = bbit + �2 lnbcit + dt + e�1ai1
� = E

�bbit � dt � '(bbi;t�1 � d1;t�1)
�

� it � N(0; �2�). (38)

Finally, we simulate zit from Pr(zit = 0jSit; zi;t�1), which requires the parameters � ; s and

�.

While the parameters d1; :::; dT ;�e are needed to simulate yit, these are nuisance

parameters that do not enter the structural model. Hence we will keep these parameters

�xed at their quasi-likelihood estimates during the simulations and therefore they will

not be considered as structural parameters. Moreover, � and �2� follow trivially from (38)

and ', and hence may just be "recalibrated" by simulations of ait and �it; they are not

considered as structural parameters that must be estimated. Therefore, the structural

parameters that must be estimated by indirect inference are:

� = (e�1; �2; 
�1; '; �2a; � ; s; �).
The algorithm for generating an arbitrary simulated sequence y(s)i (�) can be summa-

rized as follows:

Let �; dt = bdt1 and �e = b�e be given.
If t = 1 :

1. Let K(s)
i0 = K i0 (the actual initial value of �rm i)

2. draw a
(s)
i1 from (24)

3. draw �
(s)
i1; from (37)

4. set z(s)i1 = 1

5. Draw e(s)it from (33) and obtain y(s)it using (32).

If t > 1:

28



1. Given K(s)
i;t�1; �

(s)
i;t�1;; a

(s)
i;t�1 and z

(s)
i;t�1 = 1

2. Simulate a(s)it from (24)

3. Simulate �
(s)
it from (37)

4. Solve (18) and �nd I(s)it

5. Draw z
(s)
it from (19)

6. If z(s)it = 0 or t = T i: stop

7. If z(s)it = 1:

� set K(s)
it = (1� �)K

(s)
i;t�1 + I

(s)
it

� draw e(s)it from (33) and obtain y(s)it from (32)

� set t = t+ 1, and go to 1.

There are two challenges to the simulations: i) values for qLit for � i � t � T i

are also needed (as � (s)i may be larger that � i), and ii) the simulated sequence y
(s)
i (�)

is not continuous in �: We can handle i) trivially by estimating a transition density

Q(qiLtjqLi;t�1; t) from the data and augment the data of �rm i . Regarding ii), the simula-

tion of fa(s)it ; �
(s)
it ; e

(s)
it gTt=1 can be reduced to continuous transformations (in �) of simulated

random draws from an IN (0; 1) distribution. Estimation of the model is done by keep-

ing these simulated draws unchanged as � takes on di¤erent values during the iterative

estimation algorithm. This argument does not apply to z(s)it ; which may change value dis-

continuously from 0 to 1 or vice versa as � varies. To overcome this obstacle we replace

z
(s)
it by

E�(z
(s)
it jfa

(s)
it ; �

(s)
it gTt=1) = Pr(z

(1)
it = 1jfa

(s)
it ; �

(s)
it gTt=1) =

tY
k=2

Pr(z
(s)
ik = 1jS

(s)
ik ; z

(s)
i;k�1 = 1);

where S(s)it = (�
(s)
it ; K

(s)
i;t�1): This can be seen as carrying out an "in�nite" number of

simulations of z(s)it for each simulated sequence fa
(s)
it ; �

(s)
it gTt=1:
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The e¢ cient method of moments For any vector x and weighting matrix 
, let

jjxjj
 � x0
x. We obtain estimates for the structural parameters by using the e¢ cient

method of moments, that is, the estimator is the solution to:

b�N;S = argmin
�





N�1=2 @

@ 
L(b N ;�!y (s)SN(�))





(bIN )�1 , (39)

where �!y (s)SN(�) = fy
(s)
i (�)gSNi=1 is the S �N simulated sequences y(s)i (�), with S chosen to

keep the estimation uncertainty arising from simulations (i.e., the Monte Carlo standard

error) below a desired tolerance level. Furthermore, bI�1N is a consistent estimator of

the optimal weighting matrix I�1 (see Gourieroux et al., 1993). Note that some of the

parameters occur both in � and  , for example �2. Then b�2 6= b�2N;S and, if the quasi-
likelihood estimator is inconsistent, ��2 6= �02.

The simulation of y(s)i (�) was considered in the previous subsection and as shown there,

the objective function in (39) is a smooth function of �. To obtain standard errors of the

indirect inference estimator, we utilize a property of the �Third Version of the Indirect

Estimator�in Appendix 1 in Gourieroux et al. (1993). Here it is show that as N becomes

large

V ar(b�N;S) ' N�1(1 +
1

S
)

�
@b(�0)

@�

��1
J�1IJ�1

�
@b(�0)

@�

��10
, (40)

where

b(�) = argmax
 

E�(ln g(yi; )), (41)

and

I = lim
N!1

V ar�0

�
N�1=2 @

@ 
L( �;�!y N)

�
J = �p lim

N!1
N�1 @2

@ @ 0
L( �;�!y N):

To estimate V ar(b�N;S), @b(�0)=@� is obtained by �nite di¤erencing using (41), whereas I
and J are obtained from the quasi-likelihood maximization (with �0 and  � replaced byb�N;Sand b N).
7 Results

7.1 Estimates of structural coe¢ cients

In the empirical model, 
�1 is the coe¢ cient of lagged capital, lnKi;t�1, in the equations

for yit, see (32). We can identify this (composed) coe¢ cient, which, due to the log-linear
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Table 2: Estimates of coe¢ cients. Standard errors in parentheses
Industry Directly identi�ed coe¢ cients Derived estimates assuming:

e =1 "+ 
 = 1

�1 �2 % s " 
 " 
 e

Wood products :22 (:07) �:56 (:12) :26 :82 (:02) :35 :10 :79 :21 1:63
Metal products :19 (:05) �:39 (:11) :35 :74 (:02) :29 :12 :74 :26 1:57
Electrical eq :21 (:08) �:77 (:21) :28 :73 (:05) :43 :08 :83 :17 2:08
Machinery :17 (:08) �:30 (:11) :22 :72 (:05) :25 :07 :81 :19 1:36
Transport eq. :25 (:09) �1:15 (:32) :37 :78 (:04) :56 :12 :79 :21 2:24
Total manuf. :23 (:05) �:45 (:12) :31 :79 (:02) :43 :16 :82 :18 1:64

form of our model, is the elasticity of a component in operating surplus (revenue, material

costs or labor costs) with respect to the capital stock. The estimates of 
�1 are depicted in

the �rst column of Table 2, and they vary between 0.17 and 0.25. For pooled estimate for

total manufacturing is 0.23. Hence, operating surplus increases by about 0.25 percent if

the stock of capital increases by 1 percent and variable factors of production are optimized.

The low values of 
�1 are in contrast to Cooper and Haltiwanger (2006), which �nds an

elasticity of operating surplus with respect to the stock of capital of 0.59 for a selection of

US manufacturing �rms. The di¤erence may re�ect that Cooper and Haltiwanger (2006)

examine other types of sectors than we do; they focus on sectors with homogeneous

products, for example, raw cane sugar and motor gasoline. More homogeneous products

mean that the demand elasticity e in (1) is high, which, using (7), implies that 
�1 is

high. The intuition is straight forward: Increased production due to more capital has

two counteracting e¤ects on revenues: (i) more is produced, which, cet. par., increase

revenues, but (ii) the output price has to be lowered in order to sell more goods to the

customers. With homogeneous products, the magnitude of (ii) is small.

The di¤erent results with respect to the curvature (
�1) may also re�ect that in the

Cooper and Haltiwanger study observations with negative operating surplus are removed

because the authors "suspect that this [negative operating surplus] largely re�ects mea-

surement error" �this is in contrast to our approach. The estimates of the adjustment

cost parameter s are in the range of 0.72 to 0.82, implying about 20 �30 percent discount

on capital in the second-hand market. Our results indicate moderate adjustment costs of

capital.

As mentioned in Section 2, perfect competition can be seen as a special case of our
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model. We obtain perfect competition by letting the demand elasticity e in (1) approach

in�nity. For this limiting case we have �2 = �"=(1 � ") and 
�1 = 
=(1 � "), see the

discussion in Section 5. Hence, we now obtain an estimate of "; and this estimate varies

between 0.25 and 0.56, see Table 2. We also obtain an estimate of 
; which varies from

0.07 to 0.16. The estimate of the long-run scale elasticity " + 
 is in the range of 0.3 to

0.7, which is much lower than most estimates of this scale elasticity �they are typically

around one or somewhat higher than one. We believe our low estimate re�ects that the

imposed assumption of competitive market is not valid, see the discussion in Section 2.

Another special case is that of imposing a long-run scale elasticity of one. Then the

estimates of the short-run scale elasticity " lie around 0.8, see Table 2, which is close to

the ratio between labor costs and value added in our data set, see Table 1. In this special

case we also obtain an estimate of the demand elasticity e, which varies from 1.4 to 2.2

(1.6 for total manufacturing) �this is consistent with a high degree of market power and

the high pro�t shares reported in Table 1.

The elasticity of substitution between labor and materials is 1� %. Because the esti-

mates of % in Table 2 lie between 0.2 and 0.4, the estimates of the elasticity of substitution

are rather large. These estimates may be plausible as they are roughly in line with the

corresponding parameters in the large scale computable general equilibrium model of the

Norwegian economy MSG, see Bye et al. (2006).

All the coe¢ cients in Table 2 are highly signi�cant. Our model is parsimoniously

parameterized relative to the amount of data, and we get a high goodness of �t as measured

by (pseudo) R2, which varies between 90 and 92 percent for the di¤erent industries.10

7.2 Exit probabilities

We now consider the estimates of the approximative exit model. These are obtained by es-

timating the logit equation (27). In Section 4 we derived that @(v(St; 1)�v(St; 0))=@Kt�1 �

0. That is, if the capital stock increases it becomes, cet. par., more valuable to con-

tinue production relative to exiting, and thus the probability to exit decreases. Hence

10The pseudo R2 is de�ned as

R2 = 1� tr dV ar(eit)
tr dV ar(byit � bdt)

where tr denotes the trace, that is, the sum of the diagonal elements.
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the coe¢ cient �K of K

K
i;t�1 in (27) should be negative. In Section 4 we also derived that

@v(St; 1)=@�t � 0: Thus the coe¢ cient �� of �

�
it in (27) should also be negative; improved

pro�tability lowers the probability to exit.

Table 3: Exit probability estimates. Standard errors of estimation in parentheses
Industry �K �� 
K 
�

(coe¤. of K
K
i;t�1) (coe¤. of �
�it )

Wood products (16) -1.01 (.23) -2.11 (.20) .12 (.04) .35 (.05)
Metal products (25) -1.08 (.47) -3.19 (.65) .11 (.04) .22 (.05)
Electrical eq. (27) -.44 (.21) -3.04 (.99) .10 (.05) .18 (.09)
Machinery (28) -1.24 (.55) -1.86 (.21) .08 (.01) .22 (.04)
Transport eq. (29-30) -1.05 (.55) -4.04 (2.02) .09 (.06) .17 (.10)
Total manufacturing -1.17 (.33) -2.65 (.35) .11 (.03) .23 (.02)

Table 4: Elasticity of exit probabilities w.r.t. pro�tability and the stock of
capital.

Industry Mean of Mean of� Mean of Elasticity of Pr(exit)
�it (r + �)Kit Pr(exit) with respect to:��

Ki;t�1 �it
Wood products (16) 1.32 1.22 .035 -.12 -.60
Metal products (25) 2.17 1.25 .046 -.11 -.33
Electrical eq. (27) 1.85 .86 .032 -.04 -.30
Machinery (28) 1.23 .65 .035 -.10 -.34
Transport eq. (29-30) 4.24 4.10 .041 -.15 -.20
Total manufacturing 3.02 2.52 .040 -.14 -.25
�In millions EUR
�� Calculated for a representative �rm, i.e. with mean values of �it and Kit

Table 3 shows that the estimate of the capital coe¢ cient, �K , is signi�cant and negative

in all industries as well as for the pooled industries (total manufacturing). The pooled

estimate of -1.17 for �K and 0.11 for 
K are highly signi�cant, with t-values above 3.

Thus, the net e¤ect of more capital is to reduce the exit probability; this is in accordance

with the structural model.

The second to the last column in Table 4 shows the elasticity of the probability to

exit with respect to Ki;t�1, that is, the percentage impact on the exit probability of a �rm

with mean values of the explanatory variables when, hypothetically, the stock of capital

increases by one percent. This elasticity varies between -0.04 and -0.15. The estimated

elasticity for total manufacturing is -0.14.
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The third column of Table 3 shows that �it (our measure of short-run pro�tability)

has a signi�cant negative impact on the probability to exit: the estimated value of �� is

signi�cant and negative in all industries, and varies little across industries, ranging from

�4:04 in Transport equipment to�1:86 in Machinery, with a common estimate of -2.65 for

total manufacturing. The exponent of the corresponding power function, 
�, is estimated

to be around 0:2 in most industries. The lowest estimate is found in Transport equipment

(0.17) and the highest in Wood products (0.35). When all industries are pooled, the

estimates of �� and 
� are �2:65 and 0:23, respectively. Both estimates are signi�cantly

di¤erent from zero; the t-value corresponding to �� is 8, whereas the t-value corresponding

to 
� is 20.

The last column in Table 4 shows the elasticity of the exit probability with respect

to �it (for given capital stock, Ki;t�1), that is, by how many percent the exit probability

changes �for a �rm with mean values of the explanatory variables �when, hypothetically,

our measure of short-run pro�tability (�it) increases by one percent. The Table shows

that this elasticity varies across sectors from -0.20 in Transport equipment to -0.60 in

Wood products, with a common estimate for total manufacturing of -0.25. This indicates

that the impact on exit of improved pro�tability (measured by �it) is stronger than the

impact of more capital, see discussion above.

In order to evaluate the aggregate performance of our model, in each year we divide

�rms into two groups: closing-down �rms in year t are those that exited during t+1, and

non-exiting �rms are those that did not exit during the whole observation period. Our

two de�nitions imply that �rms exiting in t+1+ p (p 6= 0) are not included in any of the

two groups in year t. For each �rm we are able to estimate �for each (relevant) year �

the probability to exit in the next year.

Figure 4 plots annual averages of the estimated exit probability of the two groups of

�rms. Our model discriminates between the two categories of �rms: the exit probabilities

of the closing-down �rms are generally higher than those of the non-exiting �rms. How-

ever, the di¤erences between the two groups vary a lot over time (for a given industry),

with large di¤erences in some years and quite small ones in others.

Because our estimator maximizes the �t of the model to the observed data, the result

that closing-down �rms have a higher estimated exit probability than non-exiting �rms
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Figure 4: Estimated aggregate exitprobabilities for non-exiting and closing-down �rms in
t = 1994; :::; 2012
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Figure 5: Estimated survival probabilities as a function of �rm age for non-exiting and
exiting �rms
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may seem uninteresting. To understand our result, consider the hypothetical case in which

all the realized variables of the �rms, including exit, are assigned in a purely random way.

Then, by assumption, there is no relation between exit and the covariates, that is, short-

run pro�tability and the size of the capital stock. Hence, in this constructed data set

pro�tability and the stock of capital have no impact on the estimated probability to exit,

and the estimated coe¢ cients will be (approximately) zero. We �nd that both covariates

have a signi�cant impact on the estimated exit probability. The estimated model implies

that there is a substantial di¤erence between the exit probability of closing-down and

non-exiting �rms.

7.3 Survival functions

Figure 4 illustrates the di¢ culty of predicting the exit time; the estimated exit probabil-

ities of the closing-down �rms are erratic and vary a lot over time. The interpretation

of Figure 4 is, however, not straightforward as the graphs incorporate di¤erent e¤ects.

First, they re�ect temporal variations in both �rm-speci�c conditions (e.g., technological

changes) and in industry-speci�c conditions (changes in factor prices and demand). Sec-

ond, the graphs of the closing-down �rms re�ect a composition e¤ect as di¤erent �rms

are operating in di¤erent years; if entrants to the industry (on average) have higher exit

probability than the incumbents, then (cet. par.) the average exit probability tends to

decrease over time as the share of incumbent �rms will increase compared to 1995 when

all �rms in our sample were start-up �rms.

To control for the second e¤ect, that is, self-selection, we use our estimated model to

simulate survival functions. These show the probability that a �rm has survived until the

end of year t as a function of time after entry and initial conditions. We construct the

survival functions as follows: We impose that all �rms enter in the same year, henceforth

referred to as year 0. For each �rm we use the estimated logit model of exit and the values

of the observed variables, (Ki;t�1; b�i;t�1), in the �rst year the �rm is (actually) operative

to calculate the exit probability in year 0, that is, the probability to exit during the next

year (year 1). A proportion of the �rms is then removed by the following procedure:

For each �rm a random number is drawn from the uniform distribution on [0; 1]. Firms

with a number lower than its estimated exit probability are removed. For each of the
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�surviving��rms, a new exit probability is estimated using the estimated model and the

values of (Ki;t�1; b�i;t�1) in the second year the �rm is contained in the data set. Then a

proportion of the �rms is removed, and so on. If a �rm �survives�more years than in the

real data set, we use the econometric model to simulate the values of (Ki;t�1; b�i;t�1) from
our structural econometric model, see Section 6.

This experiment was repeated 100 times. In general, a �rm will experience many

di¤erent exit years. The frequency of exit years was used to construct the survival function

of a �rm as follows: Let Z(s)it be an indicator function which is one if �in the s�th simulation

��rm i has not exited by year t. Note that Z(s)it = 1 is conditional on Z(s)i0 = 1 since

all �rms are operative at the end of year 0. By repeated simulations, s = 1; :::; 100, a

�rm-speci�c conditional survival function, Si(t) = P (Zit = 1jZi0 = 1;yi0) was estimated

as

[Si(t) =
1

100

100X
s=1

Z
(s)
it .

We group �rms according to whether they actually exited in the data period - these are

termed exiting �rms - or never exited - these are referred to as non-exiting �rms. We

construct survival functions for each group by averaging the survival functions over all

�rms in each group; see Figure 5. By comparing the survival functions for exiting and

non-exiting �rms, we can evaluate to what degree our model is able, ex ante, to �pick�the

�rms that actually exited during the observation period. Overall we �nd that our model

clearly discriminates between the two groups. For example, for the total manufacturing

sector we �nd that the ex ante survival probability of exiting �rms is about 55 percent

after 10 years, compared to 70 percent for non-exiting �rms. Similar di¤erences are found

for the individual industries. Our results suggest that the main characteristic of an exiting

�rm is not that its annual exit probability is very much higher than that of a surviving

�rm, but rather that the di¤erence in annual exit probabilities is highly persistent. Hence,

it is the cumulated e¤ect of higher annual exit probabilities over many years �compared

with the average �rm �that causes a �rm to exit.

7.4 Computational aspects

Figure 6 shows the pro�les of the objective function (39) for total manufacturing for two

parameters: The exponent of (lagged) capital in the operating surplus function (
�1) and
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the adjustment cost parameter (s). These pro�les are obtained by varying one parameter

at the time in a neighborhood of the �nal estimate, keeping all the other parameters �xed

at the optimum. The objective function is close to zero at the minimum, and it appears

to be smooth and (locally) almost quadratic. A similar picture emerges for the other

structural parameters (not shown).

To minimize the objective function in (39) we use a robust derivative-free method:

We apply a version of the conjugate direction method developed by Brent (1973, Ch. 7)

in combination with the derivative-free line search algorithm from the Numerical Recipes

library (Press et al., 1994, p. 419). The optimizations illustrated in Figure 6 converged

after 24 hours using GAUSS on a Linux server. In contrast, it took 15 minutes to estimate

the auxiliary model.

The results reported in the tables use the corresponding quasi-likelihood estimates

as starting values for the parameters that enter both the data generating and auxiliary

model. Generally, we found that the indirect inference estimates are robust to the choice

of starting values, although extreme starting values can make the algorithm converge

towards the boundary of the parameter space.

8 Conclusion

In the Introduction we raised three questions: Is there a relationship between �rm exit

and pro�tability, what causes �rms to exit, and what are the characteristics that distin-

guish exiting �rms from non-exiting �rms? Using a structural econometric model we have

derived explanatory variables from economic theory and estimated models for �ve Norwe-

gian manufacturing industries separately. The results show that when exit is de�ned as a

state in which production at the site has come to a permanent stop, increased pro�tability

signi�cantly lowers the exit probability, or put di¤erently; low pro�tability causes �rms

to exit. We have also found a clear di¤erence in the estimated exit probabilities between

�rms that exited in the sample period (1994-2012) and �rms that did not exit. According

to our study, exiting �rms di¤er from non-exiting �rms as their annual exit probabilities

are persistently higher. On the other hand, exiting �rms are not characterized by having

a very high exit probability just prior to exit, which re�ects that there are no (negative)

pro�tability shocks in the last years prior to exit.
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Figure 6: Pro�les of the indirect inference objective function for the parameters s and

�1.
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In Section 2 we argued that our data suggest a weak relationship between pro�tability

and exit. Yet, our estimation results clearly indicate such a relationship. We believe this

shows the power of econometric modeling and methods. For example, in our model cost

of adjustment, which re�ects that the resale price of capital is lower than the purchasing

price of new capital, is potentially a key factor in determining exit. But this type of cost

is not included in our capital data. However, by deriving an expression for the adjustment

cost of capital we have been able to incorporate this factor into the expression for the

probability of �rm exit and have demonstrated both theoretically and empirically that

the probability to exit is a decreasing function of the capital stock.

In the Introduction we referred to some articles that have documented empirically that

the age of a �rm is related to its probability to exit. In our derived logit model, age is not

an explanatory variable simply because age plays no role in the theoretical foundation

of the econometric model. On the contrary, age is a function of survival, and hence a

highly endogenous variable �not a control variable. However, age (survival) may play a

role through learning processes, see Jovanovic (1982) and Pakes and Ericson (1998), and

hence have a separate (causal) e¤ect on the exit probability. Hence, one extension of our

model would be to incorporate learning e¤ects.
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9 Appendix: Proof of Proposition 1

Let v(St; zt) denote net present value given St and zt:
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v(St; zt) = max
It

�
u(St; It; zt)� �t +

1

1 + r
Et [V (St+1; "t+1)]

�
:

(42)

Then (16) follows by de�nition. If zt = 0, t is the terminal period and v(St; 0) =

u(St;�(1� �)Kt�1; 1)� �t = �c(�(1� �)Kt�1), which proves (17).

To prove (18), assume a �nite horizon problem and let vT (St; 1) be de�ned in the same

way as v(St; 1) in (42), except that 1 is replaced by T in the summation limit. Hence,

vT (St; zt) + �t + "(zt) is the net present value in period t of choosing zt and then make

optimal decisions with regard to It and (It+k, zt+k) for k = 1; :::; T , where t + T is the

terminal period. Thus we consider a T�period ahead problem. For example, v0(St; 1) is the

solution of the static problem (T = 0), v1(St; 1) is the one-period ahead problem (T = 1),

etc. Let VT (St; "t) denote the value function (16) corresponding to the T -period ahead

problem: VT (St; "t) = max
zt
[�t + vT (St; zt) + "(zt)]. Obviously, v0(St; 1) = max

It
[�c(It)].

Furthermore,

v1(St; 1) = max
It

�
�c(It) +

1

1 + r

Z
V0(St+1; ")h(")d" g(dSt+1jSt; It)

�
= max

It

�
�c(It) +

1

1 + r

Z
max f�t+1 + v0(St+1; 0) + "(0);�t+1 + v0(St+1; 1) + "(1)gh(")d"�

g(dSt+1jSt; It)g

= max
It

�
�c(It) +

1

1 + r

Z �
�t+1 +

1

�
ln [exp(��c(�(1� �)Kt) + 
0) + exp(�v0(St+1; 1) + 
1)]�

g(dSt+1jSt; It)g ,

where the integrand after the last equality is the so-called "social surplus" function. The

last equality follows from (13) and a well-known property of the extreme value distribution

(see Rust, 1994). By backward recursion we obtain:

vT (St; 1) = max
It

�
�c(It) +

1

(1 + r)
�Z �

�t+1 +
1

�
ln [exp(��c(�(1� �)Kt) + 
0) + exp(�vT�1(St+1; 1) + 
1)]

�
�

g(dSt+1jSt; It)g : (43)

Under the regularity conditions of Rust (1994), equation (43) de�nes contraction mapping

so that

sup
S
jvT (S; 1)� vT�1(S; 1)j ! 0 as T !1:
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Then there exists a limiting function v(S; 1) that satis�es (18). Finally, from (16):

P (zt = 0jSt) = P (v(St; 0) + "(0) > v(St; 1) + "(1)jSt)

= P (�v(St; 0) + 
0 + (�"(0)� 
0) > �v(St; 1) + 
1 + (�"(1)� 
1)jSt)

=
1

1 + expf�[�v(St; 0)� �v(St; 1) + 
0 � 
1]g
,

where we in the last equation used that �"(z)� 
z has a standard extreme value distrib-

ution and is independent for z = 0; 1. Hence, (19) follows from (17).

Q.E.D.
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