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Abstract 
 
We study the influence of reason and intuition on decision making over time. Facing a 
sequence of similar problems, agents can either decide rationally according to expected utility 
theory or intuitively according to case-based decision theory. Rational decisions are more 
precise but create higher costs, though these costs may decrease over time. We find that 
intuition will outperform reason in the long run if individuals are sufficiently ambitious. 
Moreover, intuitive decisions are prevalent in early and late stages of a learning process, 
whereas reason governs decisions in intermediate stages. Examples range from playing 
behavior in games like Chess to professional decisions during a manager’s career. 
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1 Introduction

This paper studies the influence of reason and intuition on decision making
over time.

When we were children and started playing Chess, we had no idea how
to evaluate a certain position and move appropriately. We just played on a
gut level and sometimes tried to mimic the moves of our more experienced
opponents. Nevertheless, we made some progress on this trial and error
basis. As we advanced, we started to use our brain. We increasedly tried to
compute moves in advance and consult books in order to inform ourselves
about promising variations and strategic concepts. While the first author of
this paper has never left this stage of the learning process, the second author
has become a chess grandmaster. As an experienced master, now again,
his play is largely based on intuition. Recognizing patterns and using the
corresponding best practices in order to decide on most of the moves allows
for saving time and cognitive capacities.

You may have made similar experiences as a player of games like Chess
or as a professional decision maker in the role of an author, editor, or man-
ager. Human decision behavior often exhibits the following time pattern:
Intuitive decisions are prevalent in both early and late stages of a learning
process, whereas reason governs decisions in intermediate stages. The model
developed here explains this pattern. Moreover, it allows to analyze how the
prevalent use of reason or intuition reacts to variations in the complexity
of the decision problem on the one hand and the decision maker’s cognitive
abilities on the other hand.1

In our setup, people face a sequence of similar decision problems. They
can decide either rationally or intuitively. Rational decisions are modeled –
according to expected utility theory (EUT, von Neumann and Morgenstern,
1944) – as the result of expected utility maximization. In contrast, intuitive
decisions are modeled – according to case-based decision theory (CBDT,
Gilboa and Schmeidler, 1995) – as the result of case based optimization
(Gilboa and Schmeidler, 1996). In the latter case, the agent bases the decision
on a comparison between alternatives from his memory set (case record)
trying to satisfice a certain aspiration level. While the expected payoff from
such behavior is lower, our simulations show that it converges to expected
utility as the number of cases encountered increases and the aspiration level is
adjusted in a realistic but ambitious way. Put differently, rational decisions
are more precise than intuitive ones initially, but this advantage vanishes

1We are aware of the fact that reason and intuition are correlated in some way. This
aspect is taken up in a heuristic analysis in von Weizsäcker (2010); see also Kindermann
and von Weizsäcker (2013).
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with a growing stock of experience.
In order to combine both theories, EUT and CBDT, within a single frame-

work, we follow a transaction costs approach. Rational decision making cre-
ates higher costs than the use of intuition. Though this cost differential may
be decreasing over time, it does not vanish. Under these assumptions, we
compare the expected utilities net of costs from EUT and CBDT in order to
assess whether a rational or intuitive decision is preferable at a given point in
time. Depending on the cost structure, which reflects both, the complexity of
the decision problem and the decision maker’s cognitive abilities, we identify
three typical scenarios:

First, if costs are initially high and slowly decreasing, i.e. if the complexity
of the problem is high and the decision maker’s learning curve is flat, it never
pays to engage in reasoning. In this case, decisions will always be based on
intuition.

Second, if costs are initially high but decreasing fast, i.e. if the complexity
of the problem is high but the decision maker’s learning curve is steep, we
recognize the pattern described above for the example of Chess. After having
experimented on a trial and error basis for a number of times, one has col-
lected enough information to gain from reasoning. However, since reasoning
remains costly whereas intuition further improves as the number of problems
encountered increases, from some point on it will be beneficial to save on
reasoning costs and rely on the growing experience and pattern recognition
capability instead.

Third, if costs are low even initially, i.e. if the complexity of the problem is
low, no initial stage of experimentation occurs. As an example among board
games, think of Tic Tac Toe, the complexity of which is very low compared
to Chess. It pays to engage in reasoning right from the start till the point
at which, again, the agent finds it preferable to save on the related costs and
rely on his vast experience instead.

Moreover, these time patterns exhibit a common feature that constitutes
our main result: In the long run, intuitive decision making will always yield a
higher net expected utility than reasoning if the decision maker is sufficiently
ambitious.2

2 Related Literature

In this paper, we adopt expected utility theory (EUT) as the standard model
of rational choice (von Neumann and Morgenstern, 1944). Over the last

2This result also relates to the question under which circumstances heuristic decisions
are preferable to rational decisions; see e.g. Gigerenzer and Gaissmaier (2011).
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decades, however, the classical view of purely rational economic agents has
been challenged by behavioral models of bounded rationality. From its outset,
the psycho-economic literature has discussed the role of reason and intuition
in decision making.

Simon (1955, 1987) refers to rational decision making as some kind of
optimizing behavior that is purely logical and consciously analytic. By con-
trast he describes intuition as subconscious pattern recognition, and intuitive
decision making as a judgement that is based on some form of satisficing be-
havior (Frantz, 2003). Unlike classical economics, he proposes a behavioral
model of rational choice in which agents do not maximize expected utility
but try to reach some satisfactory aspiration level (Simon, 1955).

Gilboa and Schmeidler (1995) refer to such satisficing behavior when they
present their case based decision theory (CBDT). The respective decision rule
is based on a certain mode of pattern recognition and may be interpreted as
a best practice approach: Faced with a specific problem, people choose the
action that has proved best in similar situations in the past. To this end,
the performance of each action is evaluated by the utility levels that resulted
from using this action in past cases, each weighted by the similarity of that
past case to the actual one.

In a dynamic context, the case based decision maker usually does not
come close to the action that maximizes expected utility but is satisfied with
any action that meets some aspiration level. However, Gilboa and Schmeidler
(1996) show that if the aspiration level is adjusted over time in a realistic-but-
ambitious way, agents will asymptotically choose almost only actions that
maximize expected utility when faced with an infinite sequence of identical
problems.3 The adjustment is called realistic if the aspiration level relates
to the average of its previous value and the best average performance so far.
It is called ambitious if it is higher than the maximum average performance
sufficiently often. This procedure guarantees that the decision maker initially
experiments often enough to learn the optimal action in the sense of EUT.
Gilboa and Schmeidler (1996) hence refer to it as case based optimization.

In our setup, we choose CBDT to model intuitive decisions and case based
optimization to describe the evolution of intuition over time. Doing so we
embody not only the above ideas of pattern recognition and satisficing be-
havior. We also prepare the ground for a fair comparison of rational and
intuitive decision making. Unlike other economic models of learning, case
based optimization eventually leads to actions that maximize expected util-

3Guerdjikova (2008) specifies conditions under which this result also holds for a se-
quence of problems with a lower degree of similarity.
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ity.4 Hence, at least in the long run, intuitive decisions based on CBDT do
not per se fall short of rational decisions based on EUT.

Gilboa and Schmeidler (1995) discuss at length the relation between EUT
and CBDT. 5 In particular, they state the following conjecture with respect
to the applicability of the two models:

“Classifying problems based on their novelty, one may con-
sider three categories. We suggest that CBDT is useful at the
extremes of the novelty scale, and EUT in the middle.” (Gilboa
and Schmeidler, 1995, page 622)

We reinterpret the “novelty scale” as the time line and measure time by the
number of similar problems the decision maker has encountered so far. In
order to verify their conjecture, we incorporate both EUT and CBDT into
a single model that links the two theories by means of a transaction cost
approach. The corresponding cost structure reflects the psycho-economic
characterization of rational and intuitive decision making, respectively. De-
scribing the cognitive systems, Kahneman (2003, Figure 1) assigns seven
attributes to both, the process of decision making based on intuition (system
1) and reasoning (system 2).

On the one hand, he characterizes intuition as “fast”, “parallel”, “auto-
matic”, and “effortless”, whereas reasoning is specified as “slow”, “serial”,
“controlled”, and “effortful”. A comparison of this first group of attributes
mirrors the common view of psychology that reasoning consumes more time
and effort for collecting and processing information than intuition. In our
model, we account for this agreement assuming that rational decisions accord-
ing to EUT always create substantially higher costs than intuitive decisions
according to CBDT. Put differently, the cost differential between rational
decisions according to EUT and intuitive decisions according to CBDT is
always strictly positive.

On the other hand, intuition is also found to be “associative”, “slow-
learning”, and “emotional”, whereas reasoning is characterized as “rule-
governed”, “flexible”, and “neutral”. Comparing this second group of at-
tributes highlights the psychological finding that it is much harder to control
or modify the process of intuitive decision making than that of rational de-
cision making. While reasoning may be adjusted almost instantaneously,
modifications of intuitive processes seem to result from evolution and take

4Sarin and Vahid (1999) and Börgers and Sarin (2000) provide similar models of (rein-
forcement) learning that do not necessarily lead to expected utility maximizing decisions.
Sobel (2000) offers a comprehensive overview of economic learning models.

5Matsui (2000) proves an equivalence result between EUT and a modified version of
CBDT.
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much more time. We take account for this fact in our model assuming that
the cost differential between rational decisions according to EUT and intu-
itive decisions according to CBDT is (weakly) decreasing over time.

The well established idea that reasoning resources are scarce and that
people rather base their decisions on analogies in order to save cognitive costs
is also a basic ingredient in the work of Samuelson (2001). Though he uses
a game theoretic setup of strategic interaction within a static environment,
the aim of his paper is similar to ours. He also asks the question under
what circumstances more costly rational behavior is preferred over decision
making based on simple analogies. He shows that this will be the case if the
interaction is sufficiently important, distinct, and frequently encountered. By
contrast, in our model, we focus on the specific circumstance of familiarity
with the decision problem in the course of an agent’s learning process. Doing
so we ask how the preferability of one mode of decision making over the other
evolves over time and how this time pattern depends on the complexity of
the problem as well as the cognitive skills of the decision maker.

3 The Model

We build on the model of Gilboa and Schmeidler (1996). The decision maker
faces a sequence of isomorphic problems.6 In each period t ∈ N0 he chooses
an act a from a finite set of alternative decisions A = {1, . . . , n}. The utility
resulting from act a ∈ A in period t ∈ N is a random variable Xa,t which is
independent and identically distributed over time according to the distribu-
tion function Fa on R. We assume that each Fa has finite first and second
moments, which we refer to as the expected utility

µa = E(Xa,t) =

∫
Xa,tdFa =

∫
utdFa(ut)

and utility variance σa of act a, respectively. Here, ut denotes the realization
of Xa,t.

3.1 Rational decisions

We call a decision rational if it is based on the maximization of expected
utility. Since the problem encountered is isomorphic in each period t ∈ N0,
a rational decision maker always chooses some act at ∈ arg maxa∈A µa that

6I.e. essentially identical problems or, more formally, problems of similarity 1 in the
language of Gilboa and Schmeidler (1995).
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maximizes expected utility. Hence, the expected utility of a rational decision
in period t ∈ N0 is constant over time:

EU(t) = max
a∈A

µa =: EU.

3.2 Intuitive decisions

3.2.1 Case based decisions

We call a decision intuitive if it is case based in the sense of Gilboa and
Schmeidler (1995, 1996). Since in our model the decision problems are iso-
morphic over time, a case is fully characterized by a pair of an act chosen and
a utility realized. The cases actually encountered by the decision maker un-
til period t are collected in his memory Mt := {(a1, u1), . . . , (at−1, ut−1)}. In
each period t, the case based decision rule is choosing the act with the best cu-
mulative performance so far. To be more precise, let Tt(a) := {τ < t|aτ = a}
denote the set of periods preceding t in which a has been chosen. Moreover,
define the cumulative performance of act a at period t by

Ut(a) =
∑

τ∈Tt(a)

(uτ − ht),

where ht ∈ R denotes the agent’s aspiration level in period t.7 Hence, in
each period t, the case based decision maker chooses at ∈ arg maxa∈A Ut(a).
If arg maxa∈A Ut(a) contains more than one element, we will assume that any
at ∈ arg maxa∈A Ut(a) is chosen with the same probability.

3.2.2 Case based optimization

We interpret the process of case based optimization (Gilboa and Schmeidler,
1996) as the evolution of intuition over time. It can be understood as a form
of reinforcement learning that consists of two basic elements: A growing
memory set and the adaption of aspiration levels. We characterize them
formally describing the corresponding decision paths as appropriate subsets
of S0 := (R×A×R)N. First, taking into account that the case based decision
maker chooses at ∈ arg maxa∈A Ut(a) in each period, the relevant paths form
a subset of

S1 := {ω = (ht, at, ut)t∈N ∈ S0|(∀t ∈ N) : at ∈ arg max
a∈A

Ut(a)}.

7Note that with
∑

∅ = 0, the cumulative performance of any act that has not been
tried before is zero.
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Second, in order to describe the adaption of aspiration levels, let

ūt(a) :=

∑
τ∈Tt(a) uτ

|Tt(a)|

denote the average utility in period t obtained from past choices of a if
Tt(a) 6= ∅, and

ūt := max
a∈A
{ūt(a)|Tt(a) 6= ∅}

the maximum average utility in period t from acts tried so far. Gilboa and
Schmeidler (1996) propose two different rules for a realistic but ambitious
adjustment of aspiration levels leading to the following sets of relevant paths:

S :=

{
ω ∈ S1

∣∣∣∣ h1 = ho

ht = αht−1 + (1− α)ūt for t ≥ 2

}
, (1)

S ′ :=

ω ∈ S1

∣∣∣∣∣∣
h1 = ho,
ht = ūt + h if t ≥ 2, t ∈ N
ht = αht−1 + (1− α)ūt if t ≥ 2, t 6∈ N

 . (2)

Ambition of the decision maker is expressed by the initial aspiration level
ho ∈ R and, for the learning process in (2), additionally by a positive constant
h > 0 by which the aspiration level is increased in any period of ambition
t ∈ N , where N ⊂ N is a sparse set. Realism of the decision maker is
expressed by the speed of adaption α ∈ (0, 1) at wich the actual aspiration
level is adjusted to past performances.

3.2.3 Convergence

Gilboa and Schmeidler (1996) show that realistic but ambitious adjustment of
aspiration levels as specified in (1) or (2) eventually lead to optimal decisions
in the following sense: Let P and P ′ be probability measures on S and S ′,
respectively, which are consistent with (Fa)a∈A. Denote by

π(a) := lim
t→∞

|Tt(a)|
t

the frequency at wich act a is chosen on a certain decision path8 if the
limit on the right hand side exists. Then, for any ε > 0 there is some h̄
such that for any ho ≥ h̄, the probability of being on a path ω ∈ S on
which almost only acts that maximize expected utility are chosen exceeds

8Note that each of the variables at, ut, ht, Tt(a), ūt(a), ūt, π(a) depends on the actual
path w. To simplify the notation, we omit this dependence here.
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1 − ε (Gilboa and Schmeidler, 1996, Theorem 1). Moreover, on almost any
path ω ∈ S ′, almost only acts that maximize expected utility are chosen,
i.e. π(arg maxa∈A µa) = 1 (Gilboa and Schmeidler, 1996, Theorem 2). Loosely
speaking, these results show that one can be arbitrarily sure to eventually
pick only acts that maximize expected utility.

The notion of convergence underlying these limit considerations is pecu-
liar in the sense that it takes a vertical view: It randomly picks a path and
traces the frequency at which expected utility maximizing acts are chosen
along this path. Though interesting as such, this measure of convergence
will be of no avail if we want to compare the performances of rational and
intuitive decisions over time. Instead, for such a comparison, we have to
adopt a more standard notion of convergence that rests upon a horizontal
view allowing to answer questions like: Looking across all possible paths,
what is the probability of choosing expected utility maximizing acts at a
given point in time t, and how does this probability evolve as t increases?
Or, closely related, does the expected utility from an intuitive decision in
period t, denoted by

CBU(t) := EP (Xt) =

∫
XtdP =

∫
utdP (ut),

converge to the maximum expected utility, i.e. the expected utility from a
rational decision EU? Here, Xt : Σ → R with Σ ∈ {S, S ′} is the random
variable that maps each path w = (hτ , aτ , uτ )τ∈N to its corresponding utility
ut in period t. Indeed, we conjecture that besides vertical convergence in the
sense of Gilboa and Schmeidler (1996) there is also horizontal convergence
in the following sense:

Conjecture 1 Suppose that the process of case based optimization is char-
acterized by

(a) (1). Then for all α ∈ (0, 1) and for all ε > 0 there is some h̄ ∈ R such
that for any ho ≥ h̄ there exists tε,ho ∈ N such that EU − CBU(t) < ε
for all t ≥ tε,ho.

(b) (2). Then lim
n→∞

1
n

n∑
t=1

CBU(t) = EU for all α ∈ (0, 1), ho ∈ R, and

h > 0.

Suppose the process of case based optimization is characterized by (1). If the
agent is sufficiently ambitious, i.e. her initial aspiration level is sufficiently
large, she will experiment sufficiently often so as to end up with expected
utility maximizing acts on sufficiently many paths. Hence, the expected
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performance of an intuitive decision gets sufficiently close to the performance
of a rational decision.

If instead the process of case based optimization is characterized by (2),
part (a) of Conjecture 1 does not hold. Since the agent will restart to ex-
periment in every period t ∈ N , one always finds some ε > 0 such that
for infinitely many points in time EU − CBU(t) > ε. Therefore, we have
to formulate the convergence in part (b) of Conjecture 1 in terms of average
expected utility from intuitive decisions till period n. The difference between

EU and 1
n

n∑
t=1

CBU(t) then measures the expected performance gap between

rational and intuitive decision making on average till period n.
Though we have not yet been able to formally prove the respective state-

ments, we have been running a large number of simulations all of which
confirm them. In order to illustrate the process of case based optimization,
some of our simulation results can be found in Appendix A.

Loosely speaking, Conjecture 1 states that in the long run, an intuitive
decision maker will asymptotically perform as well as a rational decision
maker in terms of expected utility if he is sufficiently ambitious. In order to
be able to use the expected utility from an intuitive decision in period t as
the respective performance measure instead of its average, in what follows
we will rely on (1) for characterizing the process of case based optimization.

Assumption 1 The process of case based optimization is characterized by
the paths of S as given in (1).

3.3 Cost of decisions

So far we have not taken into account the costs of decision making. Such
costs might stem from the opportunity costs of the time spent during the
decision process, the disutility of cognitive effort, or the physical costs of
collecting the required information. As stated above, the common view of
psychology is twofold. On the one hand reasoning consumes more time and
effort for collecting and processing information than intuition. Hence, the
costs of rational decision making are higher than the costs of intuitive deci-
sion making. On the other hand, it is much easier to control or modify the
cognitive system that governs reason than the cognitive system that governs
intuition. Therefore, the cost differential between rational and intuitive de-
cisions may shrink throughout the learning process. Nevertheless, the speed
of intuition will always be significantly higher than the speed of reasoning,
i.e. the cost differential is bounded away from zero. The following assump-
tions account for these findings. Let C(t) denote the cost differential between
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rational and intuitive decision making at time t, also referred to as the (net)
costs of reasoning.

Assumption 2 C : N → R is a non-increasing, convex function of t with
c := limt→∞C(t) > 0.

The particular shape of the cost function C will crucially depend on both
the structure of the decision problem and the cognitive characteristics of the
decision maker. For the sake of concreteness, we refer to the final costs of
reasoning c as a measure of the decision maker’s cognitive capacity (relative to
the complexity of the problem) and to the initial costs of reasoning c := C(0)
as the complexity of the problem (relative to the agent’s innate cognitive
skills). Moreover, we refer to the absolute value of the slope of C as the
agent’s speed of (rational) learning. In this context, the assumption of a
convex C reads as a non-increasing speed of learning over time. Note that
the cost differential between rational and intuitive decision making at time t
does not depend on whether past decisions have been based on reasoning or
intuition. Put differently, the speed of (rational) learning is independent of
the mode of decision.

Finally, we refer to NEU(t) := EU(t)− C(t) as the net expected utility
of a rational decision in period t. In the following, we compare NEU(t)
with CBU(t) to identify the periods in which rational decision making is
preferable to intuition and vice versa.

4 The Results

4.1 Prevalence of intuition in the long run

Under Assumptions 1 and 2, Conjecture 1 (a) implies that for any c =
limt→∞C(t) > 0 there is some h̄ ∈ R such that for any ho ≥ h̄ there ex-
ists tc,ho ∈ N such that EU −CBU(t) < c for all t ≥ tc,ho . Since c ≤ C(t) for
all t ∈ N this yields

Proposition 1 In the long run, intuitive decision making will always yield a
higher net expected utility than reasoning if the decision maker is sufficiently
ambitious.

Proposition 1 highlights the relative importance of ambition ho and cognitive
capacity c for success in the long run. The higher the cognitive skills of an
agent, the smaller the lower bound of the cost differential c and the larger
his net utility from a rational decision in the long run. As a consequence, the
more precise an intuitive decision has to be to become superior. However,
to reach a sufficiently high level of accuracy, the agent has to experiment

11



sufficiently often. He will do so if he is sufficiently ambitious. As a result,
the intuitive decision maker will eventually reach a higher net expected utility
than the rational decision maker if he is sufficiently ambitious compared to
the latter’s cognitive capacity. Moreover, the result confirms the impression
that the decisions of experienced leaders like managers, lawyers, physicians,
or professional athletes often seem to be based on intuition since they come
along with effortlessness and speed.

4.2 The performance of rational and intuitive decisions over time

In this subsection, we investigate the time pattern of the relative performance
of rational and intuitive decision making.

4.2.1 An illustrative example

In order to illustrate the basic idea of our model, we start with the example
of deterministic decisions. In this case, whenever some act a is chosen, the
decision maker realizes the corresponding utility level of µa with certainty,
i.e. Xa,t = µa for all a ∈ A and t ∈ N. However, the expected utilities
from intuitive decisions (CBU(t))t∈N depend on the exact specification of
admissible paths S, i.e. on ho and α.

For example, suppose that there is a single best act a = n and, without
loss of generality, µ1 ≤ . . . ≤ µn−1 < µn. If, moreover, µn−1 < ho < µn and
α = 1, then CBU(1) = 1

n

∑n
k=1 µk, CBU(t) = µn for all t ≥ n and CBU(t)

linearly increasing for all 2 ≤ t ≤ n − 1. In this example, Conjecture 1
obviously holds and CBU is increasing and concave in t.

Whenever Conjecture 1 holds and CBU is increasing and concave in t
– including the example just mentioned – we can distinguish between three
cases.

Proposition 2 Suppose that Conjecture 1 holds and CBU is increasing and
concave in t.

(a) If c is sufficiently high and C is slowly decreasing, CBU(t) > NEU(t)
for all t ∈ N.

(b) If c is sufficiently high and C is decreasing fast, there will exist t, t ∈ N
such that CBU(t) ≤ NEU(t) if and only if t ∈ [t, t].

(c) If c is sufficiently low, there will exist t ∈ N such that CBU(t) ≤
NEU(t) if and only if t ≤ t.

12



First, if cognitive costs are initially high and slowly decreasing, i.e. if the
complexity of the problem is high and the decision maker’s learning curve is
flat, it never pays to engage in reasoning. In this case, decisions will always
be based on intuition. The corresponding situation is depicted in Figure 1.

t

EU

EU

CBU

CEU 

cEU 

cEU 

intuition 

Figure 1: High complexity, slow learning

Second, if cognitive costs are initially high but decreasing fast, i.e. if the
complexity of the problem is high but the decision maker’s learning curve
is steep, we recognize a pattern where intuitive decisions are prevalent in
early and late stages of a learning process, whereas reason governs decisions
in intermediate stages. The corresponding situation is depicted in Figure 2.
After having experimented on a trial and error basis for a number of periods t,
one has collected enough information to gain from reasoning. However, since
reasoning remains costly whereas intuition further improves as the number
of problems encountered increases, from some period t̄ on it will be beneficial
to save on cognitive costs and rely on the growing experience instead.

Third, if cognitive costs are low even initially, i.e. if the complexity of the
problem is low, no initial stage of experimentation occurs. The corresponding
situation is depicted in Figure 3. It pays to engage in reasoning right from
the start till the period t̄ at which, again, the agent finds it preferable to save
on cognitive costs and rely on his vast experience instead.
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Figure 2: High complexity, fast learning
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Figure 3: Low complexity
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4.2.2 The general case

As the simulations in the Appendix illustrate, in general, CBU is neither
concave nor monotonic in t, not even for deterministic decisions. How-
ever, since the expected utility µa from any action a ∈ A is finite, CBU(t)
is bounded, and under Conjecture 1 we find increasing and concave func-
tions CBU,CBU : N → R such that CBU(t) ≤ CBU(t) ≤ CBU(t) and
limt→∞CBU(t) = limt→∞CBU(t) = EU . Hence, we find similar time pat-
terns of prevalent intuitive or rational decisions as for the cases in which CBU
is increasing and concave in t. For example, Figure 4 depicts a situation in
which the complexity of the problem is high and the decision maker is learn-
ing fast. The corresponding learning process can be divided into five stages.

t

U

EU

CEU 

cEU 

cEU 

reason intuition int. 

Ut

CBU

Ot Ot Ut

Figure 4: High complexity, fast learning, non monotonic CBU

Again, in the very early and very late stages 1 and 5 intuitive decisions are
prevalent. The intermediate stage 3 is governed by rational decisions. Within
the transitional stages 2 and 4 we can find both, phases in which reasoning
and phases in which intuition is preferable.
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5 Conclusion

We have studied the performance of rational and intuitive decision making
over time. Facing a sequence of similar problems, agents can either decide
rationally according to expected utility theory (EUT) or intuitively according
to case-based decision theory (CBDT). Rational decisions are more precise
but create higher costs, though these costs may decrease over time. Our
simulations confirm the conjecture that the expected utility from case-based
optimization converges to the maximum expected utility. As a consequence,
we observe that, in the long run, intuitive decision making will yield a higher
expected net utility than reasoning if the agent is sufficiently ambitious.

Moreover, for a plausible range of parameters, we derive the following
result: In early and late stages of the learning process, an intuitive decision
maker reaches a higher level of expected net utility than a rational decision
maker – and vice versa in intermediate stages. The additional assumption
that rational and intuitive decisions equally contribute to an agent’s case base
(memory set) allows for a more individualistic reinterpretation. The above
result then explains the commonly observed pattern that intuitive decisions
are prevalent in early and late stages of a learning process, whereas reason
governs decisions in intermediate stages.

In our model, time measures the agent’s experience or familiarity with a
recurrent problem. This is only one relevant dimension of time in its relation
to reason and intuition. Other important dimensions in this relation – e.g. the
time the agent has at her disposal in order to reach a decision or the period
of time to which the related decision refers – are beyond the scope of this
paper.9
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9von Weizsäcker (2010) incorporates some of these aspects in a heuristic way.
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A Appendix: Simulations

In order to confirm Conjecture 1 we have used a software tool called Sim-
ulation Container 10 to simulate the process of case based optimization as
described by (1) and (2), respectively (Gilboa and Schmeidler, 1996). For
illustrative purposes, below we present several simulation results for the fol-
lowing simple decision problem: There are only two acts one can choose
from, A and B. The outcome of A is deterministic yielding a utility of
µA = 1. The outcome of B is stochastic yielding a utility of either 0 or 4
with equal probabilities. Hence, B is the act that maximizes expected utility
with µB = EU = 2.

Example A

We first consider the process of case based optimization as described by (1).
The following tables show the simulation results for different values of the
initial aspiration level ho and the speed of adaption α.

From Table 1 to 2 we fix α = 0.5 and increase ho. This extends the
phase of experimentation and has two consequences for the process of case
based optimization: On the one hand, the number of periods for which we
observe alternating majorities of the relative frequencies at which A and B
are chosen across paths increases (from t = 5 in Table 1 to t = 47 in Table
2), i.e. convergence is reached at a later point in time. On the other hand,
however, the relative frequency at which the optimal act B is chosen after
this phase of experimentation increases, i.e. the level of convergence rises.

As the comparison of Tables 1 and 3 shows, similar observations can be
made if we fix ho = 100 and increase α, i.e. reduce the speed at which the
aspiration level is adjusted to the utility levels realized so far: Convergence
is reached later but at a higher level.

10This tool has been developed in collaboration with Stephan da Costa Ribeiro at Tech-
nische Universität München and will be provided by the authors upon request.
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Table 1: Example A with ho = 100, α = 0.5

t CBU(t) Relative frequency A Relative frequency B Lowest aspiration level

0 0 0 0 100

1 1,5 0,5 0,5 50

2 1,5 0,5 0,5 25,5

3 1,5 0,5 0,5 13,25

4 1,5 0,5 0,5 7,125

5 1,75 0,75 0,25 4,0625

6 1,625 0,625 0,375 2,53125

7 1,734375 0,734375 0,265625 1,765625

8 1,6484375 0,6484375 0,3515625 1,3828125

9 1,75 0,75 0,25 1,19140625

10 1,740234375 0,740234375 0,259765625 1,095703125

11 1,765625 0,765625 0,234375 1,047851563

12 1,743164063 0,743164063 0,256835938 1,023925781

13 1,732421875 0,732421875 0,267578125 1,011962891

14 1,740722656 0,740722656 0,259277344 1,005981445

15 1,733947754 0,733947754 0,266052246 1,002990723

16 1,718139648 0,718139648 0,281860352 1,001495361

17 1,755401611 0,755401611 0,244598389 1,000747681

18 1,753204346 0,753204346 0,246795654 1,00037384

19 1,740345001 0,740345001 0,259654999 1,00018692

20 1,751146317 0,751146317 0,248853683 1,00009346

21 1,738828659 0,738828659 0,261171341 1,00004673

22 1,743149757 0,743149757 0,256850243 1,000023365

23 1,745584011 0,745584011 0,254415989 1,000011683

24 1,739115953 0,739115953 0,260884047 1,000005841

25 1,74928838 0,74928838 0,25071162 1,000002921

26 1,750645369 0,750645369 0,249354631 1,00000146

27 1,748244971 0,748244971 0,251755029 1,00000073

28 1,748856299 0,748856299 0,251143701 1,000000365

29 1,74791164 0,74791164 0,25208836 1,000000183

30 1,748292979 0,748292979 0,251707021 1,000000091

31 1,747418432 0,747418432 0,252581568 1,000000046

32 1,749664855 0,749664855 0,250335145 1,000000023

33 1,750387764 0,750387764 0,249612236 1,000000011

34 1,751172218 0,751172218 0,248827782 1,000000006

35 1,751323611 0,751323611 0,248676389 1,000000003

36 1,750962991 0,750962991 0,249037009 1,000000001

37 1,750409053 0,750409053 0,249590947 1,000000001

38 1,751266185 0,751266185 0,248733815 1

39 1,75100176 0,75100176 0,24899824 1

40 1,750574453 0,750574453 0,249425547 1
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Table 2: Example A with ho = 1015, α = 0.5

t CBU(t) Relative frequency A Relative frequency B Lowest aspiration level

0 0 0 0 1,00E+15

1 1,5 0,5 0,5 5,00E+14

2 1,5 0,5 0,5 2,50E+14

3 1,5 0,5 0,5 1,25E+14

4 1,5 0,5 0,5 6,25E+13

5 1,75 0,25 0,75 3,13E+13

6 1,25 0,75 0,25 1,56E+13

7 1,875 0,125 0,875 7,81E+12

8 1,125 0,875 0,125 3,91E+12

9 1,8125 0,1875 0,8125 1,95E+12

10 1,1875 0,8125 0,1875 9,77E+11

11 1,8125 0,1875 0,8125 4,88E+11

12 1,1875 0,8125 0,1875 2,44E+11

13 1,890625 0,109375 0,890625 1,22E+11

14 1,109375 0,890625 0,109375 6,10E+10

15 1,9375 0,0625 0,9375 3,05E+10

16 1,0625 0,9375 0,0625 1,53E+10

17 1,91015625 0,08984375 0,91015625 7,63E+09

18 1,08984375 0,91015625 0,08984375 3,81E+09

19 1,91015625 0,08984375 0,91015625 1,91E+09

20 1,08984375 0,91015625 0,08984375 9,54E+08

21 1,9453125 0,0546875 0,9453125 4,77E+08

22 1,0546875 0,9453125 0,0546875 2,38E+08

23 1,967285156 0,032714844 0,967285156 1,19E+08

24 1,032714844 0,967285156 0,032714844 5,96E+07

25 1,953857422 0,046142578 0,953857422 2,98E+07

26 1,046142578 0,953857422 0,046142578 1,49E+07

27 1,953857422 0,046142578 0,953857422 7450581,597

28 1,046142578 0,953857422 0,046142578 3725291,298

29 1,971313477 0,028686523 0,971313477 1862646,149

30 1,028686523 0,971313477 0,028686523 931323,5746

31 1,982421875 0,017578125 0,982421875 465662,2873

32 1,017578125 0,982421875 0,017578125 232831,6437

33 1,975479126 0,024520874 0,975479126 116416,3218

34 1,024520874 0,975479126 0,024520874 58208,66091

35 1,975479126 0,024520874 0,975479126 29104,83046

36 1,024520874 0,975479126 0,024520874 14552,91523

37 1,984558105 0,015441895 0,984558105 7276,957614

38 1,015441895 0,984558105 0,015441895 3638,978807

39 1,990394592 0,009605408 0,990394592 1819,989404

40 1,009605408 0,990394592 0,009605408 910,4947018

41 1,986698151 0,013301849 0,986698151 455,7473509

42 1,013301849 0,986698151 0,013301849 228,3736754

43 1,986698151 0,013301849 0,986698151 114,6868377

44 1,013301849 0,986698151 0,013301849 57,84341886

45 1,99154973 0,00845027 0,99154973 29,42170943

46 1,210886717 0,789113283 0,210886717 15,21085472

47 1,994688988 0,005311012 0,994688988 8,105427358

48 1,973109543 0,026890457 0,973109543 4,552713679

49 1,970764607 0,029235393 0,970764607 2,776356839

50 1,994688988 0,005311012 0,994688988 1,88817842

51 1,990142047 0,009857953 0,990142047 1,44408921

52 1,990873918 0,009126082 0,990873918 1,222044605
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Table 3: Example A with ho = 100, α = 0.9

t CBU(t) Relative frequency A Relative frequency B Lowest aspiration level

0 0 0 0 100

1 1,5 0,5 0,5 90

2 1,5 0,5 0,5 81,1

3 1,5 0,5 0,5 73,09

4 1,5 0,5 0,5 65,881

5 1,75 0,25 0,75 59,3929

6 1,25 0,75 0,25 53,55361

7 1,875 0,125 0,875 48,298249

8 1,125 0,875 0,125 43,5684241

9 1,8125 0,1875 0,8125 39,31158169

10 1,1875 0,8125 0,1875 35,48042352

11 1,8125 0,1875 0,8125 32,03238117

12 1,1875 0,8125 0,1875 28,92914305

13 1,890625 0,109375 0,890625 26,13622875

14 1,109375 0,890625 0,109375 23,62260587

15 1,9375 0,0625 0,9375 21,36034528

16 1,06640625 0,93359375 0,06640625 19,32431076

17 1,90625 0,09375 0,90625 17,49187968

18 1,1796875 0,8203125 0,1796875 15,84269171

19 1,8203125 0,1796875 0,8203125 14,35842254

20 1,266357422 0,733642578 0,266357422 13,02258029

21 1,7734375 0,2265625 0,7734375 11,82032226

22 1,550048828 0,449951172 0,550048828 10,73829003

23 1,538452148 0,461547852 0,538452148 9,764461029

24 1,575561523 0,424438477 0,575561523 8,888014926

25 1,604187012 0,395812988 0,604187012 8,099213434

26 1,534088135 0,465911865 0,534088135 7,38929209

27 1,624717712 0,375282288 0,624717712 6,750362881

28 1,646995544 0,353004456 0,646995544 6,175326593

29 1,730239868 0,269760132 0,730239868 5,657793934

30 1,595653534 0,404346466 0,595653534 5,192014541

31 1,716667175 0,283332825 0,716667175 4,772813086

32 1,727862835 0,272137165 0,727862835 4,395531778

33 1,687292814 0,312707186 0,687292814 4,0559786

34 1,714115977 0,285884023 0,714115977 3,75038074

35 1,750372231 0,249627769 0,750372231 3,475342666

36 1,780712992 0,219287008 0,780712992 3,227808399

37 1,812078193 0,187921807 0,812078193 3,005027559

38 1,839079514 0,160920486 0,839079514 2,804524804

39 1,831856772 0,168143228 0,831856772 2,624072323

40 1,849466432 0,150533568 0,849466432 2,461665091

41 1,856421662 0,143578338 0,856421662 2,315498582

42 1,90397102 0,09602898 0,90397102 2,183948724

43 1,888951536 0,111048464 0,888951536 2,065553851

44 1,923810822 0,076189178 0,923810822 1,958998466

45 1,911053362 0,088946638 0,911053362 1,86309862
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Example B

We now consider the process of case based optimization as described by (2).
We fix the initial aspiration level ho = 2, the speed of adaption α = 0.5, and
focus on a variation of the increment h > 0 by which the aspiration level is
increased in any period of ambition t ∈ {n ∈ N | ∃k ∈ N : n = 2k + 1}. As
Tables 4 and 5 show, in each such period of ambition there starts a new phase
of experimentation that temporarily leads to a sharp decline in the expected
utility of intuitive decisions. Those phases of experimentation are the longer
the larger the increment h is. Since the following increases in CBU(t) are
also larger, a larger increment h results in larger initial fluctuations in the
expected utility of intuitive decisions.
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Table 4: Example B with ho = 2, α = 0.5, h = 1

t CBU(t) Relative frequency ARelative frequency B Lowest aspiration levelAverage CBU(t)

0 0 0 0 2

1 1,5 0,5 0,5 1 1,5

2 1,75 0,25 0,75 2 1,625

3 1,25 0,75 0,25 1,5 1,5

4 1,375 0,625 0,375 2 1,46875

5 1,75 0,25 0,75 1,5 1,525

6 1,625 0,375 0,625 1,25 1,541666667

7 1,6875 0,3125 0,6875 1,125 1,5625

8 1,5625 0,4375 0,5625 2 1,5625

9 1,515625 0,484375 0,515625 1,5 1,557291667

10 1,8359375 0,1640625 0,8359375 1,25 1,58515625

11 1,796875 0,203125 0,796875 1,125 1,604403409

12 1,6953125 0,3046875 0,6953125 1,0625 1,611979167

13 1,78125 0,21875 0,78125 1,03125 1,625

14 1,7509766 0,249023438 0,750976563 1,015625 1,633998326

15 1,7172852 0,282714844 0,717285156 1,0078125 1,639550781

16 1,7406006 0,259399414 0,740600586 2 1,645866394

17 1,2970581 0,702941895 0,297058105 1,5 1,625348259

18 1,7769165 0,223083496 0,776916504 1,25 1,633768717

19 1,9130859 0,086914063 0,913085938 1,125 1,648469624

20 1,8904419 0,109558105 0,890441895 1,0625 1,660568237

21 1,868927 0,131072998 0,868927002 1,03125 1,670490083

22 1,8735352 0,126464844 0,873535156 1,015625 1,679719405

23 1,8614044 0,138595581 0,861404419 1,0078125 1,687618753

24 1,8635254 0,136474609 0,863525391 1,00390625 1,694948196

25 1,865591 0,134408951 0,865591049 1,001953125 1,701773911

26 1,8702726 0,129727364 0,870272636 1,000976563 1,708254631

27 1,8644495 0,135550499 0,864449501 1,000488281 1,714039626

28 1,8638992 0,136100769 0,863899231 1,000244141 1,719391755

29 1,8632988 0,136701226 0,863298774 1,00012207 1,724354066

30 1,8617415 0,138258547 0,861741453 1,000061035 1,728933645

31 1,8616427 0,138357259 0,861642741 1,000030518 1,733214584

32 1,86131 0,13869001 0,86130999 2 1,737217565

33 1,2057803 0,794219717 0,205780283 1,5 1,721113405

34 1,2826186 0,717381372 0,282618628 1,25 1,7082165

35 1,8483672 0,151632839 0,848367161 1,125 1,712220805
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Table 5: Example B with ho = 2, α = 0.5, h = 10000

t CBU(t) Relative frequency A Relative frequency B Lowest aspiration level Average CBU(t)

0 0 0 0 2

1 1,5 0,5 0,5 1 1,5

2 1,75 0,25 0,75 10001 1,625

3 1,25 0,75 0,25 5001 1,5

4 1,5 0,5 0,5 10001 1,5

5 1,75 0,25 0,75 5001 1,55

6 1,25 0,75 0,25 2501 1,5

7 1,875 0,125 0,875 1251 1,553571429

8 1,125 0,875 0,125 10001 1,5

9 1,8125 0,1875 0,8125 5001 1,534722222

10 1,1875 0,8125 0,1875 2501 1,5

11 1,8125 0,1875 0,8125 1251 1,528409091

12 1,1875 0,8125 0,1875 626 1,5

13 1,890625 0,109375 0,890625 313,5 1,530048077

14 1,109375 0,890625 0,109375 157,25 1,5

15 1,9375 0,0625 0,9375 79,125 1,529166667

16 1,0625 0,9375 0,0625 10001 1,5

17 1,91015625 0,08984375 0,91015625 5001 1,524126838

18 1,08984375 0,91015625 0,08984375 2501 1,5

19 1,91015625 0,08984375 0,91015625 1251 1,521587171

20 1,08984375 0,91015625 0,08984375 626 1,5

21 1,9453125 0,0546875 0,9453125 313,5 1,521205357

22 1,0546875 0,9453125 0,0546875 157,25 1,5

23 1,967285156 0,032714844 0,967285156 79,125 1,520316746

24 1,032714844 0,967285156 0,032714844 40,0625 1,5

25 1,953857422 0,046142578 0,953857422 20,53125 1,518154297

26 1,17956543 0,82043457 0,17956543 10,765625 1,505131648

27 1,910217285 0,089782715 0,910217285 5,8828125 1,52013482

28 1,945129395 0,054870605 0,945129395 3,44140625 1,535313198

29 1,910217285 0,089782715 0,910217285 2,220703125 1,548240925

30 1,940765381 0,059234619 0,940765381 1,610351563 1,561325073

31 1,971313477 0,028686523 0,971313477 1,305175781 1,574550506

32 1,956039429 0,043960571 0,956039429 10001 1,586472034

33 1,036323547 0,963676453 0,036323547 5001 1,569800868

34 1,036323547 0,963676453 0,036323547 2501 1,554110359

35 1,051597595 0,948402405 0,051597595 1251 1,539752851

36 1,036323547 0,963676453 0,036323547 626 1,525768704

37 1,141605377 0,858394623 0,141605377 313,5 1,515385911

38 1,020503998 0,979496002 0,020503998 157,25 1,502362703

39 1,900611877 0,099388123 0,900611877 79,125 1,51257422

40 1,009605408 0,990394592 0,009605408 40,0625 1,5

41 1,986698151 0,013301849 0,986698151 20,53125 1,511870687

42 1,513300896 0,486699104 0,513300896 10,765625 1,511904739

43 1,986698151 0,013301849 0,986698151 5,8828125 1,522946446

44 1,983463764 0,016536236 0,983463764 3,44140625 1,533412749

45 1,971219301 0,028780699 0,971219301 2,220703125 1,543141784

46 1,982655168 0,017344832 0,982655168 1,610351563 1,552696422

47 1,99154973 0,00845027 0,99154973 1,305175781 1,562033727

48 1,987102449 0,012897551 0,987102449 1,152587891 1,570889325

49 1,98932609 0,01067391 0,98932609 1,076293945 1,579428851

50 1,99043791 0,00956209 0,99043791 1,038146973 1,587649032

51 1,988412809 0,011587191 0,988412809 1,019073486 1,595507145

52 1,988134854 0,011865146 0,988134854 1,009536743 1,603057678

53 1,987995876 0,012004124 0,987995876 1,004768372 1,610320663

54 1,987742738 0,012257262 0,987742738 1,002384186 1,617309961

55 1,987457338 0,012542662 0,987457338 1,001192093 1,624039913
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