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Abstract 
 
We develop a non-linear forecast combination rule based on copulas that incorporate the 
dynamic interaction between individual predictors. This approach is optimal in the sense that 
the resulting combined forecast produces the highest discriminatory power as measured by the 
receiver operating characteristic (ROC) curve. Under additional assumptions, this rule is 
shown to be equivalent to the quintessential linear combination scheme. To illustrate its 
usefulness, we apply this methodology to optimally aggregate two currently used leading 
indicators—the ISM new order diffusion index and the yield curve spread—to predict 
economic recessions in the United States. We also examine the sources of forecasting gains 
using a counterfactual experimental set up. 
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1 Introduction

In economic forecasting, it is not uncommon to have multiple predictors for the single target

variable of interest. Each predictor may contain independent information pertinent to the

target that others do not have. Instead of focusing on the best predictor, one can achieve

diversification gains from combining all of them in an appropriate manner. Bates and Granger

(1969) have suggested a linear scheme to combine a set of forecasts with data-driven weights.

Granger and Ramanathan (1984) showed that this linear combination method is numerically

equivalent to a linear regression of the target variable on the forecasts. Timmermann (2006)

provided a comprehensive overview of various combination methods.

This article proposes a non-linear combination procedure to predict a binary outcome

variable. Binary events, such as loan defaults, occurrence of recessions, passage of a specific

legislation, etc., are frequently involved in numerous economic decisions. The conventional

combination methodologies are known to work well for continuous target variables, such

as GDP growth and inflation rates. However, it is possible that they may fail to capture

some important features of a binary target variable. Lahiri and Yang (2013b) highlighted the

uniqueness of a binary event and summarized a large body of literature to forecast this type

of target variables by considering their distinct features.

To quantify the forecast performance so that competing models can be compared, an ap-

propriate criterion is necessary. Due to the very nature of a binary event, the joint distribution

between forecasts and actuals are of special forms, which can be utilized to design a wide

array of tools for forecast evaluation. In practice, the Brier score (Brier (1950)), or the mean

squared error between forecasts and actuals, is by the far the most widely employed. Though

useful by itself, this score is influenced by the marginal information regarding the actuals,

and as a result is often viewed as a poor metric for measuring performance in many cases.

For this reason, this paper uses the receiver operating characteristic (ROC) curve, which is

especially designed to assess the efficacy of a forecasting system with a binary target. An

attractive property of ROC curves is their insensitivity to changes in the event distribution

(Fawcett (2006)). Furthermore, it completely describes the conditional distribution of the
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forecast given the actual. This graphic device was originally proposed in the signal detec-

tion theory during the 1950s, and has gained increasing popularity in applications, ranging

from meteorology to medical sciences, and psychology, among other fields. The readers are

referred to Krzanowski and Hand (2009), Pepe (2003), Swets et al. (2000), and Zhou et al.

(2002) for a general introduction to this methodology. Recently, interest in ROC curves has

grown among econometricians. Several economic and financial applications of ROC can be

found in Berge and Jordà (2011), Drehmann and Juselius (2012), Lahiri and Wang (2013),

and Lahiri and Yang (2013a).

Specifically, we separately model the marginal distributions of individual predictors and

their dependence structure given each materialized regime of the target. The ratio of the joint

densities is taken as the combination rule, which not only augments the predictive accuracy

of each single predictor but is optimal within a family of all combination rules in the sense

of maximizing the discriminatory power as measured by the ROC curve. The implied ROC

curve of the combined forecasts has no known analytic form, a fact that makes the statistical

inference inconvenient to be conducted in the standard parametric framework. To address this

problem, we will develop a Bayesian variant of this model equipped with a non-informative

prior. One of the appealing merits of the proposed procedure is that it allows for any plausi-

ble margin and dependence pattern in the predictors. It also nests the linear benchmark as a

special case under some additional distributional assumptions. We demonstrate the effective-

ness of our approach with an empirical illustration to predict the economic recessions in the

United States based on two currently used leading indicators: ISM new order diffusion index

and the yield spread.

This paper contributes to the literature on forecast combination in three aspects. First,

we use ROC, in lieu of the usual mean squared error, as the measure of performance of the

combined forecasts since the latter tends to reward hedging behavior of a forecaster when it

is used to evaluate uncommon event probabilities (Stephenson (2000)). Second, an optimal

decision rule to combine multiple predictors to maximize the discrimination capacity is for-

mulated within a robust Bayesian framework. An algorithm is also given to make the rule

practically operational. In addition, a counterfactual exercise is undertaken to identify several

important determinants of a better forecast, which in turn suggests possible paths to follow to
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enhance the reliability of the combined forecasts in the present framework.

The rest of the paper is organized as follows. In Section 2, the Bayesian parametric

model is introduced and the optimal decision rule is derived theoretically. The empirical

application and the related computational issues are presented in Section 3, which is followed

by a counterfactual experiment in Section 4. Section 5 closes this paper with further remarks.

2 ROC and non-linear combination methodology

2.1 A copula-based Bayesian approach

We develop a parsimonious, yet flexible, Bayesian parametric model in this section to com-

bine the information inherent in I predictors for a binary event. Throughout this paper, Zt

and Xit (for i = 1,2, ..., I) denote the binary target variable and the ith predictor in period

t, respectively. We use upper case letters to denote cumulative distribution functions and

corresponding lower case letters to denote the density functions.

Our Bayesian combination model consists of two elements: a conditional likelihood and

a prior. We denote the joint conditional distribution of Xt ≡ (X1t ,X2t , ...,XIt) given Zt by

H(x1,x2, ...,xI|Zt), which can be further decomposed into the marginal distribution of Xit

given Zt (denoted by Fi(xi|Zt)) for i = 1,2, ..., I and the dependence structure among Xt given

Zt . The latter is characterized by the copula associated with H(x1,x2, ...,xI|Zt). By Sklar’s

theorem, for each j ∈ {0,1}, there exists a unique copula C j such that H(x1,x2, ...,xI|Zt =

j) = C j(F1(x1|Zt = j),F2(x2|Zt = j), ...,FI(xI|Zt = j)) for all (x1,x2, ...,xI) ∈ RI when Xt is

a continuous random vector. Assuming C j is twice differentiable, the corresponding copula

density is c j(y1,y2, ...,yI) ≡
∂IC j(y1,y2,...,yI)

∂y1∂y2...∂yI
. In general, copulas are multivariate distribution

functions whose one-dimensional marginals are uniform on the interval (0,1); they enable

us to construct large families of joint distributions. The popularity of copulas in empiri-

cal macroeconomics and finance owes much to their flexibility by freeing the analyst from

considering only existing multivariate distributions. The stream of literature on a general in-

troduction to the modeling strategies based on copulas includes Trivedi and Zimmer (2005),
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Nelsen (2006), and Patton (2012). Anatolyev(2009), Patton(2006) and Scotti(2011) applied

this methodology to predict multiple economic events. Patton (2013) provided a recent sur-

vey on copula methods to forecasting multivariate time series.

Let fiR(xi;ϕiR) and fiE(xi;ϕiE) be the parametrized conditional densities of Xit given Zt =

1 and Zt = 0 respectively.1 The likelihood function for period t can be written as

Lt(θ)≡

 cR(F1R(X1t ;ϕ1R),F2R(X2t ;ϕ2R), ...,FIR(XIt ;ϕIR);γR)∏
I
i=1 fiR(Xit ;ϕiR) if Zt = 1;

cE(F1E(X1t ;ϕ1E),F2E(X2t ;ϕ2E), ...,FIE(XIt ;ϕIE);γE)∏
I
i=1 fiE(Xit ;ϕiE) otherwise.

where cR(y1,y2, ...,yI;γR) and cE(y1,y2, ...,yI;γE) are the parametrized copula densities given

Zt = 1 and Zt = 0 respectively. θ≡ (ϕ′1R,ϕ
′
2R, ...,ϕ

′
IR,ϕ

′
1E ,ϕ

′
2E , ...,ϕ

′
IE ,γ

′
R,γ
′
E)
′ is the param-

eter vector. Given a sample XT ≡ {(Zt ,X1t ,X2t , ...,XIt) : t = 1, ...,T}, the sample likelihood

function LT (XT |θ) is calculated as ∏
T
t=1 Lt(θ). To complete the Bayesian model, a prior for

θ is needed. Given a specific functional form for LT (XT |θ), it may be cumbersome, if not

impossible, to construct the conjugate prior. In this section, we use a generic prior P(·) to ex-

press our knowledge on θ before XT is observed. The posterior P(θ|XT ) is derived by Bayes’

theorem, that is,

P(θ|XT ) =
LT (XT |θ)P(θ)∫

θ
LT (XT |θ)P(θ)dθ

. (1)

The main goal of this paper is to compare the accuracy of forecasts based on each Xit with

those made using all of them. A number of forecast skill measures have been proposed in

the literature to quantify the performance of competing forecasts. Here, we use the receiver

operating characteristic (ROC) curve and the area under the curve (AUC). ROC provides

a summary of the discriminatory power of a forecasting system in distinguishing between

Zt = 1 and Zt = 0. If the forecasts are completely insensitive to the value Zt would take, they

have zero discriminatory power. On the other hand, forecasts which take one value when

Zt = 1 and take another when Zt = 0 would obviously possess the highest discriminatory

power. Most real-life forecasts lie between these two extremes. Suppose we predict Zt = 1

1In our empirical application in Section 3, Zt = 1 if a recession occurred in month t. Otherwise, Zt = 0 when
an expansion occurred. Hence, we use subscript “R” (“E”) for Zt = 1 (Zt = 0).
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whenever X1t exceeds a threshold w. We can define two conditional probabilities resulting

from this decision rule, namely,

ζ(w)≡ P(X1t > w|Zt = 1) = 1−F1R(w;ϕ1R),

κ(w)≡ P(X1t > w|Zt = 0) = 1−F1E(w;ϕ1E).

ζ(w) is referred to as the hit rate and it is the probability of correct forecast when Zt = 1.

κ(w) is called the false alarm rate or the probability of false forecast when Zt = 0. Ideally,

we hope ζ(w) could be as large as possible and κ(w) should be as small as possible. Both

of them are functions of w. In general, given the forecasting system, it is hard to achieve a

high value of ζ(w) without changing κ(w). The tradeoff between them is depicted by plotting

the pair (κ(w),ζ(w)) in a unit square for every w. The resulting ROC curve is an increasing

function from (0,0) to (1,1). The ROC curve for forecasts with zero discriminatory power

is represented by the diagonal line in the unit square with its AUC 0.5. Conversely, the ROC

curve described by the left and upper boundaries of the square has the highest discrimina-

tory power with its AUC 1. Most real-life forecasts yield an ROC curve lying in the upper

triangular area whose AUC is strictly between 0.5 and 1.

When multiple predictors are available, none of them could be maximally utilized unless

the information contained in them is combined in an efficient manner. Suppose we only use

X1t . We may consider predicting Zt = 1 when X1t > η or when Λ(X1t) > η, where Λ(·) is

a known function. Krzanowski and Hand (2009) showed that the ROC curves generated by

the rules Λ(X1t) > η and X1t > η will be the same if Λ(·) is a strictly increasing function.

In addition, if multiple predictors are available, it is natural to combine them for the optimal

performance in the sense that the hit rate is maximized for any given false alarm rate. The

region Cα(η) defined as

Cα(η)≡ {Xt :
h(Xt |H1)

h(Xt |H0)
> η}

plays a critical role in testing the null hypothesis H0 : θ = θ0 against the alternative

H1 : θ = θ1. Here, Xt = (X1t ,X2t , ...,XIt) is the observed data for predictors, h(Xt |H j)

is the likelihood function under H j for j = 0,1, and η is a constant such that P(Xt ∈
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Cα(η)|H0) = α. Among all tests of H0 against H1 with the same size α, Neyman-

Pearson lemma states that the power, defined as P(h(Xt |H1)/h(Xt |H0) > η|H1), achieves

its maximum if we reject H0 when h(Xt |H1)/h(Xt |H0) > η. Therefore, the likeli-

hood ratio test for simple hypothesis is the uniformly most powerful. The implica-

tion of this lemma is that the rule constructed from the likelihood ratio of multiple

predictors maximizes the hit rate for any given false alarm rate. This rule can be

used to justify the test H0 : Zt = 0 against H1 : Zt = 1. Given the parametric specifi-

cation, h(Xt |Zt = 1) = cR(F1R(X1t ;ϕ1R),F2R(X2t ;ϕ2R), ...,FIR(XIt ;ϕIR);γR)∏
I
i=1 fiR(Xit ;ϕiR)

and h(Xt |Zt = 0) = cE(F1E(X1t ;ϕ1E),F2E(X2t ;ϕ2E), ...,FIE(XIt ;ϕIE);γE)∏
I
i=1 fiE(Xit ;ϕiE).

Thus, the likelihood ratio for the combined forecast takes the following form,

cR(F1R(X1t ;ϕ1R),F2R(X2t ;ϕ2R), ...,FIR(XIt ;ϕIR);γR)∏
I
i=1 fiR(Xit ;ϕiR)

cE(F1E(X1t ;ϕ1E),F2E(X2t ;ϕ2E), ...,FIE(XIt ;ϕIE);γE)∏
I
i=1 fiE(Xit ;ϕiE)

, (2)

and we predict Zt = 1 if and only if (2) exceeds η. In this case, the size is P(h(Xt |Zt =

1)/h(Xt |Zt = 0) > η|Zt = 0), while the power is P(h(Xt |Zt = 1)/h(Xt |Zt = 0) > η|Zt = 1).

Therefore, the size corresponds to the false alarm rate κ(η), while the power corresponds to

the hit rate ζ(η). Given κ(η), ζ(η) is maximized among all possible combination rules based

on (X1t ,X2t , ...,XIt).

As a forecast combination scheme, (2) makes intuitive sense. The numerator measures

how likely is that the values of (X1t ,X2t , ...,XIt) are observed when Zt = 1, while the denom-

inator is the likelihood that the very values of (X1t ,X2t , ...,XIt) can be seen with Zt = 0. If the

truth is Zt = 1, the numerator is expected to be higher than the denominator, and vice versa.

Having interpreted (2) in this way, given a threshold value η, Zt = 1 should be more likely

to occur and thus be predicted if the ratio of these two likelihoods exceeds η. Two special

cases of (2) worth mentioning. In the first case, XIt is completely irrelevant in the sense that

it is independent of (Zt ,X1t , ...,X(I−1)t). In the second case, XIt is a non-stochastic function

of (X1t , ...,X(I−1)t) and hence is completely redundant. In both cases, (2) can be shown to de-

pend on (X1t , ...,X(I−1)t) rather than the whole Xt .2 That is, our optimal combination scheme

2In the first case, it follows from independence that h(X1t , ...,XIt |Zt) = h(X1t , ...,X(I−1)t |Zt) fI(XIt). fI(XIt) is
the marginal density of XIt that does not depend on Zt and thus it can be cancelled out from (2). In the second
case, the redundancy of XIt implies h(X1t , ...,XIt |Zt) = h(X1t , ...,X(I−1)t |Zt).
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automatically ignores the irrelevant and redundant predictors if they exist. The optimality

of (2) has long been noted in statistics (Neyman and Pearson (1933)) and signal detection

theory (Green and Swets (1966), Egan (1975)). The application of (2) to optimally combine

multiple medical classifiers was formally addressed in McIntosh and Pepe (2002).

The ROC curve corresponding to the optimal rule (2) can be obtained by calculating ζ(η)

and κ(η) for each η. Suppose X1t is the only predictor available. The optimal rule says that

Zt = 1 is predicted if f1R(X1t ;ϕ1R)> η f1E(X1t ;ϕ1E). Given η,

ζ(η) = P( f1R(X1t ;ϕ1R)> η f1E(X1t ;ϕ1E)|Zt = 1)

κ(η) = P( f1R(X1t ;ϕ1R)> η f1E(X1t ;ϕ1E)|Zt = 0). (3)

Sometimes, evaluation of (3) is intractable due to the parametric assumptions imposed on

F1(x1|Zt). Consequently, we use simulation to approximate both ζ(η) and κ(η). For example,

ζ(η) should be close to ζs(η) ≡ ∑
S
s=1 I( f1R(hs;ϕ1R) > η f1E(hs;ϕ1E))/S if {hs : s = 1, ...,S}

is a large sequence of draws from f1R(x1;ϕ1R). Given a posterior point estimate of θ, such

as the posterior mean, we can get the ROC curve by plotting simulated pairs (κs(η),ζs(η))

evaluated at this estimate of θ over a fine grid of η. The AUC value is calculated by numerical

integration of the simulated ROC curve over [0,1]. The same procedure can be applied when

any other Xit is considered. Evaluating (3) for combined forecasts involves simulating random

samples from multivariate copulas, and the details can be found in Trivedi and Zimmer (2005,

appendix). The inference is based on the posterior distribution of AUC derived by repeating

this process for each draw of θ.

2.2 Robust inference

In standard Bayesian analysis, the posterior density P(θ|XT ) summarizes all we know about

θ after observing XT if and only if LT (XT |θ) is correct. However, even when the joint con-

ditional distribution H(x1,x2, ...,xI|Zt) is correctly specified, dynamic misspecification in the

innovations can never be ruled out. This implies that LT (XT |θ), obtained by assuming (for

instance) the absence of serial correlation, is not valid and P(θ|XT ) will not reflect all in-
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formation about θ with available XT . We do not seek to model the dynamic structure in

the errors, since our analysis only requires the systematic component H(x1,x2, ...,xI|Zt) be

correctly specified. There is also evidence that explicitly modeling the serial correlation in

the context of a Markov Switching model of leading indicators as a filter jeopardizes turning

point predictions, see Lahiri and Wang (1994). Fortunately, P(θ|XT ) under this type of model

misspecification can be asymptotically approximated by a multivariate normal distribution

with the maximum likelihood estimator θ̂ as its mean and the inverse of the estimated nega-

tive Hessian matrix as its covariance (Berk (1966), Bunke and Milhaud (1998), and Geweke

(2005)). However, Müller (2013) has shown that the asymptotic frequentist risk associated

with the posterior inference is systematically lower if the asymptotic variance of the normal

posterior is replaced by a sandwich covariance matrix, which is routinely used in obtaining

robust standard errors in the frequentist approach.

Specifically, we define st(θ) ≡ ∂log(Lt(θ))
∂θ

, IT (θ) ≡ ˆVar( 1√
T ∑

T
t=1 st(θ)), and HT (θ) ≡

1
T ∑

T
t=1

∂st(θ)
∂θ

. Müller’s sandwich covariance matrix takes the form 1
T HT (θ̂)

−1IT (θ̂)HT (θ̂)
−1.

Here, the “bread” is the inverse of Hessian matrix HT (θ̂)
−1 and the “meat” is the long run

variance of the score functions IT (θ̂), which is usually calculated as a kernel-based estimate,

as in Andrews (1991) and Newey and West (1987). A number of empirical examples in

Müller (2013) demonstrate that the sandwich posterior inference constitutes a pragmatic im-

provement for Bayesian inference in parametric models, and often implies a substantially

more uncertainty about model parameters. Since the relative superiority of the artificial sand-

wich posterior is valid only in large samples, we will implement our procedure with and

without this suggestion. To save space, we only report the results obtained from the normal

posterior with sandwich covariance matrix reported in the sections to follow. Fortunately,

very similar conclusions were drawn by sampling from P(θ|XT ) without the sandwich co-

variance matrix, suggesting dynamic misspecification may not be an issue in our example.

2.3 Relationship with extant methods

The likelihood rule in (2) is in the same spirit as in Graham (1996). His binary combination

scheme is also built upon the likelihood of receiving a particular forecast prior to a specific
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outcome, and the reason of doing so, as argued by him, is that h(Xt |Zt) contains information

about the discrimination capacity of each predictor, as well as the correlation between pre-

dictors. However, Graham (1996) only considered combining binary forecasts, that is, each

variable in Xt is binary. Though Graham (1996) applied this rule to combine probability fore-

casts as well, he rounded the probability into a binary format by choosing a threshold, which

would lead to information loss. The likelihood ratio rule in (2) is more general in that both

continuous and discrete predictors are allowed. In addition, we established the optimality

of (2) in terms of maximizing the discriminatory power, while it is not clear if the binary

combination scheme in Graham (1996) is optimal in some sense.

It is interesting to note that some popular forecast combination rules can be shown to be

special cases of (2). According to Bayes’ theorem,

P(Zt = 1|Xt) =
h(Xt |Zt = 1)P(Zt = 1)

h(Xt |Zt = 0)P(Zt = 0)+h(Xt |Zt = 1)P(Zt = 1)

=

h(Xt |Zt=1)
h(Xt |Zt=0)P(Zt = 1)

P(Zt = 0)+ h(Xt |Zt=1)
h(Xt |Zt=0)P(Zt = 1)

. (4)

If h(Xt |Zt = 1) and h(Xt |Zt = 0) are multivariate normal, it follows that the conditional log

odds ratio ln(P(Zt=1|Xt)
P(Zt=0|Xt)

) is equal to

ln(
P(Zt = 1)
P(Zt = 0)

)+
1
2
(ln|Σ0|− ln|Σ1|)+

1
2
((Xt−µ0)

′
Σ
−1
0 (Xt−µ0)− (Xt−µ1)

′
Σ
−1
1 (Xt−µ1))

= ln(
P(Zt = 1)
P(Zt = 0)

)+
1
2
(ln|Σ0|− ln|Σ1|)+

1
2
(X ′t Σ

−1
0 Xt−X ′t Σ

−1
1 Xt−2X ′t Σ

−1
0 µ0

+2X ′t Σ
−1
1 µ1 +µ′0Σ

−1
0 µ0−µ′1Σ

−1
1 µ1)

= A0 +A′1Xt +X ′t A2Xt , (5)

where µ j is the mean of h(Xt |Zt = j), and Σ j is the covariance matrix of h(Xt |Zt = j). In (5),

A0 = ln(P(Zt=1)
P(Zt=0)) +

1
2(ln|Σ0| − ln|Σ1|) + 1

2(µ
′
0Σ
−1
0 µ0− µ′1Σ

−1
1 µ1), A1 = Σ

−1
1 µ1− Σ

−1
0 µ0, and

A2 = Σ
−1
0 −Σ

−1
1 . As a result,

pt ≡ P(Zt = 1|Xt) =
exp(A0 +A′1Xt +X ′t A2Xt)

1+ exp(A0 +A′1Xt +X ′t A2Xt)
, (6)

9



which implies that P(Zt = 1|Xt), as a regression function, is consistent with a logit specifi-

cation with quadratic index A0 +A′1Xt +X ′t A2Xt .3 Since (2) is a strictly increasing transfor-

mation of (6), both would yield identical ROC curves. Note that Σ1 = Σ0 implies A2 = 0,

and then P(Zt = 1|Xt) reduces to the regular logit specification with linear index A0 +A′1Xt ,

which is the dichotomous combination rule introduced by Kamstra and Kennedy (1998). This

relationship offers insights into effectiveness of the logit regression as a type of non-linear

combination scheme. Although Kamstra and Kennedy (1998) used this approach as an al-

ternative means of combining qualitative forecasts, we have shown that it is indeed optimal

under certain simplifying assumptions including Σ1 = Σ0. The implication of (6) is that one

can regress Zt on a constant, X1t , X2t ,..., XIt , X2
1t , X2

2t ,..., X2
It and all of the interaction terms like

XitX jt using the logit model, get the maximum likelihood estimates for A0, A1 and A2, and take

the fitted probability P(Zt = 1|Xt) as the combined forecast. Following the same approach

as in Ramsey (1969), the appropriateness of non-linearity can be assessed by examining the

size and statistical significance of estimates of A2. If the linear index is adequate, the joint

test should be insignificant. If the test is significant, the non-linear combination scheme in

(6) should be used. However, normality assumption is essential for the equivalence between

(2) and (6) to hold.

Another popular option is the linear combination method proposed by Bates and Granger

(1969), which often serves as a useful benchmark in practice. Given the probabilities gener-

ated by each individual predictor, P(Zt = 1|Xit) for i= 1,2, ..., I, all of which may be perfectly

calibrated in the sense of Dawid (1984)4, the linearly combined forecast can be constructed

by taking the linear pool, that is,

qt ≡ ω1P(Zt = 1|X1t)+ω2P(Zt = 1|X2t)+ ...+ωIP(Zt = 1|XIt), (7)

where ωi ∈ (0,1) is a properly selected weight attached to P(Zt = 1|Xit), and ∑
I
i=1 ωi = 1.

3(6) is a well-known result in discriminant analysis. Its derivation can be also found in Hastie et al. (2001).
4A perfectly calibrated probability forecast implies the actual frequency of the event Z = 1 given each

forecast value p should be equal to the forecast itself. Formally, if P(Z = 1|p) = p, the probability forecast p
is said to be perfectly calibrated. Calibration and discriminatory power (as measured by the ROC curve) are
two forecast skill metrics. They complement each other and measure the quality of a forecasting system from
different perspectives. They can be derived from two alternative factorizations of the joint distribution between
forecast and actual. See Lahiri and Yang (2013b) for more details.
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De Luca and Carfora (2014) provided an example where qt in (7) is used to combine two

binary regression models for predicting recessions. It is interesting to note that the difference

between (6) and (7). Ranjan and Gneiting (2010) proved that (7) will lack calibration even

though each P(Zt = 1|Xit) is calibrated. However, by construction, (6) is calibrated. More-

over, for every strictly proper scoring rule S defined by Gneiting and Raftery (2007), such as

the usual mean squared error, E(S(pt ,Zt))< E(S(qt ,Zt)), which can be shown by observing

that

E(S(pt ,Zt)) = E(E(S(pt ,Zt)|Xt))

= E(ptS(pt ,1)+(1− pt)S(pt ,0))

< E(ptS(qt ,1)+(1− pt)S(qt ,0))

= E(E(S(qt ,Zt)|Xt))

= E(S(qt ,Zt)),

where the first and the last equalities follow from the law of iterated expectations, the sec-

ond and the fourth equalities are obtained by noting that Zt is a 0− 1 binary variable with

pt = P(Zt = 1|Xt), and the inequality uses the property of the strictly proper scoring rule.5

Therefore, (6) outperforms (7) in a general sense. As (2) and (6) share the same ROC curve,

(6) is also preferred in terms of the discriminatory capacity as measured by ROC curve. The

bottom line is (6) is always superior to (7) regardless of the optimality criterion used.

5A scoring rule assigns a numerical score, S(p,Z), to the probability forecast p and the binary variable Z.
The scoring rule is negatively oriented, that is, the smaller the better. S(p,Z) is strictly proper if pS(p,1)+(1−
p)S(p,0) < pS(q,1)+ (1− p)S(q,0) for all 0 ≤ q 6= p ≤ 1, that is, it encourages honesty. More details on the
proper scoring rule can be found in Gneiting and Raftery (2007) and Schervish (1989).
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3 Application to recession prediction

3.1 Data description

In this section, we will present an empirical illustration to showcase the usefulness of our

methodology with I = 2. The task is to predict future U.S. economic recessions. The monthly

data we use consists of 629 observations on two leading indicators for U.S. recessions—ISM

diffusion index of new orders and the yield spread—from August 1959 to December 2011

(cf. Levanon et al. (2011)). The binary target event Zt is the recession indicator that is one,

if the recession occurred, and zero otherwise. The sample proportion of months that were in

recession over this period is about 14.8%, indicating that it is a relatively uncommon event.

The first predictor X1t is the manufacturing new orders diffusion index compiled by the In-

stitute for Supply Management (ISM), which reflects the number of manufacturers reporting

decreased orders during the previous month compared to the number reporting increased or-

ders. A higher value of this index tends to signify a future economic recession. The yield

spread, as the second predictor X2t , is defined as the difference between the constant matu-

rity yields on a 3-month T-bill and the 10-year Treasury note. Previous literature has found

that the yield spread is the single indicator which has the highest predictive power in terms

of forecasting economic recessions at the fourth quarter horizon. There are many possible

reasons why this is the case. See Estrella and Mishkin (1996,1998) for comprehensive expla-

nations. For the purpose of exposition, we use these two indicators to predict recessions six

and nine months ahead.

3.2 Model specification and computational details

For simplicity, we consider a binormal specification, in which all marginal distributions, in-

cluding F1(x1|Zt) and F2(x2|Zt), are assumed to be normal with different means and vari-

ances. Let µR,ISM and σ2
R,ISM be the conditional mean and variance of ISM diffusion index

given Zt = 1. Likewise µR,Y S and σ2
R,Y S are the corresponding parameters for yield spread.
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Thus, ϕ1R = (µR,ISM,σ2
R,ISM)′ and ϕ2R = (µR,Y S,σ

2
R,Y S)

′. ϕ1E and ϕ2E are defined analogously

for Zt = 0.

It may be natural to use the bivariate normal distributions for H(x1,x2|Zt = 1) and

H(x1,x2|Zt = 0). After all, each marginal distribution is normal. This amounts to using

Gaussian copulas to describe the dependence pattern between two predictors. Despite its

parsimony and familiarity, the Gaussian copula has its own pitfall in that the dependence

structure is restricted. In our application, we employ the copula corresponding to the bivari-

ate t-distribution with two parameters: correlation coefficient ρ and degrees of freedom d f .

Therefore, γR = (ρR,d fR)
′ and γE = (ρE ,d fE)

′. The t-copula is often used to model the de-

pendence structure among returns of multiple financial assets (see for example Mashal et al.

(2003) and Breymann et al. (2003)). Gaussian copula and t-copula belong to the so-called

elliptical class. The correlation coefficient in both copulas captures the dependence between

two random variables, say X1 and X2, in the center of their distributions, while the degrees of

freedom in the t-copula controls for the tail dependence. The upper tail dependence coeffi-

cient λu is defined as limq→1− P(X2 > F−1
2 (q)|X1 > F−1

1 (q)), and the lower tail dependence

coefficient λl is limq→0+ P(X2 ≤ F−1
2 (q)|X1 ≤ F−1

1 (q)), where F−1
i (·) is the quantile func-

tion of Xi. They measure the dependence between X1 and X2 when both are extremely large

(small). A strong dependence in the center does not necessarily translate into the strong de-

pendence in both tails. For instance, λu = λl = 0 for any Gaussian copula without perfect

correlation. As a result, the Gaussian copula does not entail positive dependence in both tails

of distribution so that extreme events appear to be uncorrelated. However, both λu and λl are

positive for the t-copula (Demarta and McNeil (2005)). In general, the degrees of freedom

control how quickly the tail dependence shrinks towards zero. When the degrees of freedom

approach infinity, the tail dependence vanishes. In this sense, the t-copula is more general.

However, it requires symmetric dependence, namely, λu = λl , which may be too restrictive

in some cases. To overcome this drawback, Demarta and McNeil (2005) has constructed

t-copulas with asymmetric tail behaviors by introducing more parameters. Besides the ellip-

tical class, there exist other flexible copulas, some of which may be more than or as flexible

as t-copula, including many members within the Archimedean family. The specific choice

of copulas crucially rests on the empirical setting. In our circumstance, we favor t-copula
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because it captures the dependence structure both in the center and tails of the distributions

in a relatively parsimonious fashion. This can be seen from Figure 1, which presents the

scatter plots of F1(X1t |Zt) and F2(X2t |Zt), the CDF-scaled predictors for each combination of

regimes and horizons. A number of observations concentrate around the lower left and upper

right corners, indicating the existence of positive tail dependence during expansion. We have

plotted five contours of bivariate densities of the fitted t-copulas, with all points on a con-

tour representing the same density value. The inner contours represent higher densities. Our

framework can accommodate virtually all reasonable copulas, provided some mild regularity

conditions, like smoothness, are met.

The prior P(·) is specified as normal. To this end, all parameters with limited range are

rescaled by suitable transformations. For example, we impose a prior on log(σ2
R,Y S) rather

than σ2
R,Y S. To be more specific, the mean of P(·) is 0 and the variance is a constant multiple

(v) of the sandwich covariance matrix associated with θ̂. In order for the prior to be relatively

flat to represent the vague information, v must be a large positive number. Here, we choose

v = 1,000 since the empirical results are nearly the same for any v higher than 1,000. In this

case, the assumed value of the mean vector is of little relevance.

Simulating from the sandwich posterior is straightforward as long as the quasi-maximum

likelihood estimator θ̂ is available. The attractive feature of copula facilitates the numerical

computation substantially in that we can use a sequential procedure to get a preliminary

estimator. In the first step, the parameters in marginal distributions (ϕ′1R,ϕ
′
2R,ϕ

′
1E ,ϕ

′
2E)
′ are

estimated. The dependence parameters (γ′R,γ
′
E)
′ are estimated in the second step after the

estimated marginal distributions have been substituted into LT (XT |θ). Finally, we set the

initial values of θ to be those obtained in the first two steps and then maximize LT (XT |θ) again

to get θ̂. The long run covariance matrix of the score functions is estimated via quadratic

spectral kernel after the data is filtered by the AR(1) prewhitening procedure as advocated by

Andrews and Monahan (1992).

A convenient way of simulating from P(θ|XT ) is by using Markov chain Monte Carlo

(MCMC) method. In Bayesian statistics, the Gibbs sampler is commonly used for poste-

rior simulation when P(θ|XT ) can be easily decomposed into several conditional posterior

distributions with known functional forms. The posterior draws of θ can be obtained by se-
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quentially simulating from these conditional distributions. The problem with this algorithm

is that sometimes it is difficult to find such blocks of θ with closed form conditional distri-

butions. This is the case in the current scenario since t-copulas are involved in LT (XT |θ).

Thus, we consider the random walk chain constructed by a Metropolis-Hastings algorithm.

Unlike Gibbs sampler, it constitutes a quite general class of posterior simulators. Specifically,

suppose a draw θb in step b is given. A candidate draw θ∗ is sampled from θb + cN, where

N is a multivariate normal vector with mean zero and variance V , and c is a positive scale

number. For estimates reported below, we use the sandwich covariance matrix as V . θ∗ is

accepted as the next draw θb+1 if it lies within the area of higher posterior density relative to

θb. The details can be found in Koop (2003). The value of c is determined in such a way that

the resulting acceptance rate is about 25%, as suggested by Albert (2009). The first 10,000

draws are discarded to remove the impact of the initial value. A variety of diagnostic plots

and formal statistical tests based on the remaining 90,000 draws are not reported here due to

brevity. All of them tend to indicate successful convergence of the chain towards P(θ|XT ).

3.3 Empirical results

Table 1 presents the posterior mean of θ together with two bounds of the highest posterior

density (HPD) interval. This is the parameter interval of a given size in which any point

delivers a higher posterior density than an arbitrary point outside the interval. It has lower and

upper bounds if the posterior is unimodal. Here, the nominal size is fixed at 95%. Analogous

to the role a confidence interval plays in a frequentist framework, an HPD interval accounts

for the uncertainty associated with a point estimate of θ.

From this table, we see that |µR,ISM−µE,ISM| shrinks towards zero as the forecast horizon

goes from 6 to 9 months. This is just opposite with the yield spread. On the other hand,

the yield spread tends to be more volatile than the diffusion index although the volatility

of the former decreases with horizon. The two conditional distributions for the diffusion

index ( f1(x1|Zt = 1) and f1(x1|Zt = 0)) and the yield spread ( f2(x2|Zt = 1) and f2(x2|Zt =

0)) are shown in Figure 2. For ISM index, f1(x1|Zt = 1) and f1(x1|Zt = 0) get closer to

each other when we predict recession at the longer horizon, indicating a weakening capacity
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of distinguishing two regimes defined by Zt . For yield spread, these two densities remain

roughly unchanged at both horizons. The dependence structure between the two predictors

is captured by ρ and d f . The correlation coefficient ρR is negative, while ρE is positive

(both are significant).6 This pattern is also revealed in Figure 1, where both Figures 1(a) and

1(c) for Zt = 1 show the presence of negative relationship between the two predictors while

their correlation reverses sign in Figures 1(b) and 1(d) for Zt = 0. Table 1 also reports two

additional dependence measures: Kendall’s tau and Spearman’s rho, which are denoted by τ

and rho respectively. Unlike the standard correlation coefficient ρ, these are computed based

on ranks of two random variables, and hence are unaffected by the marginal distribution

of each variable. For t-copula, we have ρ = sin(π

2 τ) and ρ = 2sin(π

6 rho). Therefore, all

three measures have an one-to-one relationship with each other, and they provide essentially

the same information. As shown in this table, ρ, τ and rho share the identical sign and

significance despite the differing magnitudes. The degrees of freedom when Zt = 1 is large,

implying that the Gaussian copula serves as a good approximation and the tail dependence

between two predictors should be quite weak. This is consistent with Figures 1(a) and 1(c),

where the number of points that lie in the upper-right and lower-left corners is very small.

However, this is not the case during the expansion months (Zt = 0), and there are clearly more

points in Figures 1(b) and 1(d) located in the corresponding regions. This can be thought of

as a consequence of the positive tail dependence in the t-copula with moderate degrees of

freedom, which is ruled out by any Gaussian copula.

ROC curves evaluated at the posterior means of θ are displayed in Figures 3(a) and 3(b).

The dashed lines are based on (2) with a single predictor in Xt . The explicit analytic forms for

these curves are available in Lahiri and Yang (2013a) for a binormal model. All other curves

are approximated by simulation. To generate the blue solid lines (Lin ISM+YS), we refit

the model by assuming a bivariate normal distribution and forcing two covariance matrices

to be equal. As argued in Section 2, this amounts to using a linear combination scheme.

We also tried the linear opinion pool in (7) with roughly the same results.7 ROC curves

of the optimal non-linear combination scheme (2), Opt ISM+YS, are represented by green

6The 95% HPD intervals of ρR − ρE are [0.382,0.896] and [0.352,0.745] for the 6 and 9-month-ahead
forecasts respectively, indicating the differences between correlations across regimes are highly significant.

7Results based on (7) are available upon request.
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solid lines. Figures 3(a) and 3(b) show that the predictive power of ISM index deteriorates

as horizon gets longer. The performance of yield spread, by contrast, is slightly better in

predicting recessions 9 months ahead compared with 6 months ahead. These findings are

consistent with the evidence in Figure 2. We will examine several determinants of forecast

accuracy in our framework through a counterfactual exercise in Section 4.

The solid ROC curves based on combined forecasts uniformly dominate the dashed coun-

terparts, implying that forecast combination, as an effective way to integrate the useful infor-

mation contained in (X1t ,X2t), leads to substantial improvement in predictive ability over

each predictor, particularly at the 6-month horizon. However YS individually performs bet-

ter than ISM at the 9-month horizon, and is close to Lin ISM+YS. Although the linearly

combined forecasts are never better than the optimally combined ones, they are overall close

to each other. The difference between these two schemes depends on whether the bivari-

ate normal distribution with homogeneous covariance matrix is a good approximation. For

this particular example, it is reasonable to assume (X1t ,X2t) to be normally distributed when

Zt = 1 but it does not seem to be valid when Zt = 0. Furthermore, virtually all of the second

conditional moments in one regime are far away from their counterparts in the other regime,

as shown in Table 1. For instance, |ρR−ρE | = 0.6 and |σ2
R,Y S−σ2

E,Y S| = 1.6 for 6-month-

ahead forecast. This provides a good explanation for the discernible gap between linear and

non-linear schemes. As expected, the optimally combined forecasts perform the best for both

horizons. For 6-month-ahead forecasts, each predictor contains useful information the other

one does not and neither of them dominates the other over the entire range of the ROC curve.

By exploiting independent information contained in both predictors, forecast combination

is able to achieve a dramatic improvement over each single predictor. A different scenario

occurs for the 9-month-ahead forecasts, in which the yield spread is significantly better than

the diffusion index. Once the yield spread is known, the additional information provided by

the diffusion index is marginally inconsequential. As a result, little gain is achieved through

forecast combination over YS. In an extreme case, if the ISM index were completely ran-

dom and as a result its ROC curve were the diagonal line, the combined forecast would have

offered zero improvement over the yield spread since the information contained in the ISM

index is redundant.
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Table 2 highlights the magnitude of improvement resulting from forecast combinations.

The AUC value for each curve in Figure 3 is shown on the top of the panel of this table, and the

percentage of improvement is on the bottom. On average, the AUC values of the combined

forecasts are strikingly higher than those of the ISM diffusion index, and this considerable

gain in discriminatory power is significant, as suggested by its 95% HPD interval. However,

the combined forecasts are not much better than the yield spread. For the 9-month-ahead fore-

casts, ImpvYS, which is defined as the proportionate improvement of the optimally combined

forecast over the yield spread [i.e., ImpvYS≡ (AUC(Opt ISM+YS)-AUC(YS))/AUC(YS)],

is only 3.9% because the marginal contribution from the diffusion index is found to be small.

However, for the 6-month-ahead forecasts, this gain is 11.5% and significant.

As a single index to summarize the predictive accuracy of a forecasting system, AUC can

be used to compare different forecasting systems. However, one is likely to miss important

information by merely relying on AUC exclusively. For example, two ROC curves may cross

at an interior point in the unit square with the same AUC value. On the left hand side of

this point, one curve is higher than the other, which is reversed on the right hand side. By

the AUC criterion, both curves are equally good. However, a decision maker having appetite

for a higher hit rate compared to a lower false alarm rate will opt for the ROC curve, which

is higher on the right hand side of the crossing point. Different decision makers may have

different preferences. To fix the idea, we consider the linear score indexed by m ∈ [0,1],

i.e. S(m) = mζ(η)+(1−m)∗ (1−κ(η)). A higher m means that the decision maker places

more weight on ζ(η) than he puts on 1−κ(η). Given m, the problem faced by the decision

maker is to choose a threshold value η to maximize S(m). We denote the maximizer and

maximum value of this problem by η∗(m) and S∗(m), respectively. Both are functions of

m. For a particular value of m, the decision maker may look at Figure 4 to appreciate how

large the improvement in S∗(m) can be by using the optimal non-linear scheme. In these

graphs, the three lines trace out the relative improvements due to Opt ISM+YS over ISM, YS

and Lin ISM+YS as m varies over [0,1]. If m is close to 0 or 1, all models are seen to be

roughly equivalent. When m lies in the middle, say 0.5, the non-linear combined forecasts

offer a 17.5%(27.2%) improvement over the diffusion index while predicting recessions 6

(9) months ahead. Note that the score S(0.5) is proportional to the Peirce skill score often
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used in the literature; See Manzato (2007) and Granger and Pesaran (2000). Over these m

values, at the 6-month horizon, the non-linear scheme offers 13%−18% improvement over

ISM and YS. At the 9-month horizon, the non-linear scheme offers nearly 4% improvement

over the linear scheme when m is around 0.7. Given that the latter is already a highly efficient

classifier, this improvement can be considered economically significant. One implication is

that the non-linear scheme seems to be a sensible choice for the target events that are relatively

rare and undesirable like a financial meltdown, rare disease, tsunami, and the like. In these

circumstances, the monetary losses associated with missed signals are certainly much larger

than those due to false alarms.

To assess the parametric model outlined above in terms of its goodness-of-fit, we com-

pute the posterior predictive p-values for a variety of statistics. Suppose X̃T is the another

dataset of size T generated from the model under study. We are able to draw a sample from

g(X̃T )|XT by sequentially simulating from P(θ|XT ) and g(X̃T )|θ, where g(·) contains some

statistics of interest, g(X̃T )|XT is the predictive distribution of g(X̃T ) after observing XT , and

g(X̃T )|θ is the likelihood function of g(X̃T ). We can calculate the statistics g(XT ) using the

current sample XT . If the model fits data well, g(XT ) is fairly unlikely to lie too far away

from the center of g(X̃T )|XT . The predictive p-value is the relative frequency of those more

extreme g(X̃T ) (larger than g(XT ) or small than g(XT )). A small predictive p-value is taken

as evidence against a model, and the rule-of-thumb is to reject a model when the p-value is

below 0.05. For our purpose, we select eight statistics in g(·): the sample mean and vari-

ance for each predictor in each regime, with the results presented in Table 3. Confronted

with the data, the t-copula with binormal margins is not rejected for all statistics. Indeed, the

minimum p-value is 0.922, meaning that the model is broadly consistent with the actual data.

Using (4), we can generate the probability of an impending recession, a probability

that is of interest on its own right. Once the posterior distribution of θ is obtained and

P(Zt = 1) is estimated by ∑
T
t=1 Zt/T , the posterior behavior of P(Zt = 1|X1t ,X2t) is also

completely determined. In particular, we can get a path of the combined probability forecasts

{P(Zt = 1|X1t ,X2t) : t = 1, ...,T} for each horizon when the posterior mean of θ is plugged in.

Since ISM and YS variables are never revised, except for the fact that the parameters are esti-

mated using the whole sample, these generated probabilities of recessions can be considered
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to be real-time forecasts. The recession probabilities are presented in Figure 5, together with

the forecasts based on each predictor. With a few exceptions, almost every recession since

1969 is accompanied by a higher-than-usual probability generated by the combined fore-

casts. The ISM diffusion index tends to generate high (low) probabilities 6 months ahead of

recessions (expansions). However, it seems to be too conservative to give high probabilities

of recessions 9 months ahead. Irrespective of which regime materializes, the ISM diffusion

index always fluctuates around its average value, suggesting it lacks the ability to identify

forthcoming economic recessions at the longer horizon. The yield spread is superior at the 9-

month horizon compared to 6-month horizon. The value of the combined forecasts are borne

out remarkably well across the whole sample period with the linear and non-linear schemes,

even though at the 9-month horizon YS performs very close to the combined forecasts. As

we have mentioned before, the non-linear forecasts have a slight edge over those generated

by the linear scheme.

4 Counterfactual analysis

To identify the determinants of accuracy gain through forecast combination, it is worthwhile

to break down the overall improvement of the combined forecasts into several components.

For the sake of brevity, we merely consider 6-month-ahead prediction in this section. Ideally,

the forecasts should behave quite distinctly across regimes in order to have a high discrimina-

tory power. Put it differently, the conditional distribution of the predictor given Zt = 1 must

be strongly separated from that given Zt = 0. Not only does this require the two conditional

means be different from each other but the conditional variances cannot be very high. Intu-

itively speaking, higher variance makes the two distributions overlap to a larger extent, and

thereby dilutes a given mean difference. For instance, the AUC(YS) in Table 2 can be written

as

AUC(Y S) = Φ(
µR,Y S−µE,Y S√
σ2

R,Y S +σ2
E,Y S

) (8)
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for the binormal specification (cf. Krzanowski and Hand (2009)). The implication of (8) is

that the ability of the yield spread in discriminating between two regimes, as measured by the

AUC, depends positively on the difference between two conditional means µR,Y S−µE,Y S but

negatively on the magnitude of two conditional variances: σ2
R,Y S and σ2

E,Y S. They correspond

to two terms in the decomposition of the mean squared error between forecasts and actuals

as suggested by Yates (1982). Given µR,Y S− µE,Y S, the minimum forecast variance is equal

to (µR,Y S−µE,Y S)
2P(Zt = 1)P(Zt = 0), which will only be achieved when the predictor takes

µR,Y S on all occasions of Zt = 1, and it takes µE,Y S on other occasions. Under this circum-

stance, the variability of forecasts is completely due to the event’s occurrence. Thus, the

minimum variance is the smallest variance necessary to support a given wedge between µR,Y S

and µE,Y S. The actual variance that is beyond this minimum value is called excess variability,

which is equal to P(Zt = 1)σ2
R,Y S +P(Zt = 0)σ2

E,Y S and reflects how responsive the predictor

is to information that is not related to the event’s occurrence. When σ2
R,Y S = σ2

E,Y S = 0, the

excess variability becomes zero. To maximize the discriminatory power, a higher value of the

minimum variance (hence a higher |µR,Y S−µE,Y S|) and a lower value of the excess variability

(hence a lower σ2
R,Y S and σ2

E,Y S) are desirable. In sum, a forecast with high discriminatory

ability is expected to be highly sensitive to relevant information, but insensitive to irrelevant

information related to the event’s occurrence. In terms of the mean difference in Table 1, the

yield spread is better than the ISM diffusion index. However, the diffusion index contributes

because it has less excess variability compared to YS at the shorter horizon. Hence, these

two predictors complement one another to produce more accurate forecasts, which absorbs

the strength and abandons the weakness in each of them. In other words, the improvement of

the combined forecast relative to any one predictor may stem from the marginal information

in the other predictor.

As is obvious in Table 1, not only do the two conditional distributions for each predictor

differ, but the dependence structure between the two predictors varies across regimes. The

diffusion index is negatively correlated with the yield spread when Zt = 1 (recessions) but

remarkably the correlation becomes positive when Zt = 0 (expansions). The combined fore-

cast also benefits from the inclusion of this additional information regarding the dependence

structure, which is not available for use by the single predictor or the linear scheme. The
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more distinct the values of ρR and ρE are, the higher is the improvement that can be made

through non-linear forecast combination.

Figure 6 illustrates the sensitivity of ImpvISM and ImpvYS to the various determinants

of the discriminatory ability. Specifically, it shows the quantitative importance of each of the

factors that contributes towards the improved forecasting ability of the combined forecasts

relative to ISM and YS individually. That is, it shows what happens to ImpvISM and ImpvYS

when one of the parameters deviates from its posterior mean. Panel (a) of Figure 6 depicts

how the relative superiority of the combined forecast in terms of AUC changes compared

to ISM (ImpvISM) and to YS (ImpvYS) as the difference in the means of the conditional

distributions of ISM diffusion index decreases from its observed value of 1.02 in the sample

(see Table 1). This value is the right most point in Figure 6(a). As µR,ISM−µE,ISM decreases

(i.e., ISM is deteriorating as a classifier), the combined forecast also gets worse, but relatively

less than the decline in that of ISM because YS continues to be the same. Thus, relatively

speaking, the combined forecast improves upon ISM more because of YS. Simultaneously,

the relative superiority of the combined forecast over YS decreases, albeit slowly, because

YS by itself continues to be as good, and relatively speaking the combined forecast has less

scope to improve upon YS. Figure 6(b) is a mirror image of Figure 6(a) as µR,Y S− µE,Y S

decreases to 0 from its sample value of 2.18. Note that the simulated changes in the mean

differences of ISM and YS between the two regimes do not affect the distributions of YS and

ISM nor their dependence structure. Figures 6(c) and 6(d) trace out the effects of changing

the variances of ISM and YS respectively from their observed values. As the variance of ISM

during recessions increases, the relative improvement of the combined forecast over ISM

increases as a result of the deteriorating quality of ISM as an individual predictor with the

quality of YS remaining the same. But ImpvYS seems to be largely insensitive to changes in

σ2
R,ISM. Figure 6(d) that traces out the effect of changes in σ2

R,Y S is again a mirror image of

Figure 6(c). The slopes of these curves are consistent with expectations, but their quantitative

magnitudes are functions of the data structure and the forecast combination procedure.

Of particular interest is the role of changes in correlations between the two predictors as

the regime changes. Figure 6(e) depicts ImpvISM and ImpvYS as |ρR−ρE | increases. Note

that |ρR−ρE |= 0.67 in the sample. As this value goes from 0 to 1.2, we find that the gain in
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the non-linear combination scheme over ISM and YS monotonically increases, as expected,

in a parallel fashion. This gain is coming entirely from the increased value of the correlation

during the two regimes with the individual predictors being the same. This affirms that the

combined forecasts are able to explore the differential in dependence structure as well. When

two conditional distributions of each predictor are fixed, more distinct correlations give rise to

higher AUC(Opt ISM+YS), which further raises ImpvISM and ImpvYS. This is a noteworthy

implication of our non-linear forecast combination framework.

The improvement of the non-linear scheme over the linear one is mainly attributed to three

factors: the difference in conditional variances of ISM (|σ2
R,ISM−σ2

E,ISM|), the difference in

conditional variances of YS (|σ2
R,Y S−σ2

E,Y S|), and the difference in correlation coefficients

|ρR−ρE |. It is clear from (5) that the non-linear scheme differs from the linear one simply

because of a non-zero A2 under normality assumption. By definition, A2 is determined by the

difference in the second moments of the two predictors across regimes, that is, the difference

in variances for each predictor and that in covariance between predictors. The larger these

differences are, the more improvement the non-linear scheme would give. Figure 7 confirms

that the gain from the non-linear scheme increases as each type of the difference gets larger.

In our sample for 6-month-ahead forecasts, the difference in conditional variances of ISM

was close to zero as compared to 1.60 for YS. As Figure 7 shows, the efficiency of the non-

linear scheme would have been greatly enhanced with small increase in |σ2
R,ISM −σ2

E,ISM|,

compared to a similar increase in |σ2
R,Y S−σ2

E,Y S|, because the latter is already rather high.

We also observe that had the difference in the correlation coefficients ρR− ρE been more

negative compared to its sample value of −0.60, the non-linear scheme would have yielded a

significant gain over the linear procedure. Thus, given a real dataset that exhibits sizeable dif-

ferences in the second moments between two regimes, the proposed non-linear combination

method can potentially be a much better option to pursue than the linear benchmark.
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5 Conclusion

This paper has proposed an optimal non-linear procedure to combine multiple predictors for

a binary target event within a Bayesian framework. The resulting likelihood ratio rule, which

has a solid rationale from Neyman-Pearson lemma, maximizes the hit rate for any given false

alarm rate among all competing schemes. We show that under additional simplifying as-

sumptions, the rule reduces to the linear combination scheme extensively used in practice.

To illustrate the usefulness of this method, we use a binormal specification with t-copulas

to characterize the marginal distributions and the contemporaneous dependence structure of

the ISM new order diffusion index and the yield spread in predicting U.S. recessions defined

by NBER. The merit of our approach is that the discriminatory ability of the individual pre-

dictors and the optimal combination rule can be uniquely determined by a few fundamental

parameters, each of which controls a specific aspect of forecast skill. Evaluated at the pos-

terior means of the estimated parameters, the aggregated forecasts have considerably higher

AUC values than the individual predictors. Given that recessions are difficult to predict, this

new approach offers a noteworthy improvement over the existing approaches. To better un-

derstand the underlying sources, we decomposed the overall improvement of the combined

forecasts relative to each predictor into gains from using the differentials in the dependence

structure of the two predictors in the two regimes, and gains from using the differentials in

the means and variances of the conditional distributions of the other predictor. The two pre-

dictors seem to complement one another to produce a more accurate forecast, absorbing the

strengths but abandoning the weaknesses in each of them. Moreover, the improvement of the

non-linear scheme over the linear benchmark can be potentially large as long as the second

moments of the two predictors behave quite distinctly between regimes.

Although the method presented in this paper is conceptually and computationally straight-

forward, it is subject to possible misspecification error. Its validity requires both the marginal

distributions and the copulas be correctly specified. If a forecaster has a large training sample

to estimate the model, we can circumvent this problem by using non-parametric or semi-

parametric methods. For example, if we want to maintain a parametric form for copulas, we
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may estimate the marginal distributions non-parametrically by kernel smoothing. The pa-

rameters in copulas are estimated by plugging in the non-parametric estimates. Asymptotic

properties of this semi-parametric two-step estimator have been established in Chen et al.

(2010). If and how the existing results can be modified to make inference on the resulting

ROC curve is still an open question. Generalization of our combination scheme along this

line would be a promising topic for future research.
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Tables and Figures

Table 1: Posterior summary of θ

6 months ahead 9 months ahead
θ Mean LHPD UHPD Mean LHPD UHPD

µR,ISM 0.865 0.415 1.357 0.510 0.077 0.941

µE,ISM -0.153 -0.371 0.082 -0.096 -0.350 0.194

µR,Y S 0.890 -0.684 2.309 1.076 -0.256 2.374

µE,Y S -1.294 -1.555 -0.980 -1.310 -1.794 -0.848

σ2
R,ISM 0.886 0.481 1.557 0.734 0.408 1.154

σ2
E,ISM 0.902 0.626 1.219 1.026 0.657 1.446

σ2
R,Y S 3.651 2.384 5.492 3.308 0.396 13.120

σ2
E,Y S 2.051 1.202 3.105 1.967 1.346 2.675

ρR -0.398 -0.624 -0.181 -0.247 -0.258 -0.234

ρE 0.272 0.130 0.441 0.306 0.104 0.495

τR -0.260 -0.408 -0.097 -0.159 -0.166 -0.150

τE 0.175 0.083 0.291 0.198 0.066 0.330

rhoR -0.382 -0.606 -0.174 -0.237 -0.248 -0.224

rhoE 0.260 0.124 0.424 0.293 0.099 0.478

d fR 8008.878 7942.348 8085.989 27392.215 26900.526 27899.045

d fE 70.974 65.942 75.709 28.565 11.829 53.228
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Table 2: Comparison of posterior AUC

6 months ahead 9 months ahead
Object Mean LHPD UHPD Mean LHPD UHPD

AUC(ISM) 0.777 0.671 0.887 0.676 0.535 0.803

AUC(YS) 0.820 0.613 0.956 0.851 0.705 0.958

AUC(Lin ISM+YS) 0.891 0.738 0.978 0.862 0.706 0.942

AUC(Opt ISM+YS) 0.914 0.835 0.983 0.884 0.808 0.966
ImpvISM 0.176 0.008 0.381 0.307 0.087 0.664

ImpvYS 0.115 0.011 0.386 0.039 0.002 0.209

Notes: The top panel of the table contains the AUC values computed for each curve in Figure 3. ImpvISM=(AUC(Opt
ISM+YS)-AUC(ISM))/AUC(ISM), and ImpvYS=(AUC(Opt ISM+YS)-AUC(YS))/AUC(YS).

Table 3: Model comparison in terms of the posterior predictive p-values

g(·) 6 months ahead 9 months ahead

p(µR,ISM) 0.984 0.956

p(σ2
R,ISM) 0.980 0.970

p(µE,ISM) 0.984 0.988

p(σ2
E,ISM) 0.994 0.922

p(µR,Y S) 0.974 0.986

p(σ2
R,Y S) 0.996 0.976

p(µE,Y S) 0.984 0.970

p(σ2
E,Y S) 0.956 0.994

Notes: p(µR,ISM) is the posterior predictive p-value when µR,ISM is the statistic of interest. Other p-values in this table are similarly defined.
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Figure 1: Scatter plots of F1(X1t |Zt) and F2(X2t |Zt)

(a) 6 months ahead (Zt = 1)
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(b) 6 months ahead (Zt = 0)
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(c) 9 months ahead (Zt = 1)
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(d) 9 months ahead (Zt = 0)
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Note: The solid curves represent the contours of the fitted t-copulas.
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Figure 2: Conditional densities of two predictors

(a) 6 months ahead (ISM)
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(b) 9 months ahead (ISM)
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(c) 6 months ahead (YS)
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(d) 9 months ahead (YS)
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Note: The solid curve represents the conditional density given Zt = 1 and the dotted curve is the conditional density given Zt = 0.
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Figure 3: ROC curves evaluated at posterior means

(a) 6 months ahead
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(b) 9 months ahead

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F

H

ISM
YS
Lin ISM+YS
Opt ISM+YS

Notes: The vertical axis “H” is the hit rate, while the horizontal axis “F” is the false alarm rate. “Lin ISM+YS” and “Opt ISM+YS” are the
ROC curves of the linearly and optimally combined non-linear forecasts respectively.

Figure 4: Improvements in the optimally combined forecast in terms of the linear score

(a) 6 months ahead

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

m

im
pr

ov
em

en
t

ISM
YS
Lin ISM+YS

(b) 9 months ahead
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Notes: “ISM” represents the improvement of the optimally combined forecast over ISM diffusion index, that is, (S∗(m)(Opt
ISM+YS)-S∗(m)(ISM))/S∗(m)(ISM). All of the other curves are calculated in the same way.
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Figure 6: Determinants of improvement in the combined forecasts over ISM and YS

(a) Mean difference (ISM)
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(b) Mean difference (YS)
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(c) Variance (ISM)
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(d) Variance (YS)
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(e) Correlation difference
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Notes: For the ISM, md(ISM)= µR,ISM−µE,ISM and var(ISM)= σ2
R,ISM . The similar notations apply for the yield spread. roud= ρR−ρE .
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