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Abstract 
 
We consider a simple tournament model in which individuals auto-select into the contest on 
the basis of their commonly known strength levels, and privately observed strength-shocks 
(reflecting temporary deviations from observed levels). The model predicts that the 
participation rate should increase with the player’s observed strength, and the total awarded 
prize amount. Furthermore, under certain conditions self-selection implies that participants 
with high observed strength levels have smaller expected strength-shocks than those with low 
levels. Consequently, the latter should play better than predicted and the former worse (given 
their observed strength). These predictions are confronted with data from a large chess 
tournament held in the USA. This tournament is divided into different sections, with players 
being able to play in the section to which their current chess rating (observed strength) 
belongs. As predicted, we find that within each section the participation probability increases 
with chess rating and prize amounts, and players with a relatively low (resp. high) rating are 
indeed the ones who have a better (resp. worse) relative performance. 
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1 Introduction

Incentive pay schemes are designed to induce more effort from workers and also to attract the
most productive employees. Various types of pay schemes are used in practice to achieve these
two goals. In economic sectors where output is individual-specific and easily observable and
measurable, firms often pay piece-rate wages to their employees. Workers’ salaries are then
directly linked to their realized production levels, creating the incentives for them to exert
optimal effort levels. It is also thought that such a compensation arrangement is primarily
attractive to the most efficient workers. Lazear (2000), for instance, analyzes data from a firm
in which the management modified the method of compensating workers from hourly wages to
piece-rate pay, and documents patterns of self-selection among the employees of this firm: the
less productive workers left the firm after the change in payment policy, and more productive
ones got hired.

The compensation structure adopted in rank-order tournaments is another example of an
incentive pay scheme. In a tournament, workers are paid according to their final ranking in
the competition: the best performing worker receives the first prize, the one ending second the
second highest award, and so forth. They are in this case rewarded according to their relative
performances (and not on the basis of absolute performances as in the piece-rate example).
Real-life applications of rank-order tournaments abound: salesmen with the highest sales figures
get end-of-year bonuses, the most prolific associate professors are promoted to full professorship,
and junior lawyers who win most cases are offered a partnership in law firms.

While there is an abundant literature on the incentive effects of tournaments,1 there are
only a few papers which have studied tournament-participation decisions, and the possible
consequences of self-selection on the outcomes of the competition. Stein (2002) characterizes
the Nash equilibrium efforts in a contest between heterogenous players. In particular, he finds
which players are active at the Nash equilibrium. Inactive players (zero effort) can thus be
seen as staying out of the tournament. Myerson and Wärneryd (2006) study contests where
the set of players is a random variable.2 In an empirical paper, Brown (2011) shows that
golf players perform less well when a superstar (Tiger Woods) participates in the tournament,
thereby suggesting that the precise composition of the pool of participants may influence play-
ers’ performances, which in turn affects the outcome of the contest itself. There are also a
few papers focussing on the case where agents have the possibility to choose between multiple
tournaments. Leuven, Oosterbeek, Sonnemans, and van der Klaauw (2011) report the results
of a field experiment in which students of microeconomics at the University of Amsterdam
could auto-select themselves into one of three tournaments.3 These data allowed the authors
to disentangle the effects of prizes and self-selection on exam grades. They find that the ob-
served increment in grades (across the three treatment groups) is not due to increased effort
of students but to sorting of more able students to tournaments with higher awards. Azmat
and Möller (2009) study professional road runners who can choose between contests differing
in race-distance and prize structure. They find, among other things, that in long races, steeper
prizes (more unequal prizes) increase the participation of top runners, while there is no such

1For early theoretical contributions see for instance Lazear and Rosen (1981), Green and Stokey (1983),
Nalebuff and Stiglitz (1983), and Moldovanu and Sela (2001), and a recent survey Konrad (2009). For empirical
contributions Ehrenberg and Bognanno (1990), Eriksson (1999), and Coffey and Maloney (2010).

2That is, each player is randomly selected in (or out of) the tournament and exerts effort not knowing
how many other players are in. Players are otherwise symmetric. Comparing total effort in a contest with
an uncertain number of players (with µ players on average) with a contest with no uncertainty and exactly µ
players, they show that aggregate effort is larger without uncertainty.

3Each student within a tournament was randomly allocated to a treatment and control group. Those in
the treatment group of a given tournament could compete for a prize awarded (prizes differed across the three
tournaments) to the student with the highest exam grade.
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link in medium and short races. This result is compatible with the authors’ theoretic model in
which runners’ contest choice depends on the prize structure and on how sensitive a contest’s
outcome is with respect to individual efforts.4

Our paper contributes to this literature. Using data from the World Open Chess tournament
(a large chess competition held in the USA each year), we analyze which players decide to
participate, and how this participation decision varies with the level of awarded prizes.5 We
also study how players, conditional on their decision to participate, perform in the contest.
We find that players with higher chess ratings are more likely to participate, and this effect is
magnified when prize budgets increase. More surprisingly, we also observe that highly rated
participants under-perform while the lowly rated ones over-perform. Our explanation for this
phenomenon follows from a simple participation model in which players self-select on their
unobservable chess-strength shocks.

We have twelve years of data from the World Open chess tournament. It is open to pro-
fessional and amateur players of all levels. To acknowledge the differences in strength between
players, the tournament is divided into sub-tournaments, or sections. Each section is defined
as an Elo-rating interval (the Elo rating system was introduced by Elo (1978) and is since the
1970s used by all chess federations throughout the world), and chess players can participate in
the section to which their Elo rating belongs. Players within a given section compete with each
other and the best ranked ones at the end of the tournament win prizes. The prizes awarded
in the World Open are very high, and this should create the necessary incentives for the chess
participants to play as well as they can. Self-selection is also expected to play a role as players
with an Elo rating near the top of their section have (all other things equal) a higher chance
to win than those near the bottom. Another reason to suspect self-selection in the data is
that optimal chess performance requires a serious preparation (through studying openings for
instance) and a ‘well-rested brain’. Chess players who have prepared intensively just before
the tournament and who have been through a calm and stress-less period are thus expected to
participate relatively more.

The data set records all match outcomes, all scores (after each round and at the end of the
tournament), the Elo rating of each player, some other player characteristics (state of origin,
chess history prior to the tournament, etc.), and the prize winners. An originality of our data
set is that we observe for each year the whole population of potential participants (i.e., all
individuals registered with the US chess federation). This allows us to study the determinants
of tournament participation.

The data are confronted with several predictions that we derive from a simple model of
tournament-entry. In this model a chess player is assumed to participate in the tournament
if the expected prize amount plus the net private benefit from playing exceeds the average
cost of participation (registration fee plus average travel and lodging expenses). The expected
prize amount depends on the commonly observed player-strength (measured by the Elo rating)
and a privately observed strength-shock, which captures the fact that actual strength may
slightly deviate from the Elo rating (because of a bad or good preparation, or because of
having experienced a busy or calm period). Players auto-select into the tournament on the
basis of their observed strength, their unobserved strength shock, and their unobserved net
private benefit. A first prediction is that players with a rating near the top of their section
should participate more than those with a rating near the bottom, and that this effect should

4See for other theoretical papers on optimal contest choice Damiano, Hao, and Suen (2010) and Damiano,
Hao, and Suen (2012).

5Several recent papers have studied data on chess players and competitions: Moul and Nye (2009), Gerdes
and Gränsmark (2010), Levitt, List, and Sadoff (2011), Gränsmark (2012), and Dreber, Gerdes, and Gränsmark
(2013). None of these papers has explicitly studied the issue of selection in tournaments and its consequences
on performance.
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be amplified when prizes are higher. We test this by running a logit model of a participation
indicator on the Elo rating (and various control variables), and find that the results are in line
with theory.

A second prediction follows from the fact that, under certain conditions on the distribution
of strength shocks and net benefits, the expected strength-shock should be decreasing with
the Elo rating of participants. The difference between real chess strength (measured as the
sum of the Elo rating and the strength shock) and the observed strength (Elo rating) is then,
on average, larger among lowly rated players than among highly rated players. Our second
prediction is therefore that, if there is indeed auto-selection on unobserved strength shocks, the
expected outcome of a chess match is not well measured by the so-called Elo winning expectancy
formula, which gives the expected match outcome on the basis of the two players’ Elo ratings
alone.6 For instance, when a highly rated player confronts a lowly rated player, the expected
outcome should be inferior to what is given by Elo’s formula. To test the second prediction,
we regress match outcomes on a function of each player’s Elo rating that encompasses the Elo
formula as a special case, and check whether the parameters in the model equal certain specific
values. We find again that the results are in line with theory: when lowly rated players confront
highly rated players, the former perform indeed better than predicted (by Elo’s formula) than
the latter.

As a robustness check, we also analyze data from the Paris Chess Tournament. The setup
of this chess contest is quite similar to the World Open except that prizes are substantially
lower (prizes in the Paris tournament are about one tenth of the prizes awarded in the US).
The expected prize amount should then be a flatter function of the player’s observed strength,
implying that the average difference between real and observed strengths across different types
of players should be smaller, which in turn implies that the auto-selection on strength shocks
should be a less relevant phenomenon. This is confirmed in the data since we find that Elo’s
winning expectancy formula fits the expected game outcomes quite adequately.

The paper is organized as follows. Section 2 gives background information about the World
Open chess tournament, and Section 3 about the Elo rating system. Section 4 explains how
the data set is constructed, and Section 5 describes all available variables. Section 6 presents
our model of tournament entry and its predictions, Section 7 the main results, and Section 8
the robustness analysis. Finally, Section 9 concludes.

2 The World Open chess tournament

The World Open chess tournament (hereafter World Open) is the largest chess tournament in
the world both in terms of prize levels and number of participants. It is held every year in the
U.S., around the 4th of July week-end, and is organized by the Continental Chess Association
(CCA). The first World Open took place in New York City in 1973, and since 1977 it has been
organized in Pennsylvania (in either King of Prussia or Philadelphia).7 In 1973 there were just
two sections: a so-called Open section (open to all players regardless of their chess levels) and
a Booster section (where only those with a rating below 1,800 could play). In that year, a total
of 725 players attended the tournament (369 in the Open and 356 in the Booster). In 1977 the

6Since the 1960s, Elo’s formula is used by chess federations throughout the world to predict game outcomes
and update chess ratings of players given their results in competitions or tournaments.

7A detailed description of the early years (1973-1991) does not seem to exist. A Wikipedia page (http://
en.wikipedia.org/wiki/World_Open_chess_tournament) gives, however, some information on the tournament
winners in those years together with their scores, precise tournament locations and dates, and attributed prizes.
For the period 1992-2012 more detailed information is available on the U.S. Chess Federation (USCF) webpages
(http://www.uschess.org/), and for the period 2001-2012 precise statistics on prizes can be found on CCA’s
website (http://www.chesstour.com/).
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organizers decided to increase the number of sections to eight and since then this number has
varied from year to year, down to five in 1983 and up to eleven in 2008. The Open section was
always maintained, and over time it has become almost exclusively a section for professional
players (broadly defined as players with a rating above 2,400). The other sections were by
definition reserved for amateur players. By increasing the number of sections for amateurs, the
CCA wanted to avoid matches that were too unbalanced, i.e., matches between players with
large differences in chess strengths.

Table 1 shows the number of participants for each World Open section from 2001 to 2012,
the time period for which we were able to collect complete data on all game results as well as all
awarded prizes. The amateur sections are denoted U2400 (meaning “under 2,400”, for players
with ranking below 2,400 only), U2200 (“under 2,200”, for players ranked below 2,200 only),
..., U600 (“under 600”, for players ranked below 600 only). During the period of observation
the number of sections and the delimitation of each section have been quite stable. The main
novelty was the introduction in 2007 of the U2400 section, placed between the Open and U2200
sections. Also, on several occasions, some sections were momentarily dropped while others were
introduced: For instance, in 2011, U1400 was dropped and was replaced by U1300; in 2007,
U1200 was dropped while U1100 and U800 were added.

Table 1: Number of players by year and section

Year Open U2400 U2200 U2000 U1800 U1600 U1400 U1300 U1200 U1100 U900 U800 U600 Total

2001 228 0 158 192 224 230 166 0 116 0 0 0 0 1,314
2002 217 0 164 224 249 218 157 0 90 0 0 0 0 1,319
2003 240 0 176 245 256 226 146 0 130 0 0 0 0 1,419
2004 234 0 175 206 237 213 137 0 102 0 0 0 0 1,304
2005 205 0 136 200 198 173 99 0 95 0 0 0 0 1,106
2006 237 0 202 279 224 244 143 0 132 0 0 0 0 1,461
2007 92 131 170 236 217 157 143 0 0 52 0 30 0 1,228
2008 118 128 193 218 236 185 127 0 99 0 45 0 28 1,377
2009 98 129 186 225 212 169 128 0 81 0 121 0 0 1,349
2010 119 121 158 200 179 139 87 0 78 0 65 0 0 1,146
2011 94 139 177 205 170 209 0 123 0 0 0 0 0 1,117
2012 118 113 184 234 179 145 103 0 96 0 88 0 0 1,260

Total 2,000 761 2,079 2,664 2,581 2,308 1,436 123 1,019 52 319 30 28 15,400

In this paper we focus on four sections: U2200, U2000, U1800, and U1600. We have
three main reasons for this choice: i) These sections have existed during the whole observation
period; ii) In each given year, their prize structures (number of awarded prizes, amounts) are
practically the same; iii) Professional players (ranking above 2,400), and those in the fuzzy
zone between very strong amateurs and professionals (2,200-2,400 range), are not allowed to
play in them. The fact that the selected sections exist throughout the sample period and have
similar prize structures facilitates comparisons across different chess levels and time periods.
We have decided to drop (semi) professionals from the analysis as their tournament behavior
and motivation to participate are different from the behavior and motivation of amateurs.8

The World Open is organized as a nine-round Swiss tournament, meaning that all players
have the right to play nine games regardless of their results. In practice players may quit the

8Many empirical papers studying sports tournaments (see, for example, Ehrenberg and Bognanno (1990))
have deliberately focussed on professional players, arguing that prizes for professionals are much higher than for
amateurs, thereby providing the necessary incentives primarily for the former. In the World Open tournaments
this argument does not really hold as prize levels are not that much higher for professionals. For instance, in
2005, the winner of the Open section received $14,000, while each winner of our four selected amateur sections
received $10,000.
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tournament at any time (after just one game, two games, etc.), but most do indeed play all
nine games. A chess game between two players has three possible outcomes: Player 1 wins
(player 1 then gets one point, player 2 zero), player 2 wins (player 2 gets one point, player 1
zero), players 1 and 2 draw (both get half a point). In a Swiss tournament players are matched
to each other in the different rounds in a specific way. In the first round, matching is according
to players’ initial chess ratings (as measured at the beginning of the tournament): the highest
rated player of a given section is opposed to the lowest rated player, the second-highest rated
player is opposed to the second-lowest rated player, and so on. Matching in subsequent rounds
depends on intermediate scores. In round 2, for instance, players with one point (i.e., who won
in round 1) compete with other players who have one point, players with half a point (their
first game ended in a draw) are opposed to other players with half a point, and players with
zero points (those who lost in round 1) face other players with zero points. The winner of a
given section is simply the player who accumulated most points at the end of a tournament
(hence there are multiple winners if several players end up with exactly the same number of
total points).

3 Elo rating

3.1 Measuring chess strength and updating ratings

The strength of chess players is measured by a rating method developed in the late 1950s by
Arpad Elo, who was a professor of physics at Marquette University, and chairman of the USCF
Rating Committee between 1959 and 1976. Since 1970 the Elo rating system has been adopted
by the FIDE (Fédération Internationale Des Échecs), the world chess federation founded in 1924
in Paris, and even earlier by the U.S.C.F. Despite its shortcomings, the method is regarded by
many experts as functioning reasonably well (Glickman (1995)).9

In March 2013, the highest rated player in the world was Magnus Carlsen, a 22 year old
Norwegian with a FIDE rating of 2,872, an all-time record. Professional players and master
level players are nowadays usually rated by the FIDE (along with their national federation),
whereas amateur players are usually only rated by their national federation. To get an idea
of the underlying meaning of Elo ratings10 it is useful to consider the classification of chess
players adopted by the U.S.C.F.: a player with a rating above 2,400 is called a Life Senior
Master, a player rated between 2,200 and 2,400 a Life Master, between 2,000 and 2,200 a
Candidate Master, between 1,800 and 2,000 a First Category, between 1,600 and 1,800 a Second
Category, between 1,400 and 1,600 a Third Category, and below 1,400 a Fourth Category. Note
that the sectioning chosen by the World Open organizers closely follows this official U.S.C.F.
classification.

An important role in the rating method is played by the so-called Elo formula which gives
the expected outcome of a chess game as a function of both players’ Elo ratings. To illustrate
the formula, consider two good chess players, Alice and Bob. The rating of Alice, denoted RA,
is equal to 2,050, and the rating of Bob, RB, is 1,970. Alice is slightly stronger than Bob and
she is expected to win more often when they play one another. The assumption made by Elo is
that the winning expectancy only depends on the difference between the two players’ ratings.
From Alice’s point of view the formula for the expected outcome is

WEAB = Pr (A wins) + 0.5Pr (A draws) =
(

1 + 10−(RA−RB)/400
)−1

. (1)

9Mark Glickman is the current chairman of the USCF Rating Committee (a position he has held since 1992).
10See also page 18 of Elo’s book (Elo (1978)).
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Given the values of the two ratings, Alice has a winning expectancy equal to WEAB = 0.57. If
these two players were to play a match of 100 games, Alice would win on average by 57 points
to 43. If, however, Alice were to play against Carlsen, her winning expectancy would only be
0.009: on average she would score almost 1 point out of 100 games, i.e., Alice would not stand a
chance against Carlsen. The division of the World Open into different sections is implemented
by the CCA precisely to avoid such unbalanced confrontations. Indeed, if Alice joins the U2200
section (the lowest section she is allowed to enter) her strongest possible opponent would be
rated 2,199. Although this rating is well above her own, Alice’s winning expectancy against
such a player would nonetheless be roughly 0.3 points higher than in a match against Carlsen.
Bob, on the other, although less highly rated than Alice, is in fact in a better situation. Indeed,
he can enter the U2000 section, where he is among the “top rated” players. In the worst case,
Bob plays against a 1,999 rated player with a winning expectancy of 0.46. On the other hand
he can play against a player rated as low as 1,800 with a winning expectancy of 0.73.

The winning expectancy formula is used in updating Elo ratings of players who have partic-
ipated in competitions or tournaments. Letting Rbefore

i be player i’s rating before a tournament
and ni the number of games played by i, the rating after the tournament, denoted Rafter

i , is
computed in the following way:

Rafter
i − Rbefore

i = Ki

ni∑
t=1

Resij(t) −

(
1 + 10

Rbefore
j(t)

−Rbefore
i

400

)−1
︸ ︷︷ ︸

WEij(t)

 (2)

where j(t) is the identity of i’s opponent in round t of the tournament, Resij(t) the outcome of
the match between i and j(t) (it equals 1 if i wins, 0 if i loses, and 0.5 in case of a draw), WEij(t)

the winning expectation of i playing against j(t), and Ki an adjustment factor. So according to
this formula, updating a player’s rating consists in multiplying the sum of deviations between
actual and expected match outcomes by the adjustment factor. The precise formula of the
factor is not the same for all chess federations.11

In our empirical analysis below we will sometimes need to compare results from different
sections, or pool data across sections. For this purpose it is useful to define a normalized
rating, defined as a player’s Elo rating minus the lower bound of the section wherein this player
participates. For player i the normalized rating is thus12

ri = Ri − lower bound of the section wherein i plays.

Continuing our example, if Alice plays in U2200, her normalized ranking would be rA = RA −
2, 000 = 50, and if Bob plays in U2000 then rB = RB − 1, 800 = 170.

11The FIDE defines K as a simple decreasing function of the player’s seniority: K = 30 for a newly registered
player, and switches to K = 15 once 30 officials games have been played; the factor remains fixed at this value as
long as the player’s rating is below 2,400, and permanently switches to K = 10 once this threshold is exceeded.
The USCF adopts a slightly different formula for K which allows for a larger variation for players with a rating
below 2,200:

Ki = 800/

(
ni +min

{
Ni ; 50/

√
1 +

(
(2, 200− Rbefore

i )/1, 000
)2})

where Ni is the total number of rated games played by i in the past (before tournament under consideration),
and ni the number of games during the tournament. In both the FIDE and the USCF formulae, K captures the
volatility or uncertainty of players’ strength. In practice it makes the rating of relatively new (or with a relatively
low rating in the case of the USCF) players to change more quickly (upwards or downwards). Notice that due
to the asymmetry of the factor K between players, the sum of all rating gains during a chess tournament is not
necessarily zero.

12In 2011 the U1400 section was replaced by the U1300 section. Consequently, for all players who played in
U1600 in that year the normalization is: 200× (R− 1, 300)/300.
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3.2 Reference and tournament ratings

Two specific values of each player’s Elo rating are particularly important. First, there is the
rating used by the tournament organizers to decide in which section each player can register.
We call this rating the reference rating. Before 2008, the reference rating is the June USCF
rating. For 2008 and thereafter, it is the July USCF rating. Second, each player has what we
call a tournament rating, i.e., the actual Elo rating on the first day of the tournament. The two
ratings are not necessarily identical. Indeed, the reference rating does not necessarily take into
account the results of tournaments played just before the World Open (recall that each World
Open starts beginning of July). For instance, prior to 2008, when the June USCF reference
rating was used, all results obtained by a player in June are not incorporated in the reference
rating. Even after 2008, when the July USCF rating was applicable, results of matches played
in June may not be taken into account because of time lags (the moment a given game is played
and the moment the associated score is transmitted to U.S.C.F. officials and actually recorded).
Both ratings are, however, observed in our data set (the reference rating through the World
Open database, and the tournament rating through the U.S.C.F. online database).

Both ratings are interesting. The reference rating is the Elo rating known to players when
they register for the World Open tournament (registration typically takes place a few weeks
or months prior to the start of the tournament). So they are likely to use this rating in their
decision whether or not to participate in the World Open. Organizers use the reference rating
to decide whether or not to approve the choices of players. The tournament rating is an
updated rating and as such it is a better measure of the player’s strength at the beginning of
the tournament. Both of them are, whenever necessary, normalized as described above.

Figure 1a shows how players are distributed according to their normalized reference rating.
Here we have pooled all our data together (all four sections and all twelve tournament years).
The ratings are grouped into bins of 20 Elo points: roughly 10% of players have a normalized
reference rating between 0 and 19, 8% between 40 and 59, etc. The distribution has the form
of a uniform distribution but this hides some disparities between the sections which will be
detailed in Section 5.4. At the extremes of the figure there are the categories “<0” and “>199”.
The “>199” category includes all individuals who played in a section under their “natural”
section, i.e., the section to which their reference rating belonged. Fortunately there is only a
handful of players in this category (5 are in U1600, 1 in U1800). This means that World Open
officials carefully applied the rules and did not allow (bar the 6 exceptions) players to register
in sections below their rating. The “<0” category includes individuals who, on the contrary,
played above their natural section. This was allowed under the World Open rules. Thus a
player like Bob (RB = 1970) could choose to play in his natural section (U2000), or be more
ambitious and opt for one of the sections above (U2200, U2400, or even Open). As shown in
Figure 1a, on average almost 11% of players are in the “<0” category.

Figure 1b displays the distribution of players according to their normalized tournament
rating, again by pooling all sections and years. The figure is quite similar to the previous one
except that there are much more observations concentrated in the “>199” category: on the first
day of the World Open 466 players (5% of sample) had a normalized tournament rating above
200, compared to only 6 players with a normalized reference rating above this threshold. These
are participants who took part in (at least) one tournament between the date of reference rating
and beginning of the tournament, and they won Elo points, resulting in their tournament rating
being higher than the upper limit of the section wherein they participate. They are not the only
players, however, for whom the reference and tournament ratings are different. Indeed, for any
player who played matches just before the World Open the two ratings may potentially not be
the same. For about 25% of players in our sample the reference rating decreased (relatively to
the tournament rating), for 36.4% it remained constant, and for 38.6% it increased. On average,
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Figure 1a: Distribution of normalized
reference rating (combined
data from all sections and
years)

Figure 1b: Distribution of normalized
tournament rating (com-
bined data from all sections
and years)

the normalized tournament rating exceeds the normalized reference rating by 2%. Table A.8
in the Appendix tabulates the two ratings against each other for all possible Elo bins.

4 Data set

Our data set is constructed by combining information from two sources. First we use the World
Open web site to collect data on chess participants in each tournament (first and last names,
state or country of origin, sections wherein they played, all pairings and game results, reference
ratings, prize amounts won by players). Second we use the USCF web site to extract monthly
information on official Elo ratings of USCF-registered players and the tournaments wherein
they played. This information allows us to define, for each year, the population of US chess
players potentially able to participate in the World Open. It also allows us to determine the
chess history of all these players prior to a given tournament. The two sources could be linked
through the first and last names of players.13 As indicated in Table 1, a total of 9,632 players
participated in the four sections of the World Open during the period 2001-2012.

From this initial sample we dropped foreign players (they typically do not have a USCF
rating but only the Elo rating from their national federation), players who were labeled as
“Fillers” in the World Open data basis (these players generally played just one match, and
were sporadically added by World Open officials to a particular section and round to get even
numbers of players), and persons who played no game at all in a World Open (they registered
but did not play). These eliminations reduced the sample to 8,224 players (1,663 in U2200,
2,238 in U2000, 2,238 in U1800, and 2,085 in U1600).14

5 Descriptive Statistics

5.1 Players’ characteristics

Table 2 contains summary statistics on the geographic origin of players. The left panel is based
on a sample where the tournaments of 2001, 2002, and 2006 are excluded (for these years
information on state of origin is missing in the World Open records), and the right panel is

13In the World Open files many names are badly spelled. We could fortunately recover and match almost all
players thanks to the fact that the USCF database indicates if a player played the World Open in a given year.

14Among the 8,224 players there are individuals who have participated in a World Open in different years.
This panel aspect of the data is not exploited in this paper.
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based on the full sample (after replacing missing observations by states where players lived in
2012, as referenced in the USCF database). To simplify the table, states have been classified
into six groups: Pennsylvania, Surrounding states (states around Pennsylvania), Center, Center
East, Center West, East, and West. See the Appendix for the precise list of states within each
group.

Table 2: Geographic Origin of Players

Sample (I) Sample (II)
Freq. Pct. Freq Pct.

Center 524 8.73 721 8.77
Center East 478 7.96 718 8.73
Center West 128 2.13 174 2.12

East 1,342 22.35 1,825 22.19
Surrounding states 2,354 39.20 3,162 38.45

Pennsylvania 839 13.97 1,120 13.62
West 340 5.66 504 6.13
Total 6,005 100.00 8,224 100.00

Footnotes: Sample (I): All years except 2001, 2002, and 2006.

Sample (II): All years. Geographic areas are defined in the Appendix.

Comparing the two panels, it turns out there is little difference. Apparently it is not
problematic to define the geographic origin of players (in 2001, 2002, and 2006) as it is defined
in 2012. Players come from all over the U.S. to play the World Open but slightly more than
half of them originate from Pennsylvania and surrounding states. About 22% of players are
from the East coast states and 9% from the Center. Relatively few of them are from the West
or Center West states (together 8.25%), which is not surprising given that these states are
furthest away from the tournament location.

Table 3 displays summary statistics on several variables constructed from the past Elo
ratings and chess activities recorded in the USCF online database.15 Monthly official Elo
ratings are available between January 1991 to December 2012. The earliest month a player
is observed corresponds to the moment this player registered as a USCF player. We define a
player’s chess-age, in a given year, as the difference between this year and the month of initial
registration. Hence if a player registered after January 1991, chess-age is uncensored (87% of
observations). For players observed in all months between January 1991 and December 2012
(i.e., they became member prior to January 1991), chess-age is censored (13%).

The main takeaway from Table 3 is that most players (despite being amateurs) have much
experience and actively play chess before participating in a World Open. To begin with, 90% of
them had a USCF rating for more than 2 years before participation, and 50% for more than 8
years. The rating trend, defined as the reference rating minus the average of Elo ratings during
the 12 months prior to the World Open, is on average equal to almost 38 points. In the ten
years preceding the World Open, participants have on average taken part in almost 65 chess
tournaments or competitions. They are also quite active during the months just before the

15The USCF does not disclose any demographic or socio-economic information about its members. In par-
ticular we do not know their gender. Browsing the names, it is apparent, however, that a large majority of
players is male. To verify this impression more formally, we used a database linking first names to gender
provided by the US census (the database uses the 1990 census, see http://www.census.gov/genealogy/www/
data/1990surnames/names_files.html). A first name match was found for about 80% of the players. Among
those, 95% have a male first name.
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Table 3: Chess History of World Open Players

N mean sd min p10 p25 p50 p75 p90 max

Chess age (years) 8224 8.58 5.09 0.00 2.00 4.00 8.00 12.00 16.00 21.00
Rating trend 8081 37.81 77.52 -309.00 -22.67 -3.00 12.50 60.00 133.00 777.00

# events in past 10 years 8224 64.65 75.54 0.00 6.00 17.00 41.00 86.00 151.00 961.00
# events in January-May 8224 4.97 6.38 0.00 0.00 1.00 3.00 7.00 12.00 77.00

# events in June 8224 0.99 1.57 0.00 0.00 0.00 0.00 1.00 3.00 18.00
# World Opens in past 8224 2.87 3.35 0.00 0.00 0.00 2.00 4.00 8.00 20.00

Provisory rating 8224 0.03 0.17 0.00 0.00 0.00 0.00 0.00 0.00 1.00
Active last 12 months 8181 0.89 0.31 0.00 0.00 1.00 1.00 1.00 1.00 1.00

Active last 13-24 months 8181 0.85 0.35 0.00 0.00 1.00 1.00 1.00 1.00 1.00
Quick/regular chess ratio 6335 0.93 0.09 0.33 0.82 0.89 0.94 0.98 1.02 1.33

World Open: between January and May they played on average in 4.97 events, and during the
single month of June in 0.99 events. Players are also familiar with World Open tournaments
since on average they have participated in 2.87 of them. Almost 30% of participants, however,
have never played in any World Open before. Only 3% of participants have a so-called provisory
rating, meaning that 97% of them have played at least 25 games officially recognized by the
USCF. Around 89% of players have been active in the 12 months preceding the World Open
(they have played in at least one competition or tournament during the past year), and 85% in
the period between 13 and 24 months prior to the tournament. Finally, the ratio of the quick
rating (rating established for games with a short time limit) over the regular rating equals 0.93
on average, so the latter usually exceeded the former, but about 10% of players actually have
a better quick rating.

5.2 Prizes in the WO

About six months before the start of each tournament, the World Open announces the number
of prizes that can be won in each chess section and all corresponding “guaranteed” prize amounts.
These amounts correspond to the minimal prizes awarded to prize winners in each section. As
will be seen below, the actually awarded prizes always exceed the guaranteed prizes, but the
differences are generally small.16 By summing over all guaranteed prizes in a given section we
obtain the total guaranteed prize fund allocated to that section.

5.2.1 First prize and total prize fund

Table 4 shows, for each year and section, the guaranteed first prize (the minimal amount
awarded to the winner of a section) and the realized first prize (amount actually awarded to
the winner). The table also lists per section and year the guaranteed total prize fund (sum
of all guaranteed prizes) and realized total prize funds. All monetary amounts correspond to
current U.S. dollars.

The realized first prizes and total prize funds are either slightly above or equal to the
guaranteed amounts. This implies that players could safely base their participation decision
on the guaranteed amounts (announced before each tournament). Between 2001 and 2005 all
guaranteed first prizes and actual first prizes are equal to $10,000 for all four sections. Between

16For the years 2006-2012 (except 2009) the World Open web site also listed “projected” prize amounts.
Projected prizes were based on an estimate of the total number of full-fee-paying participants in each of these
years. In practice these projected prizes were substantially above the guaranteed and actual prizes.
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Table 4: First prize and total prize fund (k$) per year and section

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

U1600 Guaranteed 1st prize 10.0 10.0 10.0 10.0 10.0 15.0 14.0 16.0 12.0 8.4 11.25 8.8
Realized 1st prize 10.0 10.0 10.0 10.0 10.0 17.7 14.6 16.0 12.0 10.3 11.5 9.3

Guaranteed total fund 24.9 24.9 24.9 24.8 24.8 41.6 36.0 41.1 27.5 19.3 29.3 23.3
Realized total fund 24.9 24.9 24.9 24.8 24.8 49.7 38.4 41.1 30.5 26.2 30.1 24.5

U1800, U2000, Guaranteed 1st prize 10.0 10.0 10.0 10.0 10.0 15.0 14.0 16.0 14.0 9.1 13.5 10.4
and U2200 Realized 1st prize 10.0 10.0 10.0 10.0 10.0 17.7 14.6 16.0 14.0 11.5 14.0 11.0

Guaranteed total fund 24.9 24.9 24.9 24.8 24.8 41.6 36.0 41.1 30.5 20.7 32.0 25.7
Realized total fund 24.9 24.9 24.9 24.8 24.8 49.7 38.4 41.1 33.5 27.2 32.8 27.0

2006 and 2012, the former are generally slightly below the latter. During this period the prizes
in U1800, U2000, and U2200 are identical, and in most years a bit higher than those in U1600:
winners of U1600 collected between $9,300 (2012) and $17,700 (2006), whereas in the other
three sections they earned between $11,000 (2012) and $17,700 (2006). All awarded first prizes
listed in the table correspond to attributed amounts in the absence of ties. In case multiple
players tied for first place, the awards had to be shared. More precisely, if n players tied
first, they had to equally share the sum of the first until the n-th prize.17 Analogous sharing
rules were applied if multiple players tied for second place, or third place, etc. Note that the
amounts given to World Open winners are substantial. As a point of comparison, the annual
median household income in the United States in 2001 was $42,228 and in 2006 $48,200.18

First prizes are also high compared to what amateurs can win in other chess tournaments. In
the 2012 London Chess Classic event, for instance, the winner of U2200 was guaranteed only
£250 (approximately $400). Similarly, in the 2012 Paris Chess Tournament, the winner of the
OPEN A (a section for players ranked between 1,800 and 2,300) could expect to collect e1,500
(around $2,000).

Guaranteed and actual total prize funds fluctuate between 20, 000 and 30, 000 for most
tournaments. Between 2006 and 2008, however, they are significantly higher and vary between
$40,000 and $50,000. Section 7 investigates how this increase in the prize budget affects players’
participation decisions. The awarded total prize funds are on the organizer’s cost side while
the registration fees paid by participants are on the benefit side. These fees equal $247 per
player between 2001 and 2005, $367 between 2006 and 2008, and $317 after 2009. Multiplying,
for each tournament, the registration fee by the number of participants (taking into account
that grand masters do not pay a fee), and subtracting the total amount of actually distributed
prizes, indicates that the World Open organizers ran a surplus in all years (between $90,000 in
2005 and $181,000 in 2012). This back-of-the-envelope approach, however, does not take into
account the costs of renting the tournament venue nor the remunerations earned by tournament
directors.

5.2.2 Structure of Prizes

Figure 2 shows the structure of ex-ante announced guaranteed prizes (averaged over all years
and sections). The first prize is normalized to 100, and all other prizes are expressed as
percentages of the first one. The World Open prize structure is reminiscent of the structure
adopted in many other sports tournaments: winners get by far the largest share of the cake

17Suppose, for example, that the first-prize equals $10,000, the second-prize $5,000, and the third-prize $3,000,
and that three players finished first (i.e., they ended up with the same number of points), then each would receive
$18,000/3=$6,000.

18Source: US Census Bureau, http://www.census.gov/prod/2002pubs/p60-218.pdf.
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and the successive prizes received by the lower-ranked players rapidly decline. On average, the
second prize is half the first prize, the third prize half the second, and the fourth half the third.
The gap between the fourth and fifth is usually less (between 25 and 30%), and, beyond the
10th rank, prizes remain quite similar.

Figure 2: Prizes as percentage of the first prize (average over all years and sections)

Table A.1 in the Appendix shows the number of awarded prizes per year and section. It
shows that for each year the number of prizes varied substantially across the four sections.
For example, in 2006, the number of prizes given in U1600 was 42, and only 26 in U2000.
These differences are due to variations in the number of ties across sections (there is hardly
any variation in the number of ex-ante announced number of prizes across sections in a given
year). Between 2001 and 2008 the average number of awarded prizes (averages calculated over
the four sections) varied between 22.3 (in 2002) and 34.2 (2006). Since 2009 it has dropped
and varied between 17.6 (2011) and 19.8 (2012).

5.3 Player performance

5.3.1 Probability to win a prize and net gain

Figure 3 shows how the normalized tournament rating is distributed among prize-winners.
Combining all tournament years and sections, it turns out that 1,142 players have won a prize
(regardless of whether it is a first prize, second prize, etc.).19 About 30% of these winners have
a normalized tournament rating above 180 (last two bars in the histogram) and almost 70%
have a rating above 140 (last four bars). So, as expected, most winners are players who have
either a tournament rating near the upper bound of the section wherein they play (normalized
tournament rating between 140 and 200) or a rating above the upper bound of their section
(normalized tournament rating above 200, i.e., players in the “>199” bin). To confirm this
finding, we ran a logit regression of a variable indicating whether a player has won a prize
on the normalized tournament ratings and a set of control variables (variables indicating the
geographic origin of players and their chess history, i.e., the variables listed in Tables 2 and 3).
The results are in Table A.2 in the Appendix. The estimations indicate that players with a

19Conclusions are similar when we focus only on players who have won the first prize.

13



normalized tournament rating below 80 have a lower probability of winning a prize while those
rated above 120 have a higher probability.

Figure 3: Normalized tournament rating of winners of a prize (combined data from all sections
and years)

To study the monetary benefit of participating in a World Open, we regress a player’s net
gain (defined as prize amount minus entry fee in $ of 2012) on normalized tournament ratings
and our control variables. Estimations are based on data from all years and sections pooled
together, and can be found in Table A.3 in the Appendix. Column “All” reports results based
on all players. For players with a normalized tournament rating below 140 the net gains are
negative and significantly different from zero (depending on the range of Elo ratings, net losses
vary between roughly between -$300 and -$200). For players ranked between 140 and 200 the
net gain is not significantly different from zero, i.e., they break even. Players with a normalized
rating above 200 have significant and positive expected gains: on average their net benefit is
around $130. The estimations shown in the column headed “Above P95” are based only on
players who are in the top 5% of prize earners within their section and rating bin. For example,
among players rated between 60 and 80 and with earnings above the 95th percentile in their
section, the average net gain is around $1,470. The results show that the highly rated top-
earners gained substantial amounts. Those between 160 and 180, for instance, have an average
net gain around $5,000, while those above 200 around $6,000.

5.3.2 End-of-tournament scores

Table A.4 in the Appendix reports results of OLS regressions of the final score on the normalized
tournament rating and its square, and our control variables. For these regressions only players
who played 9 games out of 9 are included (that is players who dropped out of the tournament
before the end are excluded). We report estimates based on both the full data set (all sections
and years pooled together) and the four sections separately. In each case both the rating and its
square are significant (except U1600 where only the rating is significant), and the relationship
between score and rating turns out to be positive and convex. The marginal score therefore
increases with the normalized rating.

5.3.3 Rating gains

The statistics on player performance shown so far indicate that highly rated chess players earn
relatively more money and score better. At first sight one may also expect them to gain more
Elo points during the tournament. We check this by regressing the difference Rafter − Rbefore
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on the normalized tournament rating indicators. Here Rbefore is the Elo rating at the beginning
of the tournament (tournament rating), Rafter at the end, and the difference is defined by (2).
The regression results are reported in Table A.5. Column (I) reports the results based on all
9,044 players for a specification without control variables. Players with a negative normalized
Elo rating gain on average almost 15 points more than those rated between 100 and 120 (the
reference category; the estimate of the constant shows that players in this category gain around
4 points), and this effect is significantly different from zero. On the other hand, players with a
normalized rating above 200 lose 10.148 rating points when compared to the reference group.
Players rated between 120 and 200 lose points while those rated between 0 and 100 gain,
although the coefficients are not statistically significant for all bins. Column (II) lists estimates
for a specification that adds geographic controls and chess history controls. The results are now
even stronger and more pronounced. The results given in column (III) are based on the sample
of players who have played all 9 games. The sample size is thereby reduced from 9,044 to 5,933.
Qualitatively the results are in line with those of (II) although the number of significant variables
is now slightly lower. Table A.5 thus suggests that players with high normalized ratings gain
not more but less Elo points than lowly rated players. This counterintuitive result is in fact
compatible with the idea that chess players self-select into the World Open on the basis of
their observed Elo rating and unobserved strength-shock. As detailed in Section 6, participants
situated near the lower bound of their chess section have, on average, a relatively high strength-
shock (compared to participants whose rating is near the upper bound), explaining why they
manage to perform better than expected (given their observed strength).

5.4 Tournament participation

Figures 4a-7b show, for each of our four chess sections, the histogram of the reference rating
among World Open participants (left-hand side panel) and the histogram among all USCF play-
ers (right-hand side panel). In constructing these figures we pooled all twelve tournament-years
together,20 and excluded participants who played above their natural sections. For example,
participants with a reference rating between 1,600 and 1,799 (the natural section for such play-
ers is therefore U1800), who chose to play in say U2000, are not counted in the histogram
plot 5a. Note that by comparing the left-hand panels with the corresponding right-hand panels
we informally test for the presence of selective entry into World Open tournaments.

For each section the histogram of reference ratings among World Open participants looks
quite different from the one among USCF members. The histograms for the latter tend to
decrease with reference ratings. This reflects the fact that for the segment of USCF players we
are studying (those with a reference rating between 1,400 and 2,200), the empirical distribu-
tion function of ratings decreases.21 The histograms for World Open participants are, on the
contrary, either increasing (Figures 4a and 5a) or flat functions (Figures 6a and 7a) of ratings.
The general message that emerges from the complete set of figures is that lowly-rated World
Open participants are under-represented (relatively to the USCF population), and highly-rated
participants over-represented.

20Conclusions remain similar when graphs are plotted separately for each year.
21Calculated over all USCF members, the distribution function has a unique maximum around 800, and

monotonously decreases beyond this point.
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Figure 4a: U1600 section (1,400-1,599) Figure 4b: USCF players (1,400-1,599)

Figure 5a: U1800 section (1,600-1,799) Figure 5b: USCF players (1,600-1,799)

Figure 6a: U2000 section (1,800-1,999) Figure 6b: USCF players (1,800-1,999)

Figure 7a: U2200 section (2,000-2,199) Figure 7b: USCF players (2,000-2,199)
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6 Selection Model

This section proposes a simple model explaining how chess players decide to participate or not
in a World Open tournament. Our model focusses on the choice between participating in one’s
natural section, or not participating at all. That is we abstract from the possibility that players
may decide to compete in a section above the section to which their current rating belongs.
We have seen in Section 3.2, however, that this concerns only a small fraction of World Open
participants.

It is assumed that players participate if their expected profits exceed participation costs.
The expected profit equals the expected prize amount that can be won plus a privately observed
benefit to play in a tournament. The expected prize amount depends on the player’s normalized
rating and a temporary player-specific strength-shock. This shock is also private information
and reflects the fact that current form and strength may deviate from the normalized rating.
Finally, the cost of participation is the sum of a common cost parameter and a player-specific
cost component.

In this setting we show that players auto-select into the tournament on the basis of their ob-
served normalized ratings, and their unobserved parameters (private benefits, strength-shocks,
and costs). This auto-selection leads to predictions on the link between participation decisions
on the one hand and ratings and prize levels on the other. It also leads to a prediction on the
link between the expected value of the strength-shock among participating players and their
rating, which in turn implies certain testable restrictions on the relationship between the ex-
pected game outcome and the players’ ratings. These predictions are confronted with the data
in Section 7.

When deciding to participate in a World Open, players’ actual strengths may deviate from
their normalized ratings.22 Let εi be the strength-shock of player i (εi can be positive or
negative) and, as above, ri the normalized rating of this player, then ri + εi represents i’s
actual chess strength level just before and during the tournament. Let G(ri + εi) denote the
expected prize amount of player i, bi the private benefit to play in the tournament (after all
chess players enjoy playing chess independently of any pecuniary considerations), c the average
cost of participation common to all players (which can be interpreted as the registration fee
plus average travel and hotel expenses), and ci the idiosyncratic departure from this average
cost (hence ci can be positive or negative). Then, the utility of player i taking part in the
tournament is

G(ri + εi) + bi − ci − c = G(ri + εi) + ui − c,

where ui = bi − ci is the net private benefit to play.
Players are thus characterized by the triplet (ε, u, r), where r is commonly known and ε and

u are privately observed. These variables are treated as random variables. We assume that, in
the population of chess players, both ε and u are independent from r (ratings are unrelated to
player-specific costs and benefits, and temporary deviations in chess strength). The two shocks
are, however, allowed to be dependent variables.23 Let φ(ε |u) be the density function of ε given
u defined on [ε, ε], and Φ(ε |u) the corresponding conditional distribution function. Finally, let
ψ(u) denote the density of u on an interval [u, u], and Ψ(u) the corresponding density function.

22Their actual playing level may, for instance, be higher than the official rating if they have trained intensively
just before the tournament, or lower if they have recently suffered from a lot of stress at work.

23Dependence between the shocks may arise for example if a player has a bad flu. The pleasure to play and
the physical costs of travelling would then be high (u < 0), but at the same time the ability to play chess well
would be reduced (ε < 0). As another example, imagine a player who has to be in Philadelphia for professional
reasons. Travel costs would in that case be low (high u), but exhaustion from work would result in a low value
of ε.
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Given the complexity of the World Open tournament it seems not feasible to find the equi-
librium expected prize amount function.24 Fortunately it is possible to obtain our predictions
without knowing explicitly G(.). We only need to make one assumption on this function,
namely that it is strictly increasing. This is a weak and natural assumption. It implies that
G(.) is differentiable almost everywhere and that its derivative, denoted g(.), is positive.

In equilibrium, player i participates if and only if:

G(ri + εi) + ui ≥ c. (3)

Let ε̃(u, r) (resp. ũ(ε, r)) denote the unique solution to the equation G(r+ε)+u = c. Formally,

ε̃(u, r) =


ε if c < u
G−1(c− u)− r if c− P1 ≤ u ≤ c
ε if u < c− P1

(resp. ũ(ε, r) = c−G(r + ε)). All players with ε ≥ ε̃ (resp. u ≥ ũ) participate. The threshold
value ε̃(u, r) can take three forms depending on the value of u. If u is larger than c then (as
G ≥ 0) the participation constraint (3) is non-binding: all players with such a value of the
private benefit participate whatever their value of ε, and hence ε̃(u, r) = ε. On the contrary,
if u is lower than c − P1 (where P1 is the first prize, i.e., the maximum amount which can be
won), then no one participates regardless of ε, and hence ε̃(u, r) = ε. When u is between these
values we have ε̃(u, r) = G−1(c− u)− r.

Proposition 1 states how the participation decision varies with the rating and with the level
of prizes awarded at the tournament.

Proposition 1 (Participation). i. We have ∂ε̃/∂r < 0 (for all values of u such that c−P1 ≤ u ≤
c), and ∂ũ/∂r < 0. More players therefore participate as r augments. ii. Let G(x) = λH(x)
with λ > 0. We have ∂ũ/∂λ = −H(r + ε) and ∂2ũ/∂λ∂r < 0. Therefore, more players
participate when λ augments, and this effect is relatively larger for higher values of r.

Proof. i. For values of u such that ε̃ is an interior solution we have ∂ε̃/∂r = −1. Furthermore,
∂ũ/∂r = −g(r + ε̃) < 0 since G is assumed to be strictly increasing. ii. We have ∂2ũ/∂λ∂r =
−h(r+ε) < 0 because H is strictly increasing (since G is assumed to be strictly increasing).

According to the first part of the proposition, the participation rate in the World Open
should increase with the normalized rating r: participants with low normalized ratings are
under-represented relatively to the total population of chess players, and those with high ratings
are over-represented. The second part states that, if all prizes in a tournament are augmented
by the same factor (and under the simplifying assumption that this change in prizes does not
affect the equilibrium winning probabilities discussed in footnote 24), the number of participants
augments and this increase is larger the higher r.

Next we investigate how the expected strength-shock among participants, denoted ε̂(r),
varies with the normalized rating. If this expectation fluctuates with r the expected true
strength of players is no longer adequately measured by their observed ratings alone. Instead,
the true chess strength of participants with rating r is on average equal to r+ε̂(r). To study ε̂(r)
it is convenient to first introduce ε̂(u, r), the expected strength-shock ε among participants with

24The function G(.) is of the form
∑
πkPk where πk is the probability that a player ends the tournament

at rank k and Pk the prize the player will then receive. The equilibrium probabilities are difficult to derive
because they depend on the equilibrium distribution of the types of the players who participate. Solving the
model is also complicated because of the tying rules (players share prizes if their end-of-tournament rankings
are identical) and the fact that the tournament is made up of multiple rounds.
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rating r and given u. Letting p denote the participation indicator (p = 1 if a player participates
and zero otherwise), we have

ε̂(u, r) = E [ε |p = 1, u ] = E [ε |ε > ε̃, u ] =

∫ ε

ε̃

εφ(ε |u)

1− Φ(ε̃ |u)
dε.

Lemma 1 states that this expected value of the strength-shock decreases with r for values of u
such that ε̃ is an interior solution.

Lemma 1. ε̂(u, r) decreases with r when u is such that c− P1 ≤ u ≤ c (otherwise ε̂(u, r) is a
constant function of r).

Proof. When c− P1 ≤ u ≤ c, the partial derivative of ε̂(u, r) with respect to r is:

∂ε̂(u, r)

∂r
=
∂ε̃(u, r)

∂r

(
φ(ε̃ |u)

1− Φ(ε̃ |u)

)
[ε̂(u, r)− ε̃] = −

(
φ(ε̃ |u)

1− Φ(ε̃ |u)

)
[ε̂(u, r)− ε̃] < 0.

When u > c (resp. u < c− P1), ε̂(u, r) = ε (resp. ε̂(u, r) = ε), and the derivative with respect
to r equals 0.

The intuition behind this result is that when r increases more players participate but these
new players are the ones for whom it was not profitable to participate before because they had
too low a ε. Therefore their inclusion into the tournament reduces the average value of ε.

The formal definition of ε̂(r) is

ε̂(r) = E [ε̂(u, r) |p = 1] =

∫ u

u

1− Φ(ε̃ |u)∫ u
u (1− Φ(ε̃ |u))ψ(u)du

ε̂(u, r)ψ(u)du

=

∫ u

u
ε̂(u, r)ω(u, r)ψ(u)du

where
ω(u, r) =

1− Φ(ε̃ |u)∫ u
u (1− Φ(ε̃ |u))ψ(u)du

,

and the expectation is with respect to u given p = 1. Since ε̂(u, r) is decreasing with r (or a
constant function of r when u > c or u < c−P1), the intuition is that ε̂(r) should also decrease
with r. Letting h (ε |u) = φ(ε |u)/(1 − Φ(ε |u)) be the hazard rate of the distribution of ε
conditional on u, Proposition 2 shows, however, that this is not necessarily the case.

Proposition 2 (Selection). The derivative of ε̂(r) with respect to r is:

dε̂(r)

dr
= E

[
∂ε̂(u, r)

∂r
|p = 1

]
+ Cov [h(ε̃ |u), ε̂(u, r) |p = 1] (4)

= −E [h(ε̃ |u) |p = 1]E
[
ε̂(u, r)− ε̃(u, r) |p = 1

]
+ Cov [h(ε̃ |u), ε̃(u, r) |p = 1] (5)

where the expectations and covariances are with respect to u given p = 1. Each of the following
conditions is sufficient for dε̂(r)

dr ≤ 0:

i. The variables ε and u are independent and h(ε|u)↘ with ε.

ii. The variable ε first-order stochastically decreases with u (i.e. h(ε|u) ↗ with u) and
h(ε|u)↘ with ε.

iii. The variable ε first-order stochastically decreases with u (i.e. h(ε|u)↗ with u) and h(ε|u)
is constant with ε.
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iv. The variable ε first-order stochastically decreases with u (i.e. h(ε|u) ↗ with u) and
h ↗ with ε, and ∂h(ε̃|u)/∂u

∂h(ε̃|u)/∂ε ≥
1

g(r+ε̃) > 0 (where ∂h(ε̃|u)/∂u is shorthand for the partial
derivative of h(ε|u) with respect to u evaluated at ε = ε̃, etc.).

v. The variable ε first-order stochastically increases with u (i.e. h(ε|u) ↘ with u) and
h(ε|u)↘ with ε, and 0 < ∂h(ε̃|u)/∂u

∂h(ε̃|u)/∂ε ≤
1

g(r+ε̃) .

Proof. See the Appendix.

In both equation 4 and 5, the first term is always negative while the second (covariance)
term can be positive or negative. Because of Lemma 1, the first term in 4 is indeed negative.
The first term in 5 is also negative because a hazard function is by definition positive, and, by
construction, ε̂(u, r) > ε̃(u, r). Proposition 2 gives the conditions under which the covariance
term appearing in 5 is negative. These are necessary conditions for dε̂(r)/dr to be decreasing
in r.

In the adverse-selection literature, it is often assumed that h (ε |u) is increasing with ε.25

As item iv of Proposition 2 indicates, such an assumption on the hazard rate (together with
the assumption that ε first-order stochastically decreases with u and the technical condition
∂h(ε̃|u)/∂u/∂h(ε̃|u)/∂ε ≥ 1/g(r + ε̃) > 0) ensures that dε̂(r)/dr < 0. If the hazard is instead
decreasing, we still have dε̂(r)/dr < 0 under the conditions listed in items i, ii, or v. Finally,
as item iii indicates, if the hazard is constant (this corresponds to the case where ε given u is
exponentially distributed) ε̂(r) is decreasing in r if h (ε |u) increases with u.

7 Empirical tests

7.1 Participation in World Open tournaments

We first test the predictions listed in Proposition 1, that is we check whether highly-rated
(resp. lowly-rated) participants are over-represented (resp. under-represented) relatively to the
population of USCF members, and whether participation in World Open tournaments increases
with the height of the prize fund. To do this we estimate the following logit model

Pr(pit = 1|xit) =
exp(xitβ)

1 + exp(xitβ)
(6)

where pit = 1 if USCF member i decides to participate in the tournament held in year t, and
pit = 0 otherwise, xit is a vector of explanatory variables, β a vector of unknown parameters
to be estimated, and

xitβ = zitθ +

10∑
j=1
j 6=5

δj × 1 {rit ∈ [20(j − 1), 20j)}

+

10∑
j=1

αj × 1 {rit ∈ [20(j − 1), 20j)} × 1 {t ∈ {2006, 2007, 2008}}

where zit is a vector containing a constant and control variables (region where player lives, past
chess experience, dummy variables indicating in which section players play, etc.) and θ the
associated parameter vector, 1{A} the indicator function equal to 1 if A is true and 0 otherwise,

25A necessary condition for h to be increasing is either i) φ is a log-concave function, or ii) φ is increasing
(see Bagnoli and Bergstrom (2005))
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and r the normalized reference rating. Since z includes a constant and each rating necessarily
lies within one of the 10 bins (we focus on players who have chosen to play in their natural
section, hence their normalized reference ratings are between 0 and 200), we should omit one of
them as the reference category. For convenience we took the fifth bin, the interval [80,100), as
the reference category. If item i of Proposition 1 indeed holds we expect the estimates of δj to
be negative for j < 5 (under-representation of lowly-rated participants), and positive for j > 5
(over-representation of highly-rated participants). If item ii also holds, we expect all αj to be
positive, with higher coefficients for larger values of j (increased participation due to larger
prize funds between 2006 and 2008, and the increase is amplified among top-rated players).

Table 5 reports the maximum likelihood estimates and asymptotic standard errors for dif-
ferent specifications of the logit model. Column I lists the results for the baseline specification
in which x only includes the rating interval indicators (i.e., z and the interactions between year
indicators and rating-interval indicators are excluded). In columns II-V we give the results
for richer specifications where control variables and/or the interaction terms are added to the
model. The different sets of results and the conclusions that can be drawn from them are strik-
ingly similar across the different specifications. In all cases the estimates of δ1, δ2, δ3, and δ4
have negative signs, and they are statistically different from zero. The null hypothesis that δ6
equals zero is never rejected. Estimates of δ7, δ8, δ9, and δ10 are positive for all specifications,
and the last three are significantly different from zero. We can reject the null that δ7 equals zero
at the 5 or 10% level (we fail to reject it at conventional levels only once, for the specification
of column IV). Overall these results are clearly in line with item i of Proposition 1. Regarding
the α’s, most estimates are positive and have a tendency to increase with j as predicted by
item ii. However, we can reject the null hypothesis only for α7, α9, and α10. The results are in
line with the second prediction but only for the most highly rated players.

Let us finally look at the effects of the control variables. Table 5 shows that chess play-
ers whose natural section is either U2200, U2000, or U1800 are more likely to participate in
World Open tournaments than those belonging to U1600 (the reference category). A mone-
tary incentive story cannot rationalize this finding since prize levels are comparable across the
four sections. Apparently, more highly ranked chess players are intrinsically more motivated to
participate, independently of financial considerations. USCF members originating from either
Pennsylvania or the surrounding states are significantly more likely to participate than those
living in the eastern states (reference category). This probably reflects lower travel costs for
people from Pennsylvania and its nearby states. On the contrary, the estimates associated
with “Center”, “Center East”, “Center West”, and “West” are all significantly negative, reflecting
higher transportation costs for players from these states. USCF members who have actively
played during the 12 months prior to the tournament are more likely to participate than those
have not. Similarly, members who have played official games between 12 and 24 months before
the World Open have a relatively higher participation rate. The variable “Chess age” is not
significant, but its square does have a significant (and negative) effect: players who have had
a USCF rating since a long time are less likely to come to a World Open. Since this variable
is a proxy for age, this suggests that older chess players have lower participation rates. Fi-
nally, players with a provisory rating (those who have roughly played less than 25 games) are
significantly less likely to participate.
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Table 5: Participation decision

Variable I II III IV V

0 ≤ r < 20 -0.234** -0.314** -0.249** -0.255** -0.209**
(0.05) (0.05) (0.06) (0.06) (0.07)

20 ≤ r < 40 -0.173** -0.223** -0.223** -0.188** -0.222**
(0.06) (0.06) (0.06) (0.07) (0.07)

40 ≤ r < 60 -0.188** -0.221** -0.192** -0.190** -0.173*
(0.06) (0.06) (0.06) (0.07) (0.07)

60 ≤ r < 80 -0.156** -0.173** -0.170** -0.146* -0.166*
(0.06) (0.06) (0.06) (0.07) (0.07)

100 ≤ r < 120 -0.088 -0.079 0.027 -0.076 0.005
(0.05) (0.05) (0.06) (0.06) (0.07)

120 ≤ r < 140 0.101† 0.124* 0.158** 0.098 0.118†
(0.05) (0.05) (0.06) (0.06) (0.07)

140 ≤ r < 160 0.112* 0.145** 0.212** 0.162* 0.200**
(0.06) (0.06) (0.06) (0.07) (0.07)

160 ≤ r < 180 0.258** 0.315** 0.373** 0.281** 0.326**
(0.05) (0.06) (0.06) (0.07) (0.07)

180 ≤ r < 200 0.298** 0.370** 0.445** 0.318** 0.389**
(0.05) (0.06) (0.06) (0.07) (0.07)

2000 ≤ rating < 2200 1.079** 1.255** 1.080** 1.259**
(0.04) (0.04) (0.04) (0.04)

1800 ≤ rating < 2000 0.679** 0.806** 0.680** 0.808**
(0.03) (0.04) (0.03) (0.04)

1600 ≤ rating < 1800 0.295** 0.357** 0.295** 0.357**
(0.03) (0.04) (0.03) (0.04)

Pennsylvania 0.828** 0.828**
(0.05) (0.05)

Surrounding states 0.595** 0.595**
(0.03) (0.03)

Center -1.047** -1.046**
(0.05) (0.05)

Center East -0.458** -0.457**
(0.05) (0.05)

Center West -1.290** -1.288**
(0.09) (0.09)

West -1.300** -1.299**
(0.05) (0.05)

Active last 12 months 1.514** 1.510**
(0.05) (0.05)

Active last 13-24 months 0.545** 0.540**
(0.04) (0.04)

Chess age in months 0.001 0.001
(0.00) (0.00)

(Chess age in months)2 -0.000** -0.000**
(0.00) (0.00)

Rating Trend 0.006** 0.006**
(0.00) (0.00)

(Rating Trend)2 -0.000** -0.000**
(0.00) (0.00)

Provisory rating -1.701** -1.717**
(0.14) (0.14)

(0 ≤ r < 20)× [2006, 2008] -0.126 -0.111
(0.09) (0.09)

(20 ≤ r < 40)× [2006, 2008] -0.029 0.046
(0.09) (0.10)

(40 ≤ r < 60)× [2006, 2008] -0.015 -0.025
(0.09) (0.10)

(60 ≤ r < 80)× [2006, 2008] 0.002 0.037
(0.09) (0.10)

(80 ≤ r < 100)× [2006, 2008] 0.105 0.050
(0.09) (0.09)

(100 ≤ r < 120)× [2006, 2008] 0.095 0.136
(0.08) (0.09)

(120 ≤ r < 140)× [2006, 2008] 0.199* 0.198*
(0.08) (0.09)

(140 ≤ r < 160)× [2006, 2008] 0.040 0.098
(0.09) (0.09)

(160 ≤ r < 180)× [2006, 2008] 0.225** 0.216*
(0.08) (0.09)

(180 ≤ r < 200)× [2006, 2008] 0.285** 0.252**
(0.08) (0.09)

Constant -3.254** -3.660** -5.138** -3.688** -5.140**
(0.04) (0.04) (0.09) (0.05) (0.10)

to be continued next page
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following last page

Variable I II III IV V

Chi2 220.086 1141.703 8259.338 1171.057 8283.682
N 190548 190548 178412 190548 178412
Footnotes: Significance levels: † : 10% ∗ : 5% ∗∗ : 1%. Logit regression of a variable
indicating whether a player participates in a World Open on normalized tournament rating
(column I), and control variables given in Tables 2 and 3 (columns II-V). Listed are the
maximum likelihood estimates and asymptotic standard errors in parentheses.

7.2 Relative performance

We now turn to testing whether the results on game outcomes are compatible with our predic-
tion that the expected strength-shock among participants, ε̂(r), decreases with r. To do this,
we regress the outcome of a game on a function of each player’s rating that encompasses Elo’s
winning expectancy formula as a special case, and check whether the parameters in the model
are equal to zero (corresponding to the case where ε̂(r) is invariant with r), or take certain
specific values (compatible with the expected shock being a decreasing function of the rating).

The game outcome when player i faces j is still denoted as RESij , ri and rj are these players’
reference ratings, εi and εj their strength-shocks, and Elo’s winning expectancy is WEij (for
notational simplicity we suppress the indices for tournament rounds and years). We thus have

WEij =
(

1 + 10−(ri−rj)/400
)−1

.

The expected game outcome between the two players, given their ratings and strength-
shocks, is

E(RESij |ri, rj , εi, εj) =
(

1 + 10−(ri+εi−rj−εj)/400
)−1

, (7)

which is Elo’s winning expectancy formula evaluated at ri + εi and rj + εj . It should be
emphasized that in the above expression the shocks εi and εj are unobserved. But Proposition 2
tells us how the expectation of these shocks vary with r.

To make our test operational, we need to express the expected outcome as a linear function
of the shocks. We therefore take a first-order Taylor expansion of the right-hand side of (7)
around εi − εj = 0:

E(RESij |ri, rj , εi, εj) 'WEij +

[
log(10)

400
WEij (1−WEij)

]
(εi − εj) .

Taking expectations with respect to εi and εj , conditional on ri and rj , gives

E(RESij |ri, rj) 'WEij +

[
log(10)

400
WEij (1−WEij)

]
E(εi − εj |ri, rj). (8)

Next we make the simplifying assumption that the expectation of the difference in shocks is
constant within bins to which the ratings belong. More precisely, it is assumed that

E(εi − εj |ri ∈ [20(k − 1), 20k) , rj ∈ [20(l − 1), 20l)) = βkl, for k, l = 1, ..., 10. (9)

Each βkl can be interpreted as an average rating adjustment necessary to account for selective
participation in the tournament: if the representative player i in the k-th bin plays against the
representative player j in the l-th bin, then the two players perform as if their rating difference
is not ri − rj but ri − rj + βk`. So if βk` is positive (resp. negative) player i performs better
(resp. worse) than what would be predicted by Elo’s winning expectancy. Only after adjusting
the difference in ratings by βk` points does the Elo formula correctly measure the expected
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game outcome between the two representative players. Note that our assumption on the shocks
implies βkl = −βlk, i.e., in absolute values the matrix of β’s is symmetric.

Taking WEij to the left-hand side of (8), substituting expression (9), we get the (approxi-
mate) regression function

RESij −WEij =

[
log(10)

400
WEij (1−WEij)

]
(10)

×
10∑
k=1

10∑
l=1

βkl × 1{ri ∈ [20(k − 1), 20k) , rj ∈ [20(l − 1), 20l)}+ vij

where, by construction, the error term vij satisfies the zero-conditional-mean assumption, i.e.,
E(vij |ri, rj) = 0.

When ε̂(r) is invariant with r, all βs should be zero. This corresponds to the case where
expected game outcomes are adequately modeled by Elo’s winning expectancy formula. When
ε̂(r) varies with r, we only expect that βkl = 0 for all k = l (players whose ratings are in the
same bin have the same expected shock, and hence Elo’s formula should coincide with expected
game outcomes). All other parameters should be different from zero. When, as we intuitively
expect, ε̂(r) decreases for all r, we should find that for all k < l: βkl > 0, and βkl increases
with k. By symmetry, we should similarly have that for all k > l: βkl < 0, and βkl decreases in
k.

Regression model (10) is estimated by pooling together all matches from all rounds, sections,
and years.26 Table 6 reports the estimation results. It gives the OLS estimates of βk`, for all
k < l (the upper half of the matrix of βs), and the usual standard error in parentheses. For
instance, the estimate of β16 equals 35.778 and its standard error is 10.28 (significant at the
1% level), implying that when the representative player with a normalized reference rating
between 0 and 20 plays against a representative player with rating between 100 and 120,
the former performs as if his true strength level is 35 Elo points higher. Put differently, to
account for self-selection on strength shocks, the difference in ratings between the two players
requires an adjustment of 35 points. Table 6 shows first of all that all diagonal element βkk
are not statistically significant. This is as expected: if two players from the same Elo bin face
each other, their strength shocks are identical on average, and hence the expected outcome of
their game equals the winning expectancy (1). The off-diagonal elements are often significant
(especially when k and ` are far apart). The estimates suggest that relatively to the Elo winning
expectancy, players near the upper bound of a section play less well than players near the lower
bound of the section. Whenever a given line in the table has multiple significant estimates,
these estimates are generally ordered in the expected way (increasing as one reads from left
to right). When we test the null hypothesis that βk` = 0, for all k < l (55 restrictions) with
a standard F-test, we find that the outcome of the F-statistic is 2.99. The 5% critical value
of a F distribution with 55 and 24,520 (24,575-55) degrees of freedom being 1.33, we reject
the null at the 5% level. Overall the results of Table 6 suggest that the expected unobserved
strength-shock is lower for highly rated players than for lowly rated players, i.e., ε̂(r) decreases
with r.

26Each given game, however, appears only once in the estimation sample. Including each game twice (once
viewed from i’s viewpoint and once from j’s) would have artificially decreased all standard errors and augmented
all t-statistics. Furthermore, for each game, player i is chosen to be the player with the lowest normalized
reference rating, and j the one with the highest. This implies that we can only identify and estimate βk`, for all
k < l. Determining player i and player j randomly, and imposing the symmetry condition βkl = −βlk, would
lead to similar estimates.
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8 Robustness analysis

In this section we study the robustness of our results. First, we apply the methodology to
data from another chess championship, the Paris Chess Tournament. This tournament is
quite similar to the World Open except that prizes and entry fees are significantly lower. By
comparing the two tournaments, we thus analyze to what extent the results reported sofar
change when the monetary incentives are mild. Second, we report estimations for alternative
specifications of model (10).

8.1 Application to the Paris Chess tournament

The Paris Chess Tournament (Championnat International de Paris Île-De-France) is organized
each year in July. This tournament is structured like the World Open: it is a Swiss tournament,
participants may play nine rounds (or less), and compete with each other in different sections.
Unlike the World Open, there are, however, only four sections: ‘Open FIDE’ for players whose
Elo ranking is above 2,200; ‘Open A’ for players ranked between 1,800 and 2,300; ‘Open B’
for players between 1,400 and 1,900; and ‘Open C’ for players under 1,500. Given that there
are less sections, the range of Elo rankings in each section is mechanically larger in the Paris
tournament. Note that there is some overlap between the sections, giving players in certain Elo
intervals the choice between two sections. Players with a rating between 1,800 and 1,900, for
instance, have the possibility to play in either Open A or Open B. Those who opt for Open B
play in their natural section, and those who opt for Open A play above their natural section.
Like in the World Open, players in the Paris tournament can thus choose between playing in
their own section or in a higher more competitive one.

The striking difference between the two tournaments lies in their prize structure: awarded
prizes are much lower in Paris. For example, in 2012, the winner of Open A could only win
e1,500, and the winner of Open B e1,000. This is about one tenth of the amounts awarded
in the World Open.27 Consequently, the function G (expected prize amount) should be a
relatively flatter function of r in the Paris tournament. We conjecture that the auto-selection
effects observed in the World Open, should be less strong or absent in the Paris tournament.
Players primarily decide to participate depending on their intrinsic motivation (the ui term in
our model).

To verify this prediction,28 we estimate a model analogous to model (10) using data on all
games played in Open A and Open B of the Paris tournament between 2001 and 2013. Like we
did in the case of the World Open, we restrict the analysis to players who participated in their
natural sections. Thus among participants in Open A we only kept those rated between 1,900
and 2,300; similarly, among participants in Open B we only kept those with a rating between
1,500 and 1,900. With this elimination both sections have the same width of 400 Elo points.
As in the case of the World Open we define 10 bins for each section, so that each bin now covers
an interval of 40 Elo points (instead of 20 in the World Open). The model we estimate is

RESij −WEij =

[
log(10)

400
WEij (1−WEij)

]
(11)

×
10∑
k=1

10∑
l=1

βkl × 1{ri ∈ [40(k − 1), 40k) , rj ∈ [40(l − 1), 40l)}+ vij

The results are in Table A.6. The presentation is as in Table 6, i.e., we give the OLS estimates of
βk`, for all k < l, and the standard errors in parentheses. The parameter βk` is now associated

27Registration fees are also lower in the Paris tournament, around e70.
28We do not have data on the full population of French chess players. We cannot therefore analyze the decision

to participate in the Paris tournament, i.e., estimate the analogue of the logit model (6).

26



with the indicator that player i is rated between 40(k − 1) and 40k, and player j between
40(l − 1) and 40l.

Table A.6 shows that only a few βs are statistically different from zero. Whereas in the
case of the World Open (Table 6) 17 parameters out of 55 are significant at the 1 or 5% level,
in the case of the Paris tournament the null hypothesis can be rejected just 6 times (of which
3 times only at the 10% level). Performing the F-test of the null hypothesis that the βs equal
zero, the F-statistic now equals 0.98. The 5% critical value of the F-distribution with 55 and
4,665 degrees of freedom is 1.34, so the null hypothesis cannot be rejected this time. Overall
the results for the Paris tournament are supportive of the idea that self-selection on strength
shocks should matter less when monetary incentives are mild.

8.2 Other specifications

In Table 6 we reported estimates of regression model (10) by defining the regressor r as the
normalized reference rating. This is a natural choice as chess players most likely make their
participation decision on the basis of this value of the Elo rating (see Section 3.2). An alternative
is to use the tournament rating as the explanatory variable. The advantage of this variable is
that it better reflects the strength of players at the start of tournament, at least for those who
have played games shortly before the World Open. The results are in Table A.7. To simplify the
comparison with Table 6, we estimate the model only on players whose normalized tournament
rating is between 0 and 200. The results in the two tables are quite similar: about the same
number of significant parameters, same signs of the estimates. Only the magnitudes of the
estimates differ somewhat, but this is not surprising as the interpretation of the strength shock
in not the same in the two models.29 Regarding the implications of the results, it apparently
does not really matter whether the reference or tournament rating is used as the explanatory
variable in model (10). We experimented with several other specifications as well (different sizes
of the bins, estimation per round, etc.) but again the results30 do not alter our conclusions.

9 Concluding remarks

In this paper we have studied the participation decisions of amateur chess players in the World
Open, a large chess tournament held in the USA. We have also analyzed how players perform
in this tournament (conditional on their decision to participate). In terms of the size of the
prize budget, the World Open is among the most generous tournaments in the world, and it
therefore attracts many competitors each year. Using an exhaustive data set on all players
registered with the U.S. Chess federation, we find that those with an Elo rating near the top
of the section in which they can compete are over-represented at the World Open (relatively
to the number of players with similar ratings in the population of U.S. chess players), while
those near the bottom are under-represented. We furthermore find that the over-representation
of highly rated players is accentuated in years where awarded prizes are higher. These results
are quite intuitive and natural, and reflect that chess players with relatively high ratings have
larger expected benefits, and hence they have stronger incentives to participate.

Our results regarding the chess performance of players are less intuitive. Regressing the
game outcomes on a specific function of the two opponents’ Elo ratings, we find evidence
against the hypothesis that the expected score can be adequately modeled by Elo’s winning
expectancy formula. Instead the estimates suggest that highly (resp. lowly) rated players

29In the model underlying Table 6, ε is the deviation between the true chess strength during the World
Openand the reference rating, while in the model underlying Table A.7 it represents the deviation between true
strength and the tournament rating.

30The additional results can be obtained from the authors upon request.
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under-perform (resp. over-perform) relatively to what would be predicted by this formula. As
shown in our theoretical model, this is compatible (under certain technical conditions) with
players self-selecting into the tournament on the basis of their unobserved strength shocks:
the average strength shock is larger among lowly-rated participants than among highly-rated
participants, resulting in over-performance of the former and under-performance of the latter.

Although the chess competition that we have studied is admittedly just a specific example of
a tournament, the findings of this paper may have external validity as well. As mentioned in the
introduction, many firms compensate their employees using pay schemes that are structured as
tournaments. If such firm advertise job openings, only workers for whom the expected benefits
of applying (which depends among other things on the level of salaries and the probability of
getting hired) exceed the costs (sending a resume, travel costs, the emotional costs of attending
the interviews) will apply. Very much like in our chess tournament, the pool of applicants will
therefore be a self-selected group of employees. This self-selection may affect the hiring process,
and ultimately the observed production levels.

So far our theoretical model has only been used to obtain predictions on participation
decisions and on game outcomes. It would also be interesting to actually estimate the model.
This would first of all require a study of the conditions under which the model parameters (the
expected prize amount function and the joint distribution of strength shocks and net private
benefits) are identified. Next it would require the development of methods for estimating these
parameters. We leave these challenging research questions for future work.

28



References

Ghazala Azmat and Marc Möller. Competition among Contests. RAND Journal of Economics,
40(4):743–768, Winter 2009.

Mark Bagnoli and Ted Bergstrom. Log-concave probability and its applications. Economic
Theory, 26(2):445–469, August 2005.

Jennifer Brown. Quitters Never Win: The (Adverse) Incentive Effects of Competing with
Superstars. Journal of Political Economy, 119(5):982–1013, October 2011.

Bentley Coffey and M. T. Maloney. The Thrill of Victory: Measuring the Incentive to Win.
Journal of Labor Economics, 28(1):87–112, January 2010.

Ettore Damiano, Li Hao, and Wing Suen. First in Village or Second in Rome? International
Economic Review, 51(1):263–288, February 2010.

Ettore Damiano, Li Hao, and Wing Suen. Competing for talents. Journal of Economic Theory,
147(6):2190–2219, November 2012.

Anna Dreber, Christer Gerdes, and Patrik Gränsmark. Beauty queens and battling knights:
Risk taking and attractiveness in chess. Journal of Economic Behavior & Organization, 90:
1–18, 2013.

Ronald G. Ehrenberg and Michael L. Bognanno. Do Tournaments Have Incentive Effects?
Journal of Political Economy, 98(6):1307–24, December 1990.

Arpad E. Elo. The Rating of Chessplayers (past&present). Ishi Press International (2nd edition
2008), 1978.

Tor Eriksson. Executive Compensation and Tournament Theory: Empirical Tests on Danish
Data. Journal of Labor Economics, 17(2):262–280, April 1999.

Christer Gerdes and Patrik Gränsmark. Strategic behavior across gender: A comparison of
female and male expert chess players. Labour Economics, 17:766–775, 2010.

Mark Glickman. A Comprehensive Guide to Chess Ratings. American Chess Journal, 3:59–102,
1995.

Patrik Gränsmark. Masters of our time: Impatience and self-control in high-level chess games.
Journal of Economic Behavior & Organization, 82:179–191, 2012.

Jerry R. Green and Nancy L. Stokey. A Comparison of Tournaments and Contracts. Journal
of Political Economy, 91(3):349–364, June 1983.

Kai Konrad. Strategy and Dynamics in Contests. Oxford University Press, 2009.

Edward P. Lazear. Performance Pay and Productivity. American Economic Review, 90(5):
1346–1361, December 2000.

Edward P. Lazear and Sherwin Rosen. Rank-Order Tournaments as Optimum Labor Contracts.
Journal of Political Economy, 89(5):841–64, Oct. 1981.

Edwin Leuven, Hessel Oosterbeek, Joep Sonnemans, and Bas van der Klaauw. Incentives versus
Sorting in Tournaments: Evidence from a Field Experiment. Journal of Labor Economics,
29(3):637–658, July 2011.

29

http://www.jstor.org/stable/25593736
http://dx.doi.org/110.1007/s00199-004-0514-4
http://www.jstor.org/stable/10.1086/663306
http://www.jstor.org/stable/10.1086/663306
http://www.jstor.org/stable/10.1086/648318
http://dx.doi.org/
http://dx.doi.org/10.1016/j.jet.2012.09.002
http://dx.doi:10.1016/j.jebo.2013.03.006
http://dx.doi:10.1016/j.jebo.2013.03.006
http://www.jstor.org/stable/2937760
http://www.jstor.org/stable/10.1086/209920
http://www.jstor.org/stable/10.1086/209920
http://dx.doi:10.1016/j.labeco.2010.04.013
http://dx.doi:10.1016/j.labeco.2010.04.013
http://www.glicko.net/research/acjpaper.pdf
http://dx.doi:10.1016/j.jebo.2012.02.002
http://www.jstor.org/stable/1837093
http://www.jstor.org/stable/2677854
http://www.jstor.org/stable/1830810
http://www.jstor.org/stable/10.1086/659345
http://www.jstor.org/stable/10.1086/659345


Steven D. Levitt, John A. List, and Sally E. Sadoff. Checkmate: Exploring Backward Induction
among Chess Players. American Economic Review, 101(2):975–990, April 2011.

Benny Moldovanu and Aner Sela. The Optimal Allocation of Prizes in Contests. American
Economic Review, 91(3):542–558, June 2001.

Charles C. Moul and John V.C. Nye. Did the Soviets collude? A statistical analysis of cham-
pionship chess 1940-1978. Journal of Economic Behavior & Organization, 70:10–21, 2009.

Roger B. Myerson and Karl Wärneryd. Population uncertainty in contests. Economic Theory,
27(2):469–474, February 2006.

Barry J. Nalebuff and Joseph E. Stiglitz. Prizes and Incentives: Towards a General Theory of
Compensation and Competition. Bell Journal of Economics, 14(1):21–43, Spring 1983.

William E. Stein. Asymmetric rent-seeking with more than two contestants. Public Choice,
113(3/4):325–336, December 2002.

30

http://www.jstor.org/stable/29783697
http://www.jstor.org/stable/29783697
http://www.jstor.org/stable/2677878
http://dx.doi:10.1016/j.jebo.2009.01.009
http://dx.doi:10.1016/j.jebo.2009.01.009
http://dx.doi.org/10.1007/s00199-004-0605-2
http://www.jstor.org/stable/3003535
http://www.jstor.org/stable/3003535


A Appendix

A.1 Geographic variables

As explained in the main text, our data set records the states from which the chess players
originate. The states are classified into seven groups, and we define the following seven indicator
variables

• Center=1 if player originates from AR, IA, IL, KS, LA, MN, MO, ND, NE, OK, SD, TX,
WI.

• Center East=1 if player originates from AL, IN, KY, MI, MS, OH, TN, WV.

• Center West=1 if player originates from AZ, CO, ID, MT, NM, UT, WY.

• East=1 if player originates from CT, FL, GA, MA, ME, NC, NH, RI, SC, VA, VT.

• Surrounding states=1 if player originates from DC, DE, NJ, NY, MD.

• Pennsylvania=1 if player originates from PA.

• West=1 if player originates from AK, CA, NV, OR, WA.

A.2 Tables

Table A.1: Number of distributed prizes per year and section

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Average

U1600 23 20 20 22 28 42 26 34 13 23 17 15 24.0
U1800 40 22 26 23 29 39 21 22 23 15 17 17 24.9
U2000 32 20 20 35 35 26 21 34 21 21 20 28 25.9
U2200 22 29 25 25 32 31 25 32 17 15 16 16 23.7
Average 29.7 22.3 22.7 26.1 31.0 34.2 22.9 30.1 18.9 18.4 17.6 19.8 24.7
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Table A.2: Probability of winning a prize

All sections All sections U1600 U1800 U2000 U2200

r < 0 -1.658** -1.659** -1.374** -0.961* -2.636** -2.192**
(0.23) (0.23) (0.49) (0.43) (0.75) (0.39)

0 ≤ r < 20 -1.428** -1.368** -1.876* -1.139* -1.380** -1.457**
(0.24) (0.24) (0.76) (0.53) (0.51) (0.38)

20 ≤ r < 40 -0.769** -0.776** -1.591* -0.501 -0.068 -1.417**
(0.21) (0.21) (0.64) (0.45) (0.36) (0.39)

40 ≤ r < 60 -0.631** -0.634** -0.058 -0.419 -0.699† -1.147**
(0.19) (0.19) (0.40) (0.40) (0.40) (0.37)

60 ≤ r < 80 -0.492** -0.496** -0.658 -0.300 -0.054 -1.073**
(0.19) (0.19) (0.45) (0.41) (0.35) (0.36)

100 ≤ r < 120 -0.022 0.026 0.049 0.140 -0.161 0.142
(0.16) (0.16) (0.36) (0.34) (0.33) (0.28)

120 ≤ r < 140 0.432** 0.408** 0.403 0.526 0.694* 0.402
(0.15) (0.15) (0.32) (0.32) (0.30) (0.30)

140 ≤ r < 160 0.627** 0.627** 0.600† 0.434 1.092** 0.682*
(0.15) (0.15) (0.31) (0.33) (0.29) (0.28)

160 ≤ r < 180 0.729** 0.699** 0.446 0.712* 1.220** 0.712*
(0.14) (0.15) (0.32) (0.31) (0.29) (0.29)

180 ≤ r < 200 1.096** 1.049** 0.989** 1.211** 1.594** 0.852**
(0.14) (0.14) (0.30) (0.31) (0.28) (0.30)

200 ≤ r 1.146** 1.113** 1.250** 1.489** 1.758** 1.099**
(0.15) (0.16) (0.31) (0.33) (0.35) (0.42)

Constant -2.088** -1.907** -1.850** -1.838** -2.328** -1.321**
(0.12) (0.17) (0.34) (0.35) (0.38) (0.41)

Chi2 629.459 751.359 209.015 186.960 305.398 265.551
N 9538 9536 2295 2562 2632 2047

Footnotes: Significance levels: † : 10% ∗ : 5% ∗∗ : 1%. Logit regression of a variable indicating whether
a player has won a price on normalized tournament rating and control variables given in Tables 2 and 3.
Listed are the maximum likelihood estimates and asymptotic standard errors in parentheses.
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Table A.3: Net gain of participating (prize won minus entry fee in $ of 2012)

All above P95

r < 0 -296.268** 23.522
(36.93) (289.67)

0 ≤ r < 20 -291.425** 251.832
(43.23) (339.85)

20 ≤ r < 40 -276.911** 701.951
(47.94) (508.28)

40 ≤ r < 60 -282.850** 691.088
(44.86) (457.03)

60 ≤ r < 80 -230.407** 1468.215**
(46.60) (508.28)

80 ≤ r < 100 -190.443** 1938.949**
(44.13) (501.72)

100 ≤ r < 120 -233.426** 1439.593**
(39.79) (452.25)

120 ≤ r < 140 -186.829** 1912.961**
(42.33) (461.97)

140 ≤ r < 160 -36.289 4134.466**
(41.92) (472.35)

160 ≤ r < 180 52.898 5070.430**
(42.49) (467.08)

180 ≤ r < 200 71.770 5486.533**
(44.09) (489.33)

200 ≤ r 130.707* 6000.992**
(54.87) (614.48)

R2 0.035 0.439
N 7991 614

Footnotes: Significance levels: † : 10% ∗ : 5% ∗∗ : 1%. OLS regression of net gain on
normalized tournament rating and control variables given in Tables 2 and 3. Column “All”
is based on all observations, column “above P95” on players in the top 5% of prizers earners
within their section and rating bin. Listed are OLS estimates and standard errors in parentheses.
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Table A.4: Final score after 9 rounds

All sections U1600 U1800 U2000 U2200

r/100 0.640** 0.678** 0.571** 0.703** 0.744**
(0.02) (0.05) (0.05) (0.04) (0.04)

(r/100)2 0.054** 0.031 0.080** 0.100** 0.108**
(0.01) (0.02) (0.03) (0.02) (0.02)

Constant 4.260** 3.967** 3.783** 4.885** 5.241*
(0.18) (0.32) (0.37) (0.37) (0.40)

R2 0.268 0.310 0.248 0.304 0.409
N 4672 1097 1285 1319 971

Footnotes: Significance levels: † : 10% ∗ : 5% ∗∗ : 1%. OLS regression of final score
on normalized tournament rating (for players who played all nine rounds) and control variables
given in Tables 2 and 3. Listed are OLS estimates and standard errors in parentheses.
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Table A.5: Rating Gain

(I) (II) (III)

r < 0 14.631** 13.889** 17.720**
(1.87) (1.87) (2.45)

0 ≤ r < 20 6.912** 8.067** 8.225**
(2.00) (1.98) (2.65)

20 ≤ r < 40 0.611 0.223 3.463
(2.11) (2.09) (2.83)

40 ≤ r < 60 4.187* 3.515† 4.254
(2.05) (2.02) (2.67)

60 ≤ r < 80 0.596 0.117 0.757
(2.08) (2.06) (2.71)

80 ≤ r < 100 2.002 0.919 3.352
(2.04) (2.01) (2.64)

120 ≤ r < 140 -2.082 -3.423† -1.910
(1.98) (1.95) (2.53)

140 ≤ r < 160 -3.530† -4.858* -2.842
(1.96) (1.94) (2.53)

160 ≤ r < 180 -4.950* -6.962** -3.478
(1.98) (1.96) (2.56)

180 ≤ r < 200 -1.984 -4.300* -2.007
(2.01) (1.99) (2.59)

200 ≤ r -10.148** -11.817** -10.220**
(2.32) (2.33) (2.96)

Constant 4.032** 16.360** 22.948**
(1.36) (2.27) (2.99)

R2 0.022 0.054 0.062
N 9044 9044 5933

Footnotes: Significance levels: † : 10% ∗ : 5% ∗∗ : 1%. OLS regression
of rating gain (defined by equation (2)) on normalized tournament rating (column I).
Column II (full sample) and III (only players having played 9 rounds) give
results with controls. Listed are OLS estimates and standard errors in parentheses.
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A.3 Proof of Proposition 2

We have

dε̂(r)

dr
=

∫ u

u

[
ω(u, r)

∂ε̂(u, r)

∂r
+
∂ω(u, r)

∂r
ε̂(u, r)

]
ψ(u)du

=

∫ u

u

∂ε̂(u, r)

∂r
ω(u, r)ψ(u)du+

∫ u

u

[
∂ω(u, r)

∂r
ε̂(u, r)

]
ψ(u)du

= E
[
∂ε̂(u, r)

∂r
|p = 1

]
+

∫ u

u

[
∂ω(u, r)

∂r
ε̂(u, r)

]
ψ(u)du.

We now compute ∂ω(u,r)
∂r . Using that ∂ε̃(u,r)

∂r = −1 we have

∂ω(u, r)

∂r
=

φ(ε̃ |u)− ω(u, r)
∫ u
u φ(ε̃)ψ(u)du∫ u

u (1− Φ(ε̃ |u))ψ(u)du
=

(
φ(ε̃ |u)

1− Φ(ε̃ |u)
−

∫ u
u φ(ε̃ |u)ψ(u)du∫ u

u (1− Φ(ε̃ |u))ψ(u)du

)
ω(u, r)

=

(
h(ε̃ |u)−

∫ u

u
h(ε̃ |u)

(1− Φ(ε̃ |u))ψ(u)∫ u
u (1− Φ(ε̃ |u))ψ(u)du

du

)
ω(u, r)

=

(
h(ε̃ |u)−

∫ u

u
h(ε̃ |u)ωψ(u)du

)
ω(u, r) = (h(ε̃ |u)− E [h(ε̃ |u) |p = 1])ω(u, r).

Therefore∫ u

u

[
∂ω(u, r)

∂r
ε̂(u, r)

]
ψ(u)du =

∫ u

u
(h(ε̃ |u)− E [h(ε̃ |u) |p = 1]) ε̂(u, r)ω(u, r)ψ(u)du

= Cov [h(ε̃ |u), ε̂(u, r) |p = 1] ,

which gives equation (4) in Proposition 2. To obtain equation (5) we use that (see the proof of
Lemma 1)

∂ε̂(u, r)

∂r
= −h(ε̃ |u) [ε̂(u, r)− ε̃] .

Then E
[
∂ε̂(u,r)

∂r |p = 1
]
writes

∫ u

u

∂ε̂(u, r)

∂r
ω(u, r)ψ(u)du = −

∫ u

u
h(ε̃ |u) [ε̂(u, r)− ε̃]ω(u, r)ψ(u)du

= −Cov [h(ε̃ |u), (ε̂(u, r)− ε̃) |p = 1]− E [h(ε̃ |u) |p = 1]E [ε̂(u, r)− ε̃ |p = 1]

= −Cov [h(ε̃ |u), ε̂(u, r) |p = 1] + Cov [h(ε̃ |u), ε̃(u, r) |p = 1]

−E [h(ε̃ |u) |p = 1]E [ε̂(u, r)− ε̃ |p = 1]

and expression (5) of Proposition 2 follows.

Proof of the sufficient conditions:

i. Under independence of ε and u it follows that ε̂(u, r)↘ with u (the proof is similar to the
one of Lemma 1). Under the additional assumption that h(ε|u)↘ with ε it also follows
that h(ε̃ |u)↗ with u. We then have Cov [h(ε̃ |u), ε̃(u, r) |p = 1] < 0.

39



To verify that the four remaining conditions are also sufficient for dε̂(r)
dr ≤ 0, we verify

that they guarantee that h(ε̃ |u) is non-decreasing with u. If indeed this hazard is a non-
decreasing function of u, the covariance term appearing in (5), Cov [h(ε̃ |u), ε̃(u, r) |p = 1],
is negative (since ε̃(u, r) is always decreasing with u: ∂ε̃/∂u = −1/g(r + ε̃) < 0), which
is a sufficient condition for dε̂(r)

dr ≤ 0.

The total derivative of h(ε̃ |u) is

dh(ε̃ |u)

du
=
∂ε̃

∂u

∂h(ε̃ |u)

∂ε
+
∂h(ε̃ |u)

∂u
. (12)

Replacing ∂ε̃
∂u by −1/g(r + ε̃) < 0, the sign of the derivative of h(ε̃ |u) depends on the

following conditions:

dh(ε̃ |u)

du
≥ 0⇔


∂h(ε̃|u )/∂u
∂h(ε̃|u )/∂ε ≥

1
g(r+ε̃) if ∂h(ε̃ |u)/∂ε > 0

∂h(ε̃|u )/∂u
∂h(ε̃|u )/∂ε ≤

1
g(r+ε̃) if ∂h(ε̃ |u)/∂ε < 0

∂h(ε̃ |u)/∂u ≥ 0 if ∂h(ε̃ |u)/∂ε = 0

(13)

ii. When h(ε̃ |u)↗ with u and h(ε̃ |u)↘ with ε, then dh(ε̃|u )
du > 0 because of equation (12).

iii. The hazard rate is independent of ε and is written h (ε |u) = λ(u). When in addition
λ(u)↗ with u, then dh(ε̃|u )

du > 0 because of equation (12).

iv. When h(ε̃ |u) ↗ with u and h(ε̃ |u) ↗ with ε, and ∂h(ε̃|u )/∂u
∂h(ε̃|u )/∂ε ≥

1
g(r+ε̃) , then

dh(ε̃|u )
du ≥ 0

because of equation (13).

v. When h(ε̃ |u) ↗ with u and h(ε̃ |u) ↘ with ε, and ∂h(ε̃|u )/∂u
∂h(ε̃|u )/∂ε ≤

1
g(r+ε̃) , then

dh(ε̃|u )
du ≥ 0

because of equation (13).
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