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Abstract 
 
The paper reexamines the welfare economics of intergenerational risk. Risk and its resolution 
over time are modeled as a decision tree: in each period, the consumption of the current one-
period living generation is to be traded-off against uncertain benefits of future generations; as 
time passes, the planner observes the realized shocks and becomes more informed about the 
economy. The characterized class of criteria, named fair intergenerational utilitarian, 
measures social welfare in terms of the ratio between the allocated consumptions and an 
endogenously-determined equitable reference. This allows social preferences to (i) 
disentangle aversion to intergenerational inequality from aversion to risk, (ii) exhibit a 
preference for early resolution of risk, (iii) show different discounting formulas depending on 
the magnitude of risk and on the timing of its resolution, and (iv) avoid extreme policy 
recommendations in the presence of fat-tailed catastrophic events. 
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1. Introduction

This paper addresses the assessment of risky intergenerational social situations.
Let an event tree describe time, uncertainty, and the revelation of information. At
each node, available capital is used as input in production; the produced output is
then shared between consumption of the current one-period living generation (named
conditional generation) and capital-savings for later use. The later evolution of tech-
nology is unknown at the moment this decision is taken and forces the society to
trade-off the certain consumption of the current generation with uncertain consump-
tions of future ones.

The main result is to axiomatically characterize a new family of social orderings
for intergenerational models of risk: the fair intergenerational utilitarian criteria rank
alternatives (or prospects) based on the information about technological risk and the
timing of its resolution. The normative reasoning leading to this family comprises
three steps, hereafter briefly described.

Step 1 associates an equitable reference to each risky intergenerational situation.
This reference, named fair prospect, is selected by means of an allocation rule and
interprets the ideal of distributional fairness: it is the most appealing prospect in
terms of equity and efficiency. I shall postpone the discussion on how to construct the
equitable reference: the welfare representation of the fair intergenerational utilitarian
criterion is independent of the fairness principles the fair prospect embodies.1

Step 2 formalizes the ethical concerns for intergenerational inequality and risk.
The first axiom, intergenerational equity, is inspired by the Pigou-Dalton transfer
principle.2 Assume a generation is, at each possible history, better-off than at the fair
prospect while another generation is, at each possible history, worse-off than at the fair
prospect. Then, a (discounted) transfer, uniform across histories, that redistributes
consumptions from the first to the second generation is welfare improving. Such
transfer reduces –without reversing– the gap between the initial allocation of resources
and the fair prospect, while leaving all other generations unaffected.

The second axiom, risk-balancing, is a mean-preserving redistributive transfer, re-
lated to Rothschild and Stiglitz (1970). Assume a generation is treated as follows:
1An attractive reference is an efficient prospect that assigns to each conditional generation the same
consumption; however, since technology differs across possible histories, this reference generally does
not exist and a tension between equity and efficiency arises. I discuss how to resolve this tension in
Section 5.
2Following an intuition of Pigou (1912), Dalton (1920) suggested that a transfer of wealth from a
richer to a poorer person, to the limit that this transfer does not reverse the inequality, brings to a
more equitable distribution of resources.
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at one possible history the assigned consumption is larger than at the fair prospect,
while at another possible history the consumption is smaller. Then a mean preserving
transfer from the former to the latter is welfare improving. As before, such transfer
reduces –without reversing– the gap between the initial allocation of resources and
the fair prospect.

Step 3 completes the characterization result by introducing the following require-
ments. Strict monotonicity entails sensitivity to the consumption of each conditional
generation: assigning more consumption leads to a socially improved prospect. Con-
tinuity and two separability conditions, one over generations and one over possible
histories, provide functional representability and additive separability of the welfare
measure. Independence to proportional changes of the fair prospect ensures that what
matters for the identification of the richer/poorer relations are their relative, and not
absolute, consumptions.

The above described axioms uniquely characterize the fair intergenerational util-
itarian criterion, which I shall describe next. Let D denote an intergenerational
resource distribution problem: it specifies the event tree N , the technology at each
node, the cumulative probability πn > 0 that each node n ∈ N is reached from
the initial node, and the initial capital stock. The fair intergenerational utilitarian
criterion measures the well-being of each conditional generation n in terms of its as-
signed consumption, cn, relative to the fair prospect, xn. The welfare of generation t
is a weighted CES aggregation across conditional generations n ∈ Nt of such relative
consumptions:

vt (c;D) ≡

(∑
n∈Nt

πnxn∑
n̄∈Nt πn̄xn̄

(
cn
xn

)γ) 1
γ

with γ < 1.

Intergenerational social welfare is given by the risk-adjusted discounted sum of a
CRRA transform of each generation’s welfare. The risk-adjusted discount factor at t
is:

β̃t ≡ βt
(∑

n∈Nt πnxn

x0

)
.

It consists of two components: the standard exponential time discount factor βt; and
a risk-correction factor, measured by the average consumption that would be assigned
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to generation t at the fair prospect x with respect to what would be assigned to gen-
eration 0 (facing no risk).3 Formally, the social welfare of prospect c for distribution
problem D is ordinally equivalent to:

V (c;D) ≡
∑
t∈T

β̃t
(vt (c;D))1−ρ

1− ρ
with ρ ≥ 0.

The fair prospect x plays an important role in the measurement of intergenerational
social welfare: inequalities across time and histories are measured by how much the
distribution of consumptions differs from it.4 When the benefit of redistributing re-
sources over time (allowing for more consumption to be allocated) is larger than
the cost of increasing intergenerational inequality (measured by the parameter ρ),
some inequalities across generations are recommendable. Similarly, if some inequality
across histories allows distributing more consumption to the conditional generations,
this inequality might be socially acceptable, depending on the society’s aversion to risk
(measured by the parameter γ). At the limit for infinite aversion to intergenerational
inequality (ρ→∞) and infinite aversion to risk (γ → −∞), the welfare cost of devi-
ating from the reference explodes: the society would measure welfare by the relative
consumption cn

xn
of the worst-off conditional generation, i.e. V (c;D) = minn∈N

cn
xn
.

I suggest the fair prospect to be selected based on two appealing properties: maxi-
mality requires the prospect to be non-wasteful; interim egalitarianism demands the
consumption assigned to each conditional generation to be socially as desirable as
the risky consumption assigned to the later conditional generations at the nodes that
can still realize. This condition is related to and somewhat combines the ex-ante
egalitarian concern for fairness (Diamond (1967)) –giving agents equal changes is so-
cially desirable– and the ex-post egalitarian concern for distributional equity (Broome
(1984); Fleurbaey (2010)) –reducing inequalities among agents at each possible state
of nature is socially desirable to. These have emerged in the debate around expected
utilitarianism, first characterized by Harsanyi (1953; 1955). Despite the differences

3In the online appendix, this discount factor is endogenously obtained: it is singled out by the
fairness axioms in a more general model, where the possibility of human race extinction is accounted
for.
4The idea is somewhat related to the modeling of consumer’s behavior in prospect theory, see Kahne-
man and Tversky (1979), Sugden (2003), and Kòszegi and Rabin (2006). Apart from the normative
social perspective, the independence to proportional changes of the fair prospect implies that in-
equalities are relative in nature and thus avoids kinks and convex/concave welfare representations,
typical of prospect theory.
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with Harsanyi’s setting –a static framework in which social welfare aggregates indi-
vidual preferences over assigned lotteries– similar egalitarian arguments can be raised
for the intergenerational model and ethically justify interim egalitarianism.

When this specific reference is chosen for the fair intergenerational utilitarian cri-
terion, the evaluation of risky intergenerational prospects delivers interesting conse-
quences.

First, it not only disentangles risk aversion from intergenerational inequality aver-
sion,5 but also distinguishes between two different sources of risk: intrinsic risk is
unavoidable even at the egalitarian reference and is determined, together with the
planner’s aversion to it, by the specific resource distribution problem; option risk,
instead, arises only if the planner decides to deviate from the fair prospect (the sen-
sitivity to such deviations is measured by the elasticity parameter γ in the fair inter-
generational utilitarian criterion).

Second, the planner values early resolution of uncertainty for allowing a more eq-
uitable treatment of later generations, which technological risk hinders.6 As a result,
the structure of social discounting is endogenous and depends on technology, on the
resolution of uncertainty over time, and on the planner’s aversion to intrinsic risk.
Among the special cases: discounting is exponential when the distribution problem
is risk-less, i.e. the technology is uniform across histories; it is quasi-hyperbolic if all
the risk resolves after the first period.7

Finally, the criterion avoids drastic and inadequate policy recommendations in
the presence of fat-tailed catastrophic events (see Weitzman (2009) and the recent

5The recent literature on intergenerational social welfare with risk has proposed different alternatives
that achieve this goal, including Traeger (2012), building on Kreps and Porteus (1978)’s recursive
expected utility model, and Fleurbaey and Zuber (2014b), characterizing an ex-post criterion related
to Fleurbaey (2010). Extensions to settings in which generations face a different probability of coming
into existence include Asheim and Zuber (2013); Fleurbaey and Zuber (2014a); closely related, in
the Online Appendix C, I allow for extinction and show how this can be used to characterize the
pure time discount rate.
6The importance of the time resolution of risk is long known in the literature (Arrow and Fisher
(1974); Hammitt et al. (1992); Hanemann (1989); Henry (1974); Pindyck (2000)), but is generally
not accounted for in the evaluation of intergenerational risk.
7For a formalization of quasi-hyperbolic discounting see Laibson (1997). Non-exponential discount-
ing is known to lead to the problem of time inconsistency (see Koopmans (1960)). Nevertheless,
time varying discounting seems necessary to combine reasonable short-term discount factors with
sensitivity to the long-run effects of climate change (Karp (2005), Gerlagh and Liski (2013)). Fur-
thermore, time inconsistency is proven to be unavoidable when aggregating heterogeneous opinions
over the “correct” discount factors (Weitzman, 2001) or when aggregating individuals with different
discount factors (Zuber (2011), Jackson and Yariv (2014)). The design of optimal policies for time
inconsistent discounters is addressed in Harstad (2013).
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discussions by Nordhaus (2011), Weitzman (2011), Stern (2013), and Millner (2013)).
The intuition is that, according to the fair intergenerational utilitarian criterion, the
more costly it is to transfer resources to a generation at a specific history, the lower
is its legitimate claim to consumption (identified by the suggested fair prospect).
Thus, even though the marginal well-being might be very high, such low levels of
consumptions might be justified when, as in catastrophic scenarios, the marginal
social cost of transferring resources to increase this low consumption were extremely
high.

The characterized family of criteria thus avoids known drawbacks of discounted
expected utilitarianism. The latter (i) cannot disentangle the social aversion to in-
tergenerational inequality from the social aversion to risk (see Anthoff et al. (2009);
Dasgupta (2008); Fleurbaey and Zuber (2014a)), (ii) is independent of the time res-
olution of risk (Pindyck (2000)), and (iii) might lead to ethically indefensible policy
guidance in the presence of fat-tailed catastrophic events (Weitzman (2009)).

The remainder of the paper is organized as follows. In Section 2 and 3, I introduce
the model and the axioms. In Section 4, I derive the characterization result. In
Section 5, I defend a specific reference prospect and discuss its appeal in relation to
the literature. In Sections 6 and 7, I present the consequences of the ranking in terms
of discounting and fat-tailed catastrophic risks. I briefly conclude in Section 8.

2. Decision trees and risky prospects

2.1. The model. Time is discrete and finite: t ∈ T ≡ {0, ..., t̄} with 0 < t̄ < ∞.
Let H denote the set of possible histories h, which can arise with strictly positive
probability. A node n is uniquely identified by the time t ∈ T and by the set of
histories H (n) ⊆ H that are still possible at n. The set of nodes constitutes the
event tree N ; Nt ⊆ N is the subset of nodes at t ∈ T ; N (n) ⊆ N denotes the set
of nodes which succeed n, including n itself. Let n = 0 be the unique initial node, at
t = 0 (thus, H (0) = H). As usual, later partitions of histories are finer; i.e. for each
t ∈ T , n ∈ Nt and n′ ∈ Nt+1, either H (n) ⊇ H (n′) or H (n)

⋂
H (n′) = ∅.

Let a decision tree associated to the event tree N be denoted by:

D ≡
〈
〈πn, Fn〉n∈N , k

〉
Each element of D is defined as follows. For each period t ∈ T and each node n ∈ Nt:
πn ∈ (0, 1] is the compound probability that node n is reached from node 0; Fn is the
production function that transforms input kn ∈ R+ into output yn ∈ R+. Let F be the
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set of all production functions F : R+ → R+ that are continuous, strictly increasing,
and satisfy no-free lunch; then, Fn ∈ F . Output yn is either saved –let sn ∈ R+

denote saving at n– or assigned to the currently living generation –let cn ∈ R+ denote
the outcome at n. Savings determine the capital stock of the immediate successor
nodes, i.e. kn′ = sn for each n′ ∈ N+1 (n). The initial capital level is k > 0. A history
h ∈ H is then a specification of production technology at each period t ∈ T .

For each t ∈ T and each n ∈ Nt, the conditional generations at n is the
representative agent living at t when node n is reached. Each conditional generation
is assumed to be born after the technology at t is realized, so that the risk is exclusively
faced by the ethical observer.

Let D be the domain of decision trees satisfying the above assumptions. For each
D ∈ D, a (risky) prospect for D is denoted by c ≡

(
{cn}n∈N

)
∈ C (D) ≡ R|N |+ .

The set of feasible prospects for D is CF (D) ⊂ C (D) such that c ∈ CF (D) if for
each n ∈ N : (i) yn = Fn (kn); (ii) cn + sn ≤ yn; (iii) kn′ = sn for each n′ ∈ N+1 (n);
(iv) k0 = k.

2.2. An illustration. The simplest version of the model consists of a two-period de-
cision tree with two possible histories. Histories specify the second-period technology,
which can be either FG, with probability πG, or FB, with probability πB = 1 − πG.
The production function at 0 is F0 (k0), represented in the left side of Fig.2.1: it is a
function that maps capital stock k0 into output y0. Given the initial capital stock k,
the output available at 0 is y∗0. In the right side of Fig.2.1, the production functions
FG (s0) and FB (s0) describe how much output is produced at each possible history
G and B for each saving decision s0 ≤ y∗0. For savings s∗0, for example, the maximal
consumption of generation 0 is c∗0 ≡ y∗0 − s∗0, while conditional generations at G and
B can consume c∗G ≡ FG (s∗0) and c∗B ≡ FB (s∗0) respectively.

It is worth highlighting two important aspects of the model. First, it is generally
not possible to perfectly ensure against future technological risks and together dis-
tribute resources efficiently: the consumption possibilities at histories G and B are
jointly determined by the saving s0 and no policy can reduce the difference between
FG (s0) and FB (s0). Second, the technology is “smooth”: at each node (i) consump-
tion can vary from zero to exhausting all resources available at that history and (ii)
reducing consumption and increasing savings allows assigning (continuously) more
consumption to all later generations. This characteristics of the model guarantees
compactness of the consumption possibility set and, as discussed in Section 5, the
existence of an equitable and non-wasteful prospect.
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Figure 2.1. A two-period two-history model.

3. The Axioms

A social ordering of D is a complete and transitive binary relation defined over
C (D). A social ordering function % assigns to each decision tree D ∈ D a
social ordering of D, denoted %D.8 Thus, c %D c′ means that the prospect c is
socially at least as desirable as c′ for decision tree D. The symmetric and asymmetric
counterparts of %D are ∼D and �D.

For the sake of applicability of the results to climate change models, I shall restrict
the attention to social orderings that admit a continuous and separable welfare rep-
resentation. Formally, for each D ∈ D, there exist continuous functions un, one for
each n ∈ N , and continuous functions qt, one for each t ∈ T , such that the social
ordering %D is ordinally equivalent to:

V (c;D) =
∑
t∈T

qt

(∑
n∈Nt

un (cn)

)
.

It is worthwhile stressing that this formulation is rather general: it does not require
any anonymity across generations or histories, nor does it introduce monotonicity,
discounting or probability weighting. This formulation rules out rankings that give
full-priority to a subset of generations/histories like maximin, leximin, or evaluations
related to the precautionary principle, but these can (and will) arise as limit cases. As
shown in Appendix A, this functional form can be obtained from three independent

8The social ordering function approach has been successfully applied in the social choice literature
to deal with non-comparable information about preferences: among the main advantages, it adds
the flexibility of a complete ranking to the ethical appeal of fair allocation theory (see Fleurbaey
and Maniquet (2011)).
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axioms: continuity, a separability condition across generations, and a separability
condition across possible histories.

The first axiom is standard. A prospect is strictly preferred if it assigns at least as
much consumption to each generation at each history, and strictly more to some.

Strict monotonicity. For each D ∈ D and each pair c, c̄ ∈ C (D), if cn ≥ c̄n for
each n ∈ N and cn > c̄n for some n ∈ N , then c �D c̄.

The ethical concern for intergenerational equity is introduced as a Pigou-Dalton
transfer axiom (Pigou (1912); Dalton (1920)). In the original version of the axiom,
a progressive transfer from a richer to a poorer person is welfare improving. The
idea is that, provided the richer/poorer relation is not inverted, the transfer reduces
inequality; thus, the after-transfer allocation is at least as desirable as the starting
one. I shall introduce three differences.

First, who is to be considered rich or poor depends on what each conditional genera-
tion should be equitably assigned. Let the fair prospect x ≡

(
{xn}n∈N

)
be the most

appealing way of distributing resources in the eyes of an egalitarian observer; the fair
prospect is assumed to be uniquely selected by an allocation rule ψ : D → CF (D)

and to assign a strictly positive consumption to each conditional generations, i.e.
ψ (D) � 0 for each D ∈ D.9 It is natural to let this egalitarian reference be a con-
stant and efficient distribution of consumptions; however, as this prospect might not
be feasible, a trade-off between equity and efficiency arises. Since the characterization
result is going to be independent of the way the fair prospect is determined, I shall
postpone to Section 5 the discussion of its fairness properties.

Then, one generation is considered richer than another if at each possible history
(i) the first is assigned a larger consumption than at the fair prospect and (ii) the
second one is assigned a smaller consumption than at the fair prospect.10

Second, the transfer from the richer donor to the poorer recipient needs to be
uniform across possible histories.

Third, the transfer is discounted at a factor β ∈ (0, 1]. This parameter interprets
the pure time preference of the ethical observer: for example, a transfer from a richer
future generation t to the poorer generation 0 is welfare increasing if the latter is
given at least a fraction βt of the transferred resources. The characterization result is
independent of the ethical view about the pure time preference β; a possible ethical

9For a recent overview of fair allocation theory, see Thomson (2011).
10The axiom remains silent about transfers in which both generations are better or worse than at
the fair prospect ; this makes the axiom considerably weaker than the original one.
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justification is proposed in the Online Appendix C, where the model is extended to
account for the probability of extinction.

Intergenerational equity. For each D ∈ D, each x = ψ (D), each pair c, c̄ ∈ C (D),
each pair t, t′ ∈ T , and each δ ∈ R+, if

(i) cn = c̄n − δ
βt
≥ xn for each n ∈ Nt;

(ii) cn′ = c̄n′ +
δ
βt′
≤ xn′ for each n′ ∈ Nt′;

(iii) cn′′ = c̄n′′ for each n′′ ∈ N\ {Nt

⋃
Nt′},

then c %D c̄.

The axiom reads as follows. Take two generations t, t′ ∈ T . At c̄, t is assigned
more than at the fair prospect x in each possible history (condition i); t′ is assigned
less than at the fair prospect x in each possible history (condition ii). Define a time-
discounted transfer δ from t to t′, uniform across possible histories, such that the
first generation remains richer than the second also after the transfer. Then, ceteris
paribus (condition iii), the after-transfer prospect c is socially weakly more desirable
than the initial one c̄.

The ethical concern for risk is related to the mean preserving spread (Rothschild
and Stiglitz (1970)), suggesting that among equal-mean lotteries the ethical observer
ought to choose the one with lowest risk. The mean preserving spread is obtained by
transferring probability mass to the tales of the distribution, but can be equivalently
expressed as a regressive transfer across histories, weighted by the likelihood of each.

The main difference is the introduction of the fair prospect to determine which
equal-mean transfers lead to ethically more appealing prospects. In fact, consistent
with the view that the fair prospect incorporates some notion of fairness, the mean-
preserving transfer is considered welfare improving if it reduces the gap with such
reference. More precisely, a prospect is socially more desirable if it is obtained through
a mean-preserving transfer from a possible history where a generation is assigned
more than at the fair prospect to another possible history where the same generation
is assigned less than at the fair prospect.

Risk balancing. For each D ∈ D, each x = ψ (D), each pair c, c̄ ∈ C (D), each
t ∈ T , each pair n, n′ ∈ Nt, and each δ ∈ R+, if

(i) cn = c̄n − δ
πn
≥ xn;

(ii) cn′ = c̄n′ +
δ
πn′
≤ xn′;

(iii) cn′′ = c̄n′′ for each n′′ 6= n, n′,
then c �D c̄.
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The axiom reads as follows. Consider a generation t ∈ T and the prospect c̄ ∈
C (D). At node n ∈ Nt, the conditional generation is assigned more than at the fair
prospect (condition i); at node n′ ∈ Nt, the conditional generation is instead assigned
less than at the fair prospect (condition ii). Define a transfer from n to n′, weighted
by the probability of each node, such that conditional generation n remains richer
than n′ also after the transfer (in relative terms with respect to the fair prospect).
Then, ceteris paribus (condition iii), the after-transfer prospect c is strictly more
desirable than the initial one c̄.

The last axiom requires the ranking to be invariant to ratio-scale changes of the fair
prospect. This equitable reference enters the axioms of intergenerational equity and
risk balancing to establish the richer-poorer relation and the direction of a welfare
improving transfer. Thus, requiring invariance of the social ordering with respect to
proportional changes of the fair prospect is equivalent to demanding the richer-poorer
relation to be a relative property and not absolute.11

Proportionality. For each pair D,D′ ∈ D such that the fair prospect ψ (D) is pro-
portional to the fair prospect ψ (D′), and for each pair c, c̄ ∈ C (D), c %D c̄

if and only if c %D′ c̄.

4. The characterization result

I first define the social ordering. Let D ∈ D and x ≡ ψ (D). For each generation
t ∈ T , let the risk-adjusted discount factor be:

(4.1) β̃t ≡ βt
(∑

n∈Nt πnxn

x0

)
It consists of two components: a pure time discounting part βt and a risk-adjustment
factor

(∑
n∈Nt

πnxn

x0

)
, given by the average consumption assigned at the fair prospect

to generation t compared to generation 0. Let generation t’s welfare be measured
by the function vt with the following functional form:

(4.2) vt (c;D) ≡


(∑

n∈Nt
πnxn∑

n̄∈Nt
πn̄xn̄

(
cn
xn

)γ) 1
γ

γ < 1, γ 6= 0∏
n∈Nt

(
cn
xn

) πnxn∑
n̄∈Nt πn̄xn̄ γ = 0

11This axiom is related to the ratio-scale property discussed in Blackorby and Donaldson (1982).
The first difference is that their axiom is an informational requirement on comparable utilities. The
second difference is that ratio-scale is here not imposed on the vectors of consumptions to be ranked
–object of social comparison– but on the reference prospect, introduced through the fairness axioms.
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Fair intergenerational utilitarianism: For each D ∈ D,

(4.3) V (c;D) ≡

{ ∑
t∈T β̃t

(vt(c;D))1−ρ

1−ρ ρ ≥ 0, ρ 6= 1∑
t∈T β̃t ln (vt (c;D)) ρ = 1

where, for each t ∈ T , β̃t is defined in (4.1) and vt (c;D) in (4.2).

Theorem 1. On the domain D, the following statements are equivalent:
S1 : the social ordering function % satisfies strict monotonicity, intergenera-

tional equity, risk-balancing, and proportionality;
S2 : for each D ∈ D, the social ordering %D can be represented by the fair

intergenerational utilitarian criterion.

The way the axioms contribute to the result is as follows. Equity across time and
histories, both expressed as transfer principles with respect to the reference prospect,
force social welfare to be a function of the relative size of the assigned consumptions
with respect to the fair prospect. As a consequence, invariance to proportional changes
of the fair prospect plays a similar role to invariance with respect to ratio-scale changes
of assigned consumption and the power representation should not be too surprising
(see Atkinson, 1970; Blackorby and Donaldson, 1982). What is perhaps less obvious
is how the nested time/history aggregation structure of the welfare representation
cuts out an additional role to the fair prospect : (i) in terms of weighting relative
consumptions in each generation’s welfare (4.2); and (ii) in terms of discounting each
generation’s welfare (4.1).

Before discussing the choice of the fair prospect and its consequences for social
welfare, few general remarks are in order.

Remark 1. Ethical considerations for risk enter the criterion twice: first, in the choice
of the fair prospect ; second, in the evaluation of the deviations from this reference.
This allows disentangling two corresponding sources of risk. Intrinsic risk is deter-
mined by the resource distribution problem and is unavoidable even at the egalitarian
prospect x due to the non-insurable technological risk. I shall discuss further this
source of risk in the next section, where the allocation rule singling out this equitable
reference is characterized. Option risk is incurred in only if the planner “decides”
to deviate from the fair prospect x to achieve a higher social welfare by redistribut-
ing consumption differently across histories; aversion to such risk is captured by the
elasticity parameter γ in the definition of each generation’s welfare (4.2).



FAIR INTERGENERATIONAL UTILITARIANISM 13

Remark 2. At the limit for γ → 1 and ρ = 0, the fair intergenerational utilitarian cri-
terion is discounted expected utilitarian. From (4.2), it is immediate that when γ → 1,
the welfare of each generation is the average consumption (note that the denomina-
tor
∑

n̄∈Nt πn̄xn̄ cancels out with the corresponding term in the risk-adjusted discount
factor). Then, ρ = 0 implies by (4.3) that each discounted generation’s welfare is ad-
ditively aggregated. As a result, social welfare is V (c,D) =

∑
t∈T β

t
(∑

n∈Nt πncn
)

and expected utilitarianism is recovered.

Remark 3. At the limit for infinite aversion to option risk (γ → −∞) and infinite
aversion to intergenerational inequality (ρ→∞), the fair intergenerational utilitarian
criterion is a maximin type of ranking. From (4.2) and (4.3), when γt → −∞ and ρ→
∞, the welfare of society is determined by the node with the smallest consumption
relative to the fair prospect : V (c,D) = minn∈N

cn
xn
. The fact that the highest ranked

prospect is the fair prospect further emphasizes its role as the egalitarian way of
distributing resources.

Remark 4. When γ = 1− ρ, V (c,D) =
∑

t∈T β
t
(∑

n∈Nt πn
c1−ρn xρn

1−ρ

)
. In this case, the

planner values equally proportional deviations from the fair prospect that redistribute
resources over time (after correcting for the discount factor β) and deviations from
the fair prospect that redistribute resources across possible histories (after correcting
for the probability of each).

5. The Fair Prospect

5.1. The fair rule: a characterization. Let a rule φ be a correspondence that
associates to each decision tree D ∈ D a non-empty subset of feasible prospects
φ (D) ⊆ CF (D). The uniqueness of the selection, assumed in Section 3 with allocation
rule ψ, is here a result of the fairness properties to be introduced next.

The first property guarantees that the selected prospect x assigns all the resources
available in the economy: any larger prospect x′ > x is not feasible.

Maximality. For each D ∈ D, x ∈ φ (D) is such that:
x′ > x =⇒ x′ 6∈ CF (D).

The second property requires each consumption/saving choice to treat fairly all the
affected conditional generations. At each node n, the part of output yn leftover for
later use, i.e. sn, should be such that the consumption of the current conditional
generation xn be considered socially as desirable as the risky consumption assigned
to the later conditional generations (at histories that are still possible at n). For the
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example in Fig. 2.1, a prospect (c∗0, c
∗
G, c

∗
B) is considered equitable if c∗0 is socially

as desirable as a lottery that assigns c∗G with probability πG and c∗B with probability
πB.12

The comparison between a certain consumption and a consumption lottery is ex-
pressed in terms of the quasi-linear mean (first characterized by De Finetti (1931)
and Hardy et al. (1934) and later named “equally-distributed equivalent” by Atkinson
(1970)).13 Formally, let µ : R → R be a continuous, strictly increasing, and concave
function that measures the risk aversion at the fair prospect or, as defined above,
aversion to intrinsic risk.

Interim egalitarianism. For each D ∈ D, x ∈ φ (D) is such that for each t ∈
[0, t̄− 1], each n ∈ Nt, and each t′ > t:

xn = µ−1

[∑
n′∈Nt′ (n)

πn′∑
n′′∈Nt′ (n) πn′′

µ (xn′)

]
.

Define the fair rule φ∗ as the one that satisfiesmaximality and interim egalitarianism.
Then, the following result shows that the rule is well-defined.

Proposition 1. The fair rule φ∗ associates to each decision tree D ∈ D a unique fair
prospect {x∗} ≡ φ∗ (D).

Proof. Let D ∈ D. Let CFIE ⊂ CF (D) be the subset of feasible prospects satisfying
interim egalitarianism. Let C0 ≡

{
c̄0 ∈ R+

∣∣c0 = c̄0 for some c ∈ CFIE
}
. The set C0

is non-empty: since c = 0 ∈ CFIE, 0 ∈ C0. The set C0 is bounded from above: there
is no c ∈ CF (D) such that c0 > F0 (k). The set C0 is compact: this follows from the
continuity of the production functions. Let c∗ ∈ CFIE be such that c∗0 is the maximal
element of C0. By construction it satisfies interim egalitarianism. By contradiction,
assume that c∗ is not maximal : there exists c′ ∈ CF (D) such that c′n ≥ c∗n for
each n ∈ N and c′n > c∗n for some n ∈ N . Since technology is continuous, strictly
increasing, and satisfies no free lunch, there exists a c′′ ∈ CFIE such that c′′ � c∗,
contradicting c∗0 being a maximal element of C0. This implies that φ∗ (D) 6= ∅.

By contradiction, assume for some D ∈ D, φ∗ (D) is not a singleton, i.e. there
exist a pair c, c̄ ∈ φ∗ (D) with c 6= c̄. Let t ∈ T be the first period for which
12A related recursive way to evaluate risky prospects is studied by Asheim and Brekke (2002) to
define sustainability in a setting with stochastic capital management.
13More general alternatives can be introduced to define the certainty equivalent of a lottery: the
quasi-linear mean is however the only one that displays the ratio-rescaling invariance property (see
Bossert and Weymark (2004)). In a one-shot risk setting, a family of related criteria has also been
characterized by Fleurbaey (2010); Grant et al. (2012); Fleurbaey and Zuber (2014a): welfare is
measured by the expected value of the equally-distributed equivalent evaluation of the outcomes at
each state of nature.
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cn 6= c̄n for some n ∈ Nt. If t = 0, c0 ≷ c̄0 and the same argument as above
leads to a contradiction of maximality. If t > 0, since earlier production and con-
sumptions are equal, it must be true that for each n ∈ Nt, kn = k̄n. For each
n ∈ Nt, let CFIE

n ≡
{
c′ ∈ CFIE |c′n′ = cn′ = c̄n′ for all n′ ∈ Nt′ with t′ < t

}
and Cn ≡{

c′n ∈ R+

∣∣c′′n = c′n for some c′′ ∈ CFIE
n

}
. The same reasoning as for C0 proves that

cn = c̄n and shows that the fair rule φ∗ selects a unique prospect for each decision
tree in the domain. �

Before moving to a discussion of interim egalitarianism with respect to the litera-
ture, I shall highlight that the fair allocation rule φ∗ guarantees that each conditional
generation be assigned a strictly positive consumption, as assumed for the character-
ization result.

Corollary 1. For each D ∈ D, the fair prospect {x∗} ≡ φ∗ (D) is such that x∗n > 0

for each n ∈ N .

Proof. By contradiction assume that for some D ∈ D, {x∗} ≡ φ∗ (D), t ∈ T , and
n ∈ Nt, it holds that x∗n = 0. By definition of interim egalitarianism (and x∗n̄ ≥ 0 for
each n̄ ∈ N), it follows that x∗n′ = 0 for each n′ ∈ N (n). By feasibility of x∗, kn ≥ 0.
If kn > 0, Fn (kn) > 0 by strict monotonicity and no free lunch of the production
functions. Then, there would exist x̄ > x∗ with x̄ ∈ CF (D) contradicting maximality.
Thus, kn = 0. By feasibility, this implies that kn′ = 0 for each n′ ∈ Nt (n−) (all
nodes with the same predecessor as n) and, by no free lunch, x∗n′ = 0 for each
n′ ∈ N (n−1) \n−1. By interim egalitarianism, it follows that x∗n−1 = 0. Since x∗n = 0

implies that x∗n− = 0 and that x∗n′ = 0 for each n′ ∈ N (n−), a reasoning by induction
leads to x∗ = 0. This contradicts maximality (since k > 0 and F0 (k) > 0) and proves
the result. �

The positivity of the egalitarian reference is ethically appealing, also in light of the
existence of feasible prospects that assign to each conditional generation a positive
consumption level. However, this property rules out reference prospects obtained
by maximizing the expected equally distributed equivalent social welfare function
proposed by Fleurbaey (2010) and Grant et al. (2012): when the technology of a
period is (at each possible history) sufficiently more productive than at other periods,
it will be optimal to assign a positive consumption to that conditional generations
only (unless the equally distributed equivalent exhibits infinite degree of inequality
aversion). The reason is that social welfare is measured as the weighted average of
the constant consumption deemed as desirable as the consumption stream assigned
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at each history; it is thus indifferent to permutations of consumptions across time
and allows for all consumption to be assigned to only one generation.

Another alternative to the fair rule φ∗ is to choose a constant prospect, i.e. a
prospect that assigns to each conditional generation the same consumption. This
case is discussed in Section 6, as it arises as a special case of φ∗, for a subdomain of
decision trees.

5.2. Ex-ante, ex-post, and interim egalitarianism. In this subsection, I further
discuss the appeal of interim egalitarianism in relation to the literature.

The usual representation of one-shot risky social situations takes a matrix form.
Let each column describe the lottery assigned to an agent and each row describe the
social distribution for a specific state of nature. The following one-shot prospects (I),
(II), and (III) are examples of risky social situations involving two agents (1 and 2)
and two equally-likely states of nature (σ1 and σ2).

According to the expected utilitarian criterion, these are all equally desirable.14

This indifference is not universally accepted. Diamond (1967) suggests that prospect
(II) should be considered socially more desirable than (I), as it gives both agents 1

and 2 “a fair shake”: they are given an equal chance of achieving the high and low
outcomes; in other words, their lotteries are ex-ante equivalent; this concern for fair-
ness has been named ex-ante egalitarianism. More recently, Broome (1991) suggested
that, while both prospect (II) and (III) assign the same ex-ante prospect, the latter
is the one to be preferred as it leads to more equitable distributions (whatever the
realized state of nature is); this concern for distributional equity has been named
ex-post egalitarianism.

Extending this reasoning to the present setting is not immediate. First, the inter-
pretation of the arguments is different as generations do not have preferences over
their assigned lottery: each conditional generations is assumed to be born after the

14Even if the consumption (or monetary outcome) is replaced by the corresponding utility level, the
conclusion is not affected: the expected utilitarian criterion is invariant with respect to permuting
these levels across agents and states of nature.



FAIR INTERGENERATIONAL UTILITARIANISM 17

realization of each period’s technological shock. Second, the above prospects (II) and
(III) do not fit the structure of the studied multi-stage lotteries, since these require
the outcome of the first generation to be equal across histories.15 I will argue that
similar arguments for fairness and equity can be presented.

Consider an economy spanning three periods, i.e. {0, 1, 2}. Let the decision tree
consist of two equally-likely histories, depending on whether the technology of periods
1 and 2 is of type G or of type B. A prospect is represented by reporting the outcome
assigned to each generation at each possible history in the corresponding node of the
tree, as in the following examples (I), (II), and (III). Note that outcomes assigned
at time 1 and 2 are lotteries since these can be conditioned on the information that
is revealed by that time, i.e. the type of technology.

The (undiscounted) expected utilitarian criterion would rank these prospects equally.
Stretching Diamond’s argument, one can agree that prospect (II) is socially more
attractive than (I), as it impedes generation 1 to spoil generation 2. As in the corre-
sponding example with one-shot lotteries, prospects (II) and (III) are ex-ante equiv-
alent. Extending the concern for ex-post egalitarianism of Broome (1991), prospect
(III) is to be preferred to (II) since the distribution that would arise at each history
is more equitable.16

15It is immediate that the tree structure of multi-stage lotteries does not allow to introduce well-
known axioms from the literature. In particular, equal consideration for all generations can not be
based on anonymity as permuting their risky prospects is not well-defined: generations living at
different times are substantially different with respect to how much risk is revealed and disregarding
such difference (as in a one-shot lottery setting) is inappropriate to assess intergenerational risk.
Risk is a particularly powerful argument against intergenerational anonymity, complementary to the
one based on multidimensional commodity spaces raised by Piacquadio (2014).
16To see this, write the prospects in the classical matrix form and compare the outcomes, history by
history, only in terms of inequality among the assigned outcomes. If the reader agrees that (2, 4, 0)
is less egalitarian than (2, 4, 4) and (2, 0, 4) is less egalitarian than (2, 0, 0), the argument applies and
leads to (III) being better than (II).
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While I agree that (III) is socially more desirable than (II), I shall present a
different motivation that stems out from the decision-tree structure. In fact, when
the outcome of each conditional generation at time 1 is to be set, the decision maker
is informed whether the technology is G or B. At prospect (II), period 1’s saving
decisions are known to lead to large inequalities in the assignments at 1 and 2: either
the first gets 4 units and the second gets 0 or the reverse. Whereas, prospect (III)
guarantees distributional equity whether technology is G (and both get 4) or B (and
both get 0).17

This reasoning motivates interim egalitarianism and justifies the fair prospect φ∗.
The idea is that ex-ante egalitarianism should hold each time a distributional decision
is taken, based on the information that is available at that time. The requirement
is clearly stronger than Diamond (1967)’s concern for ex-ante egalitarianism. More
interestingly, the idea of conditioning ex-ante egalitarianism on the available informa-
tion impedes to ethically justify unequal distribution based on outcomes at histories
that cannot realize anymore (as in prospect II): it thus recursively incorporates a
concern for ex-post egalitarianism.

6. Exponential, quasi-hyperbolic, and hyperbolic discounting

In the next two sections, I shall discuss the implications of Theorem 1 when selecting
the fair prospect based on the fair rule φ∗: fair intergenerational utilitarian criterion
and fair prospect will refer to the fair rule φ∗, even if not explicitly mentioned. This
section is concerned with the structure of social discounting: the implications are
presented in the form of corollaries.

The first one tells that as the planner becomes more averse to intrinsic risk (larger
concavity of µ), the fair prospect x∗ assigns more resources to future generations,
and, as a consequence, also the ranking of alternatives gives more weight to future
generations.

17A different viewpoint is defended by Traeger (2012): his “intertemporal risk averse decision maker”
would prefer an alternating high/low outcomes (II) to the fair lottery between always high and al-
ways low outcomes (III). The reason is that in Traeger the decision maker lives for the whole time
horizon and discounts the future based on the intertemporal elasticity of substitution and the risk
aversion; his policy implication is that (exogenously) increasing uncertainty leads to more discount-
ing. Instead, the fair intergenerational utilitarian criterion compares one-period living generations,
for which intergenerational equity requires assigning more weight to generations that face more
uncertain resource distributions; thus more uncertainty leads to more weight to future generations.
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Corollary 2. For each D ∈ D, let the social ordering %D be representable by the
fair intergenerational utilitarian criterion. Then, as µ becomes more concave, the
discount factor β̃t+1/β̃t increases.

Proof. By the definition of fair intergenerational criterion,

β̃t+1

β̃t
= β

∑
n′∈Nt+1

πn′x
∗
n′∑

n∈Nt πnx
∗
n

.

By interim egalitarianism, x∗n = µ−1

[ ∑
n′∈Nt+1

πn′µ (x∗n′)

]
for each n ∈ Nt. When the

concavity of µ increases, also the ratio
∑
n′∈N+1(n) πn′x

∗
n′

x∗n
does. Since

∑
n′∈Nt+1

πn′x
∗
n′ =∑

n∈Nt
πn

[∑
n′∈N+1(n) πn′x

∗
n′

]
, the result obtains. �

The form of the risk-adjusted discount factor depends on the interaction between
(intrinsic) risk, its resolution over time, and the planner’s aversion to it. The special
case of exponential discounting arises when the fair prospect x∗ is constant over
time. This happens when either the ethical observer is indifferent to intrinsic risk
–i.e. when the planner is risk-neutral at the fair prospect (µ is linear)– or when the
resource distribution problem is risk-free – i.e. technology is uniform across histories.
These cases are formalized in the next two corollaries.

Corollary 3. For each D ∈ D, let the social ordering %D be representable by the fair
intergenerational utilitarian criterion. Then, if the planner is intrinsic-risk neutral
(µ is linear), discounting is exponential.

Proof. The formula of the risk-adjusted discount factor is given in (4.1). When µ is
linear, x∗n =

∑
n′∈N+1(n) πn′x

∗
n′ for each n ∈ N and, as a consequence, β̃t = βt for each

t ∈ T . �

Corollary 4. For each D ∈ D, let the social ordering %D be representable by the fair
intergenerational utilitarian criterion. Then, whenever for each t ∈ T and each pair
n, n′ ∈ Nt, Fn = Fn′, discounting is exponential.

Proof. When technology is equal across histories, the fair prospect x∗ is constant, i.e.
x∗n = x∗n′ for each n, n′ ∈ N . Then, the risk-adjusted discount factor in (4.1) simplifies
and becomes β̃t = βt; which is the formulation of exponential discounting. �
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When the fair prospect is constant, the fair intergenerational utilitarian criterion
simplifies as follows:

V (c;D) =
∑
t

βt

1− ρ

(∑
n∈Nt

πn (cn)γ
) 1

γ

1−ρ

.

This same functional form would result from the characterization for a different choice
of equitable reference, i.e. one for which consumptions across time and possible histo-
ries are equalized independently of the technology. Although such criterion disentan-
gles aversion to risk from aversion to intergenerational inequality, it is insensitive to
the time disclosure of risk, it is insensitive to the social cost of transferring resources
across possible histories, and is oversensitive to fat-tailed catastrophic events (see
next section).

Another interesting case arises when risk resolves all-together in period 1. Let D1 ⊂
D be the sub-domain of decision trees such that for each n ∈ N1 and each n′ ∈ N (n),
N+1 (n′) is a singleton. The full evolution of technology becomes completely known
as soon as the planner is in any node n ∈ N1. Applying the interim egalitarianism
condition of the fair rule φ∗, this implies that the fair prospect x∗ remains constant
from period 1 onwards, i.e. for each n ∈ N1 and each n′ ∈ N (n), x∗n = x∗n′ . Thus, as
the next corollary states, the fair intergenerational utilitarian criterion discounts the
future in a quasi-hyperbolic way (Laibson (1997)).

Corollary 5. On the domain D1, if the social ordering %D can be represented by the
fair intergenerational utilitarian criterion, then discounting is quasi-hyperbolic.

Proof. Let θt ≡
∑

n∈Nt πnx
∗
n. By the definition of fair rule and the domain restriction,

θt
x∗0

=
θt′
x∗0
≡ θ for each t, t′ ≥ 1. Thus, the risk-adjusted discount factor in (4.1) is

β̃0 = β0
(
x∗0
x∗0

)
= 1 for generation 0 and β̃t = βt

(
θt
x0

)
= βtθ for each t ≥ 1. �

Finally, the case of hyperbolic discounting arises when the difference between the
inverse of each consecutive risk-adjusted discount factors is a positive constant.

Corollary 6. For each D ∈ D, let the social ordering %D be representable by the fair
intergenerational utilitarian criterion. Then, whenever the fair prospect x∗ is such
that there exists a ζ > 0 with ζ = 1

β̃t+1
− 1

β̃t
for each t ∈ [0, t̄− 1], then discounting is

hyperbolic.
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Proof. By simple substitution, for each t ∈ [0, t̄− 1], the discount factor between t+1

and t is β̃t+1

β̃t
= 1 − ζβ̃t+1. Since β̃0 ≡ 1, it follows that β̃1 = 1

1+ζ
and, by recursive

substitution, that β̃t = 1
1+ζt

for each t ∈ T . �

7. Fat-tailed catastrophic risks

In this section, I discuss how the criterion based on φ∗ performs when the resource
allocation problem D ∈ D has the typical features of catastrophic fat-tailed risk. The
“dismal theorem” states that the amount of resources to be saved to future agents is
highly sensitive to catastrophic fat-tailed events.18 To exemplify the issue, consider
a two-period two-history decision tree D: in the second period technology can be
good, G, with probability πG, or bad, B, with probability πB = 1 − πG. Let initial
capital be k = 1 and let technologies be as follows: F0 (k0) = k0; FG (kG) = kG; and
FB (kB) = εkB with ε > 0. Clearly, kG = kB = s0 where s0 is the saving at node
0. The idea is to analyze the intergenerational distribution problem for smaller and
smaller values of ε, interpreted as history B becoming more and more catastrophic.

The expected utilitarian planner maximizes a social welfare function W eu (c) ≡
u (c0) + β [πGu (cG) + πBu (cB)], where u is a well-behaved utility function. The op-
timal policy satisfies the following (interior) first order condition:

u′ (c∗0) = β [πGu
′ (1− c∗0) + πBεu

′ (ε (1− c∗0))] .

The absolute priority to future consumptions, consequence of the dismal theorem,
can arise when the bad state becomes catastrophic: if limc→0 u

′ (c) = ∞, then
πBεu

′ (ε (1− c∗0)) may tend to infinity as ε → 0 (as in the case of a CRRA utility
function with less than unitary elasticity of substitution).

Consider instead the maximization problem of a fair intergenerational utilitarian
planner. Let π̃G ≡ πGx

∗
G and π̃B ≡ πBx

∗
B. The welfare criterion is:

V (c;D) =

(
c0
x∗0

)1−ρ

1− ρ
+ β

(
π̃G + π̃B

x∗0

) ( π̃G
π̃G+π̃B

(
cG
x∗G

)γ
+ π̃B

π̃G+π̃B

(
cB
x∗B

)γ) 1−ρ
γ

1− ρ
,

where ρ ≥ 0 (ρ 6= 1) measures the intergenerational inequality aversion and γ < 1

(γ 6= 0) measures the aversion to option risk. The optimal conditional allocation c∗

18See Weitzman (2009). This result has been largely criticized. The arguments opposed to the
dismal theorem are reviewed and classified by Millner (2013) in 3 categories: the relevance of the
dismal theorem for cost-benefit analysis; the correctness of fat-tailed probability distributions for
modeling climate change events; and the behavioral/ethical foundation of the utility function. The
present results contribute to the third category, by proposing an endogenous way to measure and
compare utilities of consumptions.
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is such that:

(7.1)
(
c∗0
x∗0

)−ρ
= β

[
πG

(
1− c∗0
x∗G

)γ−1

+ πBε

(
ε (1− c∗0)

x∗B

)γ−1
]
ξ

where ξ =

(
π̃G

π̃G+π̃B

(
1−c∗0
x∗G

)γ
+ π̃B

π̃G+π̃B

(
ε(1−c∗0)
x∗B

)γ) 1−ρ
γ
−1

.

At a first glance it seems that the dismal theorem applies: when γ < 0 and the event
becomes catastrophic (ε → 0), πBε (ε (1− c∗0))γ−1 tends to infinity. This conclusion
is however wrong as the fair prospect x∗ is endogenously determined by the fair rule
φ∗ and depends on the technological parameter ε. By interim egalitarianism and
maximality, x∗ is such that µ (x∗0) = πGµ (1− x∗0) + πBµ (ε (1− x∗0)), where µ is the
continuous, strictly increasing, and concave function measuring the planner’s aversion
to intrinsic risk. Thus, when ε → 0, the consumption at the catastrophic state of
nature vanishes, i.e. x∗B = ε (1− x∗0) → 0, while x∗0 remains positive for any finite

degree of concavity of µ. Therefore, limε→0 πB

(
ε(1−c∗0)
ε(1−x∗0)

)γ−1

= πB

(
1−c∗0
1−x∗0

)γ−1

is finite

and the expected benefit of transferring resources to the future, RHS of (7.1), is
bounded (independently of how large πB is).

8. Conclusions

The assessment of risky intergenerational prospects is crucial for policy evaluations
in many economic models and, in particular, when dealing with climate change. This
paper addresses such evaluations by studying the welfare economics of intergenera-
tional risk and proposes an alternative to commonly used criteria, such as (discounted)
expected utilitarianism.

The fair intergenerational utilitarian criterion measures social welfare in terms of
the ratio between each conditional generation’s consumption and an endogenous ref-
erence, named fair prospect. This reference interprets an ideal of equity and efficiency:
the fair prospect allows evaluating consumptions based on how costly it is to trans-
fer resources to each generation at each possible history; importantly, the society is
not required to distribute resources according to this egalitarian reference. While
the representation result holds more generally, I advocate for an efficient reference
prospect that satisfies interim egalitarianism, a new fairness condition that combines
both ex-ante and ex-post concerns for distributional equity. Interim egalitarianism
requires that the lottery of each generation should be considered fair at each decision
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node (based on the information available at the time of the decision), both before
risk is resolved and after any partial risk is resolved.

The introduction of a reference for the evaluation allows disentangling two sources
of risk that the ethical observer can, and arguably should, treat differently. Intrinsic
risk is unavoidable and determined by the specific resource distribution problem: the
magnitude of the technological shocks and the timing of their resolution constrain
what consumptions can be assigned to each conditional generation; aversion to these
inequalities across possible histories is accounted for by the choice of the fair prospect.
Instead, option risk follows from the ethical observer’s choice to achieve a higher
social welfare by deviating from the egalitarian reference; aversion to option risk
measures the social tolerance for redistributing risk across possible histories in terms
of deviation from the fair prospect.

By evaluating each generation’s lottery in terms of the suggested fair prospect, the
ethical observer agrees that the consumption corresponding to histories with tighter
resource constraints –as those following catastrophic events– should be lower than
at resource-abundant histories. The worse the technology at a possible history is,
the more costly it is to improve consumptions at that history and, consequently, the
smaller is the legitimate claim to a large consumption. This relativistic evaluation
of risky prospects has three further consequences: (i) the society prefers an early
resolution of uncertainty as it makes future choices simpler in terms of equity; (ii) the
discount structure is endogenous (i.e. exponential, quasi-hyperbolic, or hyperbolic)
and depends on technological risk, its resolution over time, and on the planner’s
aversion to it; (iii) the oversensitivity of other criteria to fat-tailed catastrophic events
is always avoided, independently of probabilities and for any finite degree of inequality
and risk aversion.

———————

Appendix A. Welfare representation: continuity and separabilities

Let the subdomain of decision trees D3 ⊂ D to be such that for each D ∈ D3,
|T | ≥ 3 and |N1| ≥ 3. This restriction guarantees that the number of periods and
the number of nodes per period (apart from the initial one) is at least 3. On this
subdomain, the functional form V (c;D) =

∑
t∈T qt

(∑
n∈Nt un (cn)

)
with continu-

ous functions qt and un representing each %D can be obtained from 3 independent
requirements, which I introduce next.
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The first one is continuity of the welfare evaluation, i.e. small variations of the
consumption prospect should be associated with small variations of social welfare.

Continuity. For each D ∈ D and each c ∈ C (D), the sets {c̄ ∈ C (D) |c̄ %D c} and
{c̄ ∈ C (D) |c %D c̄} are closed.

The second requirement is a separability condition across time. The ranking of two
alternatives is independent of the consumption lottery assigned to a generation, if
this is the same in both alternatives: unconcerned generations do not matter for the
ranking.

Independence of unconcerned generations. For each D ∈ D, each T̃ ⊆ T , and
each c, c′, c′′, c′′′ ∈ C (D) such that:

(i) cn = c′n and c′′n = c′′′n for each t ∈ T̃ and each n ∈ Nt;
(ii) cn = c′′n and c′n = c′′′n for each t ∈ T\T̃ and each n ∈ Nt;
then c %D c′′ if and only if c′ %D c′′′.

Assume that two prospects differ only with respect to the lottery assigned to genera-
tion t ∈ T . Then, the ranking of these alternatives is independent of the consumption
assigned to a node, if this is the same in both alternatives: the consumption in un-
concerned histories does not matter for the ranking.

Generation independence of unconcerned histories. For each D ∈ D, each
t ∈ T , each Ñt ⊆ Nt, and each c, c′, c′′, c′′′ ∈ C (D) such that:

(i) cn = c′n and c′′n = c′′′n for each n ∈ Ñt;
(ii) cn = c′′n and c′n = c′′′n for each n ∈ N\Ñt;
then c %D c′′ if and only if c′ %D c′′′.

On the domain D3, continuity and the above separability conditions imply the func-
tional form assumed for social welfare, as the next result shows:

Lemma 1. On the domain D3, the social ordering function % satisfies continuity, in-
dependence of unconcerned generations, and generation independence of unconcerned
histories if and only if for each D ∈ D3, there exist continuous functions qt (one for
each t ∈ T ) and un (one for each n ∈ N) such that %D is ordinally equivalent to
V (c;D) =

∑
t∈T qt

(∑
n∈Nt un (cn)

)
.

Proof. The result immediately obtains by applying Gorman (1968)’s separability the-
orem. The argument requires 3 periods, for the independence axiom over generations,
and 3 nodes (excluding the first one) the independence condition of each generation
across histories: these restrictions are satisfied on D3. �
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Appendix B. Proof of Theorem 1

S1 implies S2
The proof is divided in 7 steps.
Assume S1 and let D ∈ D and x = ψ (D). The first step shows that the social

ordering for D, %D, can be restricted to a functional representation with strictly
increasing functions.

Step 1. For each t ∈ T and each n ∈ Nt, there exist continuous and strictly
increasing functions qt (one for each t ∈ T ) and un (one for each n) such that %D is
ordinally equivalent to:

(B.1) V (c;D) =
∑
t∈T

qt

(∑
n∈Nt

un (cn)

)

Proof. By the restriction of the welfare representation of each %D, functions qt (one
for each t ∈ T ) and un (one for each n) are strictly monotonic and continuous. By
strict monotonicity, it must be true that either qt and un are all strictly increasing for
each t ∈ T and each n ∈ Nt or these are all strictly decreasing. Either choices lead to
ordinally equivalent social orderings; following the usual convention, let all functions
be strictly increasing. �

The next step shows that, when combining risk-balancing and proportionality with
the representation of Step 1, the utility function of each conditional generation (un)
can be rewritten in terms of the “relative consumption” cn/xn. Moreover, such utility
is strictly concave in cn/xn and is equal across nodes at the same period up to an
additive constant.

Step 2. For each t ∈ T , there exist strictly increasing and strictly concave function
wt : R+ → R+ such that:

wt (α) =
un (αxn)

πnxn
+ χn for some χn ∈ R, each α ∈ R+, and each n ∈ Nt.

Proof. For each t ∈ T , each n ∈ Nt, and each cn ∈ R+ define wn
(
cn
xn

)
≡ un(cn)

πnxn
;

note that for each n ∈ N , xn > 0 as shown in Corollary 1. By Step 1, un is strictly
increasing; thus, wn is strictly increasing and almost everywhere differentiable. Let
a pair c, c̄ ∈ C (D) be such that for some t ∈ T , a pair n, n′ ∈ Nt and a δ ∈ R+

the following conditions hold: (i) cn = c̄n − δ
πn
≥ xn; (ii) cn′ = c̄n′ + δ

πn′
≤ xn′ ; (iii)
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cn′′ = c̄n′′ for each n′′ 6= n, n′. By risk-balancing, c �D c̄. By Step 1, this requires that
V (c;D)− V (c̄;D) > 0 or, using (iii), that:

(B.2)
[
un (cn)− un

(
cn −

δ

πn

)]
+

[
un′ (cn′)− un′

(
cn′ +

δ

πn′

)]
> 0

Substituting the utility functions wn and wn′ in (B.2), gives:

πnxn

[
wn

(
cn
xn

)
− wn

(
cn
xn
− δ

πnxn

)]
+

+πn′xn′
[
wn′
(
cn′
xn′

)
− wn′

(
cn′
xn′

+ δ
πn′xn′

)]
> 0

If wn and wn′ are differentiable at cn
xn

and cn′
xn′

, dividing by δ and taking the limit for
δ → 0, yields:

(B.3) w′n

(
cn
xn

)
< w′n′

(
cn′

xn′

)
.

Since wn, wn′ are differentiable almost everywhere, condition (B.3) holds almost ev-
erywhere for each cn

xn
> 1 >

cn′
xn′

and, symmetrically, the reverse inequality holds
almost everywhere for each cn

xn
< 1 <

cn′
xn′

. Thus, if the functions are differentiable at
1, w′n (1) = w′n′ (1).

Let α > 0 and Dα ∈ D be such that ψ (Dα) = αψ (D). By the previous steps and
proportionality, V (c;D) > V (c̄;D) if and only if V (c;Dα) > V (c̄;Dα). Since this
equivalence holds for each α > 0, equation (B.3) holds almost everywhere for each
cn
xn

> α >
cn′
xn′

and each α > 0. Thus w′n (α) = w′n′ (α) almost everywhere for each
α > 0 and wn and wn′ are strictly concave. This also implies that for each t ∈ T ,
there exists a strictly increasing and strictly concave function wt : R+ → R+ such
that for each n ∈ Nt there exists a constant χn ∈ R for which wt (α) = wn (α) + χn

for each α ∈ R+. �

The next step combines intergenerational equity and proportionality with the repre-
sentation of Step 1 to show the effect of marginally increasing a relative consumption
equally assigned to all conditional generations at different periods. For notational
convenience, let χt ≡

∑
n∈Nt χn.

Step 3. For each t ∈ T and almost each α ∈ R+,

q′t

(
χt +

∑
n∈Nt

πnxnwt (α)

)
w′t (α) β−t = q′t′

χt′ + ∑
n′∈Nt′

πn′xn′wt′ (α)

w′t′ (α) β−t
′
.
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Proof. Let a pair c, c̄ ∈ C (D) be such that for some t, t′ ∈ T and a, b, δ ∈ R+: (i)
cn
xn

= c̄n
xn
− δ

βtxn
= a ≥ 1 for each n ∈ Nt; (ii)

cn′
xn′

=
c̄n′
xn′

+ δ
βt′xn′

= b ≤ 1 for each
n′ ∈ Nt′ ; (iii) cn′′ = c̄n′′ for each n′′ ∈ N\ {Nt

⋃
Nt′}. Since c is obtained by c̄ via

a progressive intergenerational transfer, intergenerational equity implies that c %D c̄.
By Step 1, this requires that V (c;D)− V (c̄;D) ≥ 0 or, using (iii), that:

(B.4)
qt
(∑

n∈Nt un (cn)
)

+ qt′
(∑

n′∈Nt′
un′ (cn′)

)
≥

qt

(∑
n∈Nt un

(
cn − δ

βt

))
+ qt′

(∑
n′∈Nt′

un′
(
cn′ +

δ
βt′

))
.

Substituting the functions wt, wt′ (see Step 2) in (B.4) yields:

qt
(
χt +

∑
n∈Nt πnxnwt (a)

)
− qt

(
χt +

∑
n∈Nt πnxnwt

(
a− δ

βtxn

))
+

qt′
(
χt′ +

∑
n′∈Nt′

πn′xn′wt′ (b)
)
− qt′

(
χt′ +

∑
n′∈Nt′

πn′xn′wt′
(
b+ δ

βt′xn′

))
≥ 0

Assume qt is differentiable at zt (a) ≡ χt +
∑

n∈Nt πnxnwt (a) and qt′ is differentiable
at zt′ (b) ≡ χt′ +

∑
n′∈Nt′

πn′xn′wt′ (b); assume wt and wt′ are differentiable at a and b
respectively. Then, dividing the above by δ and taking the limit for δ → 0, implies
that for each a ≥ 1 ≥ b, q′t (zt)w

′
t (a) β−t ≤ q′t′ (zt′)w

′
t′ (b) β

−t′ . This holds almost
everywhere for each a ≥ 1 ≥ b (and, symmetrically, the reverse inequality holds
whenever a ≤ 1 ≤ b). By proportionality (similar to Step 2), q′t (zt (α))w′t (α) β−t =

q′t′ (zt′ (α))w′t′ (α) β−t
′ for almost all α ∈ R+. Using the definitions of zt (α) and zt′ (α),

the statement of Step 3 follows. �

The next step shows differentiability of the evaluation functions.
Step 4. For each t ∈ T , wt and qt are differentiable.

Proof. Let t ∈ T . By contradiction, assume wt is not differentiable at ᾱ ∈ R+:
then left and right derivative at ᾱ are such that w′t (ᾱ−) 6= w′t (ᾱ+). By continuity
and almost everywhere differentiability of wt, there exist a pair c, c̄ ∈ C (D) such
that: (i) cn > c̄n = ᾱ = c̄n′ > cn′ for some n, n′ ∈ Nt; (ii) cn′′ = c̄n′′ for each
n′′ 6= n, n′; (iii) V (c;D) = V (c̄;D); and (iv) wt is differentiable at cn and cn′ . Define
∆V ≡ V (c;D)− V (c̄;D); by the previous steps and (iii):

∆V =

[
πnxnwt

(
cn
xn

)
+ πn′xn′wt

(
cn′

xn′

)]
− [πnxnwt (ᾱ) + πn′xn′wt (ᾱ)] = 0.

Let α > 0 and Dα ∈ D be such that φ (D) = αφ (Dα). For each α > 0, let ∆V α ≡
V (c;Dα)− V (c̄;Dα) or, substituting:
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∆V α = α
[
πnxnwt

(
cn
αxn

)
+ πn′xn′wt

(
cn′
αxn′

)]
+

−α
[
πnxnwt

(
ᾱ
α

)
+ πn′xn′wt

(
ᾱ
α

)]
= 0.

By differentiability of wt at cn
xn

and cn′
xn′

and by w′t (ᾱ−) 6= w′t (ᾱ+), it follows that
limα→1− ∆V α 6= limα→1+ ∆V α. Thus proportionality cannot hold, i.e. there exists
α > 0 such that ∆V 6= ∆V α. This contradiction proves differentiability of wt.

Similarly, assume qt is not differentiable at z, so that q′t (z−) 6= q′t (z+). Since wt is
continuous and strictly increasing (and thus invertible), there exists a ᾱ ∈ R+ such
that z = χt +

∑
n∈Nt πnxnwt (ᾱ). Let t′ 6= t. By the result of Step 3, also qt′ is

not differentiable at χt′ +
∑

n′∈Nt′
πn′xn′wt′ (ᾱ). By continuity and almost everywhere

differentiability of qt, qt′ , wt, wt′ , there exists a pair c, c̄ ∈ C (D) and a pair a, b ∈
R+ such that: (i) cn = a > c̄n = ᾱ = c̄n′ > b = cn′ for each n ∈ Nt and each
n′ ∈ Nt′ ; (ii) cn′′ = c̄n′′ for each n′′ ∈ N\ {Nt

⋃
Nt′}; (iii) V (c;D) = V (c̄;D); and

(iv) wt is differentiable at a, qt is differentiable at yt ≡ χt +
∑

n∈Nt πnxnwt (a), wt′
is differentiable at b, and qt′ is differentiable at yt′ ≡ χt′ +

∑
n′∈Nt′

πn′xn′wt′ (b). As
above, this leads to limα→1− ∆V α 6= limα→1+ ∆V α; thus, there exists an α > 0 such
that proportionality is contradicted, proving the differentiability of qt. �

The next results tells that, for each t ∈ T , the functions wt have a power functional
form (with the logs being a special case with power 0).

Step 5. There exist constants η̄t, ηt, γ̃t ∈ R (a triplet for each t ∈ T ) such that for
each t ∈ T :

wt

(
cn
xn

)
=

 η̄t + ηt
1−γ̃t

(
cn
xn

)1−γ̃t
if γ̃t 6= 1

η̄t + ηt ln
(
cn
xn

)
if γ̃t = 1.

Proof. Let a pair c, c̄ ∈ C (D) be such that: (i) c ∼D c̄; (ii)
∑

n∈Nt πnxnwt′
(
cn
xn

)
=∑

n∈Nt πnxnwt′
(
c̄n
xn

)
for each t ∈ T ; and (iii) cn = c̄n for each n 6= n′, n′′, with

n′, n′′ ∈ Nt for some t ∈ T . This yields:

(B.5) πn′xn′wt

(
cn′

xn′

)
+ πn′′xn′′wt

(
cn′′

xn′′

)
= πn′xn′wt

(
c̄n′

xn′

)
+ πn′′xn′′wt

(
c̄n′′

xn′′

)
and, by proportionality, also:

(B.6) πn′xn′wt
(
cn′

αxn′

)
+πn′′xn′′wt

(
cn′′

αxn′′

)
= πn′xn′wt

(
c̄n′

αxn′

)
+πn′′xn′′wt

(
c̄n′′

αxn′′

)
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Let δ′ ≡ c̄n′ − cn′ , δ′′ ≡ c̄n′′ − cn′′ . By implicit differentiation, equation (B.5) holds

at the limit for δ′ → 0, when ∂δ′′

∂δ′
= −

πn′w
′
t

(
cn′
xn′

)
πn′′w

′
t

(
cn′′
xn′′

) . Divide (B.6) by δ′, let ∂δ′′ =

−
πn′w

′
t

(
cn′
xn′

)
πn′′w

′
t

(
cn′′
xn′′

)∂δ′, and take the limit for δ′ → 0. Then:

(B.7)
w′t

(
cn′
αxn′

)
w′t

(
cn′
xn′

) =
w′t

(
cn′′
αxn′′

)
w′t

(
cn′′
xn′′

)
Define the continuous function λt (α) =

w′t

(
cn′′
αxn′′

)
w′t

(
cn′′
xn′′

) (since w′t > 0, this is positive).

Substituting in (B.7) and taking the log transformation gives:

lnw′t

(
cn′

αxn′

)
− lnw′t

(
cn′

xn′

)
= lnλt (α) .

Let g (ln (z)) ≡ w′t (z) for each z > 0. Substitute, divide by lnα and take the limit
for lnα→ 0 to obtain:

d ln g
(

ln
cn′
xn′

)
d ln

cn′
xn′

= − lim
lnα→0

lnλt (α)

lnα
.

The RHS is finite by differentiability of wt. Let γ̃t ≡ limlnα→0
lnλt(α)

lnα
and let ηt be the

integrating constant. Integrating w.r.t. cn′
xn′

gives:

(B.8) g

(
ln
cn′

xn′

)
= w′t

(
cn′

xn′

)
= ηt

(
cn′

xn′

)−γ̃t
Further integrating – let η̄t be the additive constant – implies that wt

(
cn
xn

)
= η̄t +

ηt
1−γ̃t

(
cn
xn

)1−γ̃t
if γ̃t 6= 1 and wt

(
cn
xn

)
= η̄t + ηt ln

(
cn
xn

)
otherwise. �

For each c ∈ C (D) and each t ∈ T , let

σt ≡

[(
1− γ̃t

1− γ̃t

)
η̄t
∑
n∈Nt

πnxn +
γ̃t

1− γ̃t

(∑
n∈Nt

πnxnwt

(
cn
xn

))]
.

The next step shows that also qt has a power functional form.
Step 6. There exist a ρ̃ ∈ R and ξt ∈ R (one for eacht ∈ T ) such that for each

t ∈ T :
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qt (·) =



{
ξtγ̃t
1−ρ̃ (σt)

1−ρ̃
γ̃t if ρ̃ 6= 1

ξt ln (σt) if ρ̃ = 1
if γ̃t 6= 1

ξt
ρ̃

exp
(
ρ̃
∑

n∈Nt πnxn

(
wt

(
cn
xn

)
− ηt

))
if ρ̃ 6= 0

ξt

(∑
n∈Nt πnxnwt

(
cn
xn

))
if ρ̃ = 0

if γ̃t = 1.

Proof. By proportionality, for each c, c̄ ∈ C (D), c %D c̄ iff c %Dα c̄ and, by the
previous steps, V (c;D) ≥ V (c̄;D) iff V (c;Dα) ≥ V (c̄;Dα). Then, there exists a
function λ : R+ → R+, with λ (1) = 1 and λ (α) 6= 0, such that for each α > 0:
(B.9) ∑

t∈T

[
qt

(
χt +

∑
n∈Nt πnxnwt

(
cn
xn

))
− qt

(
χt +

∑
n∈Nt πnxnwt

(
c̄n
xn

))]
=

= λ (α)
∑

t∈T

[
qt

(
χt +

∑
n∈Nt πnαxnwt

(
cn
αxn

))
− qt

(
χt +

∑
n∈Nt πnαxnwt

(
c̄n
αxn

))]
Assume that c, c̄ ∈ C (D) are such that for some t ∈ T and δ > 0: (i) cn

xn
+ δ = c̄n

xn
for

each n ∈ Nt; and (ii) cn = c̄n for each n ∈ N\Nt. Define π̃t ≡
∑

n∈Nt πnxn. Equation
(B.9), divided by δ, simplifies as follows:

qt(χt+wt( cnxn+δ)π̃t)−qt(χt+wt( cnxn )π̃t)
δ

=

= λ (α)
[qt(χt+αwt( cn

αxn
+ δ
α)π̃t)−qt(χt+αwt( cn

αxn
)π̃t)]

δ
.

At the limit for δ → 0, it gives:

(B.10) w′t

(
cn
xn

)
q′t

(
χt + wt

(
cn
xn

)
π̃t

)
= λ (α)w′t

(
cn
αxn

)
q′t

(
χt + αwt

(
cn
αxn

)
π̃t

)
Case 1. Assume wt

(
cn
xn

)
= η̄t + ηt

1−γ̃t

(
cn
xn

)1−γ̃t
with γ̃t 6= 1. Then, substituting

w′t in (B.10) gives q′t
(
χt + wt

(
cn
xn

)
π̃t

)
= λ (α)αγ̃tq′t

(
χt + αwt

(
cn
αxn

)
π̃t

)
. Define

ḡ (ln (z − χt)) ≡ q′t (z) for each z > 0; substitute ḡ, take the log transformation, and
divide by lnα:

ln ḡ
(

lnα + lnwt

(
cn
αxn

)
+ ln π̃t

)
− ln ḡ

(
lnwt

(
cn
xn

)
+ ln π̃t

)
lnα

= − lnλ (α)

lnα
− γ̃t

By differentiability of qt, the limit is finite: let ρ̃ ≡ 1 + limlnα→0
lnλ(α)

lnα
. The limit

writes:
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1−
ηt

(
cn
xn

)1−γ̃t

η̄t + ηt
1−γ̃t

(
cn
xn

)1−γ̃t

 d ln ḡ (ln (z − χt))
d (ln (z − χt))

= 1− ρ̃− γ̃t

and, rearranging and substituting back for q′t (z), yields:

d ln q′t (z) = (1− ρ̃− γ̃t)

 z(
1− γ̃t

1−γ̃t

)
π̃tη̄t + γ̃t

1−γ̃t z

 d (ln (z − χt)) .

By strict concavity of wt (see Step 2), γ̃t 6= 0. Integrating the above –let ξt be the
integrating constant– gives:

q′t (z) = ξt

[(
1− γ̃t

1− γ̃t

)
π̃tη̄t +

γ̃t
1− γ̃t

(z − χt)
]( 1−ρ̃

γ̃t
−1
)

Further integrating (the additive constant is left out as ordinally irrelevant for the
ranking) implies that:

qt (z) =
ξtγ̃t

1− ρ̃

[(
1− γ̃t

1− γ̃t

)
π̃tη̄t +

γ̃t
1− γ̃t

(z − χt)
] 1−ρ̃

γ̃t

if ρ̃ 6= 1 and

qt (z) = ξt ln

[(
1− γ̃t

1− γ̃t

)
π̃tη̄t +

γ̃t
1− γ̃t

(z − χt)
]

otherwise.

Substituting z = χt + wt

(
cn
xn

)
π̃t, gives the specified functional forms.

Case 2. Assume wt
(
cn
xn

)
= η̄t + ηt ln

(
cn
xn

)
. Substituting wt and w′t in (B.10)

gives: q′t
(
π̃twt

(
cn
xn

))
= αλ (α) q′t

(
απ̃twt

(
cn
αxn

))
. As above, substitute ḡ, take the

log transformation, and divide by lnα to obtain:

ln ḡ
(

lnα + ln π̃t + lnwt

(
cn
αxn

))
− ln ḡ

(
ln π̃t + lnwt

(
cn
xn

))
lnα

= − lnλ (α)

lnα
− 1

Taking the limit for lnα→ 0, gives:

d ln ḡ (ln (z − χt))
d (ln (z − χt))

1− ηt

η̄t + ηt ln
(
cn
xn

)
 =

d ln ḡ (ln (z − χt))
d (ln (z − χt))

[
1− π̃tηt

z

]
= ρ̃

Thus:

ˆ
d ln q′t (z) = ρ̃

ˆ (
z − χt

z − χt − π̃tηt

)
d (ln (z − χt)) .
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Integrating a first time –let ξt be the integrating constant– gives:

q′t (z) = ξt exp

(
ρ̃
∑
n∈Nt

πnxn

[
wt

(
cn
xn

)
− ηt

])
.

Integrating again (the additive constant is left out as ordinally irrelevant for the
ranking) gives:qt = ξt

ρ̃
exp

(
ρ̃
∑

n∈Nt πnxn

[
wt

(
cn
xn

)
− ηt

])
if ρ̃ 6= 0

qt = ξt

(∑
n∈Nt πnxnwt

(
cn
xn

))
otherwise.

�

The next and last step of the proof combines the parametric functional forms with
the concavity restrictions.

Step 7. The social ordering %D can be represented by the fair intergenerational
utilitarian criterion (4.3).

Proof. Let c ∈ C (D) be such that cn
xn

= z for each n ∈ N . For each t ∈ T , let
π̃t ≡

∑
n∈Nt πnxn. By Step 3 and 4,

(B.11) q′t

(∑
n∈Nt

πnxnwt (z)

)
w′t (z) β−t = q′t′

 ∑
n′∈Nt′

πn′xn′wt′ (z)

w′t′ (z) β−t
′

for each z ∈ R+ and each t, t′ ∈ T .
Case 1. Assume wt, wt′ have the form of Step 5 with γ̃t, γ̃t′ 6= 1: thus, wt (z) =

η̄t + ηt
1−γ̃t (z)1−γ̃t and wt′ (z) = η̄t′ +

ηt′
1−γ̃t′

(z)1−γ̃t′ . Then:

ξtβ
−tηt

((
1− γ̃t

1−γ̃t

)
π̃tη̄t + γ̃t

(1−γ̃t)2 π̃tηtz
1−γ̃t

) 1−ρ̃
γ̃t
−1

(z)−γ̃t =

= ξt′β
−t′ηt′

((
1− γ̃t

1−γ̃t

)
π̃t′ η̄t +

γ̃t′

(1−γ̃t′ )
2 π̃t′ηt′z

1−γ̃t
) 1−ρ̃

γ̃t′
−1

(z)−γ̃t′ .

Since this holds for each z > 0, 1 − ρ̃ 6= γ̃t implies that η̄t = 0 (and equivalently for
t′). When 1− ρ̃ = γ̃t, qt is linear (and thus also qt′for each t′ 6= t) and any choice of η̄t
is ordinally equivalent; thus we can again set η̄t = 0. Equalizing the exponents of z
of the RHS and LHS, requires γ̃t = γ̃t′ ≡ γ̃. Thus, the above conditions simplifies as:

ξtβ
−tηt

(
γ̃

(1− γ̃)2 π̃tηt

) 1−ρ̃
γ̃
−1

= ξt′β
−t′ηt′

(
γ̃

(1− γ̃)2 π̃t′ηt′

) 1−ρ̃
γ̃
−1

.

The equality holds when the parameters are as follows: ηt = (1−γ̃)2

γ̃
π̃−1
t and ξt = βt

π̃0
η−1
t

(and similarly for t′). Let γ ≡ 1−γ̃, ρ ≡ 1− γ
1−γ (1− ρ̃), π̃0 = x0 and π̃t =

∑
n∈Nt πnxn.
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Then, the FIU criterion arises, where for each t ∈ T :

vt (c;D) ≡

(∑
n∈Nt

πnxn
π̃t

(
cn
xn

)γ) 1
γ

,

and social welfare is:

V (c;D) =

{ ∑
t∈T β

t π̃t
π̃0

(vt(c;D))1−ρ

1−ρ ρ ≥ 0, ρ 6= 1∑
t∈T β

t π̃t
π̃0

ln (vt (c;D)) ρ = 1

Case 2. Assume γ̃t = 1 and wt = η̄t + ηt ln
(
cn
xn

)
for some t ∈ T . By Case 1, this

also implies that γ̃t′ = 1 for each t′ ∈ T . Substitute in (B.11) the functional forms
obtained from Step 5:

ξtβ
−tηt exp

(
ρ̃
∑

n∈Nt πnxn [η̄t + ηt ln z − ηt]
)
z−1 =

= ξt′β
−t′ηt′ exp

(
ρ̃
∑

n∈Nt′
πnxn [η̄t′ + ηt′ ln z − ηt′ ]

)
z−1.

Since this holds for each z > 0, ρ̃ 6= 0 implies that η̄t = ηt (and equivalently for t′).
When ρ̃ = 0, qt is linear and any choice of η̄t is ordinally indifferent; thus set η̄t = ηt.
Equality of RHS and LHS are ensured by ηt = π̃−1

t and ξt = βt

π̃0
η−1
t . Let ρ ≡ 1 − ρ̃,

π̃0 = x0, π̃t =
∑

n∈Nt πnxn, and substitute in the forms of Step 5 to get the FIU
remaining cases, where for each t ∈ T :

vt (c;D) ≡
∏
n∈Nt

(
cn
xn

)πnxn
π̃t

and:

V (c;D) =

{ ∑
t∈T β

t π̃t
π̃0

(vt(c;D))1−ρ

1−ρ ρ ≥ 0, ρ 6= 1∑
t∈T β

t π̃t
π̃0

ln (vt (c;D)) ρ = 1

�

S2 implies S1
I show that S2 implies that the social ordering function % satisfies risk balancing

and intergenerational equity. The implication for strict monotonicity and proportion-
ality are straightforward and are thus omitted.

Lemma 2. Assume S2. Then the social ordering function % satisfies risk balancing.

Proof. Let D ∈ D. Let a pair c, c̄ ∈ C (D) be such that for some t ∈ T , a pair
n, n′ ∈ Nt and a δ ∈ R+ the following conditions hold: (i) cn = c̄n − δ

πn
≥ xn; (ii)
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cn′ = c̄n′ +
δ
πn′
≤ xn′ ; (iii) cn′′ = c̄n′′ for each n′′ 6= n, n′. Let ∆ ≡

( c̄nxn )
γ
−
(
c̄n′
xn′

)γ
c̄n
xn′
−
c̄n′
xn′

. Since

γt < 1, (
cn
xn

)γ
=

(
c̄n
xn
− δ

πnxn

)γ
>

(
c̄n
xn

)γ
− δ

πnxn
∆ and(

c̄n′

xn′

)γ
=

(
c̄n′

xn′
+

δ

πn′xn′

)γ
>

(
c̄n′

xn′

)γ
+

δ

πn′xn′
∆.

Premultiply the first by πnxn and the second by πn′xn′ , adding up and simplifying,
gives:

πnxn

(
cn
xn

)γ
+ πn′xn′

(
cn′

xn′

)γ
> πnxn

(
c̄n
xn

)γ
+ πn′xn′

(
c̄n′

xn′

)γ
.

By the additive structure of the representation, it follows that V (c;D) > V (c̄;D)

and risk-balancing holds. �

Lemma 3. Assume S2. Then the social ordering function % satisfies intergenera-
tional equity.

Proof. Let D ∈ D. Let a pair c, c̄ ∈ C (D) be such that for some t, t′ ∈ T , with t′ > t,
and δ ∈ R+ the following conditions hold: (i) cn

xn
= c̄n

xn
− δ

βtxn
≥ 1 for each n ∈ Nt; (ii)

cn′
xn′

=
c̄n′
xn′

+ δ
βt′xn′

≤ 1 for each n′ ∈ Nt′ ; (iii) cn′′ = c̄n′′ for each n′′ ∈ N\ {Nt

⋃
Nt′}.

Let:

yt ≡

(∑
n∈Nt

πnxn∑
n̄∈Nt πn̄xn̄

(
cn
xn

)γ) 1
γ

, ȳt ≡

(∑
n∈Nt

πnxn∑
n̄∈Nt πn̄xn̄

(
c̄n
xn

)γ) 1
γ

,

yt′ ≡

 ∑
n′∈Nt′

πn′xn′∑
n̄∈Nt′

πn̄xn̄

(
cn′

xn′

)γ 1
γ

, ȳt′ ≡

 ∑
n′∈Nt′

πn′xn′∑
n̄∈Nt′

πn̄xn̄

(
c̄n′

xn′

)γ 1
γ

,

and ∆ ≡ 1
1−ρ

y1−ρ
t −y1−ρ

t′
yt−yt′

. For each n ∈ Nt and each n′ ∈ Nt′ (n), let ∆n,n′ ≡ yt−yt′
c̄n
xn
−
c̄n′
xn′

.

Then, since ρ ≤ 1 and γ < 1:

y1−ρ
t

1−ρ = 1
1−ρ

(∑
n∈Nt

πnxn∑
n̄∈Nt

πn̄xn̄

(
c̄n
xn
− δ

βtxn

)γ) 1−ρ
γ

≥ ȳ1−ρ
t

1−ρ −∆
∑

n∈Nt,n′∈Nt′ (n) ∆n,n′ δ
βtxn

and

y1−ρ
t′

1−ρ = 1
1−ρ

(∑
n′∈Nt′

πn′xn′∑
n̄∈Nt′

πn̄xn̄

(
c̄n′
xn′

+ δ
βtxn′

)γ) 1−ρ
γ

≥ ȳ1−ρ
t′

1−ρ + ∆
∑

n∈Nt,n′∈Nt′ (n) ∆n,n′ δ
βt′xn′

.
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Multiplying the first by βt
(∑

n∈Nt πnxn
)
and the second by βt′

(∑
n′∈Nt′

πn′xn′
)
, re-

arranging (remember that πn =
∑

n′∈Nt′ (n) πn′), and summing up, gives:

βt

(∑
n∈Nt

πnxn

)[
y1−ρ
t

1− ρ
− ȳ1−ρ

t

1− ρ

]
+ βt

′

 ∑
n′∈Nt′

πn′xn′

[ y1−ρ
t′

1− ρ
− ȳ1−ρ

t′

1− ρ

]
≥ 0.

Substituting the variables and by the additive structure of the fair intergenerational
utilitarian welfare function, it follows that V (c;D) ≥ V (c̄;D) and intergenerational
equity holds. The proof for the case where t > t′ is similar and thus omitted. �

Appendix C. (ONLINE): Accounting for the possibility of extinction

In this online appendix, I present a more general version of the model, allowing for
a positive probability of extinction. This extension also shows how to endogenize the
pure time discount factor β. A decision tree is now denoted by:

D+ ≡
〈
〈πn, Fn〉n∈N , k

〉
Each element of D+ is defined as follows. As before, k ∈ R+ denotes initial resources
and, for each period t ∈ T and node n ∈ Nt, πn ∈ (0, 1] is the probability that node
n is reached at t. Technology at each n ∈ N is now defined by Fn ∈ F

⋃
∅: the

case Fn = ∅ signifies that the human race is extinct in n; clearly, Fn = ∅ implies
that Fn′ = ∅ for each n′ ∈ N (n). Let Nne ⊆ N be the no-extinction subtree; it
is such that n ∈ Nne only if Fn 6∈ ∅. Assume also that extinction is never sure: for
each n ∈ Nne, there exists n′ ∈ N+1 (n) such that n′ ∈ Nne. Let D+ be this larger
domain of decision trees (D is obtained when N = Nne).

A (risky) prospect for D+ is denoted by c ≡
(
{cn}n∈Nne

)
∈ C (D+) ≡ R|N

ne|
+ .

For each D+ ∈ D+, let the set of feasible prospects for D+ be CF (D+) ⊂ C (D+)

such that c ∈ CF (D+) if for each n ∈ Nne: (i) yn = Fn (kn); (ii) cn + sn ≤ yn;
(iii) kn′ = sn for each n′ ∈ N+1 (n); iv) k0 = k. The definition of the social ordering
function is not affected by the introduction of the extinction probability and is not
repeated for the sake of brevity.

C.1. Dealing with extinction probabilities: the fair prospect. How would
an egalitarian planner distribute the resources, when facing a positive probability of
extinction? The answer depends whether a generation should be compensated or not
for having a lower probability of coming into existence.
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First note that maximality remains compelling for selecting the egalitarian refer-
ence: the prospect assigns consumptions only at nodes with living conditional gen-
erations; thus, the axiom only requires that it should not be possible to give more
resources to these conditional generations.

The treatment of the generation in extinction nodes (N\Nne) becomes instead
important for adapting interim egalitarianism to this setting. Following Golosov et al.
(2007), two alternatives can be formulated: (i) either the consumption of a generation
in a non-existing node is exogenously set to a critical level or (ii) the comparison
between generations is conditional on non-extinction. I follow the second alternative.
The reason is that conditional generations are born after the technological/extinction
shock is realized: since they do not face the extinction risk, one should only ensure
that these are treated fairly when they come into existence.

As an example assume a unit of good is to be shared among two generations, the
second of which comes to existence with probability 1

3
. Assume the egalitarian planner

is risk-neutral and that the critical level is zero. Then, according to alternative (i),
these generations are treated equally when the first is assigned .25 and the second .75;
according to alternative (ii) instead, these generations are treated equally when each
is assigned 1

2
. As discussed later, the willingness of the planner to save up more or

less resources for later generations, reflecting the risk that future generations might
not benefit from such effort, is introduced in the intergenerational transfer principle.

Let µ : R→ R be a continuous, strictly increasing, and concave function.

Conditional interim egalitarianism. For each D+ ∈ D+, x ∈ φ (D+) is such that
for each t ∈ [0, t̄− 1], each n ∈ Nne

t , and each t′ > t:

xn = µ−1

[∑
n′∈Nne

t′ (n)
πn′∑

n′′∈Nne
t′

(n) πn′′
µ (xn′)

]
.

Define the fair rule φ∗ as the one that satisfies maximality and conditional interim
egalitarianism. This rule is well-behaved and selects a unique prospect that assigns
strictly positive consumptions to all conditional generations at non-extinction nodes.
The proof is similar to those of Proposition 1 and Corollary 1 and is omitted.

Proposition 2. The fair rule φ∗ associates to each decision tree D+ ∈ D+ a unique
prospect φ∗ (D+) such that x∗n > 0 for each n ∈ Nne.

As for the model without extinction, the representation result is independent of the
reference prospect, provided it is uniquely selected and assigns positive consumptions
to all living conditional generations.
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C.2. Dealing with extinction probabilities: intergenerational equity. As for
maximality, strict monotonicity remains compelling as extinction probabilities are
given and just requires to value positively the assignment of larger prospects. Also
risk-balancing remains appealing: the mean preserving transfer relative to the fair
prospect should hold among histories where conditional generations are assigned a
consumption, thus excluding the extinction nodes. Finally, also the axiom of propor-
tionality remains compelling.

As anticipated, the introduction of extinction probabilities requires to opportunely
adapt the axiom of intergenerational equity. In fact, the Pigou-Dalton type of progres-
sive transfers between generations, uniform across histories, might not be considered
anymore welfare improving when the recipient generation has a very low probability
of benefiting from the transfer.

Compared to the corresponding axiom of Section 3, I suggest using the informa-
tion about the probability of extinction to infer how to discount the transfer across
generations. Assume one generation is richer than another: at each history the first
is assigned more than the fair prospect and the second is assigned less. Consider a
progressive transfer, uniform across histories and weighted by the likelihood of exis-
tence of the generation. Then, transferring such (weighted) amounts from the richer
to the poorer generation without changing the richer-poorer relation, leads to a larger
social welfare. Formally, the probability of a generation being alive substitutes the
pure time discount factor, i.e. for each t ∈ T the transfer δ ∈ R+ is weighted by∑

n̄∈Nne
t πn̄

instead of βt. The fair prospect is here uniquely selected by the function
ψ : D+ → CF (D+)

⋂
RNne

++ (redefined on the larger domain D+).

Conditional intergenerational equity. For each D+ ∈ D+, each x = ψ (D+),
each pair c, c̄ ∈ C (D+), each pair t, t′ ∈ T , and each δ ∈ R+, if
(i) cn = c̄n − δ∑

n̄∈Nnet
πn̄
≥ xn for each n ∈ Nne

t ;

(ii) cn′ = c̄n′ +
δ∑

n̄∈Nne
t′

πn̄
≤ xn′ for each n′ ∈ Nt′;

(iii) cn′′ = c̄n′′ for each n′′ ∈ Nne\ {Nne
t

⋃
Nne
t′ },

then c %D+ c̄.

C.3. The characterization result. Let D+ ∈ D+ and x = ψ (D+). For each
generation t ∈ T , the risk-and-extinction-adjusted discount factor is:

(C.1) β̂t ≡

 ∑
n∈Nne

t

πn

(∑n∈Nne
t
πnxn

x0

)
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and let generation t’s welfare be measured by the function vt : R|N
ne
t |

+ → R with
the following functional form:

(C.2) vt
(
c;D+

)
≡


(∑

n∈Nne
t

πnxn∑
n̄∈Nnet

πn̄xn̄

(
cn
xn

)γ) 1
γ

γ < 1, γ 6= 0∏
n∈Nne

t

(
cn
xn

) πnxn∑
n̄∈Nnet

πn̄xn̄
γ = 0

Extended fair intergenerational utilitarianism: For each D+ ∈ D+,

(C.3) V
(
c;D+

)
≡


∑

t∈T β̂t
(vt(c;D+))

1−ρ

1−ρ ρ ≥ 0, ρ 6= 1∑
t∈T β̂t ln (vt (c;D+)) ρ = 1

where, for each t ∈ T , β̂t is defined in (C.1) and vt (c;D+) in (C.2).

Theorem 2. On the domain D+, the following statements are equivalent:
S1 : the social ordering function % satisfies strict monotonicity, conditional

intergenerational equity, risk-balancing, and proportionality;
S2 : for each D+ ∈ D+, the social ordering %D+ can be represented by the

extended fair intergenerational utilitarian criterion (C.3).

Proof. The proof is similar to the one of Theorem 1 and is omitted. �
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