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ABSTRACT  

In the context of soaring demand for electricity, mitigating and controlling greenhouse gas 

emissions is a great challenge for China’s power sector. Increasing attention has been placed on 

the evaluation of energy efficiency and CO2 abatement potential in the power sector. However, 

studies at the micro-level are relatively rare due to serious data limitations.  This study uses the 

2004 and 2008 Census data of Zhejiang province to construct a non-parametric frontier in order 

to assess the abatement space of energy and associated CO2 emission from China’s coal-fired 

power enterprises. A Weighted Russell Directional Distance Function (WRDDF) is applied to 

construct an energy-saving potential index and a CO2 emission-abatement potential index. Both 

indicators depict the inefficiency level in terms of energy utilization and CO2 emissions of 

electric power plants. Our results show a substantial variation of energy-saving potential and 

CO2 abatement potential among enterprises. We find that large power enterprises are less 

efficient in 2004, but become more efficient than smaller enterprises in 2008. State-owned 

enterprises (SOE) are not significantly different in 2008 from 2004, but perform better than their 

non-SOE counterparts in 2008. This change in performance for large enterprises and SOE might 

be driven by the “top-1000 Enterprise Energy Conservation Action” that was implemented in 

2006.  

Keywords: Energy-saving potential; CO2 abatement potential; Weighted Russell Directional 

Distance Function; Coal-fired power enterprise  
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1. Introduction 

The expansion of China’s power sector raises worldwide concerns due to its significant role in 

global greenhouse gas (GHG) emissions. In 2011, China’s power sector produced about 3981 

million tons of CO2 equivalent (MtCO2e), accounting for almost 50% of China’s and about 13% 

of the worldwide emissions from fuel, respectively (IEA, 2013). China’s booming power 

generating capacity —950 gigawatt (GW) in 2010, and expected to hit 1760 GW by 2020, still 

can’t keep up with its rapidly increasing electricity demand (Reuters, 2011). Given the rapid 

expansion of the power sector in China, problems might be further exacerbated in the future.  

To reverse this trend, China has made great efforts to reduce its energy intensity by 19.1% 

during the 11th Five-Year Plan (FYP) from 2006 to 2010 (NDRC, 2011). New targets for 

reducing its energy intensity and carbon intensity by 16% and 17% relative to its 2010 levels by 

2015 were set in the 12th FYP (2011-2015), respectively (Zhang, 2011). To achieve this national 

goal, a key program is the Top-1000 Enterprises Energy Conservation Action launched by the 

National Development and Reform Commission (NDRC), the National Bureau of Statistics 

(NBS), the State-owned Assets Supervision and Administration Commission, the Office of 

National Energy Leading Group and the General Administration of Quality Supervision, 

Inspection and Quarantine in 2006 (Price et al., 2010). The aggregated energy consumption for 

these Top-1000 enterprises accounts for 47% of total industrial sector and 33% of total national 

energy consumption in 2005. Whether these top-1000 enterprises can achieve their energy-saving 

targets, i.e. 100 Mtce (Millions of tons of coal equivalent) by 2010, is thus crucial for achieving 

the national goal. To create strong incentives for decision-makers, large-scale enterprises, mostly 

state-owned enterprises (SOE) with a minimum of 180,000 tons of coal equivalents (tce) energy 
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consumption from nine major energy-intensive sectors1, must sign an energy conservation 

agreement with local governments. To meet the program’s requirement, the top-1000 enterprises 

are required to establish an energy-saving organization, set up an energy-saving target, submit 

their quarterly fuel utilization information online to NBS directly, invest in energy efficiency 

improvements and conduct energy auditing and training. Additionally, the enterprise managers 

and local officials cannot be promoted without achieving their goal. Under this strict regulation, 

the top-1000 enterprises reached its target at the end of 2008. However, the cost-effectiveness of 

the program is unclear. There exists neither a bottom-up analysis nor an evaluation of energy-

saving and emission-reduction potentials at the enterprise level in China (Price et al., 2011; 

WorldBank, 2009). Hence, the distribution of energy-savings and emission-abatement potential 

among large enterprises or SOEs is unknown. 

Given this background, one question we are interested in is whether a large power enterprise 

has greater energy-saving potential and associated CO2 abatement potential than a smaller 

enterprise. The existing literature does not provide a clear linkage between firm size and energy 

(in)efficiency. On the one hand, large firms can benefit from economies of scale and the 

formalization of procedures, which allow them to gain superior performance relative to smaller 

ones. On the other hand, large firms might be characterized by complex hierarchical management 

structures, failure to minimize production costs and lack of competition, which lead to X-

inefficiency (Leibenstein, 1975). Empirical studies are also equivocal. For example, some studies 

support a positive relationship between efficiency and firm size (Kalaitzandonakes et al., 1992; 

Lundvall and Battese, 2000; Pagano and Schivardi, 2003). Contrarily, Page (1984) finds little 

                                                            
1  These nine sectors include: iron and steel, chemical, electricity power generation, petroleum, construction materials, non-ferrous 

metals, coal mining, paper, textile 
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evidence of a systematic relationship between firm size and efficiency. Majumdar (1997) offers 

the opposite evidence and finds larger firms to be less productive than small ones.  

As for ownership, the debate on relative efficiency of public versus private enterprises also has 

a long history in economics. The property rights view suggests that publicly owned enterprises 

perform less efficient than privately owned enterprises since the public ownership attenuates 

property rights and reduces the manager’s incentive to minimize costs. Consequently, state-

owned enterprises (SOE) perform less efficiently and hence have a higher abatement potential 

than private firms. However, the existing empirical evidence provides weak support for this 

hypothesis. For example, Atkinson and Halvorsen (1986) find no significant difference between 

publicly and privately owned electric utilities in the U.S. 

Given the crucial role that the power sector plays in climate change mitigation and the debates 

on current practices, several important questions naturally arise: How large are coal-fired power 

enterprises’ reduction potential of energy usage and associated CO2 emission in China? Are these 

potentials associated with enterprise scale and ownership? This paper attempts to respond to these 

questions by analyzing data from coal-fired power enterprises in China’s Zhejiang province of 

the years 2004 and 2008. Since the energy-saving regulation for these enterprises was 

implemented in 2006, this unique firm-level data also provides an opportunity to examine 

whether the energy reduction potential and its associated CO2 abatement potential changed.  

The non-parametric approach of data envelopment analysis (DEA) has been widely used in the 

literature. A key advantage of DEA over other approaches is that it does not need a specific pre-

assumed functional form and can easily accommodate both multiple inputs and multiple outputs. 

This technique has been applied to evaluate, e.g., the relative energy and environmental 

efficiency of U.S. power plants (Färe et al., 1989; Färe et al., 2007; Pasurka, 2006; Tyteca, 1997). 
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Zhou et al. (2008) and Zhang and Choi (2014) provide a comprehensive overview on the use of 

DEA model in energy and environmental studies. Recently, DEA has been used with increasing 

frequency in studies of the Chinese power sector: Choi et al. (2012) apply a non-radial slacks-

based DEA model to estimate the energy efficiency and shadow price of energy-related CO2 

emissions at the province level for the period 2001 to 2010. Xie et al. (2012) use a two-stage 

network DEA model to evaluate the provincial environmental performance in China and explore 

the linkage between the environmental efficiency and generation forms. Yang and Pollitt 

(2009) apply three multiplicative DEA models to 582 Chinese coal-fired power plants in 2002 to 

gauge their environmental performance. They also employ an unbalanced panel of 796 power 

plants during 1996-2002 to calculate the Malmquist TFP indices (Yang and Pollitt, 2012). Using 

an output-oriented DEA technique, Zhao and Ma (2013) estimate the technical and scale 

efficiency score of 34 power plants during 1997-2010 and then examine the impact of 

deregulation on performance.  

Apart from these previous studies, this paper applies the non-radial Weighted Russell 

directional distance function approach to measure the energy-saving potential index and CO2 

emission-abatement potential index for coal-fired power enterprises in 2004 and 2008. This 

approach is first developed by Chen et al. (2011) which mirrors the strategy employed by Chung 

et al. (1997) and extended the work of Fukuyama and Weber (2009). It recently has been applied 

for Japanese banks (Barros et al., 2012), Indian banks (Fujii et al., 2014) and Korean power 

plants (Zhang et al., 2013). One advantage of this methodology is that it provides the specific-

factor efficiency (such as energy efficiency and CO2 emission efficiency) in addition to the 

overall efficiency score in the radial directional distance function (DDF) model (Sueyoshi and 

Goto, 2011). Moreover, it can avoid the overestimation the efficiency value as it takes account 
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the nonzero slacks, which are ignored in the radial DDF model (Fukuyama and Weber, 2010)2. 

To our knowledge the current paper is the first micro-level study using this innovative 

methodological approach to assess the energy-saving potential and CO2 abatement potential in 

China. Our results suggest that the top-1000 enterprise program, which started in 2006, 

significantly affected the performance of large and SOE power enterprises. These enterprises 

become more efficient in terms of energy utilization and CO2 emissions when compared to small 

and non-SOE enterprises, respectively. As smaller-size and non-SOE enterprises are associated 

with higher potentials for energy savings and CO2 emission reductions, energy conservation 

programs might change their scope accordingly. 

The remainder of this paper is organized as follows. Section 2 introduces Zhejiang’s power 

sector. Section 3 presents the methodology and data. In section 4, we derive and discuss the 

results. Finally, we present conclusions and draw some policy implications. 

 

2. Description of Zhejiang’s Power Sector 

We select Zhejiang province as our sample region. It has a developed economy characterized 

by high energy demand and high productivity. With a population of 51.8 million it is situated in 

the Yangtze River Delta. In 2009, Zhejiang ranked 4th in terms of per capita GDP among 31 

Chinese provinces, accounting for 6.8% of national GDP and 11.1% of China’s exports (NBS, 

2010). However, like most of the other provinces, it suffers from serious shortages of energy due 

                                                            
2  Zhou et al. (2012a) present a formal definition of the non-radial directional distance function to modeling energy and CO2 

emission performance in the electric power sector. The non-radial models fall into three categories: Russell measure, Additive 

model and Slacks-based model (SBM). In general, the non-radial efficiency measures have a higher discriminating power relative 

to the standard formulation of DEA-based models. However, the setting of a weight vector w may depend on the purpose of the 

research. More discussion and a comparison for these models can be found in Barros et al. (2012) 
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to its rapid industrialization and increased urbanization. The maximum power supply capacity 

shortages in Zhejiang were estimated at around 3.6 GW during the summer of 2010 when the 

local grid operator had to cut the power supply to energy-intensive sectors (Reuters, 2010). 

Driven by market opportunities, substantial investments have flowed to the construction of power 

generation projects. Figure 1 presents the historical trend of total generation, thermal power 

generation and total installed capacity in Zhejiang from 2002-2009. Its installed capacity, as 

shown in the left vertical axis, indicates a steady increase from 20.7 GW in 2002 to 56.2 GW in 

2009, with an annual growth rate of 15.3%. The total power generation in 2009 reaches 224.6 

TWh, 2.5 times the 2002 level with a 14.2% growth rate.   

 

Figure 1 Power generation and installed capacity in Zhejiang (2002-2009) 

Source: The power generation data is taken from the China Energy Statistical Yearbook (NBS,2009); the installed capacity data is 

taken from the White Paper of Energy in Zhejiang (Zhejiang Province Economic and Information Commission and 

Zhejiang Provincial Bureau of Statistics, 2010). 
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Figure 1 also reveals that thermal power generation contributes around 80% of the total 

generation capacity in Zhejiang. Consequently, the power sector in the Zhejiang province is a 

major source of GHG. In 2007, it produced 314 MtCO2e, which accounts for 81.6% of Zhejiang’s 

and 2.1% of the national GHG emissions (Province, 2010). The resource utilization efficiency in 

Zhejiang’s power sector remains high due to a high proportion of larger-scale generating units. 

Table 1 lists the energy intensity of thermal power generation in China and Zhejiang province. 

Energy consumption in Zhejiang’s thermal power enterprises to generate one kWh is noticeably 

less than the national average level. However, if we compare it to the international advanced 

level, the thermal power enterprises in Zhejiang province still have 6.7-11.5% improvement 

potential in energy efficiency.   

 

Table 1 Comparison of energy intensity of thermal power generation 

Indicator Units 
International 
advanced 
level 

China Zhejiang  

average 
level 
(2006) 

top-1000 
enterprises 
(144 
thermal 
power 
plants, 
2006) 

Large & 
medium 
size 
thermal 
power 
plants 
(2005) 

Smaller 
thermal 
power 
plants 
above 
6MW 
(2006) 

Coal 
consumption 
per unit of 
thermal power 
generation  

Grams of 
coal 
equivalents 
/ kWh 

312 366 365 333 348 

Source: All data except Zhejiang are taken from the Report on the State Energy use of the Top-1000 Enterprises (NDRC and 

NBS, 2007). The last two columns refer to the White Paper of Energy in Zhejiang(Zhejiang Province Economic and Information 

Commission and Zhejiang Provincial Bureau of Statistics, 2010). 
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Table 2 presents several macro-level single-factor productivity indicators. In 2009, one unit 

of tce in Zhejiang generated 13,500 Yuan GDP and 8,900 Yuan industrial value-added, ranked 4th 

and 6th in terms of the productivity level among 31 provinces, respectively. The GDP per unit of 

CO2 emissions of the Zhejiang province is 1.43 times the national level and ranked 8th in 2007.  

 

Table 2 Energy productivity and CO2 productivity of Zhejiang 

Indicators Units Year
Zhejiang 

province 

Ratio to 

national 

level 

Rank among 

31 

provinces 

GDP per unit of energy 

consumption 

10,000 Yuan/ 

tce, 2005 price 
2009 1.35 1.45 4 

Industrial value-added 

per unit of energy 

consumption 

10,000 Yuan/ 

tce, 2005 price 
2009 0.89 - 6 

GDP per unit of CO2 

emission  

10,000 Yuan 

/ton, 2007 price 
2007 1.29 1.43 8 

Source: The data in the second and third row is taken from China Statistical Yearbook (NBS, 2010). The data in the last row 

derives from the Climate Change Program of Zhejiang Province (Zhejiang Provincial Government, 2010). 

 

Zhejiang seems to be a particularly interesting region to study the performance of coal-fired 

power plants in China. Our estimated result for energy-saving and emission-abatement potentials 

in Zhejiang will provide a valuable reference for China’s situation.  
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3. Methodology and Data 

3.1 The Analytical Framework 

Our analytical framework is based on a directional distance function combined with a non-

parametric DEA approach. We consider a productive process that uses a vector of inputs Nx R

to produce two kinds of outputs: Good output and bad output, which are denoted by the vector 

My R  and Jb R , respectively. The relationship between inputs and outputs is represented by 

an output set: 

 ( ) ( , ) : ( , )N M JP x y b x can produce y b          (1) 

Apart from the standard convex and compact assumptions, the output set (1) satisfies free 

disposability of good outputs, that is: ( , ) ( ) ' ( ', ) ( )y b P x and y y y b P x    . This indicates that 

it is possible to reduce good output without reducing bad output. Also, the input is freely 

disposable if ' ( ') ( )Nx x P x P x    . Furthermore, we assume that bad outputs and good 

outputs satisfy joint weak disposability: ( , ) ( ) 0 1, ( , ) ( )if y b P x and then y b P x      . Weak 

disposability implies that it is feasible to reduce both good and bad output proportionally by θ. 

The idea is to make sure that it is ‘costly’ to reduce bad output3. Finally, good and bad outputs are 

                                                            
3 The concept of weak disposability is first introduced by Färe et al. (1989) when modeling an environmental production 

technology. However, it faces criticism recently in energy and environmental economics studies. Kuosmanen (2005) suggests that 

the weak disposability in DEA analyses may unintentionally assume that all firms apply uniform abatement factors. Yang and 

Pollitt (2010) argue that the weak disposability assumption may not suit for the SO2 case in the electricity sector. They also find 

that the imposition of this assumption significantly alters results. Chen (2013) re-examine the weak disposability assumption and 

finds that the non-additive efficiency model violates the monotonic axiom in pollution quantities. Sueyoshi and Goto (2012) 

review the weak and strong disposability concepts and confirm that the weak disposability cannot properly measure an occurrence 

of undesirable congestion. They suggest to replace the weak/strong disposability with a newly proposed natural/managerial 

disposability. Recently, Aparicio et al. (2013) and Färe et al. (2014) modify the specification of weak disposability that eliminates 

the downward sloping good-bad output production frontier. In the present paper, we still model weak disposability as our bad 
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assumed to satisfy the null-jointness or byproduct axiom, that is:

( , ) ( ) 0, 0if y b P x and b then y   , which implies that good output cannot be produced without 

producing bad output. In other words, bad output is jointly produced with good output. 

The general directional output distance function can be defined as follows: 

  ( , , ; , , ) sup : ( , ) ( )o x y b y b xD x y b g g g y g b g P x g       


   (2) 

The direction vector g= (gx , gy , gb)( N M Jg     R R R ) indicates that we intend to expand 

the good output and contract both the input and the bad output. Its components gx , gy and gb 

determine the direction for input, good and bad outputs, respectively. Given the production 

technology P(x) and the direction vector g, the directional distance function aims at the maximum 

feasible expansion of good outputs and contraction of input and bad outputs along the direction 

vector gy , gb and gx. The value of β is the distance between the observation and the boundary. If 

one observation lies on the frontier, it is the most efficient observation compared with others and 

yields a zero value of β. As the value β increase, the observation becomes less efficient.  

Since our focus is the specific-factor inefficiency (such as the energy-saving potential and 

the CO2-abatement potential) rather than the overall inefficiency, we apply the weighted Russell 

directional distance model (WRDDM) following Barros et al. (2012) and Fujii et al. (2014). 

Assume there are k=1,…,K observations using n=1,…,N inputs to obtain a vector of m=1,…,M 

good outputs and a vector of j=1,…,J bad outputs. The production technology exhibits constant 

returns to scale. The value of ( , , )oD x y b


 for the k’-th firm can be computed by solving the 

following programming problem: 

                                                            

output is CO2. The non-radial additive model doesn’t violate monotonicity assumption in this case and it allows for non-uniform 

scale factors. 
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 ' ' ' ' ' ' ' ' '( , , ; , , ) maxk k k k k k k k k
o x y b n n m m j jD x y b g g g        


    (3) 

s.t.  

''

1
( ) , 1,...,

k

m

K k k k
m m m yk

z y y g m M


        (i) 

''

1
( ), 1,...,

k

j

K k k k
j j j bk

z b b g j J


        (ii)  

''

1
( ), 1,...,

k

n

K k k k
n n n xk

z x x g n N


        (iii) 

0, 1,...,kz k K         (iv) 

where zk are the intensity variables that weight the observations to construct the production 

set. The left-hand and right-hand sides for constraints (i)-(iii) for model (3) represent the 

theoretical efficient enterprise and the actual observation. The coefficient vector ω=(ωn, ωm , ωj)T 

denotes a normalized weight vector relevant to the number of inputs and outputs. The coefficient 

βn, βm and βj denote the individual inefficiency measures for the n-th input, m-th good output and 

j-th bad output, respectively. Note that the inequality sign in (i) and (iii) in both models 

represents the free disposability of good outputs and inputs. The constraint (ii) shows that the bad 

outputs are weakly disposable and meet the theoretical assumption of null-jointness. The last 

constraint (iv) is used to ensure that all intensity variables are non-negative. In the present paper, 

we have three inputs, one good output and one bad output, thus the normalized weight vector ω is 

set as (1/9,1/9,1/9,1/3,1/3) since it is more reasonable for an economic power utility (Zhang et al., 

2013). Following previous empirical studies, the directional vector is set as g=(gx , gy , gb)=(-xn, 

ym,-bj), which suggests the inefficient firm can simultaneously scale the input/output vector in 
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proportion to its initial combination of actual inputs and outputs (Barros et al., 2012; Fujii et al., 

2014)4.  

3.2 Energy-saving Potential Index and Emission-abatement Potential Index  

One of the advantages of WRDDM is that it can expand each good output and contract each 

input and bad output with different proportion rates. In other words, it can assist us to find the 

maximum distance (potential) for each input/output vector toward the frontier. Consequently, one 

may derive specific factor’s inefficiency measures and examine each factor’s contribution to 

overall inefficiency. 

Suppose that 
'k

energy is the optimal solution to the energy input in model (3), we introduce the 

k’-th firm’s Energy-Saving Potential Index (ESPI) as: 

' '
'

'

k k
energy energyk

k
energy

g
ESPI

x

 
       (4) 

The ESPI measures the maximum feasible saving potential compared with the best-performing 

firms and reflects the inefficiency level with respect to the energy factor. The value of the ESPI is 

non-negative and less than or equal to 1. A higher value of the ESPI indicates a larger inefficiency 

                                                            
4 As Vardanyan and Noh (2006) explored, different directional vectors for good and bad outputs affect results. The choice of the 

directional vector depends on the research purpose and policy goals. One may treat the good and bad output asymmetrically or 

symmetrically. It is also possible to credit a producer for expanding good output production while holding bad outputs production 

constant. Energy efficiency studies adopt the strategy to minimize energy use while holding the good/bad output and non-energy 

inputs constant either by DEA (Blomberg et al., 2012; Mandal, 2010; Shi et al., 2010) or stochastic frontiers techniques (Boyd, 

2005; Zhou et al., 2012b). The directional vector in this case is (gx, gy, gb)=(-xenergy, 0, 0) and it is essentially equivalent to an 

input-oriented DEA model. If the focus is on reducing bad output production, one may minimize the bad output while holding the 

good output and inputs constant. In this case, the directional vector is (gx, gy, gb)=(0, 0, -b) and it is essentially equivalent to an 

output-oriented DEA model. Following Zhou et al. (2012a) and Zhang et al. (2014), the present assumption of directional vector 

seeks to simultaneously reduce inputs and bad output and expand good output non-proportionally 
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and a greater potential to remove excessive energy input through efficiency improvement. It should 

be noted that a zero value of the ESPI does not imply that the firms are perfect and without any 

excessive energy or inefficiency during the production process. Rather, it indicates that the firms 

are Pareto-Koopmans efficient among all of the observations in the sample (Charnes et al., 1985).  

Moreover, the k’-th firm’s total-factor energy efficiency (TFEE) can be defined (Hu and Wang, 

2006) as: 

' '

'
' ' '

'
' '

1 1

k k

k
k k k
energy energy energy energy energyk

energy k k
energy energy

x g g
TFEE ESPI

x x

   
       (5) 

Similarly, we introduce the CO2 Abatement Potential Index (CAPI) as the ratio of maximum 

feasible reduction volume to its actual emission level (Wei et al., 2012). That is:  

'

2 2

2

'
'

'

k k
CO COk

k
CO

g
CAPI

b

 
        (6) 

CAPI in equation (6) is used to measures the relative degree of CO2 reduction for plant k’. It 

has a non-negative value and is not higher than 1. A zero value of CAPI indicates that the firm 

performs best in terms of emission. Conversely, a higher value indicates greater inefficiency and 

larger potential to remove excessive undesirable outputs. 

Also, the k’-th firm’s total-factor CO2 efficiency (TFCE) is given as below, that is: 

' '

2 2 2 2 2

2

2 2

' ' '
' '

' '
1 1

k kk k k
CO CO CO CO COk k

CO k k
CO CO

b g g
TFCE CAPI

b b

   
        (7) 

 

3.3 Data 
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The novel data set used in this study is taken from the First and Second National Economic 

Census (NECC) of the Zhejiang province that was conducted in 2004 and 2008, respectively5. It 

covers the basic characteristics of coal-fired power enterprise units, including the number of 

employees, financial situation, production and business operation situation, production capacity, 

consumption of raw materials and energy as well as scientific and technology-oriented activities.   

All state-owned industrial corporations and non-state-owned industrial enterprises in the 

Zhejiang province with annual sales from principal activity of five million Yuan or more in the 

power sector are analyzed. The input data consists of labor, capital stock and energy 

consumption. The average number of employees is used to represent the productive labor force. 

As for capital, we use the value of fixed assets in the power enterprise derived from independent 

accounting systems. The price indices of investment in fixed assets are used to deflate the capital 

value in 2008’s constant price. The energy data in 2004 comes from the first NECC. The 2008’s 

energy data comes from the Compilation of Statistical Data of  Electric Power Industry (CEC, 

2009). The aggregate heat content of coal, oil and natural gas are used to represent the energy 

input. They are all converted to standard coal equivalents. There are two outputs: one good 

output, given by the electricity generation (gigawatt hour, GWh), and one bad output, measured 

by estimated CO2 emission. We follow Du et al. (2012) to estimate the CO2 emissions from fossil 

fuel consumption6. 

                                                            
5  The major purpose of the National Economic Census of China (NECC) is to keep abreast of the development of the secondary a

nd tertiary industries of China. The data of the first and second NECC covered the whole year of 2004 and 2008, respectively. The

 detailed introduction of the first NECC (2004) can be found at: http://www.stats.gov.cn/english/NewsEvents/200603/t20060301_

25734.html;  the information for the second NECC(2008) can be found at: http://www.stats.gov.cn/english/NewsEvents/200912/t

20091225_26264.html  

6  The IPCC guideline provides the reference value for the emission factor. The average calorific value for each fuel can be 

obtained from NBS (2009).  
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To ensure that all units under the DEA assessment are homogeneous and employ the same 

production technology (Dyson et al., 2001), we select for our sample those units whose primary 

output is electricity and exclude power enterprises where the coal share in fuel input is less than 

95% (Färe et al., 2007). Finally, the data set covers 106 coal-fired power enterprises in 2004 and 

76 enterprises in 2008, totally 182 observations7. Since private information of enterprises (such as 

ID, name, geographical location etc) is unavailable, we cannot assess which enterprises appear in 

both years. Descriptive statistics for all variables are presented in Table 3. From Table 3 a rough 

first impression is that the average sample enterprise in 2008 doubled its capital input in order to 

double its electricity and CO2 production compared to 2004. However, energy consumption 

increases by less and labor input even decreases.  

The study sample provides a rather representative picture. In 2004, the 106 sample power 

enterprises consumed 32.7 million tce, about 30% of total energy in Zhejiang to generate 83.9 

TWh electricity, which accounts for 68.2% of total generation. Compared with 2004, the number 

of power enterprise in the 2008 sample decreased to 76. But they accounted for an even higher 

share of total generation (68.5%) and a slightly smaller share in energy consumption (26.4%).  

   

                                                            
7  Some of the power enterprises may have more than one plant. However, this information is unavailable in NECC 2004 and 

2008. 
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Table 3 Descriptive statistics of coal-fired power enterprises in Zhejiang 

Variable Description Units Mean Std. Dev. Min Max 

2004 (n=106) 

Y Electricity GWh 792.08 2059.34 2.27  13000 

B CO2 10,000 tonnes 85.68 169.89 1.62  1100 

L Labor Persons 314.69 417.63 21.00  2528 

K Capital stock Million Yuan 464.25 1130.22 3.55  7600 

E Heat content of fuel 10,000 tce 30.82 63.08 0.59  410 

2008 (n=76) 

Y Electricity GWh 1717.58 3742.94 11.72  15000 

B CO2 10,000 tonnes 145.30 309.33 1.18  1200 

L Labor Persons 290.80 361.21 22.00  2059 

K Capital stock Million Yuan 940.34 1812.52 2.42  7600 

E Heat content of fuel 10,000 tce 52.53 112.13 0.43  450 

 

4. Empirical Results 

The GAMS/MINOS solver was employed to estimate the WRDDM in equation (3). We first 

report ESPI and CAPI according to equation (4) and (6), respectively. Thereafter we conduct 

statistical tests.  

4.1 Measure ESPI and CAPI 

The left vertical axis in Figure 2 shows the projected minimum energy input and excess 

energy usage due to inefficiency for each power enterprise in 2004. The total length of a bar 

comprises projected and excess energy. The right vertical axis shows the ESPI score which is 

derived by dividing the excess energy input by the observed energy level. Similarly, the left 

vertical axis in Figure 3 depicts the observed CO2 emission and the excess CO2 emission 
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resulting from inefficiency for year 2004. The right axis is the CAPI that is used to measure the 

relative abatement potential of CO2. 62 out of 106 enterprises in 2004 have a zero value of ESPI, 

which suggests that these enterprises perform better than others in terms of energy utilization, or 

they cannot reduce energy input further if all other things remain unchanged. 12 out of 106 

enterprises in 2004 have a zero value of CAPI, which suggests that these enterprises cannot 

reduce CO2 emissions further if other things are fixed. 

 

Figure 2 Projected energy, excessive energy and ESPI (2004) 
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Figure 3 Projected CO2, excessive CO2 and CAPI (2004) 

It should be kept in mind that the zero value of ESPI or CAPI for these power enterprises is a 

relative concept. It indicates that they are relatively efficient in terms of energy use or emissions 

when compared to other enterprises. If all inefficiency measures, βn, βm and βj equal zero, the 

power enterprise is globally efficient and lies on the best-practice frontier8.  

Figure 4 and 5 present the ESPI and CAPI in the year 2008. It can be seen that 24 of the 76 

enterprises are efficient in terms of their energy utilization since the ESPI score is zero. As for the 

CO2 emission, 18 of 76 enterprises are relatively efficient with a zero value of CAPI. If we 

compare the 2004 and 2008 results, we notice that the power enterprises in 2004 have a larger 

ESPI and CAPI value than the power enterprises in 2008. This may suggest that the energy 

                                                            
8  There are 5 of 106 enterprises in 2004 and 10 of 76 enterprises in 2008 that are overall efficient in terms of input utilization, 

electricity generation and CO2 emission, respectively. 
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saving potential and the emission abatement potential of our 106 enterprise sample in 2004 is 

higher than our 76 enterprise sample in 2008. 

 

Figure 4 Projected energy, excessive energy and ESPI (2008) 
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Figure 5 Projected CO2, excessive CO2 and CAPI (2008) 

 [insert Figure 5 here] 

Table 4 reports the summary statistics for ESPI and CAPI. The results show that an excess of 

15.5% of the energy input is used and an excess of 22.6% of CO2 is emitted by our 106 power 

enterprises due to inefficiency in 2004. Alternatively, if all enterprises would have performed 

efficiently in 2004, about 5.04 Mtce energy could be saved with a simultaneous 20.52 MtCO2 

reduction of CO2 emission. This result is consistent with Wei et al. (2013)’s finding, in which 

they report an overall inefficiency level of 18.9% for power enterprises in 2004 using a 

parametric approach. The reduction potential to save energy use and CO2 emission in 2008 seems 

much less than that of 2004 in absolute and relative values. In 2008, around 1.71 Mtce energy 

0

0,2

0,4

0,6

0,8

1

0

500

1000

1500

0 10 20 30 40 50 60 70

C
A

P
I 

sc
or

e

p
ro

je
ct

ed
 a

n
d

 e
xc

es
si

ve
 C

O
2

em
is

si
on

(1
0,

00
0 

to
n

s)

Power plants (in ascending order of CAPI)

project CO2 excessive CO2 emission CAPI



22 
 

and associated 4.73 MtCO2 emission for our 76 sample enterprises potentially could have been 

reduced if all enterprises performed efficiently9.  

 

Table 4 Summary statistics of ESPI and CAPI 

 

 

Energy-saving Emission-abatement 

 ESPI 

feasible 
reduction of 
energy 
(10,000 tce)

minimum  
energy 
input 

(10,000 
tce) 

CAPI 

feasible 
abatement of 

CO2 
(10,000 
tonnes) 

minimum 
CO2 

emission 
(10,000 
tonnes) 

Mean 
(std) 

2004 
0.116 

(0.191) 
4.76 

(14.7) 
26.06 

(56.16) 
0.222 

(0.197)
19.36 

(48.02) 
66.31 

(146.44) 

2008 
0.176 
(0.18) 

2.25 
(4.46) 

50.28 
(111.16) 

0.176 
(0.18) 

6.23 
(12.27) 

139.07 
(306.63) 

Aggregate 

2004 0.155 504.89 2762.18 0.226 2052.42 7029.21 

2008 0.043 171.21 3821.36 0.043 473.1 10569.37 

 

In Table 5, we compare our results with previous studies. The results differ depending on the 

samples, the model assumptions, the setting of the direction vector, as well as the selection of 

input and output variables. To make these results comparable, we concentrate on the partial 

technical efficiency of good/bad output. Our estimation of partial technical efficiency is close to 

Yang and Pollitt (2010)’s result who use similar data but a different model, but higher than that 

of (Zhou et al., 2012a) who use a similar model but with nation level data. Our result is lower 

than other studies which may occur due to two reasons: First, the number of input/output 

                                                            
9 One referee mentions the close link between fuel consumption and CO2 emissions due to the lack of lower-cost abatement 

technologies for CO2 emissions. The difference between ESPI and CAPI may hence result from changes in the fuel mix. Given 

the same heat content, a higher use of non-coal fuel is associated with higher electricity generation, but lower emission compared 

to a higher coal dependence. 
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variables can affect the frontier estimation. A higher number of inputs and outputs in other 

studies will increase the number of constraints in the LP problem. This change leads to more 

observations being on the frontier and a relatively higher score of technical efficiency. Second, 

the choice between a constant or variable returns to scale can alter the result. In case of a variable 

returns-to-scale production technology more observations lie on the frontier. This lead to a 

relatively lower inefficiency value10.  

 

Table 5 Comparison with other DEA-based studies 

Author Samples 

 DEA Model 

Number of 
input/output 

Result  
type 

return 
to 

scale 
setting of 
(gy,gb,gx) 

Picazo-Tadeo 
et al. (2005) 

35 Spanish ceramic 
tile producers in 
1995 

Additive DDF VRS (1,0,1) 
3 inputs 
1 good output 
2 bad output 

pTEy: 0.978 

Färe et al. 
(2007) 

92 U.S. coal-fired 
power plants in 
1995 

Multiplicative 
DEA 

CRS 
Max y 
b,x fixed 

5 inputs 
1 good output 
2 bad output 

pTEy: 0.911 

Additive DDF CRS (1,1,0) pTEy: 0.999 

Yang and 
Pollitt (2010) 

582 Chinese coal-
fired power plants 
in 2002 

Multiplicative 
DEA 

CRS 
Min b,x 
y fixed 

3 inputs 
1 good output 
3 bad output 

pTEy:0.803-
0.853[1] 

Zhou et al. 
(2012a) 

126 countries in 
2005 

Non-radial 
DDF 

CRS (-x,y,-b) 
1 inputs 
1 good output 
1 bad output 

Energy-carbon 
performance 
index: 0.619 

This study 

106 Chinese coal-
fired power 
enterprises in 
2004, 76 enterprise 
in 2008  

Non-radial 
DDF 

CRS (-x,y,-b) 
3 inputs 
1 good output 
1 bad output 

2004: 
pTEb:0.778 
2008: 
pTEb:0.824 

Note: DDF denotes the directional distance function. CRS and VRS represent constant return-to-scale and variable return-to-scale, 

respectively. pTEy and pTEb is the partial technical efficiency of good output y and bad output b, respectively. 

                                                            
10 Both interpretation benefits from the discussion with Dr. Pasurka. Under the VRS assumption, the mean value of the ESPI is 

0.102 and 0.124, which is lower than the result under CRS (0.116 and 0.176) in 2004 and 2008, respectively. There are also some 

studies specifies the VRS technology when weak disposability is imposed on the outputs (Färe et al., 1986; Picazo-Tadeo and 

Prior, 2009; Picazo-Tadeo et al., 2005) 
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[1]: Yang and Pollitt (2010) analyze three scenarios for weak and free disposability among SO2, NOx and CO2. In the case of weak 

disposability and free disposability among all these pollutants, the TE is 0.881 and 0.803, respectively. If only CO2 is weakly 

disposable, the value of TE is 0.853. 

4.2 ESPI, CAPI and enterprise characteristics 

To classify the enterprise size, we follow the criteria of the National Top-1000 enterprises 

program and define a coal-fired power enterprise as large if its annual energy consumption 

exceeds 180000 tce11. Figure 6 plots the ESPI and CAPI score by enterprise scale for year 2004 

and 2008. It is clear that in 2004 the large enterprises have a higher median value and larger 

variation of ESPI and CAPI than their small counterparts. It indicates that large power enterprises 

in our 2004 sample perform less efficient than others in terms of energy utilization and CO2 

emissions. However, this pattern reverses in 2008. This may suggest that the larger power 

enterprises became more efficient. 

                                                            
11  In accordance with this classification, there are 34 large and 72 small enterprises in 2004 and 19 larger and 57 small enterprises 

in 2008, respectively. 
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Figure 6 Box plot of ESPI and CAPI by size in 2004 and 2008 

 

Next we would like to examine whether the type of ownership of power enterprises implies a 

significant difference in energy utilization and CO2 emissions. We divide our sample into two 

groups: SOE (state-owned enterprises) and non-SOE12. The plot of ESPI and CAPI by ownership 

is displayed in Figure 7. We note that in 2004 the SOE group holds a similar median value of 

ESPI and CAPI, but a larger variation when compared with the non-SOE group, respectively. The 

distribution in 2008 shows a different pattern. The SOE group is now significantly lower in terms 

of ESPI and CAPI than the non-SOE group, respectively. It suggests that the SOE operate in a 

                                                            
12  There are 18 SOE and 88 non-SOE in our 2004’s sample. In 2008, the number of SOE and non-SOE power enterprises is 8 and 

68, respectively. 
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similar efficiency compared to non-SOE in 2004, but operate more efficient than non-SOE in 

2008.  

 

Figure 7 Box plot of ESPI and CAPI by ownership in 2004 and 2008 

Is this gap between SOE and non-SOE statistically significant? In order to shed light on the 

significance of the difference between large and small enterprises and between SOE and non-

SOE enterprises we perform non-parametric tests for ESPI and CAPI. The reason to use a non-

parametric test rather than a classic t-test is that the former test is distribution-free and suitable 

for a statistical test in a DEA analysis (Cooper et al., 2007). The Kolmogorov-Smirnov test is 

used to test for equality of distribution between large group and small groups. The null 

hypothesis of the Wilcoxon-Mann-Whitney test is that the rank sums of the large and small 

samples are the same.  

 



27 
 

Table 6 Statistical test 

Null hypothesis (H0) 
Kolmogorov-Smirnov test Mann-Whitney test 

D 
(p-value) 

Z 
(prob > |Z|) 

For year 2004   

ESPI(large)= ESPI(small) 
0.480*** 
(0.000) 

4.211*** 
(0.000) 

CAPI(large)=CAPI(small) 
0.315** 
(0.02) 

1.978** 
(0.048) 

ESPI(SOE)= ESPI(non-SOE) 
0.119 

(0.984) 
0.033 

(0.974) 

CAPI(SOE)=CAPI(non-SOE) 
0.197 

(0.608) 
-0.75 

(0.454) 
For year 2008   

ESPI(large)= ESPI(small) 
0.456*** 
(0.005) 

-2.109** 
(0.035) 

CAPI(large)=CAPI(small) 
0.456*** 
(0.005) 

-2.017** 
(0.044) 

ESPI(SOE)= ESPI(non-SOE) 
0.544** 
(0.029) 

-2.588*** 
(0.009) 

CAPI(SOE)=CAPI(non-SOE) 
0.544** 
(0.029) 

-2.377** 
(0.018) 

For all enterprise   

ESPI(2004)= ESPI(2008) 
0.269*** 
(0.003) 

-3.104*** 
(0.002) 

CAPI(2004)=CAPI(2008) 
0.266*** 
(0.004) 

1.85* 
(0.064) 

Note: ***, ** and * denote 1%, 5% and 10% significant level, respectively. 

Based on the test statistics shown in Table 6, we can reject the null hypothesis that ESPI and 

CAPI are identical for large and small power enterprises in both 2004 and 2008. That is to say, 

large coal-fired power enterprises in our sample are associated with larger energy-saving 

potential and CO2 abatement potential in 2004, while in 2008 the opposite is the case. This 

change between 2004 and 2008 may result from the environmental pressure mainly imposed on 

large power enterprises. As for the difference between SOE and non-SOE, our results indicate 

that the hypothesis of no difference of ESPI and CAPI between SOE and non-SOE cannot be 

rejected in 2004. However, the gap between SOE and non-SOE is statistical significant in 2008. 

In short, the inefficiency in terms of energy utilization and CO2 emission for state-owned coal-

fired power enterprises is not systematically different from those for their non-SOE counterparts 

in 2004, but in 2008 the SOE perform better than non-SOE. This finding partially supports 
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Atkinson and Halvorsen (1986) and Färe et al. (1985)’s conclusions for the U.S which suggest 

that publicly-owned electric utilities are slightly, but insignificantly more efficient than their non-

SOE counterparts. Moreover, the result shows that both ESPI and CAPI in 2004 are significantly 

different from 2008. 

Several reasons may help to better understand this result. First, large enterprises are relatively 

inefficient in 2004, which may be associated with serious X-inefficiency problem. But these large 

enterprises which fall into the “Top-1000 Enterprises Energy Conservation Action” were more 

efficient in 2008 than the small power companies who had not faced this energy-use regulation. 

The “Top-1000 Enterprises Energy Conservation Action” seems to have an important impact on 

the regulated large enterprises. Moreover, small enterprises seem to possess a greater energy-

saving potential and emission-abatement space. Based on the empirical results, attention should 

be paid especially to those power enterprises that are not covered by the top-1000 program. The 

11th FYP also set targets for shutting down inefficient small plants: In the power sector, small-

size plants with capacity of less than 50 MW (with capacity of less than 100 MW if operated over 

20 years or with capacity of less than 200 MW if the operation year exceeds the life cycle) as 

well as plants whose coal consumption per kWh is 15% higher than the national average are 

expected to be phased out. However, closures of small coal-fired power plants face many 

difficulties for implementation in practice. Closures might be suspended in certain years due to 

power supply shortages. Also, local governments are not only concerned about inefficient 

electricity production, but care about employment and social stability (Price et al., 2011).  

Our results show that in 2004, SOE are not significantly different from non-SOE, while in 

2008 the SOE outperform non-SOE in terms of energy utilization and emission. This seems to 

favor the claim by Dewenter and Malatesta (2001) that the change of ownership from SOE to 
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non-SOE, i.e. private-ownership, does not give rise to further efficiency gains. SOE reforms in 

China which started in late 1978 adopt a policy of “grasping the large and releasing the small” 

(Qian, 2002). This strategy enables the privatization and sale of small or non-profitable SOEs. In 

contrast, those remaining SOEs in the power generation sector are highly competitive. Moreover, 

as Tyteca (1996) argued, privately owned enterprises are most likely efficient in production, but 

presumably not as efficient as SOE from an environmental perspective due to the absence of 

internal environmental motivation. State-owned coal-fired power enterprises are more likely to be 

regulated by the government to meet the soaring electricity demand and achieve more strict 

environmental targets. Consequently, SOE readily intend to equip with larger generating units 

and desulfurization equipment under strict energy or environmental standard. Hence they perform 

better in both energy utilization and environment aspects. 

 

 

5. Conclusion 

To investigate whether a large SOE is associated with higher energy-saving potential and CO2 

abatement potential in China’s power sector, we employ a Weighted Russell Directional Distance 

Function. This non-parametric non-radial DEA approach enables us to model bad output within 

an environmental production framework. The major strength of WRDDF is that it allows for non-

proportionally adjustments of inputs and outputs. It thus makes it possible to investigate specific 

factor’s inefficiency levels. This innovative methodology is applied to a unique sample of 

Chinese coal-fired power enterprises located in the Zhejiang province in the years 2004 and 2008. 

Each power enterprise is assumed to produce electricity and CO2 with labor, capital and energy 

input. By comparing with the target reference on the piecewise frontier under the DEA 
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technology, the maximum feasible energy-saving potential index (ESPI) and CO2 emission-

abatement potential index (CAPI) for each power enterprise is estimated. Moreover, we perform 

statistical tests and find that large power enterprises are less efficient in 2004, but become more 

efficient in 2008 than small power enterprises in terms of energy utilization and CO2 emission. 

For the SOE, there is no statistical evidence on an inferior performance compared to non-SOE in 

2004, but SOE exhibit higher efficiency than non-SOE in 2008. This dramatic change between 

2004 and 2008 may result from the implementation of the “Top-1000 program” which set strict 

energy-saving targets for large power plants and SOE.  

We found that about 15.5% of energy (5.04 Mtce) and an associated 22.6% of CO2 (20.52 

MtCO2) could be reduced if all enterprises would have performed efficiently in 2004. The 

energy-saving potential and emission reduction potential for power enterprise in 2008 decreased 

to 1.71 Mtce and 4.73 MtCO2, respectively. This change on the one hand highlights the urgency 

for China’s coal-fired power enterprises to eliminate their inefficient production and emission 

levels (Yang and Pollitt, 2010) . On the other hand, it confirmed the impact of the national 

energy-saving and emission-abatement strategy implemented since 2006 on the performance of 

enterprises. However, it also indicates that it is getting more and more difficult to further reduce 

the energy use and emission levels through efficiency improvements.  

The measurement and analysis of the energy-saving potential and CO2 abatement potential 

index provide decision makers with important information to design environmental regulation 

and assess its potential impact. If energy and climate policies are not market-based (like in 

general superior energy/climate taxes or emissions trading schemes), but rather based on 

command and control approaches, these indices help policy makers to set regulations based on 

enterprise characteristics, to identify enterprises with more capacity to save energy and cut 
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inefficient emissions, and to allocate proper energy-saving and emission-reduction targets. 

Similar to Zhou et al. (2010)’s claim, small-sized, non-SOE power enterprises beyond the top-

1000 enterprise program in 11th FYP should be included in future initiatives as they have a 

relatively greater space to eliminate inefficient energy utilization and associated CO2 emissions. 

Actually some provinces, i.e., Guangdong in the 11th FYP, had designed a similar top-1000 

program and extended the program to a wider scope of enterprise. Also the central government 

formulated in the 12th FYP another “Top-10,000 Enterprise Energy Conservation Action”, which 

can be seen as a ramp up of the “Top-1000 program”. It will cover around 17,000 enterprises 

with annual energy consumption excess 5,000 tce. Nevertheless, policy implications have to be 

drawn very cautiously as our study faces important limitations. For example, the lack of 

information on generators and boilers prevents us from examining the effect of technology 

differences on abatement potentials which might play an important role.  
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