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Abstract 

A Note on the Welfare of a Sophisticated Time-Inconsistent Decision-
Maker 

by Sebastian Kodritsch* 

I examine the circumstances under which a sophisticated time-inconsistent decision-
maker (i) will not or (ii) need not severely miscoordinate her behavior across time, in the 
sense of following a course of action which fails to be Pareto-optimal for the sequence of 
temporal selves of the individual (Laibson [1994] and O'Donoghue and Rabin [1999] provide 
prominent instances of such miscoordination). Studying the standard solution concept for 
this case—Strotz-Pollak equilibrium—in general decision problems with perfect 
information, I establish two results: first, for finite-horizon problems without indifference, 
essential consistency (Hammond [1976]) is sufficient for choice to be Pareto-optimal. 
Second, if the decision problem satisfies a certain history-independence property, 
whenever an equilibrium outcome fails to be Pareto-optimal, it is Pareto-dominated by 
another equilibrium outcome, leading to an existence result for a Pareto-optimal solution. 
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Pareto-optimality 
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1 Introduction

Strotz-Pollak equilibrium (StPoE) is the standard solution concept for intertemporal

decision problems of individuals who have time-inconsistent preferences and perfectly

know themselves. Dating back to the pioneering work of Strotz [1955-1956], this so-

lution has been interpreted as the outcome of �consistent planning�. Yet, a recurrent

�nding in applications is that outcomes thus obtained are ine�cient according to the

welfare criterion of Pareto-optimality when applied to the sequence of temporal selves of

the decision maker; two well-known examples study the choices of (β, δ)-discounters in

a timing problem (O'Donoghue and Rabin [1999, Proposition 5]) and in a consumption-

savings problem (Phelps and Pollak [1968] or Laibson [1994, Chapter 1]), respectively.

Such ine�cient solutions represent instances of severe miscoordination of behaviour

across time, which raises the question of what forms of dynamic inconsistency of pref-

erences and environments permit or prevent this phenomenon.

This note presents welfare results about StPoE paths in general decision problems

with perfect information. A main challenge in relating welfare rankings to equilibrium

in general is the history-dependence of constraints as well as welfare. Nonetheless,

allowing for arbitrary such history-dependence, the �rst result, proposition 1, provides

a su�cient condition for �intrapersonal Pareto-optimality� of a StPoE path in �nite-

horizon problems without indi�erence: a limited form of intertemporal consistency of

preferences, called �essential consistency� in reference to Hammond [1976] who originally

advanced it, ensures this e�ciency property. This result is illustrated and discussed with

several examples of timing problems of a (β, δ)-discounter based on O'Donoghue and

Rabin [1999].

Restricting the history-dependence inherent in the decision problem, corollary 1,

relates welfare and multiplicity of StPoE paths by showing that under these restric-

tions, whenever a path supported by a StPoE is not intrapersonally Pareto-optimal,

then any path that intrapersonally Pareto-dominates it, can also be supported by some

StPoE. The welfare-rankability of multiple StPoE paths features prominently in various

examples used to motivate re�nements of StPoE�see Asheim [1997] and Kocherlakota

[1996]�to which the result presented here adds a general observation. Together with

proposition 2, which it is based upon, it also illuminates the occurrence of this phe-

nomenon for the case of the consumption-savings problem of a (β, δ)-discounter intro-

duced by Phelps and Pollak [1968] and rigorously analysed by Laibson [1994, Chapter

1].
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2 Decision Problem

This section de�nes a general class of decision problems by a single decision-maker

(DM) and the welfare criterion used throughout, and it presents two in�uential models

from the literature which provide the running examples of this note.

2.1 Stages, Actions and Histories

There is a set of consecutive decision times T = {t ∈ N0 | t < T}, where T ∈ N0∪{∞},
at each of which a single DM takes an action at out of some non-empty, but possibly

trivial (singleton), subset of a universal action space A.1 For any t ∈ T , the set of all
histories to time t+ 1 is denoted H t+1 and de�ned inductively from H t via a mapping

At : H t → A, capturing constraints on actions at time t that evolve as a function of

past choices: H0 ≡ {α}, where α is a parameter of the problem, and, for any t ∈ T ,

H t+1 =
{

(h, a) ∈ H t ×A|a ∈ At (h)
}
.

The set of terminal histories, called �paths�, is then HT ≡ Ω, and the set of non-

terminal histories, or�in what follows�simply �histories�, is ∪t∈TH t ≡ H. It will be

notationally convenient to also de�ne a function τ : H∪Ω→ T ∪ T , such that, for any

history h ∈ H, τ (h) = t where h ∈ H t, and, for any ω ∈ Ω, τ (ω) = T .

Generalising the above, for any h ∈ H and any time t ≥ τ (h), de�ne the set of

histories to time t which are feasible after h, the �time-t continuations of h�, denoted

H t
h, as follows: H

τ(h)
h ≡ {h} and, for any t ≥ τ (h),

H t+1
h =

{
(h′, a) ∈ H t

h ×A|a ∈ At (h′)
}
.

Accordingly, the set of paths feasible after h is HT
h ≡ Ωh, and the set of histories feasible

after h is ∪t≥τ(h)H
t
h ≡ Hh.

Finally, de�ne the mapping η : (H ∪ Ω)2 → (H ∪ Ω) to associate with any pairwise

combination of histories or paths the longest history such that both are feasible: for

1The possibility of trivial action spaces at various dates allows to capture discrete-time problems
where decision dates are not equidistant in time, or also problems where after some time no decisions
are to be made any more, while there are still welfare e�ects.
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any (x, y) ∈ (H ∪ Ω)2,

η (x, y) =

x x = y

h x 6= y, {x, y} ⊆ Hh ∪ Ωh, [∀a ∈ Aτ(h) (h) , {x, y} * H(h,a) ∪ Ω(h,a)]
.

Note that this is well-de�ned, because whenever x 6= y, there is a unique history h with

the required property; moreover, η (x, y) = η (y, x). For any two histories h and h′,

whenever η (h, h′) = h, then say h is a subhistory of h′ and h′ is a continuation history

of h; and for any history h and path ω, if η (h, ω) = h, then call h a history along ω.

2.2 (Pure) Strategies

A pure strategy of the DM is a function s : H → A with the property that, for any

h ∈ H, s (h) ∈ Aτ(h) (h); let S denote the set of such functions. For any h ∈ H
and any time t ≥ τ (h), de�ne a mapping ωth : S → H t inductively as follows, where

ω
τ(h)
h (s) ≡ h, and

ωt+1
h (s) =

(
ωth (s) , s

(
ωth (s)

))
.

Then, for any h ∈ H, s ∈ S and date t ≥ τ (h), ωth (s) is the time-t continuation of

h which results from following strategy s. De�ne ωtα ≡ ωt, so, in particular, ωT (s) is

simply the path under s.

For any s ∈ S and any h ∈ H, denote the restriction of s to Hh by sh and let Sh
denote the set of functions thus obtained; elements of Sh will be called continuation

strategies from h.

2.3 Preferences and Welfare Comparisons

At any time t ∈ T , the DM has �preferences� over Ω which are represented by a function

Ut : Ω→ R; note that, given domain Ω, Ut is allowed to vary with the particular history

h ∈ H t. Importantly, Ut goes beyond a representation of preferences in the usual sense:

since it is de�ned for all paths at any time, two paths {ω, ω′} may be compared even

though there is no time-t history upon which both are actually feasible (formally, there

does not exist any h ∈ H t such that {ω, ω′} ⊆ Ωh). Hence there is no choice experiment,

not even under options with full commitment, that could elicit these �preferences�. Thus

Ut in fact measures the DM's welfare at time t for any path, and when feasible paths
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are compared, this implies preferences.

The welfare criterion I use throughout is a mere translation of the standard economic

concept of Pareto e�ciency into the language of dynamic paths and a single DM.

De�nition 1. For any two paths {ω, ω′} ⊆ Ω, ω intrapersonally Pareto-dominates

(IP-dominates) ω′ if, for any time t ∈ T , Ut (ω) ≥ Ut (ω′), and for some time t′ ∈
T , Ut′ (ω) > Ut′ (ω

′). A path ω ∈ Ω is intrapersonally Pareto-optimal (IP-optimal,

�e�cient�) if there is no path ω′ ∈ Ω that IP-dominates ω.

2.4 Subproblems and Conventions

Denote any such decision problem by Γ; clearly, any history h ∈ H de�nes a decision

problem of its own: by simply replacing h with α and times t ≥ τ (h) with t− τ (h), it

�ts all the de�nitions above, and I will therefore denote this �subproblem� by Γ (h). To

simplify some of the notation here and in what follows, I make the convention that, for

any history h ∈ H and any t ∈ T ,
(
h, (as)

t−1
s=t

)
= h. Moreover, when writing a history

to some time t in explicit form as (as)
t−1
s=0, I usually omit α; however, (as)

−1
s=0 ≡ α.

2.5 Examples

This work focuses attention on two examples, which are among the most in�uential

contributions to the analysis of decision making with time-inconsistent preferences. The

�rst one is the model of O'Donoghue and Rabin [1999]: a (β, δ)-discounter chooses when

to engage in a one-time activity before a deadline, where the activity yields immediate

and delayed rewards as well as costs that vary with the timing of the activity. Real-life

applications include the choice of when to prepare a report, visit a doctor for a medical

check-up or go on a vacation.

Example 1. Let the �deadline� be T < ∞, set α = 0 and A = {0, 1}, where, for any
t ∈ T and h =

(
α, (as)

t−1
s=0

)
∈ H t, zt (h) ≡ max {as}t−1

s=0 and At (h) ≡ {0, 1− zt (h)}.
Action a = 1 at time t, when available, means that the DM performs the activity in

period t; At (h) = {0} if she has performed it in the past, though there still are welfare

consequences to consider. The set of paths can be characterised by the timing of the

activity: Ω = T ∪T , where ω = T is interpreted as performing the activity right at the

deadline, when it must be done.2 Let there be two non-negative functions v : Ω→ R+

2For example, ignoring the initial history, if T = 3, then ω = 1 is the path (0, 1, 0) and ω = 3 is the
path (0, 0, 0). See the discussion in O'Donoghue and Rabin [1999, p. 107, in particular footnote 12].
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and c : Ω→ R+, which de�ne welfare together with a parameter β such that 0 < β ≤ 1,

and distinguish two di�erent types of problem.3 First, a problem with immediate costs

(and delayed rewards) is one where:

Ut (ω) =


β (v (ω)− c (ω)) t < ω

βv (ω)− c (ω) t = ω

βv (ω) t > ω

.

The other type of this problem has immediate rewards (and delayed costs) instead:

Ut (ω) =


β (v (ω)− c (ω)) t < ω

v (ω)− βc (ω) t = ω

−βc (ω) t > ω

.

Given how Ω is de�ned, the reward- and cost-schedules can be written as vectors of

length T + 1, so I will use the notation v = (vt)
T
t=0 and c = (ct)

T
t=0, where vt and ct are

the reward- and cost-values, respectively, when the activity is performed in period t.

The second example is based on the formulation of Plan [2010, Example 4] of the

following problem originally proposed by Phelps and Pollak [1968] and reinterpreted

as well as further analysed by Laibson [1994, Chapter 1]: a (β, δ)-discounter with

constant relative risk aversion facing a constant return on savings chooses a discrete

consumption-savings path over an in�nite time-horizon.4

Example 2. Let T = ∞, α = W0 > 0 and, for any t ∈ T , At = A = [0, 1]. W0 is the

DM's initial wealth and a ∈ A is the fraction of wealth saved for the future in any period.

With a constant gross interest rate of R ≥ 0 and a given history h =
(
W0, (as)

t−1
s=0

)
to

time t ∈ T , wealth at time t equals Wt = Rt
(∏t−1

s=0 as
)
W0. Preferences, and in fact

welfare, are parameterised by (β, δ, ρ) with 0 < β ≤ 1, 0 < δ < 1 and ρ < 1, where the

3The assumption about the (β, δ)-discounter that δ = 1 is immaterial; see O'Donoghue and Rabin
[1999, footnote 11] which shows that any �long-term discounting� can be incorporated in v and c.

4See also Barro [1999] for a variant of this problem in continuous time with more general time-
varying time preferences and a neoclassical production technology, Krusell and Smith-Jr. [2003] who
investigate stationary savings rules for more general (instantaneous) utility functions and savings
technologies, or Bernheim et al. [2013] who extend this problem to the case of a credit constraint (a
lower bound on assets at any time).
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standard restriction that δR1−ρ < 1 is imposed:

Ut (W0, (as)
∞
s=0) = ((1− at)Wt)

1−ρ + β
∞∑

s=t+1

δs−t

(
(1− as)Rs−t

(
s−1∏
r=t

at

)
Wt

)1−ρ

= W 1−ρ
t

(1− at)1−ρ + β
∞∑

s=t+1

δs−t

(
(1− as)Rs−t

(
s−1∏
r=t

at

))1−ρ


︸ ︷︷ ︸
≡U((as)

∞
s=t)

=

(
Rt

(
t−1∏
s=0

as

)
W0

)1−ρ

U ((as)
∞
s=t) .

Note that this decision problem satis�es a history-independence property (see de�nition

5 below): action sets are constant and history enters welfare in a multiplicative manner,

which means it does not a�ect the ranking of feasible continuation plans; the latter is

always represented by the function U : [0, 1]T → R as de�ned above.5

3 Choice and Welfare

3.1 Strotz-Pollak Equilibrium

Strotz [1955-1956] pioneered the analysis of a time-inconsistent DM's behaviour in the

context of a deterministic continuous-time consumption problem. He suggested that

a DM who correctly anticipates her future preferences, a �sophisticated� DM, would

select �the best plan among those that he will actually follow� (Strotz [1955-1956, p.

173]), which Pollak [1968, Section 1] formalised for a discretised version of the original

problem. Early generalisations of this de�nition can be found in Peleg and Yaari [1973,

p. 395], Goldman [1979], pointing out the equivalence with (a particular application of)

subgame-perfect Nash equilibrium (SPNE), and Goldman [1980], where the terminology

of �Strotz-Pollak equilibrium� that the literature has adopted is introduced. Laibson

[1994] describes the general solution as the SPNE of the �intrapersonal game� where

each temporal self of the DM is de�ned to be a distinct non-cooperative player. The

same approach has been applied to decision problems featuring imperfect recall (see

5Phelps and Pollak [1968] and Laibson [1994, Chapter 1] formulate this problem with absolute
consumption as the action chosen in any period, subject to the wealth constraint, which is history-
dependent.
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Piccione and Rubinstein [1997] and other contributions to the same (special) journal

issue).

De�nition 2. A strategy ŝ ∈ S is a Strotz-Pollak equilibrium (StPoE) if, for any h ∈ H
and a ∈ Aτ(h) (h),

Uτ(h)

(
ωTh (ŝ)

)
≥ Uτ(h)

(
ωT(h,a) (ŝ)

)
.

A path ω̂ ∈ Ω is a Strotz-Pollak solution (StPo-solution) if there exists a StPoE ŝ ∈ S
such that ωT (ŝ) = ω̂.

StPoE requires that, at any history h, the DM best-responds to correct beliefs about

future behaviour such that this behaviour, at any future history, is a best response to

the same beliefs. The DM cannot commit to future actions but forms beliefs about

them which, when shared at all histories, imply rational behaviour. As is clear from

the de�nition as well as this description, if ŝ is a StPoE of Γ (α), then, for any history

h ∈ H, ŝh is a StPoE of Γ (h) (the converse holds true as well, of course).

StPoE is an application of SPNE to the game with the same extensive form, but

where a separate non-cooperative player acts at each decision time (equivalently, at

each history, because only one history can be played to any given decision time). Thus,

well-known existence theorems for SPNE apply, e.g. Harris [1985].6 It shares the notion

of �credibility� inherent in SPNE, where, �xing beliefs, the DM does not expect to

take actions in the future that she would not �nd optimal once the contingency were

to actually occur. Applied to a single DM with perfect self-knowledge, this could be

termed loosely as ruling out that she �fool� herself.

3.2 Essential Consistency and Welfare

Recall example 1 with immediate rewards for T = 2, where β = 1
2
and the reward- and

cost-schedules are given by

v = (0, 5, 1)

c = (1, 8, 0) .

This results in the following unique StPoE: since U1 (1) = 5− 1
2
8 > 1

2
1 = U1 (2), the DM

in period 1 would engage in the activity. Therefore, it will actually be performed imme-

6See also Goldman [1980] who establishes existence of StPoE in a general class of �nite-horizon
problems, where Peleg and Yaari [1973] had initially raised concerns about non-existence despite �well-
behaved� settings.
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diately: U0 (0) = −1
2
1 > −1

2
(5− 8) = U0 (1). Compare now the welfare consequences

from this outcome to that if the DM waited until period 2 instead: U0 (0) = U1 (0) = −1
2
,

whereas U0 (2) = U1 (2) = 1
2
. The unique StPo-solution is therefore IP-dominated. The

reason the DM does not wait initially, even though she would strictly prefer doing it

in period 2 rather than now, is that she would otherwise do it next period; at that

point, however, she would prefer the (then) immediate reward over waiting yet another

period.

Clearly, these preferences are time-inconsistent, because the DM's preferences as of

the initial period over doing it next period and doing it the period after that reverse

once the next period arrives. In order to make terms precise, I provide a de�nition of

the benchmark of time-consistency here.

De�nition 3. (TC) Preferences are time-consistent if, for any history h ∈ H and any

two paths {ω, ω′} ⊆ Ωh (feasible after h),

Uτ(h) (ω) ≥ Uτ(h) (ω′)⇔ U0 (ω) ≥ U0 (ω′) .

When preferences are time-consistent, there is a single utility function�without loss

of generality, it is chosen to be U0�that represents the DM's preferences over feasible

paths at any history. Accordingly, if a path is optimal for the DM at the initial date 0,

then it remains optimal for the DM at any history along that path; in particular, if, at

the outset of the problem, the DM has a unique optimal path, then it remains uniquely

optimal for the DM at any history along this path among all the paths feasible at that

history.

In the example above, however, the nature of the violation of time-inconsistency is

special. Notice the following intertemporal cycle: at t = 1, the DM prefers doing it in

period 1 over doing it in period 2, whereas at t = 0, the DM prefers doing it in period

2 over doing it in period 0 which is in turn preferred to doing it in period 1. This

constitutes a violation of the following property.7

De�nition 4. (EC) Preferences are essentially consistent if, for any pair of histories

{h, h′} ⊆ H and triple of paths {ω, ω′, ω′′} ⊆ Ω such that h = η (ω, ω′) = η (ω, ω′′) and

h′ = η (ω′, ω′′) ∈ Hh,

Uτ(h′) (ω′) > Uτ(h′) (ω′′) ∧ Uτ(h) (ω) > Uτ(h) (ω′) ⇒ Uτ(h) (ω) > Uτ(h) (ω′′) . (1)

7In the de�nition's notation, ω = 0, ω′ = 1 and ω′′ = 2; these are compared as of t = 0 and t = 1.
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I formulate this consistency property in strict terms because I only use it in propo-

sition 1 which rules out indi�erence. Moreover, it is thus identical to the property

advanced by Hammond [1976], who showed�again for the case of no indi�erence�

that essential consistency ensures the coincidence of sophisticated and naïve choices in

�nite decision trees (T < ∞ and A �nite). It requires that sophisticated choice from

{ω, ω′, ω′′} at history h not change when an alternative that is not chosen but still

available at future history h′ is removed.

Clearly, essential consistency is implied by time-consistency; however, it is in-

deed weaker: assuming no indi�erence and considering the same paths and histo-

ries as in the de�nition, when Uτ(h) (ω) < min
{
Uτ(h) (ω′) , Uτ(h) (ω′′)

}
, it does not re-

strict preferences at history h over {ω′, ω′′}, nor when both Uτ(h) (ω) > Uτ(h) (ω′) and

Uτ(h′) (ω′) < Uτ(h′) (ω′′) are true, whereas time-consistency requires they coincide with

those at history h′.

Remark 1. If preferences are time-consistent, then they are essentially consistent, but

the converse is not true.

Proof. Suppose TC and consider histories and paths as in the de�nition of EC. Under

TC, the antecedent in (1) is equivalent to

U0 (ω′) > U0 (ω′′) ∧ U0 (ω) > U0 (ω′) ,

which, by transitivity of >, yields U0 (ω) > U0 (ω′′), and applying TC once more gives

Uτ(h) (ω) > Uτ(h) (ω′′).

For a counterexample to the converse, consider example 1 for T = 2 with immediate

costs and β = 1
2
, where v = (3, 3, 1) and c = (2, 2, 1), so

U0 (0) = −1
2
< U0 (2) = 0 < U0 (1) = 1

2

U1 (1) = −1
2
< U1 (2) = 0

,

so these clearly violate TC. In contrast, EC is satis�ed because�in the de�nition's

notation�it must be that ω = 0, whence the antecedent of (1) is vacuous here.

In �nite-horizon settings without any indi�erence essential consistency guarantees

that the StPo-solution�there is a unique one by backwards induction�is IP-optimal.

Alternatively put, if a StPo-solution is found to be ine�cient by the Pareto-criterion, it
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must be that preferences violate essential consistency.8 The proof of this result uses the

following lemma, which exploits the structure of StPoE based on backwards induction

when the horizon is �nite.

Lemma 1. Let T < ∞, suppose ω̂ is a StPo-solution and take any other path ω =

(at)
T−1
t=0 ∈ Ω \ {ω̂}. Then there exist an integer K with 0 < K ≤ T and a sequence of

paths (ωk)
K
k=0 with ω0 = ω̂ and ωK = ω such that, for any k ∈ {0, . . . , K − 1},

η (ωk+1, ω) ∈ Hη(ωk,ω) \ {η (ωk, ω)}

Uτ(η(ωk,ω)) (ωk+1) ≤ Uτ(η(ωk,ω)) (ωk) .

Proof. Let ŝ be a StPoE such that ω̂ = ωT (ŝ) and construct a sequence of paths

(ω0, ω1, . . .) as follows: set h0 ≡ α, and iterate

ωk ≡ ωThk (ŝ)

hk+1 ≡
(
η (ωk, ω) , aτ(η(ωk,ω))

)
until ωk = ω, in which case set K = k. It is easily checked that this sequence satis�es

0 < K ≤ T , ω0 = ω̂ and η (ωk+1, ω) ∈ Hη(ωk,ω) \ {η (ωk, ω)}.
Denote, for simplicity, tk ≡ τ (η (ωk, ω)) and suppose now there is a k ∈ {0, . . . , K − 1}

such that Utk (ωk) < Utk (ωk+1). Letting h = η (ωk, ω), this would therefore imply that

Uτ(h)

(
ωTh (ŝ)

)
< Uτ(h)

(
ωT(h,aτ(h))

(ŝ)
)
,

which contradicts that ŝ is a StPoE.

Proposition 1. Let T <∞ and assume preferences exhibit no indi�erence in the sense

that, for any time t ∈ T and any two paths {ω, ω′} ⊆ Ωh (feasible after h) with ω 6= ω′,

Ut (ω) 6= Ut (ω′) holds true. Then there is a unique StPo-solution, and if preferences

are essentially consistent, it is IP-optimal.

8While IP-dominance, applied to example 1, compares present discounted utilities, O'Donoghue
and Rabin [2001, Section V] demonstrate an even stronger �dominance� property: there exists another
performance period which yields instantaneous utility at least as great in every period and greater
in some period than the unique StPo-solution (with the above numbers, the respective sequences
of instantaneous utilities for periods 0, 1 and 2 are (0, 0, 0) for the StPo-solution and (0, 0, 1) for
performance in period 2 instead). Of course, their criterion is applicable only in discounted-utility
models.
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Proof. Uniqueness of StPoE in this �nite-horizon problem follows from backwards in-

duction, since there is no indi�erence. Denote this unique StPoE by ŝ and the associated

unique StPo-solution by ω̂.

Take any path ω 6= ω̂ and consider a sequence (ωk)
K
k=0 as in lemma 1; because there

is no indi�erence, for any k ∈ {0, . . . , K − 1}, Utk (ωk) > Utk (ωk+1). In particular,

UtK−1
(ωK−1) > UtK−1

(ω), and if K = 1, then ωK−1 = ω̂, whence ω does not IP-

dominate ω̂. If K > 1, since for any k′ > k, ωk′ ∈ Ωhk , we can apply EC as follows:

UtK−1
(ωK−1) > UtK−1

(ω) ∧ UtK−2
(ωK−2) > UtK−2

(ωK−1)

⇒

UtK−2
(ωK−2) > UtK−2

(ω) .

If K = 2 then ωK−2 = ω̂, so this means ω does not IP-dominate ω̂. If K > 2 then apply

EC once more:

UtK−2
(ωK−2) > UtK−2

(ω) ∧ UtK−3
(ωK−3) > UtK−3

(ωK−2)

⇒

UtK−3
(ωK−3) > UtK−3

(ω) .

If K = 3 then ωK−3 = ω̂, so this means ω does not IP-dominate ω̂. Since K < ∞,

applying EC K − 1 times, this process will eventually yield Ut0 (ω̂) > Ut0 (ω), implying

that ω does not IP-dominate ω̂. This is true for any ω 6= ω̂, whence ω̂ is IP-optimal.

Discussion

Essential consistency rules out intertemporal cycles: when later the DM will be decisive

about ω′ versus ω′′ in favour of ω′ and now decides about {ω} versus {ω′, ω′′}, she
does not prefer ω′′ to ω and ω to ω′. The proof of proposition 1 shows that, for each

alternative path that is not the unique StPo solution, there exists a time t ∈ T at which

the DM prefers the solution to that path; in fact, this t is the �rst time the DM's action

deviates from the alternative path. Considering the generality of the decision problem

in terms of the history-dependence of welfare, this is a remarkable result, despite the

strength of essential consistency.

For an illustration of this e�ciency result when preferences are time-inconsistent,

recall the special case of example 1 used in remark 1, where it was established that
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preferences are indeed essentially consistent. The unique StPo-solution is to wait until

period 2 to perform the task, and this is IP-optimal: the time-0 DM prefers this path

to doing it immediately, and the same is true at time 1 about doing it immediately then

instead.

In a special case of example 1, essential consistency is also necessary.

Remark 2. In example 1 with T = 2, β < 1 and immediate rewards, the unique StPo-

solution is IP-optimal if and only if preferences are essentially consistent.

Proof. Su�ciency follows from proposition 1, so suppose EC were violated. This means

either (i) U1 (1) > U1 (2) and U0 (2) > U0 (0) > U0 (1) or (ii) U1 (2) > U1 (1) and

U0 (1) > U0 (0) > U0 (2). However, (ii) cannot hold with immediate rewards because:

U1 (2) > U1 (1) ⇔ β (v2 − c2) > v1 − βc1

U0 (1) > U0 (2) ⇔ β (v1 − c1) > β (v2 − c2) ,

which implies βv1 > v1, a contradiction (since β < 1 and v1 ≥ 0).

Consider then case (i): the unique StPo-solution is that the activity is performed

immediately. This path is IP-dominated by waiting to do it in period 2 whenever

U1 (2) > U1 (0), i.e. β (v2 − c2) > −βc0; the latter is, however, an implication of U0 (2) >

U0 (0) because v0 ≥ 0:

U0 (2) > U0 (0)⇔ β (v2 − c2) > v0 − βc0.

For longer horizons, an essential inconsistency may be irrelevant to the StPo-solution.

Informally, if one added a new initial period in which the DM prefers doing it im-

mediately over any other outcome, this would result in an IP-optimal StPo-solution,

irrespective of whether in the subproblem after waiting initially there is an essential

inconsistency or not. Hence, essential consistency certainly needs to be weakened fur-

ther for a characterisation of IP-optimality in example 1 with immediate rewards when

T > 2, or even beyond to cope with both immediate rewards and immediate costs.

Signi�cantly generalising proposition 1 to dealing with indi�erence would require

�rst a modi�cation of the notion of essential consistency and hardly appears promising.9

9One conclusion is immediate from lemma 1, however, when in the above de�nition of essential
consistency (1) is instead formulated with weak preferences: no StPo-solution is strongly IP-dominated
(IP-dominance with strict �preference� for every time t).
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Again using example 1 with T = 2 and β < 1, note that whenever at t = 1 the DM

is indi�erent between the two remaining feasible paths, she has a strict preference at

t = 0 (with immediate costs for doing it in period 1 and with immediate rewards for

doing it in period 2). Depending on v0 and c0, how this indi�erence at t = 1 translates

into (expected) choice at t = 1 may determine behaviour at t = 0 and consequently

result in two di�erent StPo-solutions where one IP-dominates the other in a manner

orthogonal to essential consistency.

Relatedly, when moving toward an in�nite horizon, the assumption of no indif-

ference becomes hardly defensible. Moreover, essential consistency loses its force as

sequences constructed on the basis of the proof of lemma 1 become in�nite.10 Indeed,

the work of Laibson [1994, Chapter 1, Section 3] shows that this extends to the case of

even time-consistent preferences when payo�s are unbounded from below in example

2 (time-consistency there means β = 1): letting ρ > 1, any path can be supported

as StPo-solution by the threat that, upon any past deviation, consumption would take

place at a (constant) rate su�ciently close to one (the continuation payo� approaches

negative in�nity). Even with bounded payo�s, Plan [2010, Footnote 12] shows how,

with in�nite cascades of threats of ever lower savings rates, one can construct a StPoE

such that at every history, adhering to it makes the DM better o� than the stationary,

constant-savings-rate StPoE proposed by Phelps and Pollak [1968] (the latter features

undersaving and is used as the limiting savings rate of the punishment cascade).

3.3 History-Independence, Welfare and Multiplicity

The previous section presented a su�ciency result for the IP-optimality of a StPo-

solution, and its discussion indicated how this welfare property may fail more generally.

Relatedly, an argument used to discard particular StPo-solutions is that they are IP-

dominated by other StPo-solutions : this phenomenon is shared by most examples that

the literature introducing re�nements of StPoE has produced, e.g. Kocherlakota [1996]

or Asheim [1997]. While hardly made explicit, the argument seems to be that it re�ects

an implausible failure of coordination in that the beliefs arrived at are self-defeating:

there is another �credible� path that IP-dominates the one resulting from those beliefs,

so a �planning� DM will never coordinate future beliefs on such a strategy.

This section addresses the question of when this form of Pareto-rankable multiplicity

obtains and thus also provides insights into existence of an IP-optimal StPo-solution.

10See also the discussion of essential consistency in in�nite trees by Hammond [1976, pp. 170-171].
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In order to be able to do so, I restrict the history-dependence inherent in the decision

problem. Recall that welfare at any time is de�ned for all paths, whence also paths that

are never altogether feasible are compared by the welfare criterion (see section 2.3). In

contrast, for equilibrium choices, only comparisons of feasible paths matter. Without

restrictions on the nature of history-dependence, welfare comparisons of feasible paths

may not provide any information about welfare at other paths, and it is impossible

to uncover implications for equilibrium properties from the welfare criterion in general.

Since, to the best of my knowledge, this work is the �rst investigation of welfare of StPo-

solutions beyond particular models, I consider the following rather strong properties.

De�nition 5. A decision problem satis�es history-independence if, for any time t ∈ T
and any two histories {h, h′} ⊆ H t, (i) At (h) = At (h′) ≡ At, and, (ii), for any two

sequences of continuation play
{

(as)
T−1
s=t , (a

′
s)
T−1
s=t

}
⊆ ×T−1

s=t As,

Ut

(
h, (as)

T−1
s=t

)
≥ Ut

(
h, (a′s)

T−1
s=t

)
⇔ Ut

(
h′, (as)

T−1
s=t

)
≥ Ut

(
h′, (a′s)

T−1
s=t

)
.

It satis�es history-independence even in a welfare sense if (ii) is replaced by (ii*), for

any continuation play (as)
T−1
s=t ∈ ×

T−1
s=t As, Ut

(
h, (as)

T−1
s=t

)
= Ut

(
h′, (as)

T−1
s=t

)
.

History-independence of a decision problem means that, after any two histories to a

particular date, the sets of feasible continuations are (i) identical (history-independent

constraints) and (ii) ranked the same way (history-independent preferences).11 It does

not imply that welfare is una�ected by past choices, however, which is true only upon

replacing (ii) with (ii*); clearly, the latter is stronger.12 Example 2 illustrates this point,

since initial wealth in any period (more precisely, a positive transformation of wealth),

which is determined by past savings choices, enters the utility function multiplicatively,

whereby it does not a�ect the rankings of continuation paths; thus (ii) holds whereas

(ii*) is violated. This example also demonstrates that there are nonetheless important

economic decision problems featuring dynamic constraints that (can be formulated so

they) satisfy history-independence (see Plan [2010] for a closely related point).

The essence of history-independence is that, conditional on time, the DM's contin-

11Note that (ii) relies on (i) to be well-de�ned; although one could de�ne the history-independence
of preferences independently to hold only when continuation plays are actually feasible under both
histories, for the purposes here, this is unnecessary as (ii) is only considered in problems which satisfy
(i) anyways.

12(ii*) implies Ut

(
h, (as)

T−1
s=t

)
= Ut

(
h′, (as)

T−1
s=t

)
and Ut

(
h, (a′s)

T−1
s=t

)
= Ut

(
h′, (a′s)

T−1
s=t

)
from

which (ii) follows.
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uation behaviour can always ignore the past: any continuation play that is feasible at

some history is feasible after any history, whence, if some continuation play constitutes

a StPoE after that history, because of (ii) in de�nition 5, this is true after any other

history to the same decision time; this is the content of the following lemma.

Lemma 2. Assume the decision problem satis�es history-independence. Take a strategy

s ∈ S such that sh is a StPoE of Γ (h) for history h ∈ H and consider any history h′ ∈ H
with τ (h′) = τ (h) = τ . Then any strategy s′ ∈ S such that, for any non-negative integer

k ≤ T − τ and (at)
τ+k−1
t=τ ∈ ×τ+k−1

t=τ At,

s′
(
h′, (at)

τ+k−1
t=τ

)
= s

(
h, (at)

τ+k−1
t=τ

)
satis�es that s′h′ is a StPoE of Γ (h′).

Proof. Suppose s′h′ is not a StPoE of Γ (h′), so there exist a history ĥ′ ∈ Hh′ and an

action ā ∈ Aτ(ĥ′) such that

Uτ(ĥ′)

(
ωT(ĥ′,ā) (s′)

)
> Uτ(ĥ′)

(
ωT
ĥ′

(s′)
)
.

Note that, by part (i) of history-independence of a decision problem as in de�nition

5, ĥ′ =
(
h′, (at)

τ+k−1
t=τ

)
for some non-negative integer k ≤ T − τ , and consider ĥ =(

h, (at)
τ+k−1
t=τ

)
. The de�nition of s′ on Hh′ via s on Hh implies that ωT

(ĥ′,ā)
(s′) and

ωT
(ĥ,ā)

(s) are identical from time τ onwards, and the same is true about the two paths

ωT
ĥ′

(s′) and ωT
ĥ

(s). Therefore, part (ii) of a decision problem's history-independence

yields that

Uτ(ĥ)

(
ωT(ĥ,ā) (s)

)
> Uτ(ĥ)

(
ωT
ĥ

(s)
)
.

This, however, contradicts the hypothesis that sh is a StPoE of Γ (h).

Lemma 2 allows to establish a multiplicity result about history-independent decision

problems, which is related to the welfare criterion in the discussion that follows, precisely

in corollary 1 which uses de�nition 6.

Proposition 2. Assume the decision problem satis�es history-independence and let

ω̂ = (ât)
T−1
t=0 be a StPo-solution; then any other path ω̃ = (ãt)

T−1
t=0 6= ω̂ such that, for any

time t ∈ T ,
Ut (ω̃) ≥ Ut

(
(ãs)

t−1
s=0 , (âs)

T−1
s=t

)
, (2)
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is also a StPo-solution.

Proof. Take any StPoE ŝ with ωT (s) = ω̂ and consider the strategy s̃ constructed

as follows: whenever a history h ∈ H satis�es ω̃ ∈ Ωh, set s̃ (h) = ãτ(h); then note

that any other history can be written as h =
(
h′, ā, (at)

τ(h′)+k
t=τ(h′)+1

)
for some k ∈ Z with

0 ≤ k ≤ T − τ (h′)− 1 and where η (h, ω̃) = h′, in which case set

s̃ (h) = ŝ
(

(ât)
τ(h′)−1
t=0 , ā, (at)

τ(h′)+k
t=τ(h′)+1

)
.

This de�nes s̃ for every history h such that ω̃ /∈ Ωh.

It will now be shown that s̃ is a StPoE and thus that ω̃ is indeed a StPo-solution.

Consider �rst any history h with ω̃ /∈ Ωh and note that there exist a history h′ and

an action ā ∈ Aτ(h′) such that ω̃ ∈ Ωh′ , ω̃ /∈ Ω(h′,ā) and h ∈ H(h′,ā). Since, for h′′ =(
(ât)

τ(h′)−1
t=0 , ā

)
, ŝh′′ is a StPoE of Γ (h′′), lemma 2 establishes that s̃(h′,ā) is a StPoE of

Γ (h′, ā); because h ∈ H(h′,ā), s̃h is therefore a StPoE of Γ (h).

Now take a history h with ω̃ ∈ Ωh and consider any a ∈ Aτ(h) with a 6= s̃ (h) = ãτ(h).

By de�nition of s̃, at all times t ≥ τ (h), the actions on path ωT(h,a) (s̃) are identical to

those on path ωT(h′,a) (ŝ) when h′ = (ât)
τ(h)−1
t=0 ; using that τ (h′) = τ (h), since ŝ is

a StPoE, Uτ(h)

(
ωT(h′,a) (ŝ)

)
≤ Uτ(h)

(
ωTh′ (ŝ)

)
= Uτ(h) (ω̂). The history-independence of

preferences (property (ii) of de�nition 5) implies Uτ(h)

(
ωT(h,a) (s̃)

)
≤ Uτ(h)

(
h, (ât)

T−1
t=τ(h)

)
.

Combining this last inequality with Uτ(h)

(
h, (ât)

T−1
t=τ(h)

)
≤ Uτ(h) (ω̃), from the hypothe-

sis of the proposition, one �nally obtains Uτ(h)

(
ωT(h,a) (s̃)

)
≤ Uτ(h)

(
ωTh (s̃)

)
, completing

the proof.

Discussion

While it may appear that lemma 2 should immediately yield that if a path IP-dominates

a StPo-solution, that path must be supportable by a StPoE as well�it could be based

on the very same �threats��this is not true in general. Consider the following sim-

ple example of a history-independent decision problem: T = 2, A0 = A1 = {0, 1},
U0 (a0, a1) = −|a0 − a1| and U1 (a0, a1) = 2a0 − a1. At time t = 1, the DM prefers 0

over 1 irrespective of the previous action, whence she matches this action with a0 = 0

at t = 0. Yet, this unique StPo-solution (0, 0) is IP-dominated by (1, 1). Note how this

example relies on the history-dependence of welfare in the second period.

However, proposition 2 illuminates example 2: there is a unique StPoE with the
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property that consumption/saving takes place at the same rate irrespective of time and

history. This �simple� equilibrium was �rst identi�ed by Phelps and Pollak [1968, Part

IV], who also showed that the resulting path is IP-dominated by other constant-rate

paths of consumption/saving. Because we are comparing constant-rate paths, inequality

2 holds true: to see this, �rst note that when as = ã > 0 for all s ∈ T , then, for any
t ∈ T , Wt = (Rã)tW0 and (using the assumption that δR1−ρ < 1)

U ((as)
∞
s=t) = (1− ã)1−ρ

(
1 + β

∞∑
s=t+1

(
δ (Rã)1−ρ)s−t)

= (1− ã)1−ρ

(
1 + β

(
−1 +

∞∑
s=0

(
δ (Rā)1−ρ)s))

= (1− ã)1−ρ

(
1 +

βδ (Rã)1−ρ

1− δ (Rã)1−ρ

)
≡ V (ã) .

Next, suppose a constant savings rate of ã IP-dominates a constant savings rate of â.

Because it is at least as good as of t = 0 when wealth is the same, this implies that

V (ã) ≥ V (â), which immediately yields inequality 2 where wealth is also identical

in the comparison. Hence proposition 2 establishes that these other paths are StPo-

solutions as well, although as such, they must be supported by more �complex� strategies

involving history-dependence (see Laibson [1994, Chapter 1]).

Indeed, I conjecture that, more generally, example 2 satis�es the following �regular-

ity� property.

De�nition 6. A decision problem satisfying history-independence is welfare-regular if,

whenever a path ω = (at)
T−1
t=0 is not IP-optimal, there exists a path ω′ = (a′t)

T−1
t=0 which

IP-dominates ω and, moreover, is such that, for any time t ∈ T ,

Ut (ω′) ≥ Ut

(
(a′s)

t−1
s=0 , (as)

T−1
s=t

)
. (3)

Welfare regularity restricts the history-dependence of welfare: if a path ω is not

IP-optimal, then there is some other path ω′ that IP-dominates it, where as long as

ω′ has been followed, the DM would never prefer switching to continuation as under

ω over staying on ω′. Observe the similarity of inequalities (2) and (3), and note that

the example given at the outset of this discussion violates welfare-regularity. Of course,

welfare-regularity is weaker than history-independence in a welfare sense.
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Remark 3. If a decision problem satis�es history-independence even in a welfare sense,

then it is welfare-regular.

Proof. Simply note that when history-independence is satis�ed in a welfare sense, in

the above de�nition, Ut

(
(a′s)

t−1
s=0 , (as)

T−1
s=t

)
= Ut (ω), whence IP-dominance immediately

yields the inequality.

Corollary 1. Assume the decision problem satis�es history independence and is welfare-

regular. Then, if a StPo-solution is not IP-optimal, it is IP-dominated by another

StPo-solution.

Proof. Let ω̂ = (ât)
T−1
t=0 be a StPo-solution, where a path ω̃ = (ãt)

T−1
t=0 IP-dominates

ω̂. Because the decision problem is welfare-regular, it is without loss of generality to

choose ω̃ = (ãt)
T−1
t=0 such that inequality (2) holds true, whence it is a StPo-solution.

Based on this corollary, I conjecture that every non-IP-optimal StPo-solution in

example 2 is in fact IP-dominated by another StPo-solution (so that this is not only

true about constant-rate paths).

In any case, this result immediately implies that if a decision problem satisfying

history-independence which is welfare-regular has a unique StPo-solution, then this

solution is IP-optimal. Moreover, under standard �well-behavedness� assumptions (e.g.

compact action spaces and continuous utility functions), where IP-dominance of a path

comes with the existence of an IP-optimal path that IP-dominates it, there then exists

an IP-optimal StPo-solution.

4 Conclusion

This note addresses two important welfare phenomena in decision problems with time-

inconsistent preferences: Pareto-ine�ciency of StPo-solutions and IP-rankable multi-

plicity of such solutions. In a framework that allows for history-dependent welfare, my

�rst result delineates the forms of intertemporal con�ict inherent in preferences that

yield ine�cient outcomes in the Pareto-sense by showing that they must violate essen-

tial consistency whenever the horizon is �nite and there is no indi�erence. Essential

consistency is in fact necessary in a simple version of the �timing problem� analysed

by O'Donoghue and Rabin [1999] where rewards are immediate and costs are delayed.

While the discussion points out the likely obstacles to generalisations of these results

even within the framework that this note assumes, because truncation is a popular
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approach to selection among multiple StPoE (see e.g. Laibson [1997]), �nite-horizon

results about welfare are also of interest for work on in�nite-horizon problems.

The property of essential consistency was proposed by Hammond [1976] for a similar

decision environment, where he discovered it to be su�cient for the coincidence of

naïve and sophisticated choice. An interesting question is therefore the more general

relationship between Pareto-e�ciency and this invariance property of choice to various

degrees of preference misprediction.

On the other hand, when some StPo-solution in a decision problem satisfying

history-dependence fails to be IP-optimal, then this comes with IP-rankable multiplic-

ity of StPo-solutions when the e�ects of past play on welfare satisfy a certain regularity

property. The latter kind of multiplicity appears to have played a major role for the

development of re�nements of StPoE, but whereas the work in this area so far has re-

lied mostly on rather abstract and speci�c examples (of the class described) to promote

their own respective approaches, I thus organise them into a general insight. Moreover,

beyond such abstract examples, my result applies also to the in�uential consumption-

savings model of Phelps and Pollak [1968].

Maybe most importantly, however, the last result can be used to establish existence

of IP-optimal StPo-solutions under standard technical assumptions. To the best of my

knowledge, no such result has been available. Of course, its generalisation to a broader

class of problems would be highly desirable for applications.
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