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Pass/Fail, A-F, or 0-100? Optimal Grading of Eager

Students
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Abstract

This paper analyzes optimal grading in a world that focuses on top grades. Students

choose an effort level, their performance is graded, and their grade correlates with

their future income. Ex-ante, the policy maker chooses the optimal coarseness of

the grading scale to maximize student welfare. When choosing their effort, students

overweight outstanding – or salient – grades. I show that this behavior leads to excessive

effort levels when grading is fully informative, and that coarse grading can be used to

counterbalance incentives. Thus, salience can help explain why grading ranges from

Pass/Fail scales (tenure decisions) via A-F-scales (school) to fully disclosing scores (e.g.

SAT).
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1 Introduction

Students’ examination results are typically recorded on a very accurate scale, like 1, 2..., 99, 100.

Yet, educational institutions pool different scores together in broad categories, for instance

by adopting a letter grading scale. In fact, perfectly accurate final reporting can rarely be

found. This prevalence of coarse grading scales is puzzling as it reduces the informativeness

of diplomas to employers.

Even more surprisingly, selectivity seems to be a good indicator for the degree to which

information is suppressed. Yale Law school for instance employs a broad scale on the basis of

Fail/Low Pass/Pass/Honors. Other top law schools like Harvard and Stanford have adapted

similar scales while less selective schools tend to stick to the finer traditional (and usually

curved) letter grading scale.

A more subtle method to install a coarse scale is to factually abolish lower marks by just

never or very rarely assigning them, a phenomenon recently discussed in the news under the

headline of grade inflation. Stuart Rojstaczer, one of the initiators of the debate states in

a Washington Post article: “I recently handed in my grades for an undergraduate course I

teach at Duke University. They were a very limited assortment: A, A-minus, B-plus, B and

B-minus. There were no C’s of any flavor and certainly no D’s or F’s. It was a good class,

but even when classes aren’t very good, I just drop down slightly, to grades that range from

A-minus to B-minus.”1

At Harvard, the most frequently given grade is now an A, the median an A−.2 When the

Business Insider lists 13 schools where it’s almost impossible to fail3, the list comprises

almost exclusively elite private schools. More selective institutions assign higher GPA’s to

their students than do their peers for the same education level (Healy and Rojstaczer, 2012),

presumably corresponding to a lower support in the scale.4

The purpose of the present paper is to provide a justification for the prevalence of such

coarse grading. Different explanations come to mind which however do not account for the

fact that coarse scales can be found most and forall at top schools.

For instance, coarse grading scales may be the equilibrium outcome of a game in which

employers can be misled about educational quality (as for instance investigated in Chan

et al., 2007). Alternatively, they may reflect the noisiness of performance or performance

1“Where All Grades Are Above Average”, Washington Post, January 28, 2003
2“Substantiating Fears of Grade Inflation, Dean Says Median Grade at Harvard College Is A-, Most

Common Grade Is A”, The Harvard Crimson, December 3, 2013
3“13 schools where it’s almost impossible to fail”, The Business Insider, May 29, 2013
4Albeit not perfectly correlated, the fact that the share of D’s at private colleges has now dropped to

less than 3% (from the same report) leads me to conclude that. Also, many reports indicate that this
phenomenon is prevalent most and forall at the elite schools.
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evaluation. In that sense, scores may offer a spurious precision which in reality does not exist.

Existing work demonstrates that coarse grading can induce students to exert higher effort

(Dubey and Geanakoplos, 2010). Also, coarse grading may be optimal for profit maximizing

schools whose students are distinct not only in their abilities but who also pay different

tuition fees (Rayo and Segal, 2010).

I call attention to a different explanation showing that coarse grading may maximize

students’ ex-ante welfare. In particular, information suppression may be a school’s best

response to a student body that consists of individuals who place too much weight on top

grades. Consider the following conjecture: “Ivy League educational institutions attract a

disproportionate share of grade-obsessed overachievers. [...] Their compulsion to succeed as

others define it and their sheepish failure to prioritize higher-order benefits with their time at

college perhaps makes a grading scale based on obvious inflation the best option available.”5

Similarly, when Yale Law School changed its scale from numerical grading to the broader

scale in 1967, it was reported that “it is believed by those members of the faculty who voted in

favor the plan that it will offer some relief from what one educator described as ‘the excessive

preoccupation with number or letter grades’ ”.6

It is this study’s aim to formally test the validity of this classic conjecture. The intuition

behind it appears to be that coarse grading might serve to increase student welfare by offering

relief, that is by lowering effort levels. This however stands in contrast to existing models

where coarse grading raises student effort. In this case, coarseness may be exactly the wrong

measure to cope with grade obsession.

In the present study, coarse grading scales are used by a school to maximize student

welfare. In a simple model in which grades are based on exam scores I show that on the

one hand, fully disclosing results is uniquely optimal when students are expected utility

maximizers. On the other hand, it is demonstrated that grade obsession induces students to

exert inefficiently high effort and that coarse scales can be used to counterbalance incentives.

For this purpose, I model grade obsession by applying salience theory according to Bordalo,

Gennaioli and Shleifer (2012) – henceforth BGS.

In their theory, a decision maker places too much weight on the most outstanding – or

salient – payoffs when having to choose among lotteries. Thus, grade obsession is translated

into a focus on both the very good and the very bad outcomes at the expense of average

grades.7 Since students can never be certain about the success of their efforts, they are

faced with the choice among independent lotteries, with payoffs being determined on the

5“In Defense of Grade Inflation at Harvard”, The Atlantic, December 6, 2013
6“Yale College inaugurates pass-fail marking scale”, The Heights, November 13, 1967
7The hypothesis that focusing equates to focusing on large differences is also explored by Bordalo et al.

(2013), Kőszegi and Szeidl (2013) and Tversky (1969).
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job market. Due to the salience of extreme outcomes, students replace the true outcome

probabilities by salience-distorted weights. More specifically, the salience of a payoff is

context-dependent, meaning that outcomes are compared to those of other lotteries which

realize in the same state of the world.

This model of salience captures the main insights from educational psychology in a styl-

ized form. Those students who do not focus on salient grades may pursue mastery goals,

aiming at increasing their competency and deeper knowledge. Others – the grade obsessed

students – are either performance approachers who strive to achieve extrinsic success, or

failure avoiders (for a review see e.g. Covington, 2000). In a sense, the focus on salient

grades – the very best and worst grades – can be understood as both performance approach

and failure avoidance orientation.8

The following is the setting: an institution which seeks to maximize the expected utility

of its students commits to and publicly announces a grading scale. Based on this, students

of different cost types9 make an unobserved decision between employing costly high effort,

and costless low effort. The associated probability mass functions are standardly assumed

to satisfy the monotone likelihood ratio property. Scores then realize, grades are assigned,

and students go on the job market where risk neutral employers are willing to pay higher

salaries for better expected scores.

Clearly, when students maximize expected utility, a grading scale which fully discloses

scores is socially efficient, and it is even uniquely optimal. A focus on the most salient

states however brings students to exert inefficiently high effort, from the school’s perspective.

Roughly speaking, there are two most salient states, but a student who considers employing

high effort overweights the good grades relatively more than the bad grades. Similarly, when

considering to exert low effort, the student overweights bad grades relatively more than good

grades. This effect arises due to the monotone likelihood ratio property.

The share of hard working students is a continuous function of the degree of salience,

implying that coarse rules which mimic full disclosure at the extreme have an intersection

with the expected utility maximizing cut-off and are therefore optimal for some degree of

8Failure avoidance is perhaps better captured by disappointment aversion which – like a focus on the
very worst grades – results in lower effort level as compared to expected utility maximizing behaviour.
Also, note that here, the focus is externally given while educational psychologists take into account that
altering extrinsic incentives possibly affects goal orientation types. Especially curved scales are seen to
foster extrinsic motivation (performance goal orientation), intrinsic motivation (mastery goal orientation)
and student satisfaction is better supported by absolute scales.

9This may the opportunity costs for what is named higher order benefit in the above citation: it is a
well established thesis among psychologists that while extrinsic motivation responds well to incentives, it
comes at the cost of a reduced intrinsic motivation (for an overview and critical assessment: Cameron and
Eisenberger, 1996). Similarly, institutions may be concerned about the health of their students: at Harvard
Law School, the scale change reportedly served to reduce stress and anxiety levels.
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salience. I further show that optimal coarse rules exist whenever full disclosure induces too

many students to choose the high effort lottery, from the school’s perspective. This is typi-

cally so for all degrees of salience.

Related literature. To the best of my knowledge, this is the first study to formally investi-

gate the relationship between the focus on grades of students and optimal grading scales.

Coarse grading otherwise may raise effort levels. Dubey and Geanakoplos (2010) show that

if students care about their rank in class and grading scales are chosen such that students

maximize their studying efforts, coarse scales may be the best choice and are always so when

students are disparate. The reason for the fact that coarsening increases effort levels in

Dubey and Geanakoplos (2010) stems from the contest structure: if students are very dif-

ferent in abilities, then fully revealing results may fix the student ranking even if no student

employs high effort. In the present paper by contrast, it is assumed that students care about

their salaries rather than their rank in class, and that higher expected scores are associated

to higher salaries. This setting however invalidates their ranking-based argument such that

here, coarseness reduces effort levels rather than increasing them.

A related topic is treated by Zubrickas (Forthcoming) who theoretically shows that the

best students should receive the same best grade when schools maximize student effort (which

is equal to the educational achievement here) whereas students seek to signal their abilities

and the grading rule is not observable by the job market. Zubrickas (Forthcoming) thus

addresses a different question. In contrast to the present paper, different student types are

compressed for the best grades – scores are not. Rather, different scores receive different

grades by the exogeneity of the grade utilities.

Effort incentives of grading rules are also theoretically investigated by Costrell (1994) and

Betts (1998), who however restrict their study to optimal Pass/Fail scales under different

welfare conceptions. In that sense, their focus is rather on grading standards than on rules. In

empirical research, the effect of grading standards on student motivation has been an issue for

a while. For instance, Figlio and Lucas (2004) and Betts and Grogger (2003) investigate the

effect of raising a Pass/Fail standard. Both works find that students’ educational achievement

generally responds positively to increased standards. Others explore whether effort is chosen

strategically, i.e. such that scores closely above a threshold become probable (Oettinger,

2002).

Some works theoretically analyze grading scales in adverse selection models. Rayo and

Segal (2010) show that coarse grading scales can be optimal if grading is based not solely

on the abilities or educational achievement of students but also on their profitability to the

sender (the paid tuition fees). Further, Ostrovsky and Schwarz (2010) analyze best disclosure

policies when employers rank students according to their exogenously given abilities. Partial
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disclosure can be a market equilibrium if student bodies exhibit different exogenously given

talent levels. In particular, an average school, if faced with low quality competitors, may take

into account non-revelation of highly talented students in order to attain a good placement

for less able persons. A similar effect is present in Boleslavsky and Cotton (Forthcoming).

In industrial organization, a stream of literature starting with Lizzeri (1999) shows why

profit maximizing certifiers may find it optimal to employ coarse disclosure policies in adverse

selection settings. In Lizzeri (1999), a certifier who is bound to offer his service at a fixed non-

discriminatory fee to sellers with different quality goods considers disclosure on a Pass/Fail

basis optimal. Similarly, intermediaries who seek to maximize not their own profits but the

information being provided to the public, partial disclosure may outrule fully disclosing rules

if a selection process is at work and certification is costly (Harbaugh and Rasmusen, 2013).

The paper proceeds as follows. Section 2 describes the model. In Section 3, I derive two

general insights, which are independent of the focus on salient payoffs but relate only to the

game structure. The notation of salience characterized in Section 4, and optimal rules are

analyzed in Section 5. The last section discusses extensions and concludes. All proofs are

relegated to the appendix.

2 The model

Students are assumed to have a cost for studying of θ ∈ [0, 1]. θ is uniformly distributed

across students. A student’s choice set is {L0,Le} where the choice of lottery Le costs θ

whereas that of L0 is free. Students are assumed to be risk neutral but allowing for risk

aversion would not affect the qualitative properties of the equilibria.10 An expected utility

maximizing student of type θ then chooses lottery Le if and only if the expected value from

doing so, minus the costs is at least as high as the expected value of choosing L0.

The lottery choice determines the probability distribution of exam scores. In particular,

an exam score is an element of the ordered set Ω = {q1, q2, ..., qN} with N ≥ 3. The

probability that a score in Ω is qn is given by pne if the student chooses lottery Le and it

is pn0 otherwise. pe and p0 are the according probability vectors. All elements are assumed

to be strictly positive. In order to ensure interior solutions, it is standardly assumed that

probability functions satisfy the monotone likelihood ratio property. Define τn := pne/p
n
0 .

(A1) (Monotone likelihood ratio property) τn > τm ∀n > m

10Full disclosure will always bring students to exert inefficiently high effort because the distortive effect
weights heavier on high than on low probability states. This effect arises due to the monotone likelihood
ratio property (see below) but is independent of student utility as long as it is monotonically increasing in
payoffs.
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qm−2 qm−1 qm

γ1

qn

γ2

qn+1 qn+2

C1(Γ
3) C2(Γ

3) C3(Γ
3)

qN

γ3

Figure 1: A grading rule Γ3 ⊂ Ψ3.

The condition guarantees that students who choose the costly lottery Le will attain higher

expected scores than the ones whose choice is L0.

Scores in Ω are ordered according to the salaries they are paid on the job market. There,

high scores are rewarded. By assumption, an employer is willing to pay a salary of n/N for

a score qn. With slight abuse of notation, qn will be used to denote both the score and the

salary the score commands on the market. Thus, qn = n/N and qN = 1. Hence, when the

market exhibits symmetric information, that is, when employers can perfectly observe scores,

the expected valuations for both lotteries are the expected scores, i.e. E[Q|Le] =
∑N

n=1 q
npne

or E[Q|L0] =
∑N

n=1 q
npn0 respectively, where qn is the realization of random variable Q.

Teachers convert scores into grades using a grading rule that maps every possible score

qn into a grade. A deterministic grading rule11 is defined as a set of thresholds ΓH =

{γ1, γ2, ..., γH} with γH = qN and γ1 < γ2 < · · · < γN . The associated grades are denoted by

C1(ΓH), C2(ΓH), ..., CH(ΓH). For instance, γ1 could be 30 out of 100 points and C1(·) would

be grade D. Further, let Ψ be the set of all possible grading rules. In particular, a grading

rule in Ψ induces a partition of Ω into consecutive intervals. It can be expressed as a subset

of Ω: ΓH ⊆ Ω.

The mapping between scores and grades according to rule ΓH and grades C1(ΓH), C2(ΓH),

..., CH(ΓH) is as follows. All scores qn that are equal to or worse than γ1 are granted grade

C1(ΓH), all scores that are strictly better than γ1 but equal to or worse than γ2 are assigned

grade C2(ΓH) and so forth. The best grade CH(ΓH) is awarded to scores greater than γH−1.

An example for a rule Γ3 is depicted in figure 1: if γ1 = qm, γ2 = qn, then the lowest grade

C1(Γ3) is awarded to all scores lower or equal to qm, C2(Γ3) is awarded to scores qm+1 to qn

and the best grade to all scores strictly greater than qn. From this follows that γH := qN = 1

and 1 ≤ H ≤ N .

If H = 1, no information is disclosed, if H = N , scores are fully disclosed. I use Γ to

describe a general rule and ΓH to describe some rule with H − 1 cuts. The same holds for Ψ

11A deterministic rule is a rule in which each score is deterministically assigned a grade. Simple proba-
bilistic rules, i.e. rules in which a score may be assigned different grades with positive probability are used
later to derive an existence condition of optimality for given degrees of salience.
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and ΨH respectively: ΨH ⊂ Ψ is the set of disclosure rules that are described by some ΓH .

For instance, all possible Pass/Fail rules are contained in the set Ψ2, where γ1 is an element

of Ω/{qN}.
Employers are informed about the grading rule. Also, the distribution of costs and

the probability distributions are assumed to be common knowledge whereas the students’

lottery choices cannot be observed. On the basis of the information available employers

form expectations about the value of a grade Ch(·), denoted by vh(·)12 (i.e. the salary).

The equilibrium concept I use is the Weak Perfect Bayesian Equilibrium. This requires that

students’ lottery choices are optimal given employer beliefs and that employer beliefs are

consistent with the strategies being played by students.13

By definition of the grading rule, the value of a grade vh(·) is increasing in h and located

on the interval [q1, qN ]. Further, the value vh(·) of a grade Ch(·) which is awarded for scores

in Ω qn, qn+1, · · · , qm−1, qm is located on the interval [qn, qm]. Also note that the values vh(·)
are independent of the distribution of grades, i.e. of the relative rank of students. A grade is

an absolute measure of achievement. Hence, the relative ranking of students is not required

for potential employers to gauge their value for the company if the grading rule is common

knowledge. If it is not, the relative ranking might become important. The game proceeds

as follows.

(1) The grading rule is publicly announced,

(2) students make a choice between Le and L0,

(3) scores are drawn according to the chosen distribution Le or L0, exams are graded

according to the grading rule,

(4) students go on the job market and realize payment vh(·) for grade Ch.

3 Optimal grading with expected utility

Prior to making a lottery choice, a student evaluates both lotteries Le and L0. Let Ve(Γ|φ)

and V0(Γ|φ) be the expected valuations from choosing the respective lottery for a given

12The grade value vh is a function of the grading rule and the belief employers hold about students’ lottery
choices as will become clear below.

13The Weak Perfect Bayesian Equilibrium is for instance formally defined in Mas-Colell et al. (1995), p.
285. Note that off-path beliefs do not play a role here since by definition, a grading rule specifies a grade
for each score. Every deviating lottery choice therefore induces an observation (a grade) on the path. As a
result, the Weak Perfect Bayesian Equilibrium is identical to all notions of Perfect Bayesian Equilibrium.
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grading rule where φ denotes the belief that the job market holds about values of grades.14

Define γ0 := 0 and define the random variable capturing respective future income as V .

Then, Ve(Γ|φ) and V0(Γ|φ) are given by

Ve(Γ|φ) =E[V |Le] =
H∑
h=1

vh(Γ|φ)

γhN∑
i=γh−1N+1

pie,

V0(Γ|φ) =E[V |L0] =
H∑
h=1

vh(Γ|φ)

γhN∑
i=γh−1N+1

pi0. (1)

Note that the choice of Γ determines, in addition to the market values for grades, the sums

in equation (1). Note further that the second sum in both expressions of equation (1) is the

probability for grade h to occur given the lottery choice and the grading rule: if for instance

γh−1 = qm and γh = qn, then the probability that a student choosing lottery Le is assigned

grade Ch(·) is given by pm+1
e + pm+2

e + ...+ pne .

An expected utility maximizing student is then defined as follows.

(A2) (Expected utility maximization) An expected utility maximizing student θ chooses lot-

tery Le if and only if Ve(Γ|φ)− V0(Γ|φ) ≥ θ.

The school seeks to maximize its conception of student welfare, which is overall expected

utility. An immediate consequence from (A2) is that it is never an optimal strategy (from

the viewpoint of the school and the students) that high types choose Le when lower types

do not. Thus, student strategies are fully captured by some critical type θ̂ and welfare is

given by

W (Γ, θ̂|φ) =

∫ θ̂

0

(Ve(Γ|φ)− θ)dθ +

∫ 1

θ̂

V0(Γ|φ)dθ (2)

for a rule Γ.

Transforming equation (2) and maximizing with respect to θ̂ gives the first best critical

value of θ for a given grading rule such that all students with lower costs should choose Le
whereas higher types should choose L0. For a given grading rule, this optimal critical type

is given by θ̂r(Γ|φ) = Ve(Γ|φ) − V0(Γ|φ). Thus, if the school was able to choose the critical

type for a given grading rule, it would make the same choice as expected utility maximizing

students do.

The market exhibits symmetric information if scores are fully disclosed to the public.15

14More precisely, employers hold a belief φ about the critical cost type who just chooses lottery Le

whenever scores are not fully disclosed. For a discussion, see later in this section.
15Recall that a grading rule which fully discloses scores is described by ΓN which equals Ω.
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In this case of full disclosure, θ̂r(Γ|φ) is also the first best critical type.16 It is given by the

difference in expected scores for a given lottery choice Le or L0, i.e.

θ̂FB = E[Q|Le]− E[Q|L0] =
N∑
n=1

qn(pne − pn0 ).

Denote by W FD(θ̂) the W (Γ, θ̂|φ) when scores are fully disclosed, i.e. if Γ = ΓN = Ω.17

In words, W FD(θ̂) is the expected utility with full disclosure as a function of the critical

type θ̂. The highest expected utility for the school is then W FD(θ̂FB), that is, if students

are expected utility maximizers and scores are fully disclosed.

When scores are not fully disclosed, employers form, for a given grading rule, a belief φ about

the critical type θ̂. The values of grades to students are then a function of this belief. To

see why, consider some rule such that grade CH(Γ) is coarse: if many students are believed

to have chosen Le, that is, if φ is large, then the value of this grade is high as compared to

a lower φ because the likelihood of a student with an awarded grade CH(Γ) having attained

a top score rather than a still good score is high whereas it is lower for lower φ. If scores are

fully disclosed however, the salary associated to a grade Cn is simply the score qn = n/N .

For a general rule, the value of a grade Ch(Γ) to students is given by

vh(Γ|φ) =

∑γhN
i=1+γh−1N

qi(φpie + (1− φ)pi0)∑γhN
i=1+γh−1N

(φpje + (1− φ)pj0)
. (3)

Note that the function argument Γ determines the sums. Hence, because the values of grades

are a function of the belief φ, so are the expected valuations from choosing the lotteries,

Ve(Γ|φ) and V0(Γ|φ). They can be derived by inserting equation (3) into equations (1).

Following the concept of Weak Perfect Bayesian Equilibrium, students’ lottery choices can

be foreseen by employers and beliefs are correct. Denote by θ̊r(Γ) a φ that solves φ = θ̂r(Γ|φ).

By Brouwer’s fixed-point theorem, because θ̂r(Γ|φ) is a mapping from the closed interval [0, 1]

into itself, θ̊r(Γ) exists for every grading rule Γ. The school whose student body consists of

expected utility maximizers considers the following welfare function:

W r(Γ) =

∫ θ̊r(Γ)

0

(Ve(Γ|̊θr(Γ))− θ)dθ +

∫ 1

θ̊r(Γ)

V0(Γ|̊θr(Γ))dθ. (4)

16Lemma 1 further below demonstrates that first, the critical type solely determines welfare, and second,
that full disclosure indeed maximizes welfare with expected utility maximizing students.

17Recall that when the grading rule is full disclosure, the market values do not depend on beliefs. Thus,
nor does student welfare.

9



A rule is called expected utility optimal if it maximizes equation (4), that is, if it induces utility

W FD(θ̂FB). Full disclosure is expected utility optimal and implies that θ̊r(Γ) = θ̂FB. The

following lemma proves that this condition suffices to determine expected utility optimality

for other rules.

Lemma 1. A grading rule is considered expected utility optimal if and only if it induces

the first best critical type θ̂FB. Suppose θ̊r(Γ) = θ̂FB for some Γ ⊂ Ψ. Then, it holds that

W r(Γ) = W FD(θ̂FB). By contrast, if θ̊r(Γ) 6= θ̂FB, it holds that W r(Γ) < W FD(θ̂FB).

Lemma 1 states that whether a grading rule is expected utility optimal is exclusively

determined by the critical type which it induces in equilibrium. Put differently, coarseness

itself does not affect welfare, only its effect on the lottery choices does. Thus, the value of a

grading rule is given by its ability to incentivize student effort. This result is surprising, and

the more so since in equilibrium, even when the induced critical type is the same, students’

expected valuations for the lotteries are typically different under coarse rules than they are

under a full disclosure rule. The insight provided in Lemma 1 considerably simplifies matters

since the analysis of critical types suffices to reveal expected utility optimal grading rules.18

It is this study’s main purpose to demonstrate why schools may find it optimal to employ

a coarse grading rule rather than fully disclosing examination results. By Lemma 1, a

grading rule Γ is expected utility optimal if and only if θ̊r(Γ) = θ̂FB. This is equivalent to

θ̂r(Γ|φ) = φ = θ̂FB. The following can be shown.

Proposition 1. In any equilibrium with expected utility maximizing students, students em-

ploy less than the efficient effort level when disclosure is coarse. That is, for all rules in

Ψ/ΨN , it holds that for any belief φ, θ̂r(Γ|φ) < θ̂FB.

Thus, when students are expected utility maximizers, no other than the full disclosure

rule is optimal. More precisely, any rule that does not fully disclose scores induces also

too less effort from the school’s point of view, a result which does not depend on the belief

φ. Hence, the intuition that incentives to work are lowered if better scores are not fully

rewarded applies.

4 Salience of extreme grades

Following BGS, students evaluate H2 different payoff states in S where S is determined by

the grading rule Γ. In particular, in a state sgh ∈ S(Γ), a student is awarded grade Cg(Γ)

18Note that Lemma 1 fails to hold for risk averse students. The according analysis would then require
case-to-case evaluations of grading rules. With risk neutral students by contrast, it is possible to focus on
critical types induced by different grading rules. This result extends to a focus on salient grades, see below.

10



when choosing lottery L0 and grade Ch(Γ) when choosing lottery Le. Each state sgh ∈ S(Γ)

then occurs with a commonly known probability, given by

πsgh(Γ) =

γgN∑
i=γg−1N+1

pi0

γhN∑
i=γh−1N+1

pie ∀sgh ∈ S(Γ).

Accordingly, it holds that
∑

sgh∈S(Γ) πsgh(Γ) = 1.

The salience of a state sgh ∈ S(Γ) is described by a continuous, non-negative and symmet-

ric (states sgh and shg are equally salient) salience function σsgh(Γ|φ) := σ(vg(Γ|φ), vh(Γ|φ)).

As proposed by BGS, σsgh(·) satisfies the ordering property.19 Formally:

(A3) (Ordering) For all states sg′h′ , sg′′h′′ ∈ S(Γ) for which min{vg′(·), vh′(·)} ≤ min{vg′′(·), vh′′(·)}
and max{vg′(·), vh′(·)} > max{vg′′(·), vh′′(·)} or min{vg′(·), vh′(·)} < min{vg′′(·), vh′′(·)}
and max{vg′(·), vh′(·)} ≥ max{vg′′(·), vh′′(·)}, it holds that σsg′h′ (·) > σsg′′h′′ (·).

The ordering property says that whenever one state’s values are nested within the values of

some other state, the latter is more salient. For instance, consider three grades C1(Γ3), C2(Γ3)

and C3(Γ3) where by definition of a grading rule, v1(·) < v2(·) < v3(·). Then the states

s13 = s31 are most salient and one of the states s11, s22 and s33 are least salient. By contrast,

(A3) does not make any statement on the relative salience of states s11 to s23 or s23 to s12.

Generally speaking, it implies that s1H and sH1 are the most salient states, whereas some

state sgg, g ∈ {1, 2, ..., H}, exhibits the least salience.

To obtain the decision weights attached to some state sgh, define the weighting function

as

ωsgh(Γ|φ, δ) =
δ−σsgh (Γ|φ)∑

sst∈S(Γ) δ
−σsst (Γ|φ)πsst(Γ)

. (5)

1− δ ∈ (0, 1] measures the degree of salience, where δ = 1 means that students are expected

utility maximizers in the sense of (A2). The perceived probability for a state sgh is given by

ωsgh(Γ|φ, δ)πsgh(Γ)

where
∑

sgh∈S ωsgh(·)πsgh(·) = 1.

The values of grades are a function of the belief φ about the critical type, as before. Hence,

vh(Γ|φ) is the same as in equation (3). As in the previous section, a student evaluates lottery

19BGS also propose that the salience function should exhibit diminishing sensitivity, that is, for any two
states sg′h′ , sg′′h′′ ∈ S(Γ), where vg′′ = vg′ +ε and vh′′ = vh′ +ε, for any ε > 0, σsg′h′ ≥ σsg′′h′′ . I do not need
this property to derive the general result, I will however, use a function that satisfies it when conducting the
numerical analysis.
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Le against lottery L0. Contrary to an expected utility maximizing student however, these

values are distorted by the weighting function. Let denote these perceived values Ṽe(Γ|·) or

Ṽ0(Γ|·) respectively. They are given by

Ṽe(Γ|φ, δ) =
H∑
h=1

vh(Γ|φ)
H∑
i=1

ωsih(δ)πsih(Γ)

Ṽ0(Γ|φ, δ) =
H∑
h=1

vh(Γ|φ)
H∑
i=1

ωshi(δ)πsih(Γ).

A student who focusses on salient grades is defined as follows.

(A4) (Focus on salient grades) A student θ with a degree of salience of 1− δ chooses lottery

Le if and only if Ṽe(Γ|φ, δ)− Ṽ0(Γ|φ, δ) ≥ θ.

As with expected utility maximizing students, student strategies are again captured by some

critical type such that all students with lower costs choose Le while higher types choose L0.

The critical type is now a function of the degree of salience, given by

θ̂s(ΓH |φ, δ) =
H∑
g=1

H∑
h=g+1

(vh(Γ
H |φ)− vg(ΓH |φ))ωsgh(ΓH |φ, δ)(πsgh(ΓH)− πshg(ΓH)), (6)

where θ̂s(ΓH |φ, 1) = θ̂r(ΓH |φ).

The school is assumed to maximize students’ expected utility. In analogy to the previous

analysis, define θ̊s(Γ|δ) as a belief φ which solves φ = θ̂s(Γ|φ, δ). Note that by continuity of

θ̂s(·) in φ, such a θ̊s(·) exists for any combination of δ and a grading rule Γ. When choosing

a grading rule, the school considers the following welfare function:

W s(Γ|δ) =

∫ θ̊s(Γ|δ)

0

(Ve(Γ|̊θs(Γ|δ))− θ)dθ +

∫ 1

θ̊s(Γ|δ)
V0(Γ|̊θ(Γ|δ))dθ. (7)

A rule is called first best optimal if and only if welfare is the same as when students are

expected utility maximizers and scores are fully disclosed, that is if and only if W s(Γ|·) =

W FD(θ̂FB). The following lemma generalizes Lemma 1 to a focus on salient grades.

Lemma 2. A grading rule is considered first best optimal if only if it induces the first best

critical type θ̂FB. Suppose θ̊s(Γ|δ) = θ̂FB for some Γ ⊂ Ψ and a given degree of salience

1− δ. Then, it holds that W s(Γ|δ) = W FD(θ̂FB). By contrast, if θ̊s(Γ|δ) 6= θ̂FB, it holds that

W s(Γ|δ) < W FD(θ̂FB).

In analogy to Lemma 1, Lemma 2 says that in order to determine whether a grading rule
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is first best optimal, it suffices to analyze the critical type induced by it. Here, as before, a

rule which induces any other critical type is not first best optimal. Thus, also here, θ̂FB is

called the first best critical type. In the following, I restrict my analysis to first best optimal

rules.

5 Optimal grading with salience

My focus lies on first best optimal rules for a given degree of salience 1 − δ. Therefore,

I restrict my analysis to exploring whether θ̂s(Γ|θ̂FB, δ) = θ̂FB has a solution. In words:

given that employers believe the critical type to be the first best critical type, is there a

grading rule which indeed induces the first best critical type? Such a grading rule is first

best optimal.

In order to approach this question, I start by considering the case where the students’

degree of salience is extremely high. For δ → 0, students take into account only the most

salient states whereas all payoffs not contained in these states are ignored. To see this, write

ωsgh(Γ|φ, δ) =
δσs1H (Γ|φ)−σsgh (Γ|φ)∑

sst∈S(Γ) δ
σs1H (Γ|φ)−σsst (Γ|φ)πst(Γ)

∀sgh ∈ S(Γ).

By the ordering property, the most salient states are s1H and sH1 for a given rule. For these

states, the weighting function becomes ωs1H (·) = ωsH1
(·) = (πs1H (·) + πsH1

(·))−1. All other

states are not taken into account at all, that is, ωsgh(·) = 0. The critical type under a full

disclosure rule can then be written as

lim
δ→0

θ̂s(ΓN |φ, δ) = (qN − q1)
τN − τ1

τN + τ1

.

The following can be shown.

Lemma 3. When results are fully disclosed, student effort is inefficiently high for an ex-

tremely high degree of salience. That is, lim
δ→0

θ̂s(ΓN |δ) > θ̂FB.

Lemma 3 states that under a full disclosure rule, too many students choose Le when their

degree of salience is very high. To give an intuition for the result, consider the overweighting

of the high effort lottery Le relative to the low effort lottery L0. The choice of Le attaches

too much weight to grade C1(ΓN) in state sN1 (recall that H = N for full disclosure), in

which case high effort becomes less attractive as compared to expected utility maximization.

However, it also attaches too much weight to the best grade CN(ΓN) in state s1N . From

this point of view, high effort becomes more attractive. The analogue holds for low effort:

13



in state sN1, too much weight is placed on the highest grade, low effort in this case becomes

more attractive. On the contrary, it becomes less attractive in state s1N . Students compare

both lotteries, and the critical value is determined by the perceived difference in valuations

between employing high effort and low effort, see (A4). Thus, if state sN1 is relatively more

overweighted than state s1N , the critical type decreases as compared to expected utility

maximization. Otherwise, the critical type increases. Lemma 3 then basically proves that in

sum, state s1N is relatively more overweighted. This is because the initial state probabilities

differ by (A1). In particular, the monotone likelihood ratio property requires that π1N(ΓN) >

πN1(ΓN). Thus, although the weighting factor by which state probabilities are overweighted

is the same for both states, initial probabilities are not.

The lemma has an important implication: since, for high degrees of salience, students focus

only on the most salient states, the only grades that are taken into account are the grade

with the lowest value and that with the highest value. In the case of full disclosure, by

Lemma 3, this induces students to employ too much effort. Values of the extreme grades

C1(·) and CN(·) equal the lowest and highest score respectively, that is, v1(ΓN |φ) = q1 and

vH(ΓN |φ) = qN . Thus, any other rule with the same values for the lowest and highest grades

yields the same limit result, meaning that these rules also induce students to employ too

much effort for very high degrees of salience. This is the case for all grading rules with

γ1 = q1 and γH−1 = qN−1. Obviously, it requires that the rule has at least two cuts, i.e.

H ≥ 3.

Further, from Proposition 1, every rule different from the full disclosure rule induces

inefficiently low effort if students maximize expected utility, i.e. if δ = 1. This is the case

for any employer belief, thus also for the belief that the critical type is the first best critical

type. As a result, since the critical type is continuous in the degree of salience, there exists

some δ < 1 for which a rule of this form – γ1 = q1 and γH−1 = qN−1 – is first best optimal.

This insight provides an explanation for the occurrence of coarse grading rules and shall

therefore be stated separately.

Proposition 2. For every H ≥ 3, ΨH contains at least one rule that is first best optimal

for some δ ∈ (0, 1).

Proposition 2 demonstrates that the focus on salient grades can explain the occurrence

of a wide variety of grading rules across different coarseness categories. Grading rules which

exhibit the property that the worst and best score can be detected unambiguously are first

best optimal for some degree of salience. The proposition however makes no statement on

the existence of first best optimal rules for different degrees of salience. Do first best optimal

grading rules exist for all degrees of salience, i.e. for all δ?
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Because a grading rule is a subset of Ω, its entries are rational numbers. This implies

that the first best outcome may not exactly be restored by a deterministic rule, even if

some first best optimal probabilistic counterpart exists. Thus, in order to be able to analyze

global first best optimality, it is necessary to extend the set of rules to probabilistic ones.

A probabilistic rule is a grading rule which assigns to certain scores different grades with

positive probability. As will be shown, to derive a general optimality result, it suffices to take

into account grading rules which are probabilistic only to a small degree in the sense that

probabilistic assignment to grades is necessary only for single scores. Moreover, it suffices

that these scores are assigned to at most two different grades with positive probability. All

other scores continue to be assigned grades deterministically. The next proposition proves

this. Before, slightly more general rules are introduced.

Extended set of rules: probabilistic rules. I strive to generate continuity of the critical type

both within and across coarseness categories H. For this purpose, define G as the set of

probabilistic rules with the following properties: every score qn which is not placed on a

cut, that is, qn 6= γh for any h, is deterministically awarded a grade, like before. All other

scores may be assigned to grades stochastically. In particular, denote by rh a probability

vector, with its elements summing up to one. More specifically, an element rgh denotes

the probability with which score qn = γh is assigned to grade Cg(·). A rule in G is then

characterized by the set GH = {γ1, γ2, ..., γh, ...γH , r1, ..., rH}, with γH = qN = 1, as before.

If rh is such that rhh = 1 for all h, the rule equals the respective deterministic rule. For

instance, G̃2 = {γ1, q
N , (1, 0), (0, 1)} is the Pass/Fail rule Γ̃2 = {γ1, q

N}.
As turns out, it suffices to consider rules which have that (a) at most one rh contains

elements different from 1 and 0, and (b) at most two elements of rh are different from 0,

and these are neighbouring elements. In words, these rules are probabilistic only to a small

degree: at most one score is assigned to at most two grades with positive probability. An

example for an according probabilistic rule is G̃3 = {γ1, γ2, q
N , (r, 1− r, 0), (0, 1, 0), (0, 0, 1)}.

Here, all scores smaller than γ1 are assigned grade C1(G̃3), the score which coincides with the

cut γ1 is assigned the lowest grade C1(G̃3) with probability r and C2(G̃3) with probability

1− r, all scores higher than γ1 but lower than or equal to γ2 are assigned grade C2(G̃3) with

certainty and all higher scores are assigned the best grade C3(G̃3).

The following Proposition makes a statement about the existence of first best optimal

rules for varying degrees of salience.

Proposition 3. For any degree of salience 1−δ for which the focus on salient grades induces

inefficiently high effort when results are fully disclosed, i.e. for which θ̂s(ΓN |δ) ≥ θ̂FB, a first

best optimal rule in G exists.

15



Proposition 3 proves that first best optimal rules exist for each degree of salience for which

students employ inefficiently high effort levels under a full disclosure rule. The idea of the

proof is as follows: the rule which does not disclose any information to the market induces no

student to employ high effort, independent of his degree of salience and employers’ beliefs.

It is then a strictly dominant strategy to choose low effort, meaning that the critical type

is zero. Probabilistic rules generate continuity between the critical types for a no-disclosure

policy and a full disclosure rule. To construct this effect, consider the following class of

deterministic rules from which probabilistic rules are derived: for any coarseness category

H, the grading rule Γ̃H is such that scores are fully disclosed up to a certain threshold. This

threshold is qH−1. All other scores are assigned to a single grade. That is, Γ̃2 = {q1, qN},
Γ̃3 = {q1, q2, qN}, Γ̃4 = {q1, q2, q3, qN} and so forth. Then, continuity between the grading

rules Γ̃H and Γ̃H+1 is generated by implementing a probabilistic rule in which score qH is

awarded grade CH(·) with probability r ∈ (0, 1] and CH+1(·) with probability 1− r.
For instance, consider Γ̃2 and Γ̃3. q2 is awarded either grade C2(·) (with probability r) or

C3(·) (with probability 1−r). If it is assigned to C2(·) with probability one, the critical type

is the same as under the grading rule Γ̃3, because the second lowest score q2 is unambiguously

identified by employers. On the other hand, when it is almost surely awarded grade C3(·),
the critical type limits the one under a grading rule Γ̃2. In this case, the second lowest score

q2 is awarded almost certainly the same grade as all higher scores. According probabilistic

rules generate continuity of the critical type for all combinations of H and H+1. As a result,

whenever the focus on salient grades induces inefficiently high effort, some rule of this kind

is first best optimal.20

For a given salience function σsgh(·) = (|vg(·)−vh(·)|)/(|vg(·)+vh(·)|) and given probability

vectors pe, p0, an example is depicted in figure 2 for N = 5. In particular, the picture shows

the probability r, denoted by r∗(δ,H), which, for the described class of rules then yields first

best optimality for given degrees of salience and coarseness categories H. For instance, in

figure 2b, for the approximate interval (0.2, 0.54], a rule with three distinct grades (H = 3),

where q1 is awarded grade C1(·), q2 is awarded grade C2(·) with probability r∗(δ,H) and

20 Also, note that probabilistic rules in G can be constructed such that the critical types of deterministic
rules within a coarseness category are linked. To see how, consider the following example: let there be two
rules of the same coarseness category H, and assume they are identical with respect to H − 1 elements, and
differ in one single element where the difference between these two elements is one score, i.e. 1/N . For in-
stance, let the coarseness category be H = 2 and consider grading rules Γ2′ = {qn, qN} and Γ2′′ = {qn+1, qN}
Now consider the following probabilistic rule: the score qn+1 is assigned grade C1(·) with probability r and
C2(·) with probability 1 − r, while all other scores are graded according to the initial deterministic rules,
that is, q1 to qn are assigned to C1(·) and qn+2 to qN are assigned to C2(·). Let this new continuous
rule be denoted G2(r). Then, the critical type can be written as a function of this new grading rule, i.e.

θ̂s(G2(r)|φ, δ). When the probability r is zero, this critical type equals the critical type for rule Γ2′. When
r is one, it equals the critical type for rule Γ2′′ for a given degree of salience and belief.
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(a) Scores are distributed according to binomial
distributions B(4, α) with α = 0.7 if the
lottery choice is Le and α = 0.4 if it is L0.

(b) The pmfs pne and pn0 are represented by the
function 1/5(1 + β(2n− 6)/4) with β = 1 if
the lottery choice is Le and β = 0 if it is L0.

Figure 2: An example for first best optimal rules for N = 5 and σsgh = (|vg − vh)/(vg + vh).
r∗(δ,H) denotes the probability r, which, for the described class of rules yields
first best optimality for given degrees of salience and coarseness categories H.

C3(·) with probability 1 − r∗(δ,H) while all other scores are assigned C3(·), is first best

optimal. Here, first best optimal rules exist for all degrees of salience.

Note that the constructed probabilistic rules well capture different degrees of grade in-

flation: higher scores are assigned equal grades and can therefore not be distinguished by

employers. The less cuts (the smaller H), the more severe is grade inflation. By Proposition

3, some degree of grade inflation is first best optimal for any degree of salience 1 − δ for

which full disclosure yields inefficiently high effort levels. The example displayed in Figure

2 further suggests that higher degrees of salience – lower δ – account for higher degrees of

grade inflation.

6 Discussion

It was assumed that students of the same institutions are equal with respect to (a) the

probability distributions and (b) their inherent competitiveness (their δ). Selection in schools

may justify these assumptions to a certain degree, albeit not fully. In the following, I am

going to scetch the implications of deviations.
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6.1 Different ability levels

First, consider students with different ability levels. In particular, let there be M student

groups t1, t2, ..., tM , whose probability distributions have different supports. That is, students

of group tm score between q
m

and qm, q
m
< qm and q

m
, qm ∈ Ω.

Denote by φm the belief employers hold about the critical cost type in group m and let

φt = (φ1, φ2, ..., φM). The market value of a certificate vh is given by

vh(Γ|φt, δ) =

∑M
m=1

∑γhN
i=1+γh−1N

qi(φmp
im
e + (1− φm)pim0 )∑M

m=1

∑γhN
i=1+γh−1N

(φmp
jm
e + (1− φm)pjm0 )

,

where pme and pm0 are probability vectors for group m with zero elements outside the support

interval. If students are disparate in the sense that their supports do not overlap, my

results from the previous analysis apply accordingly: every group can be analyzed separately,

and cuts are chosen such that first best optimality is restored. There is no benefit from

further distorting information. As an example, when all groups are optimally incentivized

by employing a Pass/Fail rule, the now first best optimal rule is one with M cuts.

Similarly, if supports overlap and the optimal cuts are placed outside the overlapping

area, the optimal solution can easily be restored. If not so, the decision maker has to trade

off the effect of merging the different cuts against that of moving cuts outside the support

intervals of students of different abilities. First best optimality is then typically not restored.

I leave the in-depth analysis of these effects for further research.

6.2 Different degrees of salience

A related question is, in how far does the behavior of students with different degrees of

salience affect the behavior their classmates? Assume the school has chosen a coarse rule Γ̃

which in equilibrium implemented just the right effort levels given the average δ, denoted by

δ̃. More specifically, θ̂s(Γ̃|θ̂FB, δ̃) = θ̂FB. Consider a single (atomistic) student whose degree

of salience is lower, namely δ̂, therefore θ̂s(Γ̃|θ̂FB, δ̂) < θ̂FB.

Consider by contrast an institution where the average δ is δ̂ but who has employed the

same, then not first best optimal, rule Γ̃. It can be verified that market values for each grade

are lower, the reason being that employers foresee the reduced willingness to work. As a

result, my analysis predicts that for a given grading rule, students with a lower degree of

salience employ more effort in the presence of classmates with higher degrees of salience.
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7 Concluding comments

I model grade obsession as a focus on salient grades using the framework of BGS. It is ana-

lyzed how an institution seeking to maximize its students’ expected utility should optimally

design a grading rule when students are grade obsessed. It is shown that an extreme grade

obsession induces students to employ inefficiently high effort levels and that a coarse grad-

ing rule can counterbalance this effect. Thus, the common intuition that coarsening grades

reduces incentives applies. Moreover, it is demonstrated how first best optimal behavior can

always be restored by the use of a coarse grading rule.

Grade inflation is a different means of coarsening grades. At least some elite schools

are known to factually have abolished lower grades. By assuming that grade obsession is

present first and foremost in student bodies of very selective colleges, the model provides

an explanation for the occurrence of coarse grading and grade inflation in these institutions.

The phenomenon of grade inflation is a hotly debated topic world wide. It is mostly viewed

as being negative and politicians often request to implement measures to end it. The present

article on the other hand points to the positive aspects of grade inflation.

This suggests to further analyze the relationship between the eagerness of students and

grading scales of colleges, e.g. by empirically testing the predictions derived above. And

of course, research need not stop here, as phenomena such as promotion obsession and

reputation obsession are likely to have similar roots. Solutions there may be less obvious to

find, but substantial progress seems to be possible.
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A Appendix

Proof of Lemma 1. Suppose θ̂FB = θ̊r(Γ) for some Γ and define θ := θ̂FB = θ̊r(Γ). It

is to show that W FD(θ) = W r(Γ). Define V FD
e := E[Q|Le] and V FD

0 := E[Q|L0]. Then

W FD(θ) = W r(Γ) is given if and only if

θV FD
e + (1− θ)V FD

0 = θVe(Γ|·) + (1− θ)V0(Γ|·). (8)

Using Ve(·) and V0(·) as given in equation (1) and vh(Γ|φ) as in equation (3) transforms

equation (8) to

N∑
i=1

qi(θpie + (1− θ)pi0) =
H∑
h=1

∑γN
i=γh−1N+1 q

i(φpie + (1− φ)pi0)∑γN
i=γh−1N+1 φp

i
e + (1− φ)pi0

γN∑
i=γh−1N+1

θpie + (1− θ)pi0.

Since by definition of θ̊r(Γ) it holds that θ = φ, the condition becomes

N∑
i=1

qi(φpie + (1− φ)pi0) =
H∑
h=1

γhN∑
i=1+γh−1N

qi(φpie + (1− φ)pi0),

which is clearly given. By contrast, consider some Γ for which θ̊r(Γ) 6= θ̂FB. Then,

W FD(θ̂FB) = W r(Γ) if and only if

θ̂FBV FD
e + (1− θ̂FB)V FD

0 = θ̊r(Γ)Ve(Γ|·) + (1− θ̊r(Γ))V0(Γ|·). (9)

Transforming accordingly and using φ = θ̊r(Γ) gives that equation (9) is given if and only if

N∑
i=1

qi(θ̂FBpie + (1− θ̂FB)pi0) =
H∑
h=1

γhN∑
i=1+γh−1N

qi(θ̊r(Γ)pie + (1− θ̊r(Γ))pi0)

=
N∑
i=1

qi(θ̊r(Γ)pie + (1− θ̊r(Γ))pi0).

This is given only if θ̊r(Γ) = θ̂FB.

Finally,

W r(Γ) =
N∑
i=1

qi(θ̊r(Γ)pie + (1− θ̊r(Γ))pi0)− 1

2
θ̊r(Γ)2

maximizes at θ̊r(Γ) = θ̂FB. Thus, full disclosure is expected utility optimal.
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Proof of Proposition 1. Define

∆ΓH

:=θ̂r(ΓH |φ)− θ̂FB

=
H∑
h=1

vh(Γ
H |φ)

γH∑
i=1+γh−1N

(pie − pi0)−
N∑
n=1

qn(pne − pn0 )

It is to show that ∆ΓH
< 0 for all H < N and ΓH ⊂ ΨH . The proof is by induction.

First step: consider some rule Γ̃N−1 ⊂ ΨN−1 such that grade Ct(·) pools scores qt and qt+1.

∆Γ̃N−1

= (vt(·)− qt)(pte − pt0)− (qt+1 − vt(·)(pt+1
e − pt+1

0 ))

Defining zn = (φpne + (1− φ)pn0 ) and using vt(·) as given in equation (3) gives

∆Γ̃N−1 zt + zt+1

qt+1 − qt
=(zt+1(pte − pt0)− zt(pt+1

e − pt+1
0 ))

=pt+t0 pte − pt0pt+1
e = pt0p

t+1
0 (τt − τt+1) < 0.

Second step: consider some ∆Γ̃H ⊂ ΨH and assume ∆Γ̃H
< 0. Now consider some ∆Γ̃H−1 ⊂

ΨH−1 which pools two neighbouring grades Ct′(·) and Ct′+1(·) into a new grade Cs, all other

grades remain unchanged.

∆Γ̃H−1 −∆Γ̃H

=θ̂r(ΓH̃−1|θ̂FB)− θ̂r(ΓH̃ |θ̂FB)

=(vs(·)− vt′(·))
γt′N∑

i=1+γt′−1N

(pie − pi0)− (vt′+1(·)− vs(·))
γt′+1N∑
i=1+γt′N

(pie − pi0)

with

vs(·)− vt′(·) =

∑γt′N
i=γt′−1N+1

∑γt′N
j=γt′−1N+1 z

izj(qi − qj) +
∑γt′N

i=γt′N+1

∑γt′N
j=γt′−1N+1 z

izj(qi − qj)∑γt′N
i=γt′−1N+1 z

i
∑γt′+1N

i=γt′−1N+1 z
i

=

∑γt′+1N

i=γt′N+1

∑γt′N
j=γt′−1N+1 z

izj(qi − qj)∑γt′N
i=γt′−1N+1 z

i
∑γt′+1N

i=γt′−1N+1 z
i

vt′+1 − vs =

∑γt′+1N

i=γt′N+1

∑γt′+1N

j=γt′N+1 z
izj(qi − qj) +

∑γt′+1N

i=γt′N+1

∑γt′N
j=γt′−1N+1 z

izj(qi − qj)∑γt′+1N

i=γt′N+1 z
i
∑γt′+1N

i=γt′−1N+1 z
i

=

∑γt′+1N

i=γt′N+1

∑γt′N
j=γt′−1N+1 z

izj(qi − qj)∑γt′+1N

i=γt′N+1 z
i
∑γt′+1N

i=γt′−1N+1 z
i
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Therefore, ∆Γ̃H−1 −∆Γ̃H
< 0 if and only if∑γt′+1N

i=γt′N+1

∑γt′N
j=γt′−1N+1 z

izj(qi − qj)∑γt′+1N

i=γt′−1N+1 z
i

(∑γt′N
i=1+γt′−1N

(pie − pi0)∑γt′N
i=γt′−1N+1 z

i
−
∑γt′+1N

i=1+γt′N
(pie − pi0)∑γt′+1N

i=γt′N+1 z
i

)
< 0

⇔
(∑γt′N

i=1+γt′−1N
(pie − pi0)∑γt′N

i=γt′−1N+1 z
i
−
∑γt′+1N

i=1+γt′N
(pie − pi0)∑γt′+1N

i=γt′N+1 z
i

)
< 0

⇔
γt′N∑

i=1+γt′−1N

γt′+1N∑
j=1+γt′N

pj0p
i
e − pi0pje =

γt′N∑
i=1+γt′−1N

γt′+1N∑
j=1+γt′N

pi0p
j
0(τi − τj) < 0,

which is given due to the monotone likelihood ratio property.

Proof of Lemma 2. Analogous to the proof of Lemma 1.

Proof of Lemma 3. The problem can be written as a maximization problem where p0 is

being fixed. It is to show that there the maximium is not strictly positive. For technical

convenience, we consider τn = 0, i.e. pn0 = 0 for some small n and τn = τn+1 for some n (in

contradicion to (A1) where we assumed strictly increasing τn).

max
τ

f(τ) := −(N − 1)
τN − τ1

τN + τ1

+
N∑
n=1

npn0 (τn − 1)

s.t. τn ≥ τn−1 ≥ 0 for all n,
N∑
n=1

pn0τn = 1

τN can be written as a function of τ−N . Then, for every 2 ≤ n ≤ N − 1,

∂f(τ−N)

∂τn
= pn0 (n−N +

2(N − 1)τ1

(τN + τ1)2pN0
)

Possible solutions to the program are:

(a) τ1 → 0. Define En
e :=

∑N
n=1 np

n
e =

∑N
n=1 np

n
0τn and En

0 :=
∑N

n=1 np
n
0 . Then:

lim
τ1→0

f(τ) = −(N − 1) + (En
e − En

0 ) < 0.

(b) 1 > τ1 > 0. Since ∂f(τ−N)/∂τn is monotonically increasing in n, a candidate solution

has the property that there exists some critical n, denoted by n̂ such that τ 1
n̂ := τ1 = τ2 =

... = τn̂ < τn̂+1 = ... = τN := τNn̂ . Denote pn̂ :=
∑N

i=n̂+1 p
i
0.

Then τNn̂ = (1− (1− pn̂)τ 1
n̂)/pn̂ and

f(τ) = −(N − 1)(1− τ 1
n̂)

pn̂(τNn̂ + τ 1
n̂)

− (1− τ 1
n̂)

n̂∑
i=1

ipi0 + (1− τ 1
n̂)

1− pn̂

pn̂

N∑
i=n̂+1

ipi0.
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f(τ) < 0 iff

−(N − 1) + (τNn̂ + τ 1
n̂)(1− pn̂)

N∑
i=n̂+1

ipi0 − (τNn̂ + τ 1
n̂)pn̂

n̂∑
i=1

ipi0 < 0.

It holds that
∑n̂

i=1 ip
i
0 > (1− pn̂) and

∑N
i=n̂+1 ip

i
0 < Npn̂. Therefore, f(τ) < 0 if

1− (τNn̂ + τ 1
n̂)(1− pn̂)pn̂ > 0.

⇔1 > (1− pn̂)(1 + τ 1
n̂(2pn̂ − 1))

which can be checked to hold for all τ 1
n̂ ∈ (0, 1) and pn̂ ∈ (0, 1).

(c) τ1 → 1 yields lim
τ1→1

f(τ) = 0.

Proof of Proposition 2. From the analysis in the text, it follows that for any ΓH , H ≥ 3

with γ1 = q1 and γH−1 = qN−1, it holds that ωs1H (·) = ωsH1
(·) = (p1

0p
N
e + pN0 p

N
e )−1 and

ωshg(·) = 0 for all other states, thereby:

lim
δ→0

θ̂s(ΓH |φ, δ) = lim
δ→0

θ̂s(ΓN |φ, δ),

which is strictly greater than θ̂FB by Lemma 3. From Proposition 1, these rules are strictly

smaller than θ̂FB at δ = 1. By continuity of θ̂s(ΓH |φ, δ) in δ, there exists some δ for which

θ̂s(ΓH |φ, δ) = θ̂FB.

Proof of Proposition 3. First, if no information is revealed, i.e. H = 1, then θ̂s(Γ1|φ, δ) =

0 for all tuples (φ, δ).

Some probabilistic rule in G establishes continuity between any θ̂s(Γ1|φ, δ) and θ̂s(Γ2|φ, δ)
for any Γ2 ⊂ Ψ2. Consider the following rule in Ψ2: Γ̃2 = q1 and the probabilistic rule in G,

G̃2 = {q1, qN , (r, 1− r), (0, 1)} with r ∈ (0, 1]. That is, score q1 is awarded grade C1(·) with

probability r and C2(·) with probability 1− r. All other scores are awarded grade C2(·).
The function θ̂(G̃2|φ, δ) is clearly continuous in r. When r = 1, G̃2 = Γ̃2.

Also, when r → 0, G̃2 → Γ1, and θ̂(G̃2|φ, δ) → θ̂(Γ1|φ, δ) = 0, as can be verified by in-

spection of equation (6). Then, all sum elements of equation (6) which contain g = 1 or

h = 1 approach 0, while the value of grade C2(·) limits the value of C2(·) of Γ0. Further, the

probability that grade C2(·) occurs if L0 is chosen, is given by
∑qNN

i=q2N p
i
0 + (1− r)p1

0 (analog

presentation for Le), while the probability that grade C1(·) occurs is rp1
0, which is clearly

zero for r → 0. As a result, the weighting functions as given in 5 also limit those of Γ0, i.e.

1.

The same procedure links all higher coarseness categories up to the full disclosure rule
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ΓN . More specifically, the new probabilistic rules are all derived from the determinis-

tic rules Γ̃H = {γ1 = q1, γ2 = q2, ...γH−1 = qH−1, γH = qN}. Then, the rules G̃H =

{q1, ..., qH−1, qN , (1, 0, ..., 0), (0, 1, 0, ..., 0), ...(0, ..., 1, 0, 0), (0, ..., 0, r, 1−r), (0, ..., 1)}, r ∈ (0, 1]

establish the link between Γ̃H−1 and Γ̃H for all H. The last step is the transition from Γ̃N−1

to the full disclosure rule ΓN .

By continuity of θ̂s(G̃H |φ, δ) in r for any tuple (φ, δ) and any rule G̃H , continuity is es-

tablished between θ̂s(Γ0|θ̂FB, δ) – student behavior when no information disclosure – and

θ̂s(ΓN |θ̂FB, δ) – student behavior for full disclosure. As a result, first best optimal rules exist

for all δ for which θ̂s(ΓN |θ̂FB, δ) ≥ θ̂FB.
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