Fischer, Sebastian; Petrunyk, Inna; Pfeifer, Christian; Wiemer, Anita

Working Paper
Before-after differences in labor market outcomes for participants in medical rehabilitation in Germany

University of Lüneburg Working Paper Series in Economics, No. 318

Provided in Cooperation with:
Institute of Economics, Leuphana Universität Lüneburg

Suggested Citation: Fischer, Sebastian; Petrunyk, Inna; Pfeifer, Christian; Wiemer, Anita (2014) : Before-after differences in labor market outcomes for participants in medical rehabilitation in Germany, University of Lüneburg Working Paper Series in Economics, No. 318, Univ., Inst. für Volkswirtschaftslehre, Lüneburg

This Version is available at:
http://hdl.handle.net/10419/106913

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Before-after differences in labor market outcomes for participants in medical rehabilitation in Germany

by

Sebastian Fischer, Inna Petrunyk,
Christian Pfeifer and Anita Wiemer

University of Lüneburg
Working Paper Series in Economics

No. 318

December 2014

www.leuphana.de/institute/ivwl/publikationen/working-papers.html

ISSN 1860 - 5508
Before-after differences in labor market outcomes for participants in medical rehabilitation in Germany

Sebastian Fischer (sebastian.fischer@inkubator.leuphana.de) a)

Inna Petrunyk (inna.petrunyk@leuphana.de) b) *)

Christian Pfeifer (pfeifer@leuphana.de) b) c)

Anita Wiemer (anita.wiemer@inkubator.leuphana.de) a)

a) Innovation-Incubator, Leuphana University Lueneburg, Rotenbleicher Weg 67, 21335 Lueneburg, Germany.
b) Institute of Economics, Leuphana University Lueneburg, Scharnhorststr. 1, 21335 Lueneburg, Germany, phone: +4941316772303.
c) Forschungsinstitut zur Zukunft der Arbeit (IZA), Germany.

*) Corresponding author: Inna Petrunyk

(December 2, 2014)

Abstract

The authors address the issue of effectiveness of medical rehabilitation in terms of labor market outcomes by analyzing a large representative administrative panel data set for Germany. The research design focuses on socio-demographic group differences in before-after differences in days with unemployment benefits, days in employment, and labor income of participants in medical rehabilitation. The mean before-after differences indicate that medical rehabilitation is rather ineffective with respect to labor market outcomes, because the number of days with unemployment benefits is larger and the number of working days and labor income are smaller after the rehabilitation than before. The differences in the before-after differences are however large between socio-demographic groups. For example, older participants perform significantly worse and better educated participants have significant better labor market outcomes after the rehabilitation than before, whereas gender differences are small.

Keywords: medical rehabilitation, effectiveness, labor market performance

JEL-codes: I1, J2
1. INTRODUCTION

Participation in medical rehabilitation is a central topic in health economics, as the use of health care services is connected to huge monetary and non-monetary costs. In 2012 curative and rehabilitative services incurred more than half of total current healthcare expenditure (CHE) in most of the European countries. In Germany the share of 54.47% amounted to 158,200 million Euros\(^1\). These costs, however, can be partially or fully justified in case of efficient and effective rehabilitation treatments. In the field of medical rehabilitation, health economists have addressed the issue of both efficiency of providing rehabilitation and effectiveness of rehabilitation programs (Johnston et al. 2003, Haaf 2005). Indeed, efficiency and effectiveness analyses of rehabilitation are necessary in order to optimize its provision.

Recently, a number of studies have called the efficiency and effectiveness of rehabilitation into question. Turner-Stokes (2007) examines the efficiency of longer-stay rehabilitation programs completed by adults with complex neurological disabilities in the UK. Her results suggest that the long-term savings in the cost of ongoing care offsets the increased costs of rehabilitation due to longer lengths of stay and, thus, the longer in-patient rehabilitation is cost-efficient (Turner-Stokes 2007). In a randomized controlled trial framework with a one-year follow-up, Torstensen et al. (1998) consider Norwegian patients with chronic low back pain. In fact, disorders of musculoskeletal system represent the most frequent cause of absence from work in Norway. In this context the authors question the efficiency of medical exercise therapy, conventional physiotherapy, and self-exercise in terms of costs for days on sick leave. They find evidence of the efficiency of medical exercise therapy and conventional physiotherapy compared to self-exercise.

The analysis of the medical rehabilitation effectiveness covers aspects associated with the rehabilitants’ reintegration into the labor market, their health-related quality of life and the health

results with respect to the diagnosis made before the treatment (Fuhrer, 2000). Analyses of effectiveness of the German rehabilitation treatments of diseases of the circulatory and nervous systems as well as the musculoskeletal system find controversial evidence (Haaf 2005, Hüppe et al. 2005). The studies reviewed by Haaf (2005) report weakly positive health-related effects in a three to twelve months follow-up period and a negligible impact within a longer time period. Hüppe et al. (2005) systematically reconsidered all available German studies on the effectiveness of inpatient rehabilitation for chronic back pain. Scarce medium-term improvements of the patients’ state of health suggest for need of review of the German inpatient rehabilitation for chronic back pain. However, due to lack of randomization in research designs the definition of a causal relationship between the treatment at issue and the outcomes of interest is questionable. With respect to the rehabilitants’ employment outlooks the most commonly analyzed labor market outcome is return to work (Mackenzie et al. 1998). Other job-related variables refer to the number of days on sick leave and functional ability, whereas pain intensity and patient satisfaction approaches the health-related quality of life evaluation of the rehabilitation treatment.

Our paper contributes from the labor market perspective to the scarce literature on the effectiveness of medical rehabilitation in Germany (Raspe, 2009). It explicitly tackles the question left open in the German studies on job-related outcomes, which consider only the diagnosed employability capacity of the patients after a completed treatment. In the light of the above, our analysis makes a step further and takes into account the before-after differences in terms of more specific labor market related outcomes such as the number of days with unemployment benefits, days in employment, and labor income, whereby different social groups are compared to each other. Our research design is to some extent a difference-in-differences approach that looks at treatment effect differences among treated individuals with a rehabilitation measure. For this purpose we use the administrative data on completed medical rehabilitation in the time period 2002-2009 made available by the Research Data Centre of German Pension Insurance. Additionally to the information on diagnoses and treatments implementation job-related outcomes pre and post treatment are available in 1999-2009. The specification of main interest is the difference in the outcome variables two years after the rehabilitation and two years before the rehabilitation, which varies significantly between socio-demographic groups. Indeed, older participants and non-Germans have significant worse outcomes and better educated participants perform better at the labor market after the rehabilitation than before. The marital
status variables indicate that the before-after difference in days with unemployment benefits is significantly lower for married and widowed individuals than for singles and divorced individuals. Gender differences are small, except for the labor income. In fact, the before-after difference in labor income is significantly positive for women, which might suggest that rehabilitation for employed women is more effective than for employed men, because they perform better either in terms of working hours or hourly wages after rehabilitation.

The remainder of the paper is organized as follows. Section 2 describes the institutional background of medical rehabilitation in Germany and summarizes the most relevant literature pertinent to the scope of this paper. Section 3 presents the data set along with our econometric approach and summary statistics for our variables of interest. Section 4 presents our estimation results. Section 5 concludes with a short summary and discussion of our main findings.

2. INSTITUTIONAL BACKGROUND AND LITERATURE REVIEW

Participation in medical rehabilitation in Germany presupposes application for a rehabilitation treatment based on the corresponding medical diagnosis. The latter includes the recommended type, duration, begin and implementation form of the treatment, which can occur on inpatient or outpatient basis. Moreover, rehabilitation need, target, and potential have to be stated. The responsible reimbursement authority subsequently approves the application for a rehabilitation treatment. Independently from the fact to which reimbursement authority the application at issue has been submitted, the reimbursement authorities decide within whose jurisdiction the application in question falls. The reimbursement authority, be it the statutory pension insurance or a health insurer, is concerned in the first place, as it covers the related expenses and is directly interested in the outcomes of the treatment. In 2012 the German Statutory Pension Insurance approved 1,097,538 applications for medical rehabilitation, which is 0.9% more in comparison to the previous year and 3.2% more with respect to 2010. In the applications for medical rehabilitation in Germany, the most recurrent health disorder is the low back pain, which in 2013 accounted for 31.5% of all medical and other rehabilitative services provided by the German

Statutory Pension Fund.³ In fact, it is the largest finance provider of medical rehabilitation treatments for the employed individuals in Germany, followed by the statutory health insurance. In case of private health insurance, funding of utilization of health care services is negotiated in individual contracts. If participation in medical rehabilitation is directed to enhance the ability to work of employed people at working age, job-seekers or reduced earning capacity pension recipients, the German Statutory Pension Insurance is responsible for meeting the costs. This authority aims essentially at preventing costs connected with early retirement following the principle of rehabilitation before pension. The health insurance is generally responsible when applicants are non-working adults and pensioners implementing the concept of rehabilitation before (long-term) care. The target is thereby to avert disability and care dependency.

The approval comes along with the assignment to a rehabilitation center according to the treatment type. During the treatment a rehabilitant’s co-payment in the amount of 10 Euros per day is usually required. The contribution period depends on the type and duration of the treatment, the reimbursement authority and the amount already paid in the same calendar year. However, depending on a rehabilitant’s income both authorities can grant full or partial exemptions. In general, in case of outpatient treatment no co-payments are due. After a completed treatment in rehabilitation center a discharge diagnosis is reported. If immediate return to work to the previous extend is temporarily hampered and consequently aftercare and follow-up treatments are needed, gradual reintegration into the working life is possible. In this case a rehabilitant is entitled to interim payment. Ultimately, utilization of health care services is inevitably accompanied with foregone income due to absence from work.

An inpatient treatment lasts ordinarily three weeks, but can be prolonged if necessary (Augurzky et al. 2009). Within the first 6 weeks of an employee’s absence from work the employer is obliged to continued wage payment. Thereafter, interim payment is granted to the rehabilitant. Indeed, an employee’s participation in medical rehabilitation burdens the employer with costs as well. Constrained by his employee’s rehabilitation leave the employer is induced to bear

additional costs due to replacement of the absent workforce. A characterizing feature of medical rehabilitation consists in treating health deficiencies, which may not be immediately perceived by non-experts. The employer, for instance, may reluctantly concede time off the job due to nutritional and metabolic disorders or diseases of the respiratory or musculoskeletal systems. In line with this property, employees hesitate to demand for medical rehabilitation in order not to send out a signal of indisposition to the employer (Reichert et al. 2013). Recent studies analyzed the effect of job insecurity on the individual’s demand for medical rehabilitation of private sector employees. Based on the German Socio-Economic Panel (SOEP) Reichert et al. (2013) used in their paper information on rehabilitation participation and subjectively measured job insecurity as well as standard individual socio-economic characteristics. The resulting statistically significant negative effect of job insecurity on participation in medical rehabilitation can be interpreted as foregone use of health care services due to the employee’s fear of job loss. However, due to limitations of their data the kind of foregone treatments is not observable and an important issue of the effectiveness of medical rehabilitation services is not handled. If the foregone treatment is effective in terms of reintegration into the labor market, it might smooth the adverse attitude of the employer towards the inconvenience caused by the employee’s rehabilitation leave. Moreover, evidence in favor of treatment effectiveness would shed light on the well-discussed issue of abuse of medical rehabilitation by the employees.

The main objective of rehabilitation measures directed to the working age patients is to retain their working capacity, to facilitate their reintegration into the labor market, and to avoid early retirement. Return to work is, therefore, the primary target outcome of medical rehabilitation and at the same time an indicator of its effectiveness. Several approaches to measure return to work after disabling injury or illness have been proposed in the literature. Krause et al. (2001) reveal in their literature review of determinants of duration of disability and return to work a variety of direct and indirect measures of return to work outcomes. The latter include an individual’s actual return to work, the ability to return to work, the duration of receipt of workers’ compensation wage replacement benefits, earnings data, unemployment or retirement. Return to work outcomes usually refer to a point of time after a disabling disease or other health deficiency and imply a comparison with the situation before. The considered period of time in the short run ranges from the termination of rehabilitation to two years thereafter (Gallagher et al. 1989, Mau 2006, Bloch et al. 2006, Krischak et al. 2013, Reichert et al. 2011). Studies on return to work generally use
survey data. However, routine data from social security institutions form an additional important data source in the analysis of medical rehabilitation effectiveness.

Findings on return to work show that a proportion of more than 80% of the rehabilitation patients can be reintegrated into the labor market two years after completing the granted rehabilitation measure (Buschmann-Steinhage et al. 2011, Krischak et al. 2013, Mau 2006). In terms of the determinants of return to work, the focus often lies on specific diagnoses such as musculoskeletal disorders (Krischak et al. 2013, Bloch et al. 2001, Mau 2006, Gallagher et al. 1989), cancer (Spelten et al. 2002) or alcohol dependency (Buschmann-Steinhage et al. 2008, Walsh et al. 1991). Bloch et al. (2001) consider in their longitudinal country comparative study patients with lower back pain. The participants came from six western countries and were out of work for a period of at least three months due to lower back pain. It seems to be that, the type of medical treatment contributes little to explain successful resumption of work. Moreover, the authors examine the effectiveness of different types of medical treatment such as back surgery, pain relieving injections or muscle training with respect to the resumption of work. They find with one exception no significant relationship between medical treatments and return to work. Only in the Swedish cohort a back surgery during the first three months shows a positive effect. However, the authors note that a poorer back function may be the reason for the treatment instead of its effect. More important determinants of successful work resumption result to be the initial health status and a few baseline characteristics. Other studies in the field of musculoskeletal disorders focus on differences in the effectiveness between inpatient and outpatient rehabilitation measures (Bührlein et al. 2002; Bürger et al. 2002; Mau et al. 2002). The comparison between inpatient and outpatient rehabilitation forms reveals no significant differences between these groups in terms of their return to work rates. In fact, 70-77% of the patients could be successfully reintegrated into the labor market one year after completing the rehabilitation measure irrespective of whether it was an inpatient measure or not.

In the field of alcoholism, Buschmann-Steinhage et al. (2008) use the data from the German Statutory Pension Insurance and direct their attention towards the labor market outcome in the short run. The authors report in their findings that 18% of alcohol dependent patients are gainfully employed subject to statutory social security for twelve months on average within two years after the pertinent medical rehabilitation. Walsh et al. (1991) contribute to the debate on the effectiveness of different treatment options for alcohol-abusing workers. In a design of random
assignment of patients to three possible rehabilitation programs, the authors compare the groups with respect to their job performance and drinking and drug use in the course of a two-year follow-up period. The assignment occurs to the following treatment options: compulsory inpatient treatment, compulsory attendance at Alcoholics Anonymous (AA) meetings and a choice between these options. In terms of the measures of job performance such as hours missed from work, problems with supervisors, warning notices, drinking on the job, and absenteeism because of drinking, Walsh et al. (1991) do not find any significant differences among the treatment groups. However, results concerning the measures of drinking and drug use such as average daily number of drinks, number of drinking days per month, serious problems, intoxication, blackouts, definite alcoholism and cocaine use are not univocal. In fact, there are statistically significant differences in the last four measures among the three treatment groups in the follow-up period. The inpatient care group reveals to be the most effective (Walsh et al. 1991). This evidence suggests that the mandatory in-hospital treatment of alcohol-dependent workers is the most effective to recover from alcohol abuse and thus the high costs connected with the inpatient cure can be justified.

With respect to work resumption individual socio-economic aspects seem to be more predictive than the type of medical treatment. The relationship between age and return to work outcomes is well documented. The findings point to a negative effect of an older age on work resumption two years after the start of work incapacity due to low back pain (Gallagher et al. 1989, Bloch et al. 2001, Krause et al. 2001, Krischak et al. 2013, McKenzie et al. 1998, Weis et al. 1992). Bloch et al. (2001), for example, find the lowest work resumption rates in the oldest group (age 55 and over). However, there is no evidence of high rates in the youngest group (under age 24), but in the next two youngest groups (ages 25-44). Household composition also plays a role in this context. In fact, Bloch et al. (2001) point out that individuals who live alone are more likely to leave the labor market. Cheadle et al. (1994) examine in their population-based retrospective study factors that predict duration of work-related disability. The results suggest that among other factors a divorced marital status has a positive effect on duration of disability. The effects of gender are in contrast not univocal. Whereas some studies reveal reduced return to work rates for females (Bloch et al. 2001, Cheadle et al. 1994, Kemmlert et al. 1994), the others find no gender effect (Krause et al. 2001b).
Another socio-economic factor that is discussed in the literature is the migration background. Brzoska et al. (2010) analyze the influence of the migration background on the occupational performance after completing a medical rehabilitation measure. They use routine data from the German Statutory Pension Insurance which contains information about individuals who completed a medical rehabilitation granted by the insurer. Occupational performance in terms of capacity to work in former occupation after discharge from rehabilitation facility was assessed by a physician. Foreign nationals perform worse compared to the German ones. The authors note that these differences cannot be only explained by socio-economic differences or poorer initial health, but rather by the inability of the rehabilitative system to accommodate clients with different expectations and cultural differences. Well documented in the literature is the positive influence of a higher educational level on work resumption (Bloch et al. 2001, McKenzie et al. 1998, Kemmlert et al. 1994). McKenzie et al. (1998) examine in their prospective cohort study of individuals treated for a lower extremity fracture risk factors on return to work. The authors note that individuals who are higher educated may have a better ability to adapt to changing circumstances and, therefore, have more job mobility. Kemmlert et al. (1994) consider the employment status of individuals three years after a musculoskeletal occupational injury. Their results suggest that a higher educational level is positively associated with employment.

Other studies include occupational factors to explain the resumption of work after disability due to injury or illness. Cheadle et al. (1994) find negative influence of construction and agricultural work on the duration of disability. Krischak et al. (2013) focus on patients with coxarthrosis and analyze their reintegration into the labor market two years after rehabilitation due to implantation of a hip joint endoprothesis. For their analyses the authors use data from the German Statutory Pension Insurance. Moreover, they identify manual labor prior to rehabilitation as a risk factor for re-entry into employment. Weis et al. (1992) come to similar results in the case of cancer. Former patients with different cancer diagnoses treated in a university medical center reported their actual employment problems and the changes of job conditions due to cancer. The results of the study indicate that an occupational status characterized by manual work is negatively related to return to work. Krause et al. (1997) examine job characteristics as predictors of disability retirement. The individuals were drawn from a random sample of men who participated in an ischemic heart disease risk factor study. The observation period included a baseline and a follow-up period of on average 4.2 years. Heavy work, work in uncomfortable positions, long work
hours, noise at work, physical job strain, musculoskeletal job strain, repetitive or continuous muscle strain result to increase the incidence of disability retirement. The latter is confirmed by a further finding, that a blue collar occupation is positively associated with disability retirement.

3. DATA AND ECONOMETRIC APPROACH

3.1. Data Set

For our analysis we use the routine data collected by the German Statutory Pension Insurance. The longitudinal data set includes a random sample of 20% of all individuals who completed medical rehabilitation treatments granted by this insurer. A scientific use file of the data on completed rehabilitation in the course of insurance 2002-2009 was made available by the Research Data Centre of the German Pension Insurance. The data set consists of 3 databases.

- **SUFRSDV09BYB.** It is a pension insurance follow-up database, which provides information on insurance relationship and amount of contribution payments. Moreover, individual income in the period 1999-2009, i.e. before and after participation in medical rehabilitation, is reported, which overcomes the lack of specific income data in the Australian 1997 National Survey of Mental Health and Wellbeing of Adults encountered in Cornwell et al. (2009). Information on the outcome variables of interest in this research field such as number of worked days and days with unemployment benefits are also collected in the database and employed in this study.

- **SUFRSDV09MCB.** It includes all the cases with at least one completed medical rehabilitation, which in single cases may be supported by vocational rehabilitation and / or followed by granted pension benefits. The following variables contain detailed information on rehabilitation events during the reporting period 2002-2009: type of granted rehabilitation, implementation form on an inpatient or outpatient basis, begin /

SUF Abgeschlossene Rehabilitation im Versicherungsverlauf 2002-2009 Quelle: FDZ-RV;
http://forschung.deutsche-rentenversicherung.de/FdzPortalWebdispcontent.do?id=main_fdz_forschung_laengsb&chmenu=ispvwNavEntriesByHierarchy34
end of the treatment and its duration in days, rehabilitation region and medical discharge diagnoses. Moreover, labor market related variables at the moment of or shortly before the application for a rehabilitation treatment such as labor status, most recent activity, occupational status, months of disability in the previous 12 months, performance in hours in the last occupation or other activity and ability to work after rehabilitation with respect to the last employment are also available.

- **SUFRSDV09KOB.** Standard socio-demographic characteristics such as birth / death year, nationality, residence region, gender, marital status and education of the sample complete the data.

One of the advantages of this data set lies in its administrative nature as opposed to a survey. Limitations of self-reported data are directly connected to the sensitivity of revealed information. As a result, certain health deficiencies such as mental illness or dependency disorders may be understated or not stated at all, which in turn reduces the survey response rate. On the contrary, administrative data register individual health status based on medical diagnoses. Moreover, this measurement of health deficiencies contributes to a higher case number. In the time period at issue, a single medical rehabilitation is completed by about 75% of rehabilitants, whom we focus our attention on.

In fact, we include only individuals who completed exactly one rehabilitation measure in the time period from 2002 to 2007 and for whom we can observe labor market outcomes two years before and two years after the rehabilitation measure. An additional sample restriction in line with the research question is implemented with respect to age. We keep only individuals between 20 and 62 in the year of participation in medical rehabilitation so that all individuals are in a working age even two years before and after the rehabilitation. Moreover, we have dropped observations with missing values. The final estimation sample adds up to 442,037 individuals, of whom 245,147 are male and 196,890 are female.

5 Due to the larger shares of unknown education and occupational degrees, we have included these categories separately in the regressions. From the remaining sample, we have further dropped four observations, which had the obscure diagnose „External Causes of Mortality“.
3.2. Econometric Approach and Variables

Many large-scale empirical studies about effectiveness of medical rehabilitation with respect to labor market outcomes use the medical diagnosis about the employment capacity (not employable, working time per day) after the rehabilitation, which suffers however from a subjectivity bias of the doctor in charge and does not necessarily reflect the real labor market outcome. Moreover, most studies – including those using the actual employment status – simply look at the outcomes after rehabilitation, which neglects unobserved time invariant heterogeneity, which might affect the outcomes before the rehabilitation as well.\(^6\) In order to mitigate both limitations of earlier studies, we use the difference before and after the rehabilitation for objective labor market outcomes such as days with unemployment benefits, working days, and labor income in Euros. All three outcome variables are of course highly correlated with each other, because more working days, ceteris paribus, decrease the number of days in unemployment and increase labor income. Nevertheless, we think it is important to analyze all three outcome variables separately. First, the total number of days cannot only be divided in employment and registered unemployment but also in other sources of non-employment (e.g., family responsibility, early retirement). Second, we have only information about the number of working days and no information about actual working hours and hourly wages in the data, which are included in total labor income.

The panel data, from which we generate a cross sectional data set with a medical rehabilitation in year \(t\), allows us to generate several differences before and after rehabilitation for days with unemployment benefits, working days, and labor income as dependent variables. Our preferred specification takes the difference between the total sum over the two years after the rehabilitation and the total sum over the two years before the rehabilitation (\(\text{DIFFSUM} = \left(Y_{i,t+1} + Y_{i,t+2} \right) - \left(Y_{i,t-1} + Y_{i,t-2} \right) \)). Looking at the two years before and after the rehabilitation reduces potential biases produced by outliers or anticipation effects before and

\(^6\) Typical examples for time invariant personal characteristics in the context of labor are personal traits such as self control and motivation, which cannot be observed in most data and might hence lead to an omitted variable bias if one considers only the outcomes after the rehabilitation. For example, lower self control and motivation are, on the one hand, negatively correlated with labor market outcomes such as employment or income and, on the other hand, negatively correlated with explanatory variables of interest (e.g., schooling, mental health, occupational status).
integration effects after the rehabilitation. One can question, however, if a specific diagnosis for rehabilitation in year \(t \) has already an effect on unemployment, employment, and income two years earlier. This might be the case for many diagnoses, as the health deficiency is likely to occur for a longer period in order to go into rehabilitation so that labor market outcomes should also be negatively affected. Nevertheless, we use two additional differences as robustness checks by comparing the outcomes in the first or second year after rehabilitation with the outcomes in the year directly before the rehabilitation (\(DIFF_1 = Y_{t+1} - Y_{t-1} \) or \(DIFF_2 = Y_{t+2} - Y_{t-1} \)).

Unfortunately, our data lacks a control group, because all individuals in the sample have participated in rehabilitation during the observation period so that all of them belong to the treatment group. This is a frequent limitation in studies on the effectiveness of medical rehabilitation treatments using administrative data for participants in rehabilitation. Consequently, we cannot analyze causal average treatment effects. But we can analyze which groups perform better than other groups that have undergone rehabilitation, i.e., for whom the before-after differences in labor market outcomes are larger or smaller as an indicator for differences in the effectiveness of rehabilitation.

As gender differences in labor market outcomes are a common finding, we include at first a female dummy variable in the estimates for the complete estimation sample. In order to analyze if gender specific differences in the determinants exist, we also perform separate regressions for men and women. Moreover, we are especially interested in age specific differences, as rehabilitation might be especially ineffective for older participants, for whom integration into the labor market might be more problematic because of worse employment prospects and lower incentives to accept a job – and therefore rather wait for old age retirement or even go into early retirement. Thus, we include a vector of several age categories in our specification. For a more detailed picture, we further estimate a specification with dummy variables for every year of age. In order to facilitate the interpretation, we will predict and plot non-linear age profiles instead of an interpretation of coefficients. We further include the marital status, which might have different effects for men and women due to still existent gender specific roles in many relationships. The nationality and education of the participants are also taken into account. Moreover, we include employment and job related variables such as the regular job position and the employment status before the rehabilitation. We further account for differences in 14 occupations, which we treat as
a control variable and which results are not further discussed. In order to deal with aggregated influences, we take into account year dummies and dummies for the 16 German federal states, in which a participant lives. At last, we include the detailed medical discharge diagnoses. Because of the 166 different diagnoses included as dummy variables, we do not present their estimated parameters and do not discuss the results. Thus, the medical diagnoses serve only as control variables and we leave diagnose specific differences in the effectiveness of rehabilitation to medical researchers. To sum up, our general estimation framework for our preferred specification looks as described in equation (1), in which \(i \) denotes the individual, \(t \) the year in which the rehabilitation takes place, \(\alpha \) the constant, \(\beta \) coefficients and \(\epsilon \) the usual error term, and can be estimated by using linear regressions with OLS (ordinary least squares).

\[
\left(\left(Y_{i,t+1} + Y_{i,t+2}\right) - \left(Y_{i,t-1} + Y_{i,t-2}\right)\right) = \alpha + \beta_{1, \text{FEMALE}} + \beta_{2, \text{AGECATEGORY}} + \\
\beta_{3, \text{MARITALSTATUS}} + \beta_{4, \text{NATIONALITY}} + \\
\beta_{5, \text{EDUCATION}} + \beta_{6, \text{JOBPOSITION}} + \\
\beta_{7, \text{EMPLOYMENTSTATUS}} + \beta_{8, \text{OCCUPATION}} + \\
\beta_{9, \text{YEAR}} + \beta_{10, \text{REGION}} + \beta_{11, \text{DIAGNOSE}} + \epsilon
\]

In Table 1, we present definitions, means, and standard deviations of our variables of main interest for the complete estimation sample. At first, we take a look at our dependent variables, i.e., the average differences in labor market outcomes before and after the rehabilitation. It can be seen that the number of days with unemployment benefits is higher and that the number of working days and total labor income are lower after the rehabilitation, which indicates that rehabilitation does on average not seem to be very effective in terms of increasing employability. Note however that we do not address health effectiveness in our paper. In more detail, the number of days with unemployment benefits increases on average by about 80 days in the two year spans (UDIFFSUM) and by about 38 days in the one year spans when compared to the year directly before the rehabilitation (UDIFF1, UDIFF2). The number of working days decreases on average by about 137 days in the two year spans (WDIFFSUM), by about 60 days in the first year after rehabilitation (WDIFF1), and by about 63 days in the second year after rehabilitation.

7 Aggregated influences include, for example, business cycle effects, labor market and health policy changes. As we use nominal income changes for different years, the year dummies also take into account differences in the inflation rates between years.
(WDIFF2) if compared to the year directly before the rehabilitation. The total labor income
decreases on average by about 8277 Euros in the two year spans (IDIFFSUM), by about 3710
Euros in the first year after rehabilitation (IDIFF1), and by about 3889 Euros in the second year
after rehabilitation (IDIFF2). When looking at the before-after differences in income, it should be
kept in mind that we use nominal wages and not real wages. Consequently, the income
differences over time are lower bounds due to inflation and regular wage growth over time.

Please insert Table 1 about here

Let us now turn to our explanatory variables of interest. 44.5% of the 442,036 observations in our
estimation sample are female. The average age is 46.7 years, which refers to age in the year of the
rehabilitation and is restricted to 20 to 62 in our estimation sample. The age categories indicate
that about 5% are younger than 30 years of age, 6% are aged between 30 and 34 years, and nearly
5% are at least 60 years old. All other age groups have shares between 10% and 20%. In our
more detailed specification for the prediction of age profiles, we have 43 categories for every
year of age. Even though we do not present the shares for all of these groups, it should be noted
that the number of observations for the oldest age groups is still large enough (n=3653 for 62
year old; n=6694 for 61 year old; n=9142 for 60 year old; n>10000 for each year younger than 60
years) to obtain consistent and efficient estimates due to our large sample size.

About 25% of the observations are singles, 61% are married, 12% are divorced, and 2.3% are
widowed when they participate in the rehabilitation. Moreover, 93% have the German nationality
(citizenship) and the largest group of non-Germans in the data is people with a Turkish
citizenship (1.9%). We can further see that most of the rehabilitation participants in our sample
are not highly qualified. Overall less than 10% have obtained the highest secondary schooling
degree (<3% have a university degree, <3% have a degree from a university of applied science,
<3% have high secondary schooling without any university degree), whereas more than 12%
have a low or medium secondary schooling degree without an additional apprenticeship degree
and nearly 55% have a low or medium secondary schooling degree with an apprenticeship
degree. The job position further informs us that about 20% are unskilled or low skilled blue-
collar workers, 26% are skilled blue-collar workers, an additional 1.12% is in master craftsman or
foreman positions, 41% are white-collar workers, a negligible 0.04% is civil servants, and 1.23%
are self-employed. The employment status informs about the status before the rehabilitation was
undertaken. Nearly 12% have been non-employment (without unemployment) and about 11% have been in registered unemployment, whereas about 64% have been in full-time employment and about 13% in part-time employment.

4. ESTIMATION RESULTS

In Table 2, we present the regression results for the before-after rehabilitation differences for days with unemployment benefits. At first, we estimate three regressions for the complete estimation sample, which only differ in the measurement of the before-after difference, i.e., we use the differences in total sums over two years before and after rehabilitation (\(\text{DIFFSUM} = (Y_{i,t-1} + Y_{i,t+2}) - (Y_{i,t-1} + Y_{i,t-2}) \)) as well as the difference between the outcomes in the first or second year after rehabilitation with the outcomes in the year directly before the rehabilitation (\(\text{DIFF1} = Y_{i,t-1} - Y_{i,t-2} \), \(\text{DIFF2} = Y_{i,t+1} - Y_{i,t-1} \)). The second and third regressions serve mainly as a robustness check, which support the findings from our preferred specification (\(\text{DIFFSUM} \)) in the first regression so that the results are jointly discussed. For our preferred specification we then also perform separate regressions for men and women in order to check for potential gender differences.

Please insert Table 2 about here

In the complete sample, the mean number of days with unemployment benefits increases on average by about 80 days in the two year spans (\(\text{UDIFFSUM} \)) and by about 38 days in the one year spans when compared to the year directly before the rehabilitation (\(\text{UDIFF1}, \text{UDIFF2} \)). The estimation results indicate that women have in comparison to men on average a statistically significant lower number of days with unemployment benefits after the rehabilitation than before the rehabilitation, which is however not very large in size. In the first specification, women have in comparison to men about 5.1 fewer days with unemployment benefits in the two years after the rehabilitation than in the two years before the rehabilitation. In the second specification, women have about 2.4 fewer days with unemployment benefits in the first year after the rehabilitation than in the year directly before the rehabilitation. In the third specification, women have about 4.5 fewer days with unemployment benefits in the second year after the rehabilitation than in the
year directly before the rehabilitation. Overall, the results suggest that men perform worse than women after the rehabilitation and that this difference seems to increase in the longer run. But the size of the estimated coefficients is rather small, even though they are statistically significant at high levels.

The next set of variables includes the age categories that give a first impression about age specific differences. A more detailed picture with predicted age profiles will be given below. The first results indicate already that the before-after difference in days with unemployment benefits is significantly lower for the middle age group 30-44 compared to younger worker below 30 years. For older individuals the number of days with unemployment benefits is significantly larger after rehabilitation. Especially noteworthy is the sharp increase for the oldest group, which indicates that rehabilitation measures for old individuals are often not an effective instrument to integrate them back in the labor market. This result holds also separately for men and women in the fourth and fifth specification. Though, older men seem to be more strongly affected than older women.

The marital status variables indicate that the before-after difference in days with unemployment benefits is significantly lower for married and widowed individuals than for singles and divorced individuals, whereas divorced individuals do not significantly differ from singles. The separate regressions for men and women indicate only one difference in the impact of marital status – whereas widowed men do not differ significantly from single and divorced men, widowed women have a significantly lower before-after difference than single and divorced women. Without going into detail, our findings further indicate that non-Germans have significantly more days with unemployment benefits after rehabilitation than before rehabilitation and that gender differences are small. This finding might point to ineffective treatments due to cultural differences and reintegration problems for possibly discriminated groups in the labor market. We further find that the before-after differences in days with unemployment benefits are lower for better educated individuals. Differences between men and women are again virtually nonexistent. Moreover, unskilled and low skilled blue-collar workers have significantly more days with unemployment benefits than skilled blue-collar and white-collar workers after rehabilitation. Self-employed individuals have significantly fewer days with unemployment benefits, which might indicate that their motivation – let it be incentive driven or a personal trait – to work after rehabilitation is larger.
The results for the employment status before the rehabilitation reveal some important findings. Compared to rehabilitation participants who have been not employed (but not unemployed) before the rehabilitation, we can see that the before-after difference in days with unemployment benefits is significantly larger for individuals who have been employed before the rehabilitation, whereas the before-after difference in days with unemployment benefits is significantly lower for individuals who have been already unemployed before the rehabilitation. Differences between different types of full-time employment are not significant. The estimated coefficients are however larger for part-time employed individuals with at least half of the regular working time and not significant different from zero for part-time employed individuals with less than half of the regular working time. The findings also hold in the separate regressions for men and women. Overall, rehabilitation seems on average to have a more beneficial effect for individuals, who have been unemployed before the rehabilitation, than for individuals, who have been employed before the rehabilitation. Part of this effect might be attributed to our research design, in which we take the before-after difference as dependent variable, because it is easier to reduce the number of days with unemployment benefits for individuals with many than with already few days with unemployment benefits before the rehabilitation. But nevertheless, the differences between employed and unemployed indicate that many participants without a job before the rehabilitation find a job after their rehabilitation.

In Table 3, we present the regression results for the before-after differences in working days, which correspond with the results for days with unemployment benefits. The mean before-after differences are about minus 137 working days in the two year spans (WDIFFSUM), minus 60 working days in the first year after rehabilitation (WDIFF1), and minus 63 working days in the second year after rehabilitation (WDIFF2). Women and men differ only significantly in the before-after difference in working days in the second specification (WIFFSUM1). But the difference is with 2.2 days more for women quite small. The before-after difference in working days is significantly lower for older workers – and again sharply increasing for the oldest age groups. A more detailed picture with predicted age profiles will be given below. Moreover, we find that the before-after difference in working days is larger for married men than for single, divorced, and widowed men, whereas divorced and widowed women have a larger before-after difference than single women. The results further indicate that non-Germans have significantly fewer working days after rehabilitation than before rehabilitation, which might be reasoned by
ineffective rehabilitation or discrimination in the labor market. Not surprising, better educated individuals have a better performance, as their employment prospects in the labor market are likely to be better than for less educated groups. Individuals in an apprenticeship position before rehabilitation have significant more working days after rehabilitation. This finding indicates that rehabilitation is very effective for apprentices as they seem easily to come back into their position. Moreover, white-collar workers have larger before-after difference in working days than blue-collar workers. The best performing group after rehabilitation is again self-employed. Compared to rehabilitation participants, who have been not employed (but not unemployed) before the rehabilitation, the before-after difference in working days is significantly larger for individuals, who have been unemployed before the rehabilitation, and significantly lower for individuals, who have been employed before the rehabilitation. Overall, gender differences are not noteworthy except for the marital status.

Please insert Table 3 about here

Our third outcome variable is the before-after difference in total labor income in Euros, which gives an additional insight as it includes potential effects on working days, working hours, and hourly wages due to its aggregate nature. Total labor income decreases on average by about 8277 Euros in the two year spans (IDIFFSUM), by about 3710 Euros in the first year after rehabilitation (IDIFF1), and by about 3889 Euros in the second year after rehabilitation (IDIFF2). The regression results are presented in Table 4. Although we could only observe in one regression that women work significantly more days after rehabilitation than men (2.2 days in the second specification in Table 3), the before-after income difference is significantly larger for women than for men in all three specifications. This finding might indicate that rehabilitation for employed women is more effective than for employed men, because either they perform better in terms of working hours or hourly wages after rehabilitation. Age has a negative effect on the income difference before and after the rehabilitation, which is again especially large for the oldest age groups. The before-after difference is larger for married men than for single, married, or widowed men, whereas divorced and widowed women have an even larger before-after difference than married women. Non-Germans have a worse income difference than Germans. Better educated individuals perform better. Apprentices have of course a very positive income development, because most of them are likely to enter regular employment after completion of their apprenticeship degree. Interestingly, more skilled blue-collar workers have larger income
losses than less skilled blue-workers, which might be a result of reduced working hours. Self-employed have the largest income development. Compared to rehabilitation participants who have been not employed (but not unemployed) before the rehabilitation, the before-after income difference is significantly larger for individuals who have been unemployed before the rehabilitation, whereas the before-after income difference is significantly lower for individuals who have been employed before the rehabilitation, especially for those who have been full-time employed. Overall, gender differences are again not noteworthy except for the marital status.

Please insert Table 4 about here

One of our main findings from the previous regressions is that older individuals seem to perform worse with respect to labor market outcomes after rehabilitation. For a more detailed picture, we have re-estimated our preferred specifications (*DIFFSUM*) and have replaced the eight age categories with 43 dummies for every year of age. Such a specification is completely non-linear and allows any functional form for age profiles that we plot together with the 95% confidence intervals from the predictions based on these regressions. The first row of age profiles in Figure 1 is for the before-after difference in days with unemployment benefits and presents at first the result for all individuals and then the results for men and women separately. It can be nicely seen that the predicted before-after difference in days with unemployment benefits is positive for all ages, i.e., the total number of days with unemployment benefits in the two years after the rehabilitation is on average larger than the total number of days with unemployment benefits before the rehabilitation. The youngest individuals start on average with a before-after difference of approximately 150 days with unemployment benefits, which is reduced to 50 days in the first years and remains quite stable until the age of 50. After age 50 the before-after difference in the number of days with unemployment benefits increases to nearly 200 days for 60-year-olds. For the before-after difference in working days in the second row of Figure 1, we can also observe that the number remains quite stable at around minus 100 days until the age of 50, after which the number decreases to almost minus 300 days for men and minus 250 days for women. The predicted age profiles for the before-after income difference in the last row of Figure 1 reveal that the before-after income difference for the youngest individuals is even slightly positive. But after the age of 25 it remains quite stable at minus 5,000 Euros until the age of 50, after which it decreases to almost minus 25,000 for 60-year-old men and to minus 15,000 for 60-year-old
women. Overall, the predicted age profiles do not differ much between men and women – except that the age effect is more pronounced for men than for women.

Please insert Figure 1 about here

5. DISCUSSION AND CONCLUDING REMARKS

In this paper, we analyze the effectiveness of medical rehabilitation in terms of labor market outcomes, i.e., the before-after difference in the number of days with unemployment benefits, working days, and labor income. Although we think that it is important to analyze in how far medical rehabilitation affects labor market outcomes and in how far socio-demographic groups differ from each other, it should be kept in mind that we do not address the issue of rehabilitation effectiveness from the health state perspective in our paper. Medical rehabilitation might, thus, be ineffective from a labor market perspective, but still effective in improving the lives of rehabilitation participants with serious health deficiencies. Moreover, our results for socio-demographic groups are not suitable to be used in the allocation of medical rehabilitation treatments. They might rather point to ineffective rehabilitation screening mechanisms for specific groups which might have to be reconsidered, to potential problems during the treatment (e.g., cultural differences) which could be solved, or to general integration problems which might stem from discrimination in the labor market and incentives given by the unemployment benefit and retirement system. Concrete answers to these potential problems need, however, more detailed econometric and case studies.

One of our main findings is that gender differences in levels and determinants are rather small. Women perform significantly better than men, but the difference in levels is negligible. In fact, in our main specification (UDIFFSUM) only 5.1 days with unemployment benefits and in the second specification (WDIFFSUM1) 2.2 days in employment separate women from men. These results point to the fact that women and men do not differ in the labor market outcomes shortly after their participation in medical rehabilitation, except for the labor income. In fact, the before-after difference in labor income is positive and significantly larger for women in all specifications, which might suggest that rehabilitation for employed women is more effective than for employed men, because they perform better either in terms of working hours or hourly
wages after rehabilitation. Older participants have worse labor market outcomes after the rehabilitation than before in all specifications. In fact, they work and earn less, and the coefficients are large in size and statistically significant. In particular, a sharp increase in days with unemployment benefits can be observed after age 56. These results induce an examination of the labor market related behavior of the older rehabilitants. It might be the case that the latter prefer not to get employed in the years directly before retirement, but rather spend this period of time in unemployment. In line with this consideration participation in medical rehabilitation of people near retirement age induces a chain of costs, which are connected not only with the use of health care services, but are followed by the receipt of unemployment benefits when entitled to, and subsequently pension grants. Moreover, older rehabilitants seem to be an unfortunate target group from the perspective of their reintegration into the labor market after a rehabilitation treatment. The costs related to their participation in medical rehabilitation seem to be unreasonably incurred. The approval of the applications for rehabilitation of this age category is questionable and should at least stimulate a discussion. Nevertheless, in order to avoid unethical discrimination, policy would need a good screening mechanism in order to concede rehabilitation programs also for older people who are willing to return to work, and for people who need them from a medical perspective.

Our findings further indicate that more attention should be paid to the labor market performance of non-Germans, as they have significant worse outcomes after rehabilitation than before compared to Germans even after having controlled for the available socio-economic and demographic variables. These results are in line with the studies focused on the effectiveness of the use of rehabilitative care services of the rehabilitants with a migration background (Brzoska et al. 2012). Rehabilitation effectiveness with respect to occupational performance of non-German vs. German nationals is evaluated in Brzoska et al. (2012) in terms of employability at the time of the rehabilitation conclusion. The empirical evidence supports the hypothesis that systematic factors may play an important role and cultural differences should be taken into consideration. Rehabilitation entry and implementation barriers of the people with a migration background in the form of paucity of information as well as communication and interaction difficulties can negatively influence their treatment outcomes. Moreover, better educated rehabilitants perform better. They have fewer days with unemployment benefits after a completed treatment, more days in employment respectively, and have a higher labor income. These
findings suggest that medical rehabilitation results to be particularly effective for rehabilitants with a higher education and consequently good employment outlooks. Their opportunity costs of leisure after rehabilitation seem to be higher compared to worse educated rehabilitants. There is a large positive effect for self-employed rehabilitants. In fact, a significantly smaller number of days with unemployment benefits can be observed, which comes along with an impressive difference in income. The motivation of self-employed individuals can be attributed to their personal traits, required in order to be an entrepreneur as well as specific characteristic features of self-employment in the national context.

The provision of medical rehabilitation in Germany pursues a threefold goal: health state improvement with respect to the rehabilitation diagnosis, labor market reintegration and health-related quality of life. With respect to the first one no statement can be made in our paper due to the data structure and lack of randomization in the design. Using the available to us data we addressed the issue of medical rehabilitation effectiveness exclusively from the labor market perspective and did not find evidence in support of it. However, our results may prompt not only need for a reassessment of the German medical rehabilitation, but also a consideration of the rehabilitation system in a broader framework of institutions that interact with health care provision such as unemployment benefits and retirement systems. Moreover, in order to get a complete picture on the rehabilitation effectiveness it would be interesting to assess subjective quality of life as medical rehabilitation outcome and include in the analysis information on subjective health state of the participants, their satisfaction with the completed rehabilitation and well-being in general. However, due to data limitations we could not address the question of rehabilitation effectiveness from this perspective, which is left to further research in this field.
REFERENCES

Table 1: Definition of variables and descriptive statistics for complete sample

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before-after difference in number of days with unemployment benefits (UDIFF):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$UDIFFSUM = \left((Y_{i,t1} + Y_{i,t2}) - (Y_{i,t3} + Y_{i,t4}) \right)$</td>
<td>80.3832</td>
<td>234.2524</td>
</tr>
<tr>
<td>$UDIFF1 = (Y_{i,t1} - Y_{i,t3})$</td>
<td>38.3431</td>
<td>125.7306</td>
</tr>
<tr>
<td>$UDIFF2 = (Y_{i,t2} - Y_{i,t4})$</td>
<td>37.6054</td>
<td>137.3978</td>
</tr>
<tr>
<td>Before-after difference in number of working days (WDIFF):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$WDIFFSUM = \left((Y_{i,t1} + Y_{i,t2}) - (Y_{i,t3} + Y_{i,t4}) \right)$</td>
<td>-136.6612</td>
<td>277.6018</td>
</tr>
<tr>
<td>$WDIFF1 = (Y_{i,t1} - Y_{i,t3})$</td>
<td>-59.9193</td>
<td>142.4701</td>
</tr>
<tr>
<td>$WDIFF2 = (Y_{i,t2} - Y_{i,t4})$</td>
<td>-63.2521</td>
<td>153.4743</td>
</tr>
<tr>
<td>Before-after difference in total labor income in Euros (IDIFF):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$IDIFFSUM = \left((Y_{i,t1} + Y_{i,t2}) - (Y_{i,t3} + Y_{i,t4}) \right)$</td>
<td>-8276.8420</td>
<td>22296.9100</td>
</tr>
<tr>
<td>$IDIFF1 = (Y_{i,t1} - Y_{i,t3})$</td>
<td>-3710.2610</td>
<td>11052.8800</td>
</tr>
<tr>
<td>$IDIFF2 = (Y_{i,t2} - Y_{i,t4})$</td>
<td>-3889.3770</td>
<td>12307.2500</td>
</tr>
<tr>
<td>FEMALE (dummy)</td>
<td>0.4454</td>
<td></td>
</tr>
<tr>
<td>Age in years (in the year of the rehabilitation)</td>
<td>46.7254</td>
<td>9.1634</td>
</tr>
<tr>
<td>AGECATEGORY (dummies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-29 years (reference group)</td>
<td>0.0507</td>
<td></td>
</tr>
<tr>
<td>30-34 years</td>
<td>0.0588</td>
<td></td>
</tr>
<tr>
<td>35-39 years</td>
<td>0.1088</td>
<td></td>
</tr>
<tr>
<td>40-44 years</td>
<td>0.1596</td>
<td></td>
</tr>
<tr>
<td>45-49 years</td>
<td>0.1817</td>
<td></td>
</tr>
<tr>
<td>50-54 years</td>
<td>0.2050</td>
<td></td>
</tr>
<tr>
<td>55-59 years</td>
<td>0.1913</td>
<td></td>
</tr>
<tr>
<td>60-62 years</td>
<td>0.0441</td>
<td></td>
</tr>
<tr>
<td>MARITALSTATUS (dummies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single (reference group)</td>
<td>0.2504</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>0.6051</td>
<td></td>
</tr>
<tr>
<td>Divorced</td>
<td>0.1215</td>
<td></td>
</tr>
<tr>
<td>Widowed</td>
<td>0.0230</td>
<td></td>
</tr>
<tr>
<td>NATIONALITY (dummies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany (reference group)</td>
<td>0.9304</td>
<td></td>
</tr>
<tr>
<td>Italy, Spain, Greece, Portugal</td>
<td>0.0141</td>
<td></td>
</tr>
<tr>
<td>Former Yugoslavia</td>
<td>0.0151</td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>0.0188</td>
<td></td>
</tr>
<tr>
<td>Other EU and non-EU country</td>
<td>0.0189</td>
<td></td>
</tr>
<tr>
<td>Stateless, unknown</td>
<td>0.0028</td>
<td></td>
</tr>
</tbody>
</table>
EDUCATION (dummies)

<table>
<thead>
<tr>
<th>Level of Education</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown, not applicable (reference group)</td>
<td>0.2471</td>
</tr>
<tr>
<td>Low/ medium secondary schooling degree without apprenticeship</td>
<td>0.1258</td>
</tr>
<tr>
<td>Low/ medium secondary schooling degree with apprenticeship</td>
<td>0.5455</td>
</tr>
<tr>
<td>High secondary schooling degree without apprenticeship</td>
<td>0.0038</td>
</tr>
<tr>
<td>High secondary schooling degree with apprenticeship</td>
<td>0.0238</td>
</tr>
<tr>
<td>University of Applied Science degree</td>
<td>0.0290</td>
</tr>
<tr>
<td>University degree</td>
<td>0.0250</td>
</tr>
</tbody>
</table>

JOBPOSITION (dummies)

<table>
<thead>
<tr>
<th>Job Position</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown, not applicable (reference group)</td>
<td>0.0995</td>
</tr>
<tr>
<td>Apprentice</td>
<td>0.0055</td>
</tr>
<tr>
<td>Unskilled blue-collar worker</td>
<td>0.1114</td>
</tr>
<tr>
<td>Low skilled blue-collar worker</td>
<td>0.0916</td>
</tr>
<tr>
<td>Skilled blue-collar worker</td>
<td>0.2612</td>
</tr>
<tr>
<td>Master craftsman, foreman</td>
<td>0.0112</td>
</tr>
<tr>
<td>White-collar worker</td>
<td>0.4070</td>
</tr>
<tr>
<td>Civil servant</td>
<td>0.0004</td>
</tr>
<tr>
<td>Self-employed</td>
<td>0.0123</td>
</tr>
</tbody>
</table>

EMPLOYMENTSTATUS (dummies)

<table>
<thead>
<tr>
<th>Employment Status</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non employment (without unemployment) (reference group)</td>
<td>0.1150</td>
</tr>
<tr>
<td>Full-time employment without rotating shifts</td>
<td>0.4847</td>
</tr>
<tr>
<td>Full-time employment with rotating shifts</td>
<td>0.1099</td>
</tr>
<tr>
<td>Full-time employment with night shifts</td>
<td>0.0483</td>
</tr>
<tr>
<td>Part-time employment with less than half of regular working time</td>
<td>0.0217</td>
</tr>
<tr>
<td>Part-time employment with at least half of regular working time</td>
<td>0.1106</td>
</tr>
<tr>
<td>Registered unemployment</td>
<td>0.1097</td>
</tr>
</tbody>
</table>

Notes: Number of observations is 442036.
Table 2: Regression results for before-after differences in days with unemployment benefits (*UDIFF*)

<table>
<thead>
<tr>
<th></th>
<th>All individuals</th>
<th>(1) UDIFFSUM</th>
<th>(2) UDIFF1</th>
<th>(3) UDIFF2</th>
<th>(4) Men</th>
<th>(5) Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEMALE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-5.1218***</td>
<td>-2.4451***</td>
<td>-4.4676***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.9160]</td>
<td>[0.4985]</td>
<td>[0.5330]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGECATEGORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-29 years (reference group)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-34 years</td>
<td>-15.7622***</td>
<td>-6.8595***</td>
<td>-4.4532***</td>
<td>-7.2802*</td>
<td>-24.8133***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2.1333]</td>
<td>[1.9995]</td>
<td>[1.2499]</td>
<td>[2.9621]</td>
<td>[3.0635]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[1.9459]</td>
<td>[1.0943]</td>
<td>[1.1449]</td>
<td>[2.7144]</td>
<td>[2.7815]</td>
<td></td>
</tr>
<tr>
<td>40-44 years</td>
<td>-14.5508***</td>
<td>-8.0328***</td>
<td>-2.7367*</td>
<td>-3.3440</td>
<td>-27.9315***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[1.9036]</td>
<td>[1.0688]</td>
<td>[1.1208]</td>
<td>[2.6639]</td>
<td>[2.7157]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[1.9196]</td>
<td>[1.0760]</td>
<td>[1.1276]</td>
<td>[2.6924]</td>
<td>[2.7336]</td>
<td></td>
</tr>
<tr>
<td>50-54 years</td>
<td>6.7752***</td>
<td>-1.1633</td>
<td>11.1693***</td>
<td>18.2124***</td>
<td>-6.8787*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[1.9414]</td>
<td>[1.0835]</td>
<td>[1.1416]</td>
<td>[2.7223]</td>
<td>[2.7669]</td>
<td></td>
</tr>
<tr>
<td>55-59 years</td>
<td>55.7195***</td>
<td>17.5900***</td>
<td>40.9360***</td>
<td>69.6233***</td>
<td>38.6279***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2.0324]</td>
<td>[1.1210]</td>
<td>[1.1943]</td>
<td>[2.8362]</td>
<td>[2.9144]</td>
<td></td>
</tr>
<tr>
<td>60-62 years</td>
<td>118.0284***</td>
<td>47.5472***</td>
<td>72.6455***</td>
<td>137.7354***</td>
<td>87.6192***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2.6673]</td>
<td>[1.4313]</td>
<td>[1.5444]</td>
<td>[3.5127]</td>
<td>[4.1930]</td>
<td></td>
</tr>
<tr>
<td>MARITALSTATUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single (ref.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.9827]</td>
<td>[0.5356]</td>
<td>[0.5743]</td>
<td>[1.3534]</td>
<td>[1.4728]</td>
<td></td>
</tr>
<tr>
<td>Divorced</td>
<td>-1.5814</td>
<td>-0.8127</td>
<td>-2.0317*</td>
<td>3.3014</td>
<td>-3.0153</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[1.3634]</td>
<td>[0.7355]</td>
<td>[0.7969]</td>
<td>[2.0749]</td>
<td>[1.8423]</td>
<td></td>
</tr>
<tr>
<td>Widowed</td>
<td>-13.7898***</td>
<td>-4.9117***</td>
<td>-10.8181***</td>
<td>-0.8080</td>
<td>-12.8346***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2.5930]</td>
<td>[1.3814]</td>
<td>[1.4908]</td>
<td>[5.6440]</td>
<td>[3.0152]</td>
<td></td>
</tr>
<tr>
<td>NATIONALITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>German (ref.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy, Spain, Greece, Portugal</td>
<td>24.5073***</td>
<td>9.2749***</td>
<td>12.0162***</td>
<td>20.9043***</td>
<td>27.4043***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3.2785]</td>
<td>[1.7324]</td>
<td>[1.9239]</td>
<td>[3.9624]</td>
<td>[5.8749]</td>
<td></td>
</tr>
<tr>
<td>Former Yugoslavia</td>
<td>34.8490***</td>
<td>14.6597***</td>
<td>18.5495***</td>
<td>41.5324***</td>
<td>21.7376***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3.3127]</td>
<td>[1.7547]</td>
<td>[1.9671]</td>
<td>[4.165]</td>
<td>[5.0051]</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>Low/medium schooling without apprenticeship</td>
<td>Low/medium schooling with apprenticeship</td>
<td>High schooling without apprenticeship</td>
<td>High schooling with apprenticeship</td>
<td>University of Applied Science</td>
<td>University</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>-------------------------------------</td>
<td>-----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Turkey</td>
<td>50.5993***</td>
<td>21.2578***</td>
<td>28.6561***</td>
<td>50.1275***</td>
<td>50.3439***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3.1206]</td>
<td>[1.6539]</td>
<td>[1.8221]</td>
<td>[3.7863]</td>
<td>[5.5232]</td>
<td></td>
</tr>
<tr>
<td>Other EU and non-EU country</td>
<td>28.4339***</td>
<td>11.0263***</td>
<td>14.6942***</td>
<td>31.6411***</td>
<td>22.0281***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2.7840]</td>
<td>[1.4893]</td>
<td>[1.6190]</td>
<td>[3.6430]</td>
<td>[4.3021]</td>
<td></td>
</tr>
<tr>
<td>Stateless, unknown</td>
<td>-10.7041</td>
<td>-5.8705</td>
<td>-6.0259</td>
<td>-10.1539</td>
<td>-7.5498</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[6.1934]</td>
<td>[3.3061]</td>
<td>[3.5066]</td>
<td>[9.4274]</td>
<td>[8.1416]</td>
<td></td>
</tr>
</tbody>
</table>

EDUCATION

Unknown, not applicable (ref.)

[1.3904], [0.7483], [0.8101], [1.9146], [2.0320]

[1.0028], [0.5500], [0.5862], [1.3646], [1.4796]

[4.6867], [2.4722], [2.6454], [6.5067], [6.7091]

[1.9059], [1.0431], [1.1018], [2.9452], [2.5255]

University of Applied Science: -71.9032***, -35.6935***, -37.9633***, -71.0315***, -70.4849***

[1.9458], [1.0567], [1.1082], [2.6395], [2.9016]

[1.9023], [1.0488], [1.1130], [2.6549], [2.7404]

JOBPOSITION

Unknown, not applicable (ref.)

[6.2255], [3.4174], [3.6317], [9.4654], [8.2860]

Unskilled blue-collar worker: 16.3642***, 8.3891***, 17.7643***, 5.2147, 25.3740***

[2.6505], [1.4693], [1.5347], [4.0616], [3.5902]

Low skilled blue-collar worker: 10.2166***, 4.5604**, 13.8731***, -0.6394, 17.5935***

[2.6842], [1.4870], [1.5558], [4.0338], [3.7977]

Skilled blue-collar worker: -0.1688, -1.0398, 7.6712***, -12.5560**, 6.6392

[2.5111], [1.3987], [1.4556], [3.8312], [3.6312]

[3.7489], [2.0719], [2.1964], [4.8124], [10.4016]

White-collar worker: -12.9059***, -5.8008***, -0.5290, -30.8452***, -1.1351

[2.4738], [1.3860], [1.4297], [3.8875], [3.2624]

[12.4266], [6.1174], [7.0922], [15.8915], [18.4007]
<table>
<thead>
<tr>
<th>EMPLOYMENTSTATUS</th>
<th>Coefficients (Robust SE)</th>
<th>Coefficients</th>
<th>Coefficients</th>
<th>Coefficients</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-employed</td>
<td>-120.012***</td>
<td>-58.9314***</td>
<td>-42.9729***</td>
<td>-135.5881***</td>
<td>-103.3501***</td>
</tr>
<tr>
<td></td>
<td>[3.3452]</td>
<td>[1.8253]</td>
<td>[1.9152]</td>
<td>[4.5825]</td>
<td>[5.6445]</td>
</tr>
<tr>
<td>EMPLOYMENTSTATUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non employment (without unemployment) (ref.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full-time employment without rotating shifts</td>
<td>23.5127***</td>
<td>11.8600***</td>
<td>13.0066***</td>
<td>29.1026***</td>
<td>22.0461***</td>
</tr>
<tr>
<td></td>
<td>[2.1103]</td>
<td>[1.1712]</td>
<td>[1.2195]</td>
<td>[3.3564]</td>
<td>[2.7315]</td>
</tr>
<tr>
<td>Full-time employment with rotating shifts</td>
<td>22.8576***</td>
<td>11.1787***</td>
<td>13.8568***</td>
<td>19.1945***</td>
<td>36.7593***</td>
</tr>
<tr>
<td></td>
<td>[2.2803]</td>
<td>[1.2565]</td>
<td>[1.3217]</td>
<td>[3.5346]</td>
<td>[3.0813]</td>
</tr>
<tr>
<td>Full-time employment with night shifts</td>
<td>21.5734***</td>
<td>10.5023***</td>
<td>13.9927***</td>
<td>22.0427***</td>
<td>30.7441***</td>
</tr>
<tr>
<td></td>
<td>[2.4961]</td>
<td>[1.3663]</td>
<td>[1.4474]</td>
<td>[3.7432]</td>
<td>[3.5640]</td>
</tr>
<tr>
<td>Part-time employment <0.5 regular working time</td>
<td>5.0193</td>
<td>3.1934</td>
<td>3.8249*</td>
<td>-1.6815</td>
<td>3.4928</td>
</tr>
<tr>
<td></td>
<td>[3.0059]</td>
<td>[1.6494]</td>
<td>[1.7275]</td>
<td>[10.2694]</td>
<td>[3.4372]</td>
</tr>
<tr>
<td>Part-time employment ≥0.5 regular working time</td>
<td>33.1206***</td>
<td>16.4373***</td>
<td>19.3926***</td>
<td>32.6390***</td>
<td>32.2741***</td>
</tr>
<tr>
<td></td>
<td>[2.2791]</td>
<td>[1.2627]</td>
<td>[1.3161]</td>
<td>[5.5640]</td>
<td>[2.8079]</td>
</tr>
<tr>
<td>Registered unemployment</td>
<td>-69.2146***</td>
<td>-41.0119***</td>
<td>-65.5748***</td>
<td>-57.5310***</td>
<td>-79.8588***</td>
</tr>
<tr>
<td></td>
<td>[2.5572]</td>
<td>[1.4330]</td>
<td>[1.4754]</td>
<td>[3.8144]</td>
<td>[3.6080]</td>
</tr>
<tr>
<td>Constant</td>
<td>192.7312***</td>
<td>101.7138***</td>
<td>76.2462***</td>
<td>190.9159***</td>
<td>185.9286***</td>
</tr>
<tr>
<td></td>
<td>[9.9348]</td>
<td>[5.5780]</td>
<td>[6.0226]</td>
<td>[12.2706]</td>
<td>[17.0314]</td>
</tr>
<tr>
<td>Occupations (14)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Years (6)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>German federal states (16)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Medical discharge diagnoses (166)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R²</td>
<td>0.0790</td>
<td>0.0634</td>
<td>0.0848</td>
<td>0.0847</td>
<td>0.0758</td>
</tr>
<tr>
<td>Number of observations</td>
<td>442036</td>
<td>442036</td>
<td>442036</td>
<td>245147</td>
<td>196889</td>
</tr>
</tbody>
</table>

Notes: OLS regressions with robust standard errors in brackets. All included variables are dummies. Coefficients are statistically significant at * p<0.05, ** p<0.01, and *** p<0.001, respectively.
Table 3: Regression results for before-after differences in working days (*WDIFF*)

<table>
<thead>
<tr>
<th></th>
<th>All individuals</th>
<th>(1) WDIFFSUM</th>
<th>(2) WDIFF1</th>
<th>(3) WDIFF2</th>
<th>(4) Men</th>
<th>(5) Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEMALE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.9842</td>
<td>2.1812***</td>
<td>-0.9960</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[1.0431]</td>
<td>[0.5401]</td>
<td>[0.5783]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGECATEGORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-29 years (reference group)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-34 years</td>
<td>3.2679</td>
<td>5.8310***</td>
<td>5.5505***</td>
<td>-17.5308***</td>
<td>27.3769***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2.6589]</td>
<td>[1.4013]</td>
<td>[1.4949]</td>
<td>[3.5949]</td>
<td>[3.9458]</td>
<td></td>
</tr>
<tr>
<td>35-39 years</td>
<td>7.4922**</td>
<td>7.4703***</td>
<td>8.8788***</td>
<td>-12.2123***</td>
<td>30.4807***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2.4094]</td>
<td>[1.2719]</td>
<td>[1.3530]</td>
<td>[3.2751]</td>
<td>[3.5592]</td>
<td></td>
</tr>
<tr>
<td>40-44 years</td>
<td>7.6756**</td>
<td>9.4461***</td>
<td>9.5844***</td>
<td>-6.9821*</td>
<td>24.7338***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2.3334]</td>
<td>[1.2316]</td>
<td>[1.3108]</td>
<td>[3.1908]</td>
<td>[3.4246]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2.3395]</td>
<td>[1.2342]</td>
<td>[1.3135]</td>
<td>[3.2087]</td>
<td>[3.4227]</td>
<td></td>
</tr>
<tr>
<td>50-54 years</td>
<td>-27.6314***</td>
<td>-1.7766</td>
<td>-10.9348***</td>
<td>-42.6780***</td>
<td>-8.5526*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2.3570]</td>
<td>[1.2403]</td>
<td>[1.3233]</td>
<td>[3.2391]</td>
<td>[3.4414]</td>
<td></td>
</tr>
<tr>
<td>55-59 years</td>
<td>-98.3937***</td>
<td>-28.2096***</td>
<td>-52.7874***</td>
<td>-121.2564***</td>
<td>-69.3535***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2.4254]</td>
<td>[1.2736]</td>
<td>[1.3583]</td>
<td>[3.3288]</td>
<td>[3.5464]</td>
<td></td>
</tr>
<tr>
<td>60-62 years</td>
<td>-153.1282***</td>
<td>-46.3444***</td>
<td>-89.5411***</td>
<td>-181.2719***</td>
<td>-109.7959***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3.0565]</td>
<td>[1.5961]</td>
<td>[1.6949]</td>
<td>[4.0233]</td>
<td>[4.7533]</td>
<td></td>
</tr>
<tr>
<td>MARITALSTATUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single (ref.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>14.7525***</td>
<td>7.7825***</td>
<td>10.8456***</td>
<td>12.0383***</td>
<td>12.6421***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[1.1397]</td>
<td>[0.5926]</td>
<td>[0.6314]</td>
<td>[1.5276]</td>
<td>[1.7765]</td>
<td></td>
</tr>
<tr>
<td>Divorced</td>
<td>13.4544***</td>
<td>4.8356***</td>
<td>8.1525***</td>
<td>3.0872</td>
<td>18.7994***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[1.5299]</td>
<td>[0.7956]</td>
<td>[0.8485]</td>
<td>[2.2548]</td>
<td>[2.1398]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2.9610]</td>
<td>[1.5229]</td>
<td>[1.6369]</td>
<td>[6.2551]</td>
<td>[3.4998]</td>
<td></td>
</tr>
<tr>
<td>NATIONALITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>German (ref.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy, Spain, Greece, Portugal</td>
<td>-20.8166***</td>
<td>-8.9839***</td>
<td>-8.6574***</td>
<td>-13.3210**</td>
<td>-29.2123***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3.7154]</td>
<td>[1.9572]</td>
<td>[2.0548]</td>
<td>[4.4633]</td>
<td>[6.7074]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3.7343]</td>
<td>[1.9518]</td>
<td>[2.0377]</td>
<td>[4.8905]</td>
<td>[5.7638]</td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>Low/medium schooling without apprenticeship</td>
<td>Low/medium schooling with apprenticeship</td>
<td>High schooling without apprenticeship</td>
<td>High schooling with apprenticeship</td>
<td>University of Applied Science</td>
<td>University</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>--</td>
<td>--------------------------------------</td>
<td>-----------------------------------</td>
<td>---------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Turkey</td>
<td>-38.9526***</td>
<td>-15.5228***</td>
<td>-18.3978***</td>
<td>-36.9788***</td>
<td>-41.7596***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3.3592]</td>
<td>[1.7541]</td>
<td>[1.8288]</td>
<td>[4.0775]</td>
<td>[5.9406]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[3.1237]</td>
<td>[1.6322]</td>
<td>[1.7188]</td>
<td>[4.0267]</td>
<td>[4.9431]</td>
<td></td>
</tr>
<tr>
<td>Stateless, unknown</td>
<td>18.8236**</td>
<td>10.5380**</td>
<td>9.3300*</td>
<td>17.3439**</td>
<td>13.3697</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[7.0879]</td>
<td>[3.6278]</td>
<td>[3.8654]</td>
<td>[10.9723]</td>
<td>[9.0853]</td>
<td></td>
</tr>
</tbody>
</table>

EDUCATION

Unknown, not applicable (ref.)

<table>
<thead>
<tr>
<th>Low/medium schooling without apprenticeship</th>
<th>Low/medium schooling with apprenticeship</th>
<th>High schooling without apprenticeship</th>
<th>High schooling with apprenticeship</th>
<th>University of Applied Science</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low/medium schooling without apprenticeship</td>
<td>30.2036***</td>
<td>17.0253***</td>
<td>18.5167***</td>
<td>25.1593***</td>
<td>33.8923***</td>
</tr>
<tr>
<td></td>
<td>[1.5388]</td>
<td>[0.8020]</td>
<td>[0.8474]</td>
<td>[2.0892]</td>
<td>[2.2811]</td>
</tr>
<tr>
<td>Low/medium schooling with apprenticeship</td>
<td>49.2318***</td>
<td>25.1216***</td>
<td>29.7623***</td>
<td>42.1761***</td>
<td>58.0048***</td>
</tr>
<tr>
<td></td>
<td>[1.1344]</td>
<td>[0.5935]</td>
<td>[0.6274]</td>
<td>[1.5038]</td>
<td>[1.7298]</td>
</tr>
<tr>
<td>High schooling without apprenticeship</td>
<td>53.4768***</td>
<td>26.9535***</td>
<td>29.0098***</td>
<td>49.4313***</td>
<td>57.3197***</td>
</tr>
<tr>
<td></td>
<td>[6.1835]</td>
<td>[3.1623]</td>
<td>[3.3840]</td>
<td>[8.6287]</td>
<td>[8.8042]</td>
</tr>
<tr>
<td>High schooling with apprenticeship</td>
<td>63.7151***</td>
<td>31.2590***</td>
<td>36.1469***</td>
<td>48.8280***</td>
<td>76.3574***</td>
</tr>
<tr>
<td></td>
<td>[2.5371]</td>
<td>[1.3108]</td>
<td>[1.4223]</td>
<td>[3.7289]</td>
<td>[3.4767]</td>
</tr>
<tr>
<td>University of Applied Science</td>
<td>95.5967***</td>
<td>43.1697***</td>
<td>50.3214***</td>
<td>84.9049***</td>
<td>105.0338***</td>
</tr>
<tr>
<td></td>
<td>[2.4098]</td>
<td>[1.2312]</td>
<td>[1.3438]</td>
<td>[3.2186]</td>
<td>[3.6565]</td>
</tr>
<tr>
<td>University</td>
<td>73.0604***</td>
<td>35.3180***</td>
<td>41.5109***</td>
<td>67.2076***</td>
<td>78.8357***</td>
</tr>
<tr>
<td></td>
<td>[2.4309]</td>
<td>[1.2560]</td>
<td>[1.3822]</td>
<td>[3.2748]</td>
<td>[3.6549]</td>
</tr>
</tbody>
</table>

JOBPOSITION

Unknown, not applicable (ref.)

<p>| Apprentice | 90.9029*** | 34.6736*** | 32.1945*** | 105.8831*** | 79.6887*** | |
|-------------------------------------| [6.9744] | [3.6089] | [3.9544] | [10.4417] | [9.3230] | |
| Unskilled blue-collar worker | 2.2736* | -1.2589* | -7.8708*** | 19.1796*** | -15.1668*** | |
|-------------------------------------| [2.8391] | [1.4715] | [1.5640] | [4.1959] | [3.9178] | |
| Low skilled blue-collar worker | 0.2311* | -1.2415* | -7.3144*** | 19.4554*** | -20.0910*** | |
|-------------------------------------| [2.9199] | [1.5168] | [1.6105] | [4.2172] | [4.2235] | |
| Skilled blue-collar worker | 1.4168* | -0.2738* | -5.4954*** | 21.9841*** | -14.0913*** | |
|-------------------------------------| [2.7171] | [1.4090] | [1.4990] | [3.9799] | [3.9865] | |
| Master craftsman, foreman | 12.7848** | 4.9079* | -1.0076* | 39.7858*** | -18.1664 | |
|-------------------------------------| [4.5050] | [2.3633] | [2.5026] | [5.4777] | [12.9773] | |
| White-collar worker | 23.0082*** | 11.6151*** | 5.9739*** | 57.3921*** | -5.7217 | |
|-------------------------------------| [2.7070] | [1.4084] | [1.4967] | [4.0839] | [3.6489] | |
| Civil servant | 47.2291* | 18.1431* | 4.6441* | 81.3248*** | 16.2211 | |
|-------------------------------------| [15.7350] | [7.6410] | [8.7996] | [20.9133] | [22.8302] | |</p>
<table>
<thead>
<tr>
<th>Employment Status</th>
<th>Coefficient (Robust Standard Error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-employed</td>
<td>209.2382*** (3.7198)</td>
</tr>
<tr>
<td></td>
<td>94.3084*** (1.8256)</td>
</tr>
<tr>
<td></td>
<td>94.0552*** (2.0475)</td>
</tr>
<tr>
<td></td>
<td>238.0271*** (4.9335)</td>
</tr>
<tr>
<td></td>
<td>170.9513*** (6.3972)</td>
</tr>
</tbody>
</table>

EMPLOYMENT STATUS

<table>
<thead>
<tr>
<th>Employment Status</th>
<th>Coefficient (Robust Standard Error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-employment (without unemployment) (ref.)</td>
<td>-36.8812*** (2.3662)</td>
</tr>
<tr>
<td></td>
<td>-19.0340*** (1.2257)</td>
</tr>
<tr>
<td></td>
<td>-19.9877*** (1.3106)</td>
</tr>
<tr>
<td></td>
<td>-40.7551*** (3.5311)</td>
</tr>
<tr>
<td></td>
<td>-36.2885*** (3.2178)</td>
</tr>
<tr>
<td>Full-time employment without rotating shifts</td>
<td>-41.8242* ** (2.6232)</td>
</tr>
<tr>
<td></td>
<td>-21.0427*** (1.3617)</td>
</tr>
<tr>
<td></td>
<td>-22.7276*** (1.4503)</td>
</tr>
<tr>
<td></td>
<td>-28.0749*** (3.8102)</td>
</tr>
<tr>
<td></td>
<td>-69.9059*** (3.7183)</td>
</tr>
<tr>
<td>Full-time employment with night shifts</td>
<td>-36.7101*** (2.9312)</td>
</tr>
<tr>
<td></td>
<td>-17.5515*** (1.5206)</td>
</tr>
<tr>
<td></td>
<td>-21.4438*** (1.6207)</td>
</tr>
<tr>
<td></td>
<td>-30.8768*** (4.1082)</td>
</tr>
<tr>
<td></td>
<td>-55.1473*** (4.4565)</td>
</tr>
<tr>
<td>Full-time employment with rotating shifts</td>
<td>-3.3654 (3.8012)</td>
</tr>
<tr>
<td></td>
<td>-3.6470 (1.9662)</td>
</tr>
<tr>
<td></td>
<td>-6.0537** (2.1422)</td>
</tr>
<tr>
<td></td>
<td>-14.2310 (11.5066)</td>
</tr>
<tr>
<td></td>
<td>-2.4013 (4.3884)</td>
</tr>
<tr>
<td>Part-time employment <0.5 regular working time</td>
<td>-49.9342*** (2.6509)</td>
</tr>
<tr>
<td></td>
<td>-26.5916*** (1.3734)</td>
</tr>
<tr>
<td></td>
<td>-31.2346*** (1.4689)</td>
</tr>
<tr>
<td></td>
<td>-45.2258*** (6.6053)</td>
</tr>
<tr>
<td></td>
<td>-52.3727*** (3.3563)</td>
</tr>
<tr>
<td>Part-time employment ≥0.5 regular working time</td>
<td>-71.2025*** (2.6592)</td>
</tr>
<tr>
<td></td>
<td>27.5881*** (1.3826)</td>
</tr>
<tr>
<td></td>
<td>36.1367*** (1.4628)</td>
</tr>
<tr>
<td></td>
<td>40.0964*** (3.8519)</td>
</tr>
<tr>
<td></td>
<td>26.9597*** (3.7648)</td>
</tr>
<tr>
<td>Registered unemployment</td>
<td>37.2025*** (2.6592)</td>
</tr>
<tr>
<td></td>
<td>27.5881*** (1.3826)</td>
</tr>
<tr>
<td></td>
<td>36.1367*** (1.4628)</td>
</tr>
<tr>
<td></td>
<td>40.0964*** (3.8519)</td>
</tr>
<tr>
<td></td>
<td>26.9597*** (3.7648)</td>
</tr>
<tr>
<td>Constant</td>
<td>-215.254*** (12.7242)</td>
</tr>
<tr>
<td></td>
<td>-98.9771*** (6.6634)</td>
</tr>
<tr>
<td></td>
<td>-79.5095*** (7.0667)</td>
</tr>
<tr>
<td></td>
<td>-209.3989*** (14.9179)</td>
</tr>
<tr>
<td></td>
<td>-226.9056*** (21.7763)</td>
</tr>
</tbody>
</table>

Notes: OLS regressions with robust standard errors in brackets. All included variables are dummies. Coefficients are statistically significant at * p<0.05, ** p<0.01, and *** p<0.001, respectively.
Table 4: Regression results for before-after differences in total labor income in Euros ($IDIFF$)

<table>
<thead>
<tr>
<th></th>
<th>All individuals</th>
<th>(1) $IDIFFSUM$</th>
<th>(2) $IDIFF1$</th>
<th>(3) $IDIFF2$</th>
<th>(4) Men</th>
<th>(5) Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEMALE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2112.8286***</td>
<td>958.1596***</td>
<td>820.1080***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[82.3205]</td>
<td>[41.1712]</td>
<td>[45.6314]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGECATEGORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-29 years (reference group)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-34 years</td>
<td>-1918.6528***</td>
<td>-376.0568***</td>
<td>-537.8783***</td>
<td>-2305.9969***</td>
<td>-1589.8778***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[191.8492]</td>
<td>[96.7697]</td>
<td>[107.1380]</td>
<td>[270.1358]</td>
<td>[267.3535]</td>
<td></td>
</tr>
<tr>
<td>35-39 years</td>
<td>-1916.5949***</td>
<td>-354.8514***</td>
<td>-372.5918***</td>
<td>-2504.0513***</td>
<td>-1254.9812***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[173.3555]</td>
<td>[87.6919]</td>
<td>[96.5281]</td>
<td>[246.1140]</td>
<td>[239.6662]</td>
<td></td>
</tr>
<tr>
<td>40-44 years</td>
<td>-2057.2817***</td>
<td>-276.6656**</td>
<td>-456.0130***</td>
<td>-2495.5632***</td>
<td>-1487.0625***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[166.6479]</td>
<td>[84.2485]</td>
<td>[92.8306]</td>
<td>[238.8000]</td>
<td>[227.9030]</td>
<td></td>
</tr>
<tr>
<td>45-49 years</td>
<td>-3126.0624***</td>
<td>-622.7939***</td>
<td>-1017.0198**</td>
<td>-3398.8856***</td>
<td>-2681.3146***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[167.5316]</td>
<td>[84.5955]</td>
<td>[93.3281]</td>
<td>[241.4422]</td>
<td>[227.8718]</td>
<td></td>
</tr>
<tr>
<td>50-54 years</td>
<td>-5562.1479***</td>
<td>-1394.0377***</td>
<td>-2443.0876***</td>
<td>-6435.1211***</td>
<td>-4408.7108***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[169.5159]</td>
<td>[85.3555]</td>
<td>[94.5135]</td>
<td>[245.7626]</td>
<td>[228.8647]</td>
<td></td>
</tr>
<tr>
<td>55-59 years</td>
<td>-11388.0652***</td>
<td>-3570.9266***</td>
<td>-5794.6035***</td>
<td>-13895.8189***</td>
<td>-8201.0909***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[176.2690]</td>
<td>[88.6886]</td>
<td>[98.1322]</td>
<td>[256.6199]</td>
<td>[234.8854]</td>
<td></td>
</tr>
<tr>
<td>60-62 years</td>
<td>-16272.7709***</td>
<td>-5123.6517***</td>
<td>-9051.2239***</td>
<td>-19593.7787***</td>
<td>-10644.6452***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[247.5988]</td>
<td>[124.3026]</td>
<td>[138.6058]</td>
<td>[345.2868]</td>
<td>[321.7892]</td>
<td></td>
</tr>
<tr>
<td>MARITALSTATUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single (ref.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>624.7368***</td>
<td>365.6644***</td>
<td>514.7019***</td>
<td>355.4156**</td>
<td>427.4362***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[90.4649]</td>
<td>[45.7737]</td>
<td>[49.9445]</td>
<td>[128.4006]</td>
<td>[127.7704]</td>
<td></td>
</tr>
<tr>
<td>Divorced</td>
<td>667.8091***</td>
<td>232.0127***</td>
<td>425.8482***</td>
<td>-166.6118**</td>
<td>940.0500***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[120.3818]</td>
<td>[60.6603]</td>
<td>[66.3512]</td>
<td>[191.4326]</td>
<td>[155.8563]</td>
<td></td>
</tr>
<tr>
<td>Widowed</td>
<td>1133.4628***</td>
<td>595.5561***</td>
<td>730.3772***</td>
<td>-858.1627**</td>
<td>764.2213***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[212.5683]</td>
<td>[106.0940]</td>
<td>[117.8737]</td>
<td>[570.1912]</td>
<td>[226.6738]</td>
<td></td>
</tr>
<tr>
<td>NATIONALITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>German (ref.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy, Spain, Greece, Portugal</td>
<td>-1689.4811***</td>
<td>-761.0046***</td>
<td>-703.4432***</td>
<td>-878.2256*</td>
<td>-2180.6094***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[298.0803]</td>
<td>[152.5252]</td>
<td>[163.5927]</td>
<td>[391.4766]</td>
<td>[431.7839]</td>
<td></td>
</tr>
<tr>
<td>Former Yugoslavia</td>
<td>-2836.4021***</td>
<td>-1396.6188***</td>
<td>-1181.7418***</td>
<td>-2592.5265***</td>
<td>-2103.8837***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[291.8211]</td>
<td>[149.3289]</td>
<td>[158.8276]</td>
<td>[421.8482]</td>
<td>[372.9067]</td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Low/ Medium schooling with apprenticeship</td>
<td>Low/ Medium schooling without apprenticeship</td>
<td>High schooling with apprenticeship</td>
<td>High schooling without apprenticeship</td>
<td>University of Applied Science</td>
<td>University</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--</td>
<td>---</td>
<td>-----------------------------------</td>
<td>---------------------------------------</td>
<td>-------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Turkey</td>
<td>-2505.2138***</td>
<td>-975.6212***</td>
<td>-1060.4197***</td>
<td>-2632.6225***</td>
<td>-1751.2349***</td>
<td></td>
</tr>
<tr>
<td>Other EU and non-EU country</td>
<td>-431.2691</td>
<td>-201.5112</td>
<td>-411.4934**</td>
<td>-642.1964</td>
<td>225.9013</td>
<td></td>
</tr>
<tr>
<td>Stateless, unknown</td>
<td>1463.6514**</td>
<td>733.6482**</td>
<td>768.4620**</td>
<td>1869.3042*</td>
<td>1174.9418</td>
<td></td>
</tr>
<tr>
<td>EDUCATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown, not applicable (ref.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low/ medium schooling without apprenticeship</td>
<td>2381.4326***</td>
<td>1226.5360***</td>
<td>1454.6957***</td>
<td>2558.2705***</td>
<td>1935.1484***</td>
<td></td>
</tr>
<tr>
<td>Low/ medium schooling with apprenticeship</td>
<td>3583.8488***</td>
<td>1696.0262***</td>
<td>2205.5424***</td>
<td>3760.0266***</td>
<td>3453.7340***</td>
<td></td>
</tr>
<tr>
<td>High schooling without apprenticeship</td>
<td>5433.703***</td>
<td>2405.4053***</td>
<td>2996.8912***</td>
<td>5762.9436***</td>
<td>4886.3997***</td>
<td></td>
</tr>
<tr>
<td>High schooling with apprenticeship</td>
<td>5421.4538***</td>
<td>2413.9229***</td>
<td>3093.6087***</td>
<td>5558.4741***</td>
<td>5208.0158***</td>
<td></td>
</tr>
<tr>
<td>University of Applied Science</td>
<td>7835.8759***</td>
<td>3321.3920***</td>
<td>4039.7011***</td>
<td>8154.9240***</td>
<td>7067.6053***</td>
<td></td>
</tr>
<tr>
<td>University</td>
<td>6541.5428***</td>
<td>2847.3937***</td>
<td>3521.3111***</td>
<td>7414.8169***</td>
<td>5276.2932***</td>
<td></td>
</tr>
<tr>
<td>JOBPOSITION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown, not applicable (ref.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apprentice</td>
<td>10080.0363***</td>
<td>4613.6943***</td>
<td>5267.4468***</td>
<td>10926.0033***</td>
<td>9388.9146***</td>
<td></td>
</tr>
<tr>
<td>Unskilled blue-collar worker</td>
<td>2037.8100***</td>
<td>764.6685***</td>
<td>467.1086***</td>
<td>3151.9177***</td>
<td>817.8244***</td>
<td></td>
</tr>
<tr>
<td>Low skilled blue-collar worker</td>
<td>1200.1677***</td>
<td>442.7269***</td>
<td>145.7155**</td>
<td>2482.3037***</td>
<td>104.6203</td>
<td></td>
</tr>
<tr>
<td>Skilled blue-collar worker</td>
<td>618.4064***</td>
<td>195.3090**</td>
<td>-51.6542</td>
<td>1986.5617***</td>
<td>205.9709</td>
<td></td>
</tr>
<tr>
<td>Master craftsman, foreman</td>
<td>-259.9581</td>
<td>-209.6537</td>
<td>-576.5583*</td>
<td>1651.6150**</td>
<td>-1107.8329</td>
<td></td>
</tr>
<tr>
<td>White-collar worker</td>
<td>1139.1951***</td>
<td>533.4858***</td>
<td>120.3112</td>
<td>3826.2140***</td>
<td>-888.4406***</td>
<td></td>
</tr>
<tr>
<td>Civil servant</td>
<td>3721.6316*</td>
<td>1318.4656</td>
<td>401.3179</td>
<td>8533.0719***</td>
<td>-626.5154</td>
<td></td>
</tr>
<tr>
<td>Employment Status</td>
<td>Estimate 1</td>
<td>Estimate 2</td>
<td>Estimate 3</td>
<td>Estimate 4</td>
<td>Estimate 5</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Self-employed</td>
<td>14751.1305***</td>
<td>6543.5955***</td>
<td>6875.6994***</td>
<td>18334.4403***</td>
<td>9469.0734***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[290.7600]</td>
<td>[137.3730]</td>
<td>[157.0554]</td>
<td>[436.8744]</td>
<td>[411.0993]</td>
<td></td>
</tr>
<tr>
<td>EMPLOYMENTSTATUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non employment (without unemployment) (ref.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full-time employment without rotating shifts</td>
<td>-2640.9743***</td>
<td>-1335.0079***</td>
<td>-1463.0108***</td>
<td>-2826.9426***</td>
<td>-2679.6122***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[184.9999]</td>
<td>[92.8460]</td>
<td>[101.2087]</td>
<td>[323.6230]</td>
<td>[218.3724]</td>
<td></td>
</tr>
<tr>
<td>Full-time employment with rotating shifts</td>
<td>-3263.9040***</td>
<td>-1560.9947***</td>
<td>-1790.8845***</td>
<td>-2057.9737***</td>
<td>-5760.7318***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[206.3144]</td>
<td>[103.9901]</td>
<td>[112.9663]</td>
<td>[346.9801]</td>
<td>[255.1248]</td>
<td></td>
</tr>
<tr>
<td>Full-time employment with night shifts</td>
<td>-2902.8228** *</td>
<td>-1343.8945***</td>
<td>-1707.1778***</td>
<td>-2211.1809***</td>
<td>-4766.2841***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[236.6411]</td>
<td>[118.9022]</td>
<td>[130.1272]</td>
<td>[373.7530]</td>
<td>[322.5270]</td>
<td></td>
</tr>
<tr>
<td>Part-time employment <0.5 regular working time</td>
<td>2881.5525***</td>
<td>1251.1101***</td>
<td>1710.0546***</td>
<td>2670.3298***</td>
<td>2720.5988***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[220.9747]</td>
<td>[109.2346]</td>
<td>[122.5788]</td>
<td>[718.3856]</td>
<td>[242.0496]</td>
<td></td>
</tr>
<tr>
<td>Part-time employment ≥0.5 regular working time</td>
<td>-550.2451**</td>
<td>-421.1446***</td>
<td>-257.7338*</td>
<td>-251.7666</td>
<td>-815.4320***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[194.1795]</td>
<td>[97.1943]</td>
<td>[106.4833]</td>
<td>[509.9202]</td>
<td>[219.7534]</td>
<td></td>
</tr>
<tr>
<td>Registered unemployment</td>
<td>1580.8263***</td>
<td>1405.4762***</td>
<td>1849.8931***</td>
<td>1913.2873***</td>
<td>491.0486*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[198.0968]</td>
<td>[99.6334]</td>
<td>[106.6478]</td>
<td>[338.2711]</td>
<td>[237.6546]</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-11743.3184***</td>
<td>-5712.9761***</td>
<td>-4148.9775***</td>
<td>-12887.7118***</td>
<td>-7822.3466***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[964.6791]</td>
<td>[514.7381]</td>
<td>[536.1142]</td>
<td>[1249.1154]</td>
<td>[1444.8542]</td>
<td></td>
</tr>
<tr>
<td>Occupation (14)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Year (6)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>German federal states (16)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Medical discharge diagnoses (166)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td>0.0955</td>
<td>0.0660</td>
<td>0.0891</td>
<td>0.1049</td>
<td>0.0802</td>
<td></td>
</tr>
<tr>
<td>Number of observations</td>
<td>442036</td>
<td>442036</td>
<td>442036</td>
<td>245147</td>
<td>196889</td>
<td></td>
</tr>
</tbody>
</table>

Notes: OLS regressions with robust standard errors in brackets. All included variables are dummies. Coefficients are statistically significant at * p<0.05, ** p<0.01, and *** p<0.001, respectively.
Figure 1: Predicted age profiles for the before-after differences in days with unemployment benefits, working days, and total labor income.
Working Paper Series in Economics
(recent issues)

No.317: Annika Pape und Thomas Wein: Der deutsche Taximarkt - das letzte (Kollektiv-) Monopol im Sturm der „neuen Zeit“, November 2014

No.316: Nils Braakmann and John Wildman: Reconsidering the impact of family size on labour supply: The twin-problems of the twin-birth instrument, November 2014

No.315: Markus Groth and Jörg Cortekar: Climate change adaptation strategies within the framework of the German “Energiewende” – Is there a need for government interventions and legal obligations?, November 2014

No.313: Joachim Wagner: Still different after all these years. Extensive and intensive margins of exports in East and West German manufacturing enterprises, October 2014

No.312: Joachim Wagner: A note on the granular nature of imports in German manufacturing industries, October 2014

No.311: Nikolai Hoberg and Stefan Baumgärtner: Value pluralism, trade-offs and efficiencies, October 2014

No.310: Joachim Wagner: Exports, R&D and Productivity: A test of the Bustos-model with enterprise data from France, Italy and Spain, October 2014

No.308: Joachim Wagner: Firm age and the margins of international trade: Comparable evidence from five European countries, September 2014

No.306: Joachim Wagner: New Data from Official Statistics for Imports and Exports of Goods by German Enterprises, August 2014

No.305: Joachim Wagner: A note on firm age and the margins of imports: First evidence from Germany, August 2014

No.304: Jessica Ingenillem, Joachim Merz and Stefan Baumgärtner: Determinants and interactions of sustainability and risk management of commercial cattle farmers in Namibia, July 2014

No.303: Joachim Wagner: A note on firm age and the margins of exports: First evidence from Germany, July 2014

No.302: Joachim Wagner: A note on quality of a firm’s exports and distance to destination countries: First evidence from Germany, July 2014

No.300: Annika Pape: Liability Rule Failures? Evidence from German Court Decisions, May 2014

No.299: Annika Pape: Law versus Economics? How should insurance intermediaries influence the insurance demand decision, June 2013

No.291: Institut für Volkswirtschaftslehre: Forschungsbericht 2013, Januar 2014

No.290: Stefan Baumgärtner, Moritz A. Drupp und Martin F. Quaas: Subsistence and substitutability in consumer preferences, December 2013

No.289: Dirk Oberschachtsiek: Human Capital Diversity and Entrepreneurship. Results from the regional individual skill dispersion nexus on self-employment activity., December 2013

No.287: Joachim Wagner: Credit constraints and exports: A survey of empirical studies using firm level data, December 2013

No.286: Toufic M. El Masri: Competition through Cooperation? The Case of the German Postal Market, October 2013

No.284: Andree Ehlert, Dirk Oberschachtsiek, and Stefan Prawda: Cost Containment and Managed Care: Evidence from German Macro Data, October 2013

No.283: Joachim Wagner and John P. Weche Gelübcke: Credit Constraints, Foreign Ownership, and Foreign Takeovers in Germany, September 2013

No.281: Stefan Baumgärtner, Alexandra M. Klein, Denise Thiel, and Klara Winkler: Ramsey discounting of ecosystem services, August 2013

No.280: Antonia Arsova and Deniz Dilan Karadeniz Örsal: Likelihood-based panel cointegration test in the presence of a linear time trend and cross-sectional dependence, August 2013

No.279: Thomas Huth: Georg von Charasoff’s Theory of Value, Capital and Prices of Production, June 2013

No.277: Horst Raff and Joachim Wagner: Foreign Ownership and the Extensive Margins of Exports: Evidence for Manufacturing Enterprises in Germany, June 2013

No.276: Stephan Humpert: Gender Differences in Life Satisfaction and Social Participation, May 2013

No.275: Sören Enkelmann and Markus Leibrecht: Political Expenditure Cycles and Election Outcomes Evidence from Disaggregation of Public Expenditures by Economic Functions, May 2013

No.274: Sören Enkelmann: Government Popularity and the Economy First Evidence from German Micro Data, May 2013

No.270: Anja Köbrich León: Does Cultural Heritage affect Employment decisions – Empirical Evidence for Second Generation Immigrants in Germany, April 2013

No.268: Anja Köbrich León: Religion and Economic Outcomes – Household Savings Behavior in the USA, April 2013

No.267: John P. Weche Gelübcke and Isabella Wed: Environmental Protection of Foreign Firms in Germany: Does the country of origin matter?, April 2013

No.265: John-Oliver Engler and Stefan Baumgärtner: Model choice and size distribution: a Bayequentist approach, February 2013

(see www.leuphana.de/institute/ivwl/publikationen/working-papers.html for a complete list)