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Non-technical Summary 

 

Intellectual property (IP) policies are among the most powerful instruments shaping the incentives 

that drive the discovery and commercialization of knowledge.  

We examine a fundamental change in German patent law that transferred ownership rights from 

the inventors to their employers.  Prior to 2002, university professors and researchers had exclusive 

intellectual property rights to their inventions.  This “Professor’s Privilege” allowed university 

researchers to decide whether or not to patent and how to commercialize their discoveries, even if 

the underlying research was supported by public funds.  After 2002, universities were granted the 

intellectual property rights to all inventions made by their employees and this shifted the decision to 

patent from the researchers to the universities.  The policy goal was to increase patenting of 

university-invented technologies which is often used as a surrogate indicator of successful university 

technology transfer. 

By changing the agent who makes the patenting decision, the abolishment of Professor’s 

Privilege caused a “regime shift” that substituted institutional benefit and cost schedules for those of 

the individual inventors.  The net effect on the volume of patenting depends primarily on the relative 

costs between the regimes.  To identify how the regime shift affected patenting, we exploit the 

researcher-level exogeneity of the 2002 abolishment of Professor’s Privilege along with the 

institutional structure of the German research system in which universities and other public research 

organizations (PRO) coexist.  PRO researchers were not affected by the policy change and serve as a 

control group.  We use a difference-in-difference methodology and control for the arrival of new 

patentable discoveries using publications and peer-to-peer matching. 

Our analysis shows that fewer university inventions were patented following the 2002 regime 

shift.  For a given discovery, the schedule of benefits to institutional owners, who are the post-

change patent decision makers, is lower because the university became an additional party in the 

negotiations over the split of expected revenues.  This partly explains why fewer inventions qualified 

for patent protection following the regime shift.  However, the effect on expected revenues can be 

offset if institutional costs (broadly conceived) are sufficiently lower than those faced by individual 

researchers. Our results show that institutional patenting costs were lower for the subset of 

university inventors who did not have relationships with industry partners prior to the policy change.  

For those individuals, patenting increased.  But, the data also show that most German patenting 

professors had prior industry relationships.  Post-change institutional costs were not low enough to 

offset the revenue effect for this group.   

While these findings reflect the medium-term effects of the law change, it could still be possible 

that the law change results in higher commercialization in the long-run, that is, when new faculty 



members who never experienced the old regime of inventor-ownership enter academe. However, 

trends in the number of patenting researchers until 2008 do not suggest more researchers patented 

after the law change. On the contrary, the number of patenting professors declined, at least through 

2008.  

Our findings provide the strongest evidence to date that an inventor ownership system can 

produce more university-invented patents, and thereby more technology transfer, than an 

institutional ownership system.  Does this imply that other countries such as the U.S. would increase 

university technology transfer by adopting an inventor ownership system?  Not necessarily.  The 

nature and strength of faculty-industry relationships will differ based on each country’s institutions, 

culture, and historical evolution of networks and trust relationships.  Rather than attempting a major 

policy change, policymakers in other countries would benefit from a better understanding of current 

practices.  This information could be used to design incremental changes that allow technology 

transfer processes the flexibility and adaptability needed to fit alternative technologies and markets.  

Our results highlight the critical importance of understanding the nature and strength of faculty-

industry relationships before undertaking policy initiatives intended to foster technology transfer.  

  



Das Wichtigste in Kürze 

Intellektuelle Eigentumsrechte gehören zu den wichtigsten Instrumenten zur Steuerung von Anreizen 

für die Entdeckung und Kommerzialisierung von neuem Wissen. 

Wir untersuchen eine Gesetzesänderung im Arbeitnehmererfindergesetz aus dem Jahre 2002. 

Vor 2002 lagen die Rechte an Erfindungen, die von Hochschulangehörigen gemacht wurden, bei den 

Erfindern selber. Diese hatten somit die Möglichkeit frei über die Patentierung und Vermarktung 

ihrer Forschungsergebnisse zu entscheiden. Seit 2002 muss nun die Universität als Eigentümer des 

Patents eingetragen werden. Damit werden die Erlöse aus dem Patent ebenfalls der Universität 

zugesprochen, die im Gegenzug die Kosten der Patentanmeldung übernimmt.  

Wir untersuchen die Wirkung dieser Gesetzesänderung empirisch mit Hilfe eines Difference-in-

Difference Ansatzes, der uns ermöglicht kausale Zusammenhänge zu identifizieren. Da 

Wissenschaftler an anderen öffentlichen, nicht-universitären Forschungseinrichtungen auch vor 2002 

nicht das Recht hatten, Patente auf ihren eigenen Namen anzumelden, waren sie von der 

Gesetzesänderung nicht betroffen und dienen somit als Kontrollgruppe in dieser Studie. 

Durch die Verlagerung der Patentanmeldungsentscheidung vom Professor auf die Universität  im 

Rahmen der Abschaffung des Professorenprivilegs im Jahr 2002, wurde ein „Regime Shift“ 

eingeleitet, der eine Verschiebung der Kosten und Risiken bedeutete. Grundlage der 

Gesetzesänderung war die Annahme, dass Kosten und Risiken der Patentanmeldung für die 

einzelnen Professoren so hoch waren, dass sie nicht genügend Anreize hatten ihre Erfindungen zu 

patentieren.  Im Nachhinein erscheint diese Annahme falsch. Unsere Ergebnisse zeigen, dass die 

Auswirkungen der Gesetzesänderung heterogen sind und von Kosten und Nutzen der Universität im 

Vergleich zu den Kosten und Nutzen der einzelnen Professoren vor der Gesetzesänderung abhängen. 

Bei denjenigen Professoren, die vor der Gesetzesänderung keine Kontakte zur Industrie aufweisen 

und somit Kosten und Risiken Großteils selber tragen, bedeutet die Übertragung von Kosten und 

Risiken auf die Universität eine Erleichterung, da anzunehmen ist, dass die 

Technologientransferbüros hier ihre Kontakte nutzen können um neue Kooperationen mit Firmen 

initiieren. Unsere empirischen Modelle bestätigen eine Erhöhung der Patentaktivität dieser 

Professoren. Im Gegensatz dazu wird die Patentierung von Erfindungen solcher Professoren, die 

bereits etablierte Industriekontakte haben, relativ gesehen unattraktiver. Im Gegensatz zu den 

Professoren, die ihre Gewinne nur mit ihren Industriepartnern teilen mussten und durch bestehende 

Kontakte niedrige Search-Kosten aufwiesen, muss der neue Agent, die Universität, die Gewinne mit 

dem Erfinder und der Industrie teilen und hat zusätzlich noch Kosten durch die Neuverhandlungen 

mit Interessenten aus der Industrie. Für diese Professoren beobachten wir einen signifikanten 

Rückgang der Patentanmeldungen nach 2002. Da die Mehrheit aller Professoren vor 2002 schon mit 



der Industrie zusammengearbeitet hat, ist der durchschnittliche Effekt der Gesetzesänderung 

negativ.  

Während unsere Ergebnisse die mittelfristigen Auswirkungen der Gesetzesänderung aufzeigen, 

besteht die Möglichkeit, dass langfristig eine positive Wirkung erzielt wird, und zwar durch junge 

Wissenschaftler, die das alte System nicht mehr kennen und zusätzlich von positiven Lerneffekten im 

Technologietransfermanagement profitieren. Allerdings zeigt sich in den Daten bis 2008, dass die 

Anzahl patentierender Hochschulprofessoren nach der Gesetzesänderung nicht steigt, sondern sinkt.  

Unsere Ergebnisse liefern den bis jetzt stärksten Beleg, dass ein System mit Erfindereigentum zu 

mehr patentierten Hochschulerfindungen führt als ein System mit institutionellem Eigentum. 

Bedeutet dies, dass Ländern wie die USA ihr System umstellen sollten um ihren Technologietransfer 

zu steigern? Nicht notwendigerweise. Unsere Ergebnisse unterstreichen, dass es vielmehr dringend 

notwendig ist bestehende Beziehungen zwischen Wissenschaft und Wirtschaft in Hinblick auf die 

institutionellen, länderspezifischen Umstände vollständig zu analysieren, bevor Politikmaßnahmen 

zur Stärkung dieser Beziehungen in Erwägung gezogen werden.  
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Abstract 
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industry connections, it increased patenting. Overall, fewer university inventions were patented following the 
shift from inventor to institutional ownership.   
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1 Introduction 

Intellectual property (IP) policies are among the most powerful instruments shaping the 

incentives that drive the discovery and commercialization of knowledge.  For U.S. academic 

institutions the Bayh-Dole Act of 1980 is perhaps the most influential and far-reaching of 

these IP policies. The legislation facilitated private institutional ownership of inventions 

discovered by researchers who were supported by federal funds. Many observers credit the 

Bayh-Dole Act with spurring university patenting and licensing that, in turn, stimulated 

innovation and entrepreneurship (The Economist 2002; OECD 2003; Stevens 2004). Based 

on this perceived success, the Bayh-Dole Act has become a model of university IP policy that 

is being debated and emulated in many countries around the world including Germany, 

Denmark, Japan, China, and others (OECD 2003; Mowery and Sampat 2005; So et al. 2008). 

The key component of the Bayh-Dole model is granting the university, not the inventor, 

ownership rights to patentable inventions discovered using public research funds (Crespi et 

al. 2006; Geuna and Nesta 2006; Kenney and Patton 2009).  However, the incentive effects 

on academic inventors of university versus individual ownership are not well understood. In 

a theoretical contribution, Hellmann (2007) found that university ownership is efficient 

when inventors must search for a commercial partner as long as the cost of search is higher 

for inventors than for the university.  Using survey and case study evidence, Litan et al. 

(2007) and Kenney and Patton (2009) argued that conflicting objectives and excessive 

bureaucracy make institutional ownership ineffective and suggest an individual ownership 

system may be superior.  Due to a paucity of evidence, however, the U.S. National Research 

Council recently concluded that “arguments for superiority of an inventor-driven system of 

technology transfer are largely conjectural” (NRC 2010). 
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Our analysis uses the framework of Pakes and Griliches (1984) and a quasi-experimental 

research design to provide the first systematic evidence on how intellectual property rights 

impact patenting of university-discovered inventions. We examine a fundamental change in 

German patent law from individual to institutional ownership.  Prior to 2002, university 

professors and researchers had exclusive intellectual property rights to their inventions.  

This “Professor’s Privilege” allowed university researchers to decide whether or not to 

patent and how to commercialize their discoveries, even if the underlying research was 

supported by public funds.  After 2002, universities were granted the intellectual property 

rights to all inventions made by their employees and this shifted the decision to patent from 

the researchers to the universities.  The policy goal was to increase patenting of university-

invented technologies which is often used as a surrogate indicator of successful university 

technology transfer. 

By changing the agent who makes the patenting decision, the abolishment of 

Professor’s Privilege caused a “regime shift” that substituted institutional benefit and cost 

schedules for those of the individual inventors.  The net effect on the volume of patenting 

depends primarily on the relative costs between the regimes.  To identify how the regime 

shift affected patenting, we exploit the researcher-level exogeneity of the 2002 abolishment 

of Professor’s Privilege along with the institutional structure of the German research system 

in which universities and other public research organizations (PROs) co-exist. PRO 

researchers were not affected by the ownership change and serve as a control group. We 

use a difference-in-difference methodology and control for the arrival of new patentable 

discoveries using publications and peer-to-peer matching. 
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Our analysis shows that fewer university inventions were patented following the 2002 

regime shift.  For a given discovery, the schedule of benefits to institutional owners, who are 

the post-change patent decision makers, is lower because the university became an 

additional party in the negotiations over the split of expected revenues.  This partly explains 

why fewer inventions qualified for patent protection following the regime shift.  However, 

the effect on expected revenues can be offset if institutional costs (broadly conceived) are 

sufficiently lower than those faced by individual researchers (Hellmann 2007). Our results 

show that institutional patenting costs were lower for the subset of university inventors 

who did not have relationships with industry partners prior to the policy change.  For those 

individuals, patenting increased.  But, the data also show that most German patenting 

professors had prior industry relationships.  Post-change institutional costs were not low 

enough to offset the revenue effect for this group.  Our results highlight the critical 

importance of understanding the nature and strength of faculty-industry relationships 

before undertaking policy initiatives intended to foster technology transfer.  

The remainder of this paper is structured as follows. Section 2 summarizes the 

background and implementation of the law change in Germany.  Section 3 describes the 

Pakes and Griliches (1984) framework and develops our hypotheses. Section 4 presents the 

empirical approach, the data collection strategy and provides descriptive statistics. Section 5 

shows the econometric results, and robustness checks are presented in Section 6. The final 

section 7 concludes with a discussion of the implications for policy. 

2 The regime change: from inventor to university ownership 

In February 2002, the German Federal Government launched a comprehensive new 

program called “Knowledge Creates Markets” to stimulate technology transfer from 
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universities to private industry for innovation and economic growth1.  The program was 

largely a reaction to the “European paradox” (European commission 1995).  At that time, 

policymakers believed that Germany had one of the world’s leading scientific research 

enterprises, but was lagging the United States in terms of technology transfer and 

commercialization.  The new program addressed a wide spectrum of science-industry 

interactions including processes and guidelines governing knowledge transfer, science-

based spin-offs, collaboration, and the exploitation of scientific knowledge in the private 

sector.  The abolishment of Professor’s Privilege was one of the most significant changes 

from both a legal and cultural perspective.  Professor’s Privilege originated from Article 5 of 

the German constitution that protects the freedom of science and research.  The new 

program repealed Clause 42 of the German employee invention law that had granted 

university researchers - as the only occupational group in Germany - the privilege to retain 

the ownership rights to their inventions that otherwise rest with the employer2. 

Under the new law, German university researchers are required to cull their research 

findings for inventions and report any inventions to the university – unless the researcher 

decides to keep his or her inventions secret by not publishing or patenting. The university 

has four months to consider any submitted inventions for patenting.  If the university does 

not claim the invention, the rights to pursue patenting and commercialization are returned 

to the researcher.  If the university does claim the invention, the inventor receives at least 

30% of the revenues from successful commercialization, but nothing otherwise. 

Furthermore, the university handles the patenting process and pays all related expenses 

                                                      
1 Bundesministerium für Bildung und Forschung and Bundesministerium für Wirtschaft und Technologie 

(2001), Wissen schafft Märkte - Aktionsprogramm der Bundesregierung. 
2 Gesetz über Arbeitnehmererfindungen in der im Bundesgesetzblatt Teil III, Gliederungsnummer 422-1, 

veröffentlichten bereinigten Fassung, das zuletzt durch Artikel 7 des Gesetzes vom 31. Juli 2009 (BGBl. I S. 
2521) geändert worden ist. 
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such as processing fees, translation costs and legal expenses. University researchers retain 

the right to disclose the invention through publication two months after submitting the 

invention to the university. Prior contractual agreements with third parties also remained 

valid during a prescribed transition period.3 

At the time of the law change, German universities had little experience undertaking 

technology transfer activities, and only a few universities maintained professionally 

managed technology transfer offices (TTOs) (cf. e.g. Schmoch et al., 2000). Therefore  the 

government decided to support the commercialization activities by establishing regional 

patent valorization agencies (PVAs), which was supported with a budget of 46.2 million EUR 

to be used before the end of 2004 (Kilger und Bartenbach 2002).  Universities were free to 

choose whether to use the PVAs’ services or not. To date, 29 PVAs serve different regional 

university networks and employ experts specialized in these universities’ research areas.  

The PVAs support the entire process from screening inventions, finding industry partners, 

and determining fruitful commercialization paths.  They are also supposed to promote 

collaboration between their member universities and industry.   

To date, a handful of prior studies have examined the effects of abolishing Professor’s 

Privilege on patenting rates and ownership patterns in Germany.  Schmoch (2007) found 

that the number of university-owned patents increased.  Based on inventor lists, his data 

also suggested the most active faculty inventors were discouraged by the abolishment of 

Professor’s Privilege and that non-patenting professors were encouraged, which suggests 

the law changed the mix of inventors. In a follow-up study, Cuntz et al. (2012) showed that 

the share of university-owned inventions increased after 2002 while the share of 

                                                      
3 Contracts made before July 18th 2001 were to be treated under the old law until February 2003 (Gesetz 

über Arbeitnehmererfindungen, § 43 ArbnErfG). 
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individually or industry- owned university inventions decreased. Von Proff et al. (2012) 

found that the policy change did not increase university-invented patents.  They also 

suggested an ownership shift from individual and firm-owned patents to universities.4  Our 

analysis extends this work by combining an established economic framework with a 

stronger research design and a more comprehensive researcher-level database allowing the 

identification of causal effects of the law change. 

3 Economic framework and hypotheses 

In economic models, patents reflect the combined influence of an agent’s propensity to 

patent and the arrival of new knowledge through the agent’s inventive process. 

(1)  (𝑝𝑝𝑝𝑝𝑝𝑝𝑝)𝑖𝑖 = (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝)𝑖𝑖 ∙ (𝑛𝑛𝑛 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)𝑖𝑖 

Pakes and Griliches (1984) called this relation the patent indicator function.  The propensity 

to patent can change due to legal or economic conditions that affect the expected benefits 

and costs of having a patent.  It captures the decision to patent.  In equation (1), increments 

to knowledge reflect investments into discovery, which Pakes and Griliches summarized as 

the “knowledge production function.”  Their analysis focused on the relationship between 

new knowledge and the volume of patenting, holding the propensity to patent constant.  In 

this paper, we focus on how the volume of patents responds to changes in the propensity to 

patent, holding increments to knowledge constant.5,6  

                                                      
4 Other studies consider the effects of patent ownership rights in other European countries. Examples are 

Valentin and Jensen (2007), Lissoni et al. (2009, 2013), Della Malva et al. (2013). For a broader discussion of 
academic patenting in Europe see Lissoni (2013).  

5 A substantial literature has emerged that examines how commercial incentives influence the rate, 
direction, and disclosure of academic research.  This literature focuses on the knowledge production function 
component of equation (1).  Some references include:  Jensen and Thursby (2001, 2004); Banal-Estanol and 
Macho-Stadler (2010); Thursby et al. (2007); Lach and Schankerman (2008); Dechenaux et al. (2009); Azoulay 
et al. (2007, 2009), Czarnitzki et al. (2011, 2014). 
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Germany’s abolishment of Professor’s Privilege exogenously changed the agent 

responsible for the decision to patent university-discovered inventions.  In terms of 

equation (1), the law transferred the propensity to patent from the faculty inventor to the 

university.  Under the former Professor Privilege system, faculty inventors would apply for 

patents on their discoveries when the expected benefits of patent protection were greater 

than the costs.  Since 2002, faculty members no longer make this choice, but instead must 

disclose any inventions to the university.  The university, perhaps with the PVA, decides to 

apply for a patent based on its assessment of expected benefits and costs.  Consequently, 

the effect of revoking Professor’s Privilege on the volume of patents depends on how the 

expected benefit and cost schedules shift due to the regime change from the individual 

faculty inventor to the university. 

For any set of discoveries, the schedule of expected benefits considered by the 

university after the regime change is lower than the schedule of benefits faced by any 

faculty member prior to the abolishment of Professor’s Privilege.  After the policy change, 

the share of revenue appropriable by the university is limited by three-way bargaining 

between the university, the faculty member, and the licensee company.  Under reasonable 

assumptions about bargaining power and recognizing that the university cannot increase 

the market value of the discovery, the university will capture a smaller share of the 

expected revenue stream in three-way bargaining than the faculty member would under 

two-way bargaining (Frank et al. 2007; Hellmann 2007).7  If the university and faculty cost 

                                                                                                                                                                     
6 We recognize the regime shift could have an indirect influence on patenting through the knowledge 

production function; however, proprer analysis of this effect would require a separate model focusing on new 
knowledge (i.e. publications) instead of patents.   

7 Under Professor’s Privilege, the faculty member also had a stronger bargaining position for obtaining 
non-pecuniary benefits associated with collaborative research and technology development. These non-
pecuniary benefits would further reduce the university‘s benefit schedule relative to the faculty member. 
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schedules were the same, the reduction in benefits after abolishment of Professor’s 

Privilege would lead to fewer patents.  Put simply, the policy change would decrease the 

propensity to patent. 

At that time, however, policy makers believed the cost schedules faced by universities 

would be lower than those faced by individual faculty members.  They interpreted the small 

share of university-owned patents in Germany prior to 2002 as evidence that individual 

researchers could not afford to undertake the costly and time-consuming process of 

applying for a patent and pursuing potential licensees (Becher et al. 1996).  If the costs of 

patenting for universities were sufficiently lower, the volume of university inventions 

receiving patents could increase.  So, the net effect of the regime shift on the volume of 

patenting depends on the costs of the universities compared to the pre-policy costs of 

faculty inventors. 

It is important to remember that the propensity to patent incorporates the benefits and 

costs of patenting that are expected upon commercialization.  The expected revenues from 

commercialization are compared to the expected costs of achieving commercialization both 

with and without patent protection.  The relevant concept of costs is broader than simply 

the patent application fees and legal fees.  It also includes costs from searching for an 

industry partner for commercialization, development costs, and so forth.  While these costs 

may be close to homogeneous across universities in the post-policy change period, they are 

likely to be heterogeneous within the population of university inventors before the 

abolishment of Professor’s Privilege.   

We can identify two groups in the population of university inventors who faced 

significantly different costs of patenting under Professor’s Privilege.  The first group consists 
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of university inventors who had relationships with one or more industry partners.  These 

individuals already paid the costs of searching for licensee companies and negotiating their 

pecuniary and non-pecuniary benefits.  In these relationships, industry partners would 

typically pay the application and legal fees, manage the development process and 

commercialize the product or service.  For this group of “low cost” university inventors, the 

regime shift to institutional ownership almost surely led to a higher cost schedule as the 

university, possibly through the PVA, had to renegotiate established relationships (Frank et 

al. 2007; Kilger and Bartenbach 2002).  For this group, we expect the regime shift in the 

propensity to patent led to a lower benefits schedule and a higher cost schedule.  Our first 

hypothesis is: 

H1: Faculty members who had established connections to industry partners  

 experienced a decrease in the volume of patenting, ceteris paribus. 

The second group consists of university inventors who did not have a relationship with 

an industry partner.  These individuals obtained a patent, but still needed to search for a 

licensee company and negotiate pecuniary and non-pecuniary benefits.  For this group of 

“high cost” university inventors, the university may have a considerable cost advantage.  

The cost advantage could stem from many sources.  Hellmann (2007) postulates that a TTO 

(or PVA) may have a comparative advantage in identifying potential industry partners due to 

the efforts of specialized managers or, on the licensee’s side, a single institutional source 

may make it easier to find university discoveries (e.g. Debackere and Veugelers 2005; Siegel 

et al. 2003). For this group, we expect the post-policy cost schedule shifted downward more 

than the post-policy benefits schedule.  Our second hypothesis is: 

H2: Faculty members who did not have established connections with industry partners  

 experienced an increase in the volume of patenting, ceteris paribus. 
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With cost heterogeneity in the population of university inventors, the net effect of the 

policy change depends on the share of inventors of each type.  If the pre-policy inventor 

population was predominantly low cost faculty inventors, then the net effect of the policy 

would be to reduce the volume of patents.  Whereas, the policy would increase the volume 

of patenting of university-discovered inventions if faculty inventors were mostly high cost.  

As discussed in the data section, most patenting professors were in the low cost group 

before the policy change.  

4 Empirical model and data 

 Identification Strategy and Estimation Approach 4.1

The German policy change provides a unique opportunity to separate the influence of the 

propensity to patent from the influence of new knowledge on the volume of patenting.  The 

abolishment of Professor’s Privilege was an exogenous “shock” to the propensity to patent 

university inventions.  As seen in equation (1), once new knowledge is held constant, this 

exogenous variation will identify the effect of the propensity to patent on the volume of 

patenting.  In the literature on academic research, publications are the accepted standard 

for measuring knowledge production.  The database compiled for this analysis includes 

complete publication histories for university inventors and their peers in non-university, 

public research organizations (PROs) such as the Max Planck, Fraunhofer, and Helmholtz 

institutes as well as other federal and state research institutions.8  

                                                      
8  Major research institutions in Germany are not only universities but other public research institutions 

that have many branches in a variety of different scientific disciplines. For instance, the Fraunhofer Society has 
59 institutes in Germany with about 17,000 employees, the Max Planck Society has 76 institutes with about 
12,000 employees. The Leibniz Association employs 16,100 people in 86 research centers. The Helmholtz 
Association has about 30,000 employees in 16 research centers. 
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We identify the policy effect using a difference-in-difference (DiD) research design with 

university inventors as the treatment group and PRO researchers as the control group.  Like 

university professors, PRO researchers conduct academic research at publicly funded 

institutions in Germany.  They work in similar academic fields and experience similar 

changes in research opportunities that affect the discovery of new knowledge.  But unlike 

university professors, PRO researchers did not have Professor’s Privilege and the patent 

rights to their inventions were always owned by the institution.  To further control for 

changes in research opportunities, we use peer-to-peer matching between university faculty 

members and PRO researchers based on characteristics such as publications, scientific 

discipline, and career age before undertaking DiD estimation. Our DiD setup also accounts 

for common macroeconomic trends and individual-specific unobserved effects that capture 

an academic inventor’s “taste” for patenting and commercialization.   

For the population of German academic inventors, the DiD model takes the following 

form: 

(2) 𝑃𝑃𝑃𝑖𝑖 = 𝛽0 + 𝛽1(𝑃𝑃𝑃𝑃𝑖 ∙ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡) + 𝛽2(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)𝑖𝑖 + 𝛽3(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2)𝑖𝑖 + 

𝛽4(3𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦)𝑖,𝑡−1 + 𝛿𝑖 + 𝛾𝑡 + 𝑢𝑖𝑖 

where 𝑃𝑃𝑃𝑖𝑖 is the volume of patents by researcher i applied for in year t (i.e. researcher-

year observations).  The policy effect is captured by the coefficient 𝛽1 of the interaction 

term (𝑃𝑃𝑃𝑃 ∙ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁).  𝑃𝑃𝑃𝑃 is a dummy variable that takes the value of 1 when the 

inventor is a university professor and 0 when the inventor is a PRO researcher.  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 

is a dummy variable that takes the value of 1 following the policy change, 2002 onward, and 

0 otherwise.  A quadratic specification of career age captures inventor life-cycle effects.  We 

use a three year moving average of past research publications, (3𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦)𝑖,𝑡−1, to 

capture the arrival of new knowledge. 𝛿𝑖 is a researcher-level fixed effect and 𝛾𝑡 is a vector 
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of time dummy variables covering 2-year periods.  Note that the professor dummy variable 

gets absorbed into the researcher fixed effects. Similarly, the new policy dummy variable 

gets absorbed by the general time trend.   

As patent counts take only nonnegative integer values, we use the fixed effects Poisson 

quasi-maximum likelihood estimator (QMLE).  As a member of the linear exponential family 

of distributions, the Poisson QMLE produces consistent estimates of the population 

parameters as long as the conditional mean is correctly specified (Gourieroux et al. 1984; 

Wooldridge 1999).  We use robust standard errors to account for any over- or under-

dispersion. 

 Data and descriptive statistics  4.2

As the aim of this research is to examine the effects of abolishing Professor’s Privilege on 

the decision to patent university-discovered inventions, we focus on German academic 

inventors.  This population includes all researchers affiliated with a university or PRO who 

appeared as an inventor on at least one patent submitted to the German or European 

Patent Offices between 1978 and 2008. Academic inventors are a subpopulation of all 

academic researchers in Germany. The broader population includes academic researchers 

who only published.  However, the transfer of patent rights to institutional ownership did 

not impact these researchers as they never participated in the intellectual property system 

over the entire time period. 

We constructed a researcher-level panel dataset of academic inventors following a 

multistep procedure, which is summarized in Appendix A. The regression sample period runs 

from 1995 through 2008.  Note that this sample also contains researchers who patented 

before 1995 in the sample.  This implies that a researcher does not need to have a patent in 
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the 1995 to 2008 period to be in the sample.  We defined the study period to extend from 

1995 through 2008 so that we observed enough time periods before and after the policy 

change.  For each inventor, our data contains the individual’s history of patenting between 

1978 and 2008 and the individual’s history of publications between 1990 and 2008.  Beyond 

patent and publication characteristics, this information allowed us to calculate each 

researcher’s career age which is used to model quadratic life cycle effects in equation (2).  

Career age starts when we observe the researcher’s first publication or patent application 

and increases incrementally thereafter to a maximum of 35 years after which we assume 

the researcher retires.  To account for earlier exit, we adopted a 5-year rule that has a 

researcher leaving the panel if he or she had no patenting or publishing activity for five 

consecutive years.9  Researcher industry connections were determined from the patent 

data.  An academic researcher is identified as having an industry connection when he or she 

is observed as an inventor on a company owned patent.  This allows us to distinguish high 

cost and low cost academic inventors prior to the abolishment of Professor’s Privilege and 

to estimate the model on subsamples to test hypotheses 1 and 2. The estimation sample 

contains 108,263 researcher-year observations, containing 3,718 professors and 8,294 PRO 

researchers.10 All of the variables used in the analysis are described in Table 7 in Appendix 

A.   

Figure 1 shows the average number of patents per inventor for university and PRO 

researchers over time.  To better compare the trends, annual patents were normalized 

using 1995 as the reference year (i.e. each data point is relative to 1995).  In the years 

leading up to the policy change, the trends in patents by professors and PRO researchers 

                                                      
9 In section 6 we present an alternative exit rule; however, the results do not change in a meaningful way.  
10 This sample excludes those researchers who were employed at both a PRO and university, as it is not 

clear which patent regime applied to these researchers.  
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were quite similar.  Both series show a peak in 1998 and a downward trend up to 2002.  

After the abolishment of Professor’s Privilege in 2002, the patenting trends diverge with 

university professors showing a steeper downward trend than PRO researchers.  This 

suggests that abolishing Professor’s Privilege led to an overall decrease in the volume of 

patenting of university-discovered inventions and highlights the importance of using a 

control group for analyzing the policy change.  

Figure 1: Trends in German patenting for university and public research 
 organization (PRO) researchers (relative to 1995), 1995-2008. 

 

Finding a decrease in patents per researcher after 1998 was somewhat surprising 

because it does not mirror the overall trend in German patent applications over this period.  

Upon further inquiry, the same pattern for academic patents was found by prior researchers 

(Cuntz et al., 2012; Schmoch 2007; Von Proff et al. 2012).  These authors and others have 

speculated about the reasons for the decrease.  Some suggestions include an increased 

emphasis on publications in academic performance evaluations, decreased entry into 
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academic jobs, the end of the New Economy boom, and legal uncertainties surrounding 

patenting in the field of biotechnology (Cuntz et al. 2012, p.21-22; Schmoch 2007, p. 5-8). 

As described in section 3, the overall effect of the policy depends on the composition of 

university inventors prior to the regime change.  If most patenting professors were in the 

low cost group, the policy would reduce university patenting.  The data show that 2,657 

(71%) of the university inventors had at least one patent before 2002 and 78% of these 

inventors had existing industry connections. It is clear that most university inventors were 

low cost.   Among PRO inventors, 5,008 (80%) had patented before the law change and 44% 

of these inventors had industry connections.   The lower percentage of PRO inventors with 

industry connections probably reflects the institutional ownership system already in place 

for these researchers.   

Table 1 shows descriptive statistics at the researcher-year level for university professors 

(i.e. the treatment group) and PRO researchers (i.e. the control group) separated into the 

pre- and post-policy change periods.  These groups are further subdivided into those with 

industry connections in the top portion of the table and those without industry connections 

in the bottom portion.  Looking at academic inventors with industry connections, mean 

patents by professors declined by  44% after the abolishment of Professor’s Privilege while 

patenting by PRO researchers declined by  27%.  Among those without industry connections, 

mean patents by professors increased 55% after the law change, but only 9% for PRO 

researchers.  These findings are consistent with the hypothesized effects discussed in 

Section 3.  Citation-weighted patents, which partially adjust the raw counts for the “quality” 

of the inventions, also fell more for professors than PRO researchers among those with 

industry connections.  While the average number of patents by university professors 
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without industry connections increased by 55%, the citation-weighted patents actually fell 

by 15%.  The differences in career age show that university professors were slightly older 

than PRO researchers over the whole sample period.  

Table 1: Descriptive Statistics for the treatment and control groups  
 (researcher-year observations)  

  Prior to law change (1995-2001) After law change (2002-2008) 

 Professors with industry connection 

  N =  12508 researcher-years N = 9141 researcher-years 

Variable Mean Std. Dev. Min Max Mean Std. Dev. Min Max 
# Patents 0.88 2.02 0 64 0.49 1.50 0 28 
# Citation-weighted  0.67 2.78 0 119 0.27 1.43 0 39 patents 
Career age 9.86 6.74 0 34 16.25 6.73 2 35 
Avg. publications  2.75 5.51 0 67.33 4.13 6.97 0 67 

 Control group with industry connection 

  N =  13101 researcher-years N =  9854 researcher-years 

# Patents 1.01 1.98 0 44 0.73 1.70 0 26 
# Citation-weighted  0.81 2.55 0 55 0.42 1.68 0 41 patents 
Career age 8.06 6.02 0 34 14.22 6.43 2 35 
Avg. publications  1.21 3.41 0 110.67 2.00 3.95 0 64.67 

 Professors without industry connection 

  N = 6633  researcher-years N = 8121 researcher-years 

Variable Mean Std. Dev. Min Max Mean Std. Dev. Min Max 

# Patents 0.20 0.59 0 11 0.31 0.84 0 27 
# Citation-weighted  0.13 0.75 0 15 0.15 0.77 0 19 patents 
Career age 5.71 3.89 0 27 9.35 5.92 0 32 
Avg. publications  3.03 5.73 0 100.67 3.63 7.07 0 80.67 

 Control group without industry connection 

  N = 19855 researcher-years N =  29050 researcher-years 

# Patents 0.34 0.76 0 13 0.37 0.93 0 24 
# Citation-weighted  0.22 0.92 0 16 0.21 1.07 0 61 patents 
Career age 4.50 4.06 0 29 7.16 5.53 0 35 
Avg. publications  1.12 2.51 0 44 1.32 2.89 0 63.67 
Note: Avg. publications are a three-year moving average of publication counts in t-1 for each researcher.  

5 Econometric Results 

Our baseline results identify the treatment effect of Germany’s 2002 policy change that 

transferred patent ownership rights from inventors to the universities on the decision to 
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patent.  Table 2 presents the parameter estimates based on Poisson QMLE with robust 

standard errors.  The overall treatment effect, which is revealed by the coefficient on 

(𝑃𝑃𝑃𝑃 ∙ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) in column 2, is negative and statistically significant at the 1% level.  

This indicates that the overall effect of abolishing Professor’s Privilege was to decrease the 

volume of patents obtained on university-discovered inventions in Germany.  It is 

economically significant as well.  Holding the arrival of new knowledge and researcher life 

cycle effects constant, the coefficient estimate shows the volume of university patents 

decreased by 18%, on average.  At least in part, this result reflects the reduction in benefits 

appropriable by universities after the abolishment of Professor’s Privilege due to three-way 

bargaining.  It would fully describe the effect of the 2002 policy change if university and 

faculty cost schedules were the same.  Turning to the arrival of new knowledge, as captured 

by a three year moving average of past publications, increases patents by academic 

inventors with one additional publication boosting expected patents by 14%.  

The overall effect, however, masks potential heterogeneous treatment effects due to 

differences in patent and commercialization costs before the policy change.  Even with the 

reduction in benefits appropriable by the university, the effect of the policy change on the 

volume of patenting depends on the costs of the university compared to costs of faculty 

inventors before the transition to institutional ownership.  In Section 3, we argued that 

faculty with prior industry connections were relatively low cost and postulated that the 

decrease in patent volume due to the policy change would be even larger for this group.  As 

seen in column 3 of Table 2, this hypothesis is supported.  In the subsample of academic 

inventors with industry connections, the expected number of university patents decreased 

by 26%, holding other factors constant.   
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For faculty without prior industry connections, we postulated that cost advantages for 

universities would offset the reduction in benefits and increase patenting. As seen in column 

6 of Table 2, treatment effect for this subsample is positive and significant at the 1% level.  

Holding the arrival of new knowledge and researcher life cycle effects constant, the 

estimate shows the volume of university patents increased by 39%, on average.  For faculty 

without prior industry connections life cycle effects are statistically stronger while the link 

between publications and patents is still positive and significant. As seen in the subsample 

breakout, the overall decrease in patenting of university-discovered inventions reflects the 

composition of university inventors before the regime change – most inventors had pre-

existing connections with industry.   

Table 2: Poisson models of patenting output 
# Patents Overall With industry connection Without industry 

connection 
 Coef.    Std. Err.  Coef.    Std. Err.  Coef.    Std. 

Err.  
Professor*NewPolicy -0.184*** (0.053) -0.262*** (0.067) 0.391*** (0.085) 

Career age -0.028** (0.014) -0.030 (0.019) -0.106*** (0.020) 

Career age squared/100 0.002 (0.028) -0.064* (0.038) 0.721*** (0.065) 

Avg publications 0.028*** (0.005) 0.017*** (0.005) 0.045*** (0.007) 

Time dummies (base 1995)       

1996-1997 0.136*** (0.033) 0.160*** (0.039) 0.090 (0.062) 

1998-1999 0.210*** (0.052) 0.304*** (0.066) 0.008 (0.086) 

2000-2001 0.189** (0.075) 0.307*** (0.098) -0.002 (0.113) 

2002-2003 0.087 (0.097) 0.184 (0.129) -0.099 (0.144) 

2004-2005 0.094 (0.118) 0.189 (0.156) -0.117 (0.175) 

2006-2007 0.034 (0.139) 0.127 (0.186) -0.232 (0.203) 

2008 -0.068 (0.157) 0.115 (0.210) -0.446* (0.228) 

# obs. 108,263 44,604 63,659 

# obs. PRO researchers 71,860 22,955 48,905 

# obs. professors 36,403 21,649 14,754 

# obs. Professors after policy change 17,262 9,141 8,121 

Robust standard errors. Significance: * p < 0.1, ** p < 0.05, *** p < 0.01.  
Note: Avg. publications are a three-year moving average of publication counts in t-1 for each researcher.  
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Conditional Difference-in-Difference 

One important characteristic of our control group is that they are German academic 

researchers.  Like university professors, these individuals understand the literatures in their 

disciplines as well as other developments in their fields.  Peer-to-peer matching can help 

control for potential changes in research opportunities.  We constructed a matched sample 

of university professors and PRO researchers by applying caliper matching (caliper threshold 

= 0.005) to identify the nearest neighbor for each university professor.  The inventors were 

matched based on their career achievements in 1998 (4 years prior to policy change) using 

their publication count, publication subject field11 and career age.  We estimate the DiD 

specification in equation (2) using observations from 1999 through 2008.  

The treatment effects from the abolishment of Professor’s Privilege are quite similar in 

magnitude and significance to those presented in Table 2.  The overall treatment effect 

indicates that patents on university-discovered inventions decreased by 19% instead of 18%, 

on average.  Among those university inventors with prior industry connections, patents 

decreased by the same magnitude, 26%.  The magnitude of the treatment effect for 

university faculty who were previously high-cost increased by four percentage points and 

now indicates the policy increased patenting for this group by 43%, on average.   

                                                      
11 The subject fields of the publications have been assigned based on the classification in the ISI Web of 

Science Citation Index /Science Citation Index. We followed Leydesdorff and Rafols (2009) and defined 18 
aggregated publication fields.  A researcher has been allocated to one of these aggregated fields by using the 
field occurring most frequently in his or her publication record. 
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Table 3: Conditional Difference-in-Difference Poisson models of patenting output 
# Patents Overall With industry connection Without industry 

connection 
 Coef.    Std. Err.  Coef.    Std. Err.  Coef.    Std. Err.  

Professor*New Policy -0.19** 0.09 -0.26** 0.11 0.43*** 0.13 

Time dummies (base 1998-1999)       
2000-2001 -0.10** 0.05 -0.16*** 0.05 0.23** 0.11 
2002-2003 -0.23*** 0.08 -0.34*** 0.10 0.18 0.12 
2004-2005 -0.31*** 0.09 -0.44*** 0.11 0.17 0.13 
2006-2007 -0.35*** 0.10 -0.58*** 0.13 0.35*** 0.13 

2008 -0.38*** 0.12 -0.60*** 0.16 0.29** 0.14 

Observations 33728 18591 15137 

Robust standard errors. Significance: * p < 0.1, ** p < 0.05, *** p < 0.01.  

6 Robustness checks 

 Citation-weighted patent volume 6.1

It is well known that the economic value distribution associated with patents is highly 

skewed with a very small number of patents accounting for most of the value created 

through invention.  So, even though the German policy change reduced the volume of 

patents, one might wonder whether the policy change simply eliminated the low value 

patents and thereby resulted in a smaller quantity of higher quality patents.  To address this 

issue, forward citations are commonly used to weight raw patent counts as a way to 

partially adjust for the unobserved quality of inventions (Trajtenberg 1990).  

Table 4 reports the results from applying the DiD research design to citation-weighted 

patents.  As before, the parameters are estimated using Poisson QMLE with robust standard 

errors.  From column 2, the overall treatment effect from revoking Professors Privilege was 

to reduce the volume of university citation-weighed patents by 27%, holding the arrival of 

new knowledge and researcher life cycle effects constant.  For university professors who 

had prior industry connections, university citation-weighed patents fell by 25%, on average.  
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However, for university professors who did not have prior industry connections, the results 

are different from those found previously.  While the volume of un-weighted patents 

increased for this group, citation-weighted patents show no significant change.  This 

suggests that while the new policy increased the volume of patenting by professors without 

industry connections, it did not improve the average quality of these inventions.  Among the 

other covariates, the only notable difference is that new knowledge is no longer significantly 

related to citation-weight patents among professors with prior industry connections.  

Table 4: Poisson models of Citation-weighted patenting output 
# Citation-weighted patents Overall With industry connection Without industry 

connection 
 Coef.    Std. Err.  Coef.    Std. Err.  Coef.    Std. Err.  

Professor*NewPolicy -0.274*** (0.086) -0.254** (0.104) 0.103 (0.147) 

Career age -0.072*** (0.026) -0.061* (0.035) -0.179*** (0.044) 

Career age squared/100 -0.000 (0.045) -0.052 (0.058) 0.797*** (0.135) 

Avg publications 0.014** (0.007) 0.002 (0.008) 0.026** (0.011) 

Time dummies (base 1995)       

1996-1997 0.111* (0.065) 0.113 (0.077) 0.097 (0.116) 

1998-1999 0.337*** (0.106) 0.373*** (0.130) 0.217 (0.177) 

2000-2001 0.099 (0.147) 0.153 (0.184) -0.019 (0.237) 

2002-2003 0.062 (0.195) -0.003 (0.250) 0.123 (0.308) 

2004-2005 0.211 (0.237) 0.134 (0.304) 0.275 (0.372) 

2006-2007 0.143 (0.283) -0.048 (0.356) 0.267 (0.450) 

2008 -0.318 (0.318) -0.389 (0.408) -0.310 (0.496) 

Observations 64,030 32,300 31,730 

Robust standard errors. Significance: * p < 0.1, ** p < 0.05, *** p < 0.01.  
Note: Avg. publications are a three-year moving average of publication counts in t-1 for each researcher.  
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 Exclusion of pre-policy uncertainty period 6.2

As part of our research process, we reviewed the public discussion regarding the 

abolishment of Professor’s Privilege.  The possibility of a policy change became public as 

early as December 1997 when the German Federal Council requested the federal 

government to review the efficacy and appropriateness of Professor’s Privilege.  At that 

time, some policy makers were concerned that only 4% of all German patents originated 

from universities.12 As discussed in section 3, they believed professors were not willing or 

able to invest the time and money for commercialization, but focused instead on 

publications.   After this initial inquiry, Professor’s Privilege was debated through March 

2001 when the federal government published its action plan for enhanced science-to-

industry technology transfer that officially announced the abolishment of the Professor’s 

Privilege.  When the final version of the law was published in October 2001, it was clear that 

Professor’s Privilege would be abolished effective February 2002.  

To verify that the timing of the policy change does not affect our findings, we exclude 

this described pre-policy “uncertainty period” from the sample, and compare academic 

patenting in 1995-1997 (before the law change and before the public discussion has been 

initiated) with the time period after the law change, 2002-2008.  As seen in Table 5, the 

coefficient magnitudes on the treatment effects are larger.  The effect of new knowledge 

through publications is smaller, but statistically significant across all specifications.    

                                                      
12 This was discussed in many German newspapers at the time. An example can be found in “Der Spiegel” 

which is one of the most prominent weekly news magazines in Germany (see 
http://www.spiegel.de/wissenschaft/mensch/patentoffensive-bulmahn-will-hochschullehrerprivileg-
abschaffen-a-101092.html). Our data also shows that about 4% of all patents applied for at the German Patent 
Office and the European Patent Office were university-invented patents. For instance, in 1995 there were 
320,000 patents applied for by German inventors at the German Patent Office and the European Patent Office. 
Out of these, we find 4.7% to be university-inventions. In 2000, there were 460,000 patents out of which 3.3% 
originated from universities. 

http://www.spiegel.de/wissenschaft/mensch/patentoffensive-bulmahn-will-hochschullehrerprivileg-abschaffen-a-101092.html
http://www.spiegel.de/wissenschaft/mensch/patentoffensive-bulmahn-will-hochschullehrerprivileg-abschaffen-a-101092.html
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Table 5: Poisson models of patenting using only 1995-1997 as pre-treatment time 
periods 

# Patents Overall With industry connection Without industry 
connection 

 Coef.    Std. Err.  Coef.    Std. Err.  Coef.    Std. Err.  

Professor*NewPolicy -0.230*** (0.069) -0.328*** (0.084) 0.827*** (0.152) 

Career age -0.014 (0.017) 0.012 (0.025) -0.139*** (0.025) 

Career age squared/100 -0.078** (0.031) -0.102** (0.041) 0.531*** (0.069) 

Avg. publications 0.030*** (0.006) 0.020*** (0.007) 0.041*** (0.009) 

Year dummies (base 1995)       

1996-1997 0.082** (0.037) 0.084* (0.046) 0.017 (0.067) 

2002-2003 0.245* (0.128) 0.036 (0.180) 0.549*** (0.179) 

2004-2005 0.235 (0.154) -0.035 (0.216) 0.607*** (0.219) 

2006-2007 0.156 (0.181) -0.166 (0.254) 0.583** (0.254) 

2008 0.055 (0.203) -0.229 (0.285) 0.468* (0.284) 

Observations 64037 25986 38051 

Robust standard errors. Significance: * p < 0.1, ** p < 0.05, *** p < 0.01.  
Note: Avg. publications are a three-year moving average of publication counts in t-1 for each researcher.  

 

 Robustness test on the sample exit rule 6.3

For our main analysis we adopted a 5-year rule that has a researcher leaving the panel if he 

or she had no patenting or publishing activity for five consecutive years. This rule was 

necessary due to data limitations that prevent us from observing when a researcher retires 

or leaves academic employment.  To verify our results are not driven by this limitation, we 

imposed a very strict 2-year rule in which researchers are dropped after two consecutive 

years of inactivity.  The results using the strict exit rule are very similar to those found using 

the 5-year rule (Table 6). 
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Table 6: Poisson models of patenting using the 2-year exit rule 
# Patents Overall With industry connection Without industry 

connection 
 Coef.    Std. Err.  Coef.    Std. Err.  Coef.    Std. Err.  

Professor*NewPolicy -0.172*** 0.055 -0.258*** 0.070 0.473*** 0.085 
Career age 0.008 0.015 -0.013 0.020 -0.032 0.021 
Career age squared/100 -0.093*** 0.033 -0.096** 0.044 0.432*** 0.064 
Avg. publications 0.020*** 0.005 0.011** 0.006 0.033*** 0.007 
Time dummies (base 1995)       
1996-1997 0.096*** 0.034 0.130*** 0.041 0.041 0.062 
1998-1999 0.212*** 0.056 0.327*** 0.070 -0.004 0.091 
2000-2001 0.188** 0.078 0.322*** 0.101 0.004 0.12 
2002-2003 0.068 0.103 0.201 0.137 -0.147 0.154 
2004-2005 0.079 0.124 0.189 0.163 -0.144 0.187 
2006-2007 0.006 0.146 0.118 0.195 -0.300 0.218 
2008 -0.078 0.165 0.15 0.221 -0.558** 0.244 
Observations 88666 37193 51473 

 

 Number of patenting researchers before and after the law change 6.4

The fixed effects regressions presented above estimate the treatment effect of the policy 

only for scientists that were in the academic system before the policy changed occurred. 

This is because of the nature of the fixed effects regressions: the treatment dummy, i.e. the 

policy change variable only changes from the value zero to one for scientists that were in 

the sample before 2002. If, however, researchers enter the system after 2002 patent more 

than earlier cohorts, the fixed effects regressions would not pick this up, as the policy 

change variable would always be equal to one for these researchers.. If the policy change 

attracted new entrants into academic patenting, it could have increased the total volume of 

patents. To check for this possibility, we analyze the trend in the number of patenting 

researchers before and after the law change in 2002 (see Figure 2). The graph shows that 
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the number of patenting professors shows a steady decline after 1999. This suggests that 

the policy change did not attract more professors into patenting. 

Figure 2: Number of patenting scientists before and after the law change. 

 

 

7 Discussion and Conclusion 

In this paper we examine how the ownership of patent rights influences the decision to 

patent in the context of university-discovered inventions.  By changing the agent who makes 

the patenting decision, Germany’s abolishment of Professor’s Privilege in 2002 caused a 

regime shift that substituted institutional benefit and cost schedules for those of the 

individual inventors.  Our empirical approach exploits the institutional structure of the 

German public research system to identify an appropriate control group along with the 

researcher-level exogeneity of the policy change to implement a difference-in-difference 
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approach to causal inference. Our analysis shows that fewer university inventions were 

patented following the 2002 regime shift from inventor to institutional ownership.   

The German policy change that abolished Professor’s Privilege was based on the 

presumption that the costs and risks of patenting were so high that professors did not have 

sufficient incentives to patent their discoveries or pursue commercialization.  In retrospect, 

this presumption appears to be wrong.  We find that the treatment effect was 

heterogeneous among university professors and depended on the costs of the university 

compared to costs of faculty inventors before the transition to institutional ownership.  

Post-policy institutional patenting costs were lower for the subset of university inventors 

who did not have prior relationships with industry partners.  For those individuals, patenting 

increased after the policy change.  Yet, most German professors had prior connections with 

industry partners leading to higher patenting and commercialization costs under 

institutional ownership.  For these professors, patenting decreased substantially.  

While these findings reflect the medium-term effects of the law change, it could still be 

possible that the law change results in higher commercialization in the long-run, that is, 

when new faculty members enter academe who never experienced the old regime of 

inventor-ownership. However, trends in the number of patenting researchers until 2008 do 

not suggest more researchers patented after the law change. On the contrary, the number 

of patenting professors has declined, at least through 2008.  

One possible reason for the miscalculation by German policy makers is a failure to 

adequately assess the nature and extent of technology transfer and patenting relationships 

prior to the law change.  Informal and formal relationships between university researchers 

and industry firms had evolved under the Professor’s Privilege system. Our results highlight 
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the critical importance of understanding the nature and strength of faculty-industry 

relationships before undertaking policy initiatives intended to foster technology transfer.  

Our findings provide the strongest evidence to date that an inventor ownership system 

can produce more university-invented patents, and thereby more technology transfer, than 

an institutional ownership system.  Does this imply that other countries such as the U.S. 

would increase university technology transfer by adopting an inventor ownership system?  

Not necessarily.  The nature and strength of faculty-industry relationships will differ based 

on each country’s institutions, culture, and historical evolution of networks and trust 

relationships.  Rather than attempting a major policy change as was done in Germany, 

policymakers in other countries would benefit from a better understanding of current 

practices.  This information could be used to design incremental changes that allow 

technology transfer processes the flexibility and adaptability needed to fit alternative 

technologies and markets.   
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Appendix A: Data collection procedure 

Our relevant starting population for the patent collection are all patent applications filed at 

the German Patent and Trademark Office (DPMA) and the European Patent Office (EPO) 

involving at least one German inventor since 1978 up to 2011 using the PATSTAT database. 

These are 1,682,585 patent documents. Eventually we will collapse the list of relevant 

patent documents to the number of inventions, that is, we will account for patent families. 

Between 1978 and 2011 the grand total of patent families amounts to 1,067,753, and in the 

time period under review in this paper, 1995-2008, the number of different inventions with 

at least one German inventor amounts to 624,041. 

Searching patents invented by university faculty 

Unfortunately, no comprehensive list of German university faculty exists. Therefore, we 

follow another established strategy to identify patents of university professors (see e.g. 

Czarnitzki et al. 2007, 2009). In Germany, the award of a doctorate and even more of a 

professor title is considered a great honor. The “Dr.” is an official part of the name and is, 

for example, even mentioned in the national IDs and passports. The professor title is 

protected by the German criminal code (article 132a) against misuse by unauthorized 

persons. Accordingly this title is used as a name affix not only in academic environment, but 

also in daily life. Thus, we use the inventor records in the database and search for the title 

“Prof. Dr.” and a large number of variations of this. This initial search identified 69,250 

patent documents between 1978 and 2011.13 After having obtained an initial list of patent 

                                                      
13 One may be concerned that the Professor Doctor title is also given as an honorary title to individuals 

who are not employed at universities.  While the granting of honorary titles seems to be relatively rare, some 
of these highly qualified individuals may be labeled as professors in our data process.  We believe any 
misclassification error would work against finding a significant policy effect as these individuals are not 
affected by the policy change. 
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documents, we then also searched for these inventors again in order to see whether they 

also patented without the “Prof. Dr.” title. Note that initially we just search for name 

homonyms of the identified “Prof. Dr.” patents. This step does not involve yet to 

disambiguate the records in order to find out which of these patents are invented by the 

same person and which are other inventors with similar names. The actual disambiguation is 

done at a later stage using cross-referencing to linked publication records. The search for 

name homonyms added 197,887 (1978-2011) to the 69,250 patent documents. We thus 

have a raw list of potentially university-invented patent documents of almost 270,000. 

Identifying patents by PRO researchers 

The identification of patents by PRO scientists is more straightforward, as they can be 

searched by applicant names as the IP was always subject to institutional ownership. We 

obtained a list of about 500 PRO institutes existing in Germany from the “Bundesbericht 

Forschung und Innovation 2012” published by the federal government. These were 

searched as applicants in the patent documents, and we identified 27,637 (1978-2011) 

patent documents. As some of these patents involve co-applications with firms, we cannot 

assume that all inventors listed on the patents are employees of PROs. Therefore, we first 

omit the co-assigned patens (about 20% of the 27,637). This detour is necessary in order to 

avoid that e.g. industry researchers whose employer appears as co-applicant on some 

patents enter our data of PRO inventors mistakenly. We then searched for all patents by the 

PRO inventors, in order to come up with a comprehensive list of patents filed by PRO 

inventors. Again, we initially search for name homonyms of these inventors as we did for 

the university faculty. Note that this step also adds the 20% of co-applied patents back into 
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the sample. Now, however, we have identified these not by applicants but PRO inventors. 

This raw list of potential PRO-researcher patents amounts to 195,498 (1978-2011).  

Disambiguation routine – Step 1 

The two lists of retained patent documents are now pooled (492,340). Note again that this 

list includes too many patents because of name homonyms. In addition, some inventors 

may switch between the two groups of institutions and thus appear in both lists. Therefore, 

we then implemented a first disambiguation routine based on the patent document data. 

This step determines which patents are clearly not invented by either university faculty or 

PRO researchers to extent this is possible to infer from the patent data. This initial 

disambiguation leads to a list of 29,476 unique inventors (either university faculty or PRO 

researchers) with a total of 174,431 patents (1978-2011). 

The reason for the large drop in the overall number of patents is the deliberate 

oversampling by using the cleaned name (without title) as selection criterion. For example, 

979 patents are filed under the common German name “Bernd Müller”, a number much too 

high for a single person. After the disambiguation procedure 61 distinct persons were 

identified. Only 3 persons belong to the target group of university faculty or PRO 

researchers, and these 3 inventors have in total 16 patents.  

This disambiguation algorithm is based on a relation network analysis. Every node 

within this network is a patent connected to other patents by layers of relations defined by 

shared applicants, co-inventors, citations and joint sets of IPC codes. The analysis uses a 

hierarchical approach by first traversing connections of high reliability to define sub-clusters 

that function as new nodes for the next iterative step. By aggregating information within 

these ‘hypernodes’ new connections emerge that will also be traversed and so on. As every 



36 

 

sub-cluster describes a part of an inventor career, suspiciously large sub-clusters can easily 

be identified, rejected and re-traversed with more restrictive requirements for the 

connections. This method implicitly solves the common name problem.14 The resulting list 

of unique individuals and their corresponding patents has been checked manually to the 

largest extent possible.  

Collecting publication data from the Web of Science and disambiguation - Step 2 

The retained list of initially disambiguated inventors is now used to perform name searches 

in the Thomson Reuters Web of Science publication database, 1990 – 2008.  We first 

retrieve all publications from Web of Science that match with respect to the names in our 

inventor list and have at least one German affiliation. This amounts to 882,702 publications; 

again including name homonyms. Second, we now use the publication information to 

disambiguate these authors from Web of Science using cross-referencing information on 

journals, coauthors, citations and affiliations. 580,448 are identified as being authored by 

the 29,476 inventors in our sample from 1990 to 2008. 

In order to ensure that the match between inventors and authors has a high level of quality 

we then excluded weak matches. For doing so we only keep a researcher based on author-

inventor-link if it is either the only match between author and inventor of the same name or 

if at least one affiliation matches between inventor and author. This reduced our uniquely 

identified researchers to 18,092. 

                                                      
14 A more detailed description of this algorithm is described in appendix B. 
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Compiling the panel database 

The final step of the database construction involves generating a panel of unique academic 

inventors that includes information on their patents, citation-weighted patents and 

publications for each year. We count patents at the family level to ensure that patents in 

different jurisdictions for the same invention are not counted more than once.  The unit of 

observation is a researcher-year. Some of the professors also appear as PRO researchers at 

some point in time.   

The database is an unbalanced panel identifying 18,092 unique researchers with 99,624  

patents and 447,596 publications to originate from a professor or a PRO inventor (overall 

time span).  

The regression sample period that we use in our analysis runs from 1995 through 2008.  

Note that this sample also contains researchers who patented before 1995 in the sample.  

This implies that a researcher does not need to have a patent in the 1995 to 2008 period to 

be in the sample.  We defined the study period to extend from 1995 through 2008 so that 

we observed enough time periods before and after the policy change.  For each inventor, 

our data contains the individual’s history of patenting between 1978 and 2008 and the 

individual’s history of publications between 1990 and 2008.   

Next, we exclude those researchers who were employed at both a PRO and university, as it 

is not clear which patent regime applied to these researchers. This reduces the number of 

observed researchers to 16,291.  Beyond patent and publication characteristics, the data on 

patenting and publication history of every researcher allowed us to calculate each 

researcher’s career age.  Career age starts when we observe the researcher’s first 
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publication or patent application and increases incrementally thereafter to a maximum of 

35 years after which we assume the researcher retires.   

Dropping researchers after 35 years and defining entry into the panel as either first patent 

or first publication our observed number of researchers drops to 15,770.  

To account for earlier exit from academia, we adopted a 5-year rule that has a researcher 

leaving the panel if he or she had no patenting or publishing activity for five consecutive 

years.15  Researcher industry connections were determined from the patent data.  An 

academic researcher is identified as having an industry connection when he or she is 

observed as an inventor on a company owned patent.  This allows us to distinguish high cost 

and low cost academic inventors prior to the abolishment of Professor’s Privilege and to 

estimate the model on subsamples to test hypotheses 1 and 2.  

As Poisson fixed effects estimations exclude groups with zero outcomes in all periods of the 

panel, our regression sample excludes those researchers with zero patents in the observed 

period (they are in the initial sample as they had patented before 1995 and remain in the 

sample as they had some publishing activity in the last 5 years). Therefore the final 

estimation sample contains 108,263 researcher-year observations, containing 12,012 

researchers (3,718 professors and 8,294 PRO researchers). 

                                                      
15 In section 6 we present an alternative exit rule; however, the results do not change in 

a meaningful way.  
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Table 7: Definition of variables 
Variable name Definition 
# Patents The number of patents applied for in year by an 

academic inventor 
# Citation-weighted patents The number of citations received by patents applied 

for in given year in the four subsequent years to the 
application date 

Professor The academic inventor was professor at some point in 
his career 

Career age The number of years elapsed since the academic 
inventor’s first patent or publication 

New policy Dummy for years >= 2002 
Professor*New policy Interaction of Professor dummy and New Policy 
Industry connection The researcher has at least one patent applied for 

jointly with a firm applicant prior to 2001 
Avg Publications A moving average of journal publications over the 

past three years, t-1 to t-3  
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Appendix B: The inventor mobility index 

Usually patent data does not contain any unique identifiers for the patenting assignees or 

the inventors, as the main tasks of patent authorities is the examination of applications and 

the administration of the patent documents as public contracts and not the support of the 

empirical analysis of their data. An inventor in a patent document is identified by his or her 

name. Depending on the patent authority the full address or parts of it may be included, to 

further identify this inventor. The goal is to define an inventor mobility index that traces the 

whole career of an inventor as a living person with all the job switches and relocations and 

represents the history of the mobility approximated by the patents as potential turning 

points. The inventor name is the main criteria for this identifier. The inventor address 

information on the other hand is only of limited use for the definition of a mobility index. 

The name alone can work for exotic name variants, but for more common names the 

problem of namesakes gets in the way of identifying individuals by this criteria only. The 

solution discussed here consists in the construction of a relationship network between 

inventors with the same name. This network will be created by using all the other 

information available in the patent data. These could be simple connections like the same 

applicant or just the same home address, up to more complex connections that are created 

by the overlapping of colleagues and co-inventors, similar technology fields or shared 

citations. Traversal of these heuristically weighted networks by using methods of the graph 

theory leads to clusters representing a person. The applied methodology will implicitly give 

exotic names a higher degree of freedom regarding the heuristic limitations than the more 

common names will get.  
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1 The SearchEngine 

The patent offices do not administer special databases for assignees or inventors nor are 

they obliged to verify the names or addresses. Because of that there may exist multiple 

variants for a specific inventor or assignee, which can be explained by misspellings, different 

usage of abbreviations, name or address changes over time. If there is more than the data 

of one authority involved, this problem increases significantly because of different 

standards. The solution to this problem discussed here is to create an identifier for every 

group of variants that belong together with a high probability. This is a virtual cleaning 

process as the data itself will not be changed nor will there be a "preferred" variant that 

overwrites the other variants. The tool used for this task is simply called "SearchEngine" for 

further reference and is under continuous development by Thorsten Doherr, ZEW. It 

combines many ideas that have their origin in the field of computer science like word based 

heuristics, phonetic algorithms, fuzzy logic and network analysis.  

 The Preparer Gateway 1.1

One typical problem the algorithm is designed for is to match two tables from different 

sources by a combination of fields that share the same - usually fuzzy - characteristics, like 

name, address, city, zip and so on. A direct SQL join by these fields is of limited use because 

of abbreviations, misspellings and typing errors, different positioning of words or 

additional/missing words. The extensive harmonization of both tables by transforming the 

data to uppercase, replacing special letters to their common (phonetic) representation (i.e.: 

the German "Ü" to "UE"), suppressing of special characters and the unification of 

abbreviations will simprove the situation for a direct join. These methods are also 

implemented for the SearchEngine as part of the preparer gateway. The preparer gateway is 
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responsible for the harmonization of all the data entering the deeper layers of the 

algorithm. Besides the more or less cosmetic modifications of the data it can also implement 

more extreme phonetic methods, that destroy the readability of the data but improve the 

robustness against misspellings and typing errors. Every field can be connected to a 

different list of preparers, some of them specialized to reflect the context of the associated 

characteristic. It is even possible to associate more than one preparer list to a single field, 

creating new entities. These combinations of preparers and fields are further called search 

types. The outcome of the preparer gateway is a set of words without any specific order 

separated into subsets by the search types they origin from. From this point on the term 

"word" describes all the token the preparer gateway returns after applying the harmonizing 

and/or the more aggressive phonetic preparer like Soundex (RobertRussell, Margaret Odell, 

1918), Metaphone (Lawrence Philips, 1990), Kölner Phonetic (Cologne Phonetic) (Hans 

Joachim Postel, 1969) and n-gramm.  

 The Heuristic 1.2

The heuristic is based on the assumption that the occurrence of a word is inverse 

proportional to the identification potential (IP) of this word. Using the internet as an 

analogy, a quite common word entered into a search engine will result in a large list of 

results making it difficult to find the intended entry. The resulting list of potential hits for a 

seldom word is smaller as the identification potential is higher. Because a search usually 

involves more than one word, the algorithm uses a relative identification potential (rIP). The 

following section describes the development of this measurement starting with a basic first 

version: 
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𝑟𝑟𝑟(𝑖) =
𝑜𝑜𝑜(𝑖)−1

∑ 𝑜𝑜𝑜(𝑗)−1𝑗∈𝑆
 (1) 

with S being a set of words defined by the search term, 𝑖 ∈ 𝑆 and 𝑜𝑜𝑜(𝑖) returning the 

occurrence of the word i. 

To get the occurrences of the words the SearchEngine needs to be fed with the 

characteristics of one table, the so called base table. After passing the preparer gateway, 

the words of the search fields will be registered in a special table, the registry. An entry in 

the registry consists of a word and a counter for the occurrence of this word. The registry is 

further organized into chapters, one for every search type, to preserve the context of the 

words. Every single entry is also linked back to the containing records in the base table by 

supporting tables. The heuristic is extended by the possibility to put different weights on 

these search type chapters. These chapter weights are called priorities because they also 

influence the optimization of the implementation by giving the algorithm an order to work 

with. Another extension to the heuristic is the introduction of offsets that are added to the 

word occurrences. These offsets smooth out the relative differences between the words 

and can also be applied per chapter. The occurrence function now requires two parameters: 

the word and the search type the word belongs to. With 𝑠𝑠(𝑖) returning the search type of 

word i, 𝑝𝑝𝑝(𝑗) and 𝑜𝑜𝑜(𝑗) returning the priority and the offset of search type j and n being 

the number of search types, the extended 𝑟𝑟𝑟𝑠 can be defined as:  

𝐼𝐼(𝑖) =  max(𝑜𝑜𝑜�𝑖, 𝑠𝑠(𝑖)� + 𝑜𝑜𝑜�𝑠𝑠(𝑖)�, 1)−1 (2) 
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𝑟𝑟𝑟𝑠(𝑖) =  

⎝

⎛ 𝐼𝐼(𝑖)

∑ �
𝐼𝐼(𝑗)| 𝑠𝑠(𝑖) = 𝑠𝑠(𝑗)
0        | 𝑠𝑠(𝑖) ≠ 𝑠𝑠(𝑗)𝑗∈𝑆 ⎠

⎞�
𝑝𝑝𝑝(𝑠𝑠(𝑖))
∑ 𝑝𝑝𝑝(𝑘)𝑛
𝑘=1

 � (3) 

The function 𝑜𝑜𝑜(𝑖, 𝑠𝑠(𝑖)) returns the average occurrence within the search type 𝑠𝑠(𝑖), 

if word i is not found in the registry for search type 𝑠𝑠(𝑖). The function 𝑚𝑚𝑚 returns the 

numerical highest of the parameters. 

Good values for the priorities and the offsets highly depend on the used preparer and 

the characteristics of the search types. In most cases a match has a clearly dominating 

characteristic like a company name that should get a higher priority as the supporting 

characteristics like address, city or zip. In conjunction with a customized cutoff limit it is 

possible to focus the match and reduce the number of false positives. The usage of offsets is 

much more experimental. They can be used to like a slider between an occurrence based 

heuristic and a simple word based metric where every word has the same value. This is 

especially true if the offset is negative and higher than the highest occurrence of a search 

type.  

For any search term the words of the records found in the base table are compared with 

the words of the search term. For every shared word the associated 𝑟𝑟𝑟𝑠 is summarized to 

get a measurement for the identity ranging between 0 and 1. An identity of 1 means all 

words of the search term exists also in the found record. Missing words from the search 

term result in a lower identity according to their 𝑟𝑟𝑟𝑠. Only found records with an identiy 

above a given limit are considered candidates.  

Until now all candidates with the same matching words are equal. In some cases it is 

desirable to rank these results according to the words of the candidates that are not part of 

the search term, thus preferring candidates with less additional clutter. The surplus words of 
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the candidates generate a discount on the identity, called feedback. The extent of the 

discount can be adjusted with the feedback parameter 𝑓 which has a valid range from 0 to 

1. With 𝐹 being the set of all the words of the found candidate record, the final definition of 

the 𝑟𝑟𝑟𝑓 is available:  

𝐽𝐽𝐽𝐽𝐽𝐽𝐽(𝑖) =  
∑ �𝐼𝐼

(𝑗)| 𝑠𝑠(𝑖) = 𝑠𝑠(𝑗)
0        | 𝑠𝑠(𝑖) ≠ 𝑠𝑠(𝑗)𝑗∈𝑆

∑ �
𝐼𝐼(𝑗)| 𝑠𝑠(𝑖) = 𝑠𝑠(𝑗)
0        | 𝑠𝑠(𝑖) ≠ 𝑠𝑠(𝑗)𝑗∈𝑆∪𝐹

 (4) 

𝑟𝑟𝑟𝑓(𝑖) =  𝑟𝑟𝑟𝑠(𝑖)�(1 − 𝑓) + 𝐽𝐽𝐽𝐽𝐽𝐽𝐽(𝑖)𝑓� (5) 

The function (4) is called Jaccard because it is the implementation of the Jaccard 

similarity coefficent (Jaccard, 1901). It measures the similarity of two sets of properties by 

dividing the number of shared properties by the size of the union of both sets. With a 

feedback of 1, equal priorities and large enough negative offsets (equalizing all occurrences) 

for all search types, the identity transforms into a Jaccard index measuring the similarity 

between two sets of words. 

 The Implementation 1.3

The 𝑟𝑟𝑟𝑠 is used as the heuristic for the search process that collects the candidate records 

for a search term. Given that the resources for the algorithm are restricted by computing 

power it is more profitable to first look for words with a higher 𝑟𝑟𝑟𝑠, until the resources for 

one search step are exhausted. The maximum size of the candidate list is the main regulator 

for a healthy balance between performance and completeness. Is the so called search depth 

too high, the performance will significantly be decreased for little benefit consisting mostly 

of false positives. A too restrictive search depth can lead to a loss of valuable hits, because 
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the word with the highest 𝑟𝑟𝑟𝑠 may have a higher absolute occurence. The identity limit will 

also be considered to further reduce the candidate list for the following steps. A candidate 

within the list already has a preliminary identity consisting of the words used for filling the 

list, which are usually just a fraction of the whole search term. If the identity of the unused 

search words won't push a candidate above the limit, it will be dropped from the list. In the 

next step the used words of every candidate will be synchronized with the remaining words 

of the search term to complete the calculation of the identity on the base of the 𝑟𝑟𝑟𝑓. It is 

this step that requires the majority of the computing power which explains the restrictive 

selection of the candidates beforehand.  

 Handling Misspellings 1.4

The SearchEngine is a word based algorithm. If a word cannot be found in the registry it will 

get a 𝑟𝑟𝑟 based on the average occurrence for its search type. But the main problem is that 

there are no connected base table records making this word a dead weight. Another 

problem are misspelled common words that occur in the registry with a very low occurrence 

compared to the proper words. These words can misguide the search process in favor of the 

other misspelled entries. Phonetic preparer like Soundex and Metaphone reduce this 

problem by creating codes for similar sounding words. The n-gram method uses shifted 

tokenization (i.e.: 3_gram("DOHERR") = ["DOH", "OHE", "HER", "ERR"]), creating multiple 

tokens for one word and thus reducing the impact of misspellings as they concern only a 

part of the tokens.  
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Table B.1: words represented by the same phonetic code 

Method Soundex Metaphone Cologne 
Code T652 BRTN 3467 
Example 1 TARNOWSKI BARATON WAGNER 
Example 2 THORENZ BERTINI WUCHENAUER 
Example 3 TRUNK BORDIN WEGENER 

 

There is a price to pay for the gained robustness. The algorithm will return much more 

false positives because the phonetic representations do not only include the misspellings 

but also similar "legal" words. In the case of n-grams all entries containing the same tokens 

have the same identity as the heuristic ignores positioning. The problem is, that phonetic 

methods are specially designed to retrieve false positives in the hope that the intended 

result will be within them. Usually these methods are used in an environment where an 

operator enters single requests into a terminal and examines the retrieved results. For the 

SearchEngine an additional layer has to be applied that fulfills this task. This layer simulates 

the operator by applying a string comparison function for every search type that 

implements phonetic preparer. This function returns a value between 0 and 1 for the 

similarity of strings, so it can easily be integrated as an equivalent to the identity of a search 

type. It compares every word of the search term with every word of the found term to 

identify the pairings with the highest similarities. The final result is the sum of these values 

divided by the highest possible score based on the term with the most words. An additional 

score will be calculated that compares the terms as whole strings. The maximum of both 

scores defines the identity. Both types of comparisons are necessary to guarantee a high 

flexibility of the measurement against different positioning of words and unclean separated 

words (i.e. by missing blanks). Because this flexibility requires a large number of 

comparisons the underlying algorithm has to be very efficient. The method used is called 
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Least Relative Character Position Deltas (LRCPD). Every character in a string has a relative 

position between 0 for the first and 1 for the last character. The algorithm searches for 

every character in the first string the matching character in the second string with the 

smallest difference between the relative positions. If a character can’t be found a maximum 

delta of 1 is used. The sum of the deltas divided by the length of the first string returns a 

disparity measure between 0 and 1. 

Fig. B. 1: two different spellings of a complicate name compared by the LRCPD method 

 

𝑙𝑙𝑙𝑙𝑙(𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2) = 1 −
∆(𝑤𝑤𝑤𝑤1,𝑤𝑤𝑤𝑤2)
𝑙𝑙𝑙(𝑤𝑤𝑤𝑤1) = 1 −

1.875
10 = 0.8125 

The LRCPD heavily depends on the direction of the comparison. For a symmetric 

behavior the comparison has to be done in both directions using the lower result. Another 

problem is the reduction of the deltas with increased string lengths. The limes of the 

average delta approaches zero for the comparison of infinite strings. For this reason the 

LRCPD implements a search scope around the relative position of the searched character. 

Starting from this position the search will be carried out in both directions until the 

character is found or the absolute distance to the start position exceeds the scope. The 
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delta of a found character will be adjusted as if the string length equals this limit, always 

resulting in deltas between 0 and 1. The SearchEngine uses an arbitrary default scope of 12 

characters in both directions (not including the start position). A higher limit is only 

recommended for results that will be manually checked. 

Search types that implement phonetic preparer somehow distort the idea behind the 

original heuristic. The codes or fragments returned by the phonetic methods have a 

different distribution of occurrences than the original words. Through fragmentation or 

aggregation the number of words stored in the registry is reduced, the average occurrence 

is increased which leads to more candidate records. This effect is subdued by the LRCPD 

layer but the main advantage of the original heuristic, finding candidates by the most 

identifying words, is watered down. Because of that, the SearchEngine supports incremental 

search steps. Multiple runs with different settings can be merged into one result set. 

Pairings of previous runs will not be overwritten by following search steps. It is advised to 

use phonetic preparer for later runs to fetch the candidates that actual have misspellings 

and to keep the main bulk of the results according to the heuristic. 

 Disambiguation 1.5

Now that there are all tools and methods in place the actual task of creating identifiers for 

variant groups of applicants and inventors can be put into focus. The only difference to a 

common match of two different data sources is that one data source is matched with itself. 

There exist many different approaches to disambiguate or match this kind of data. 

Trajtenberg et al. (2006) used the Soundex method and introduced a frequency based 

heuristic. Raffo and Lhuillery (2009) analyzed different cleaning methods for a simple sting 

based algorithm and compared them to n-gram methods in respect to recall rate and false 
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positives. Schoen, Heinisch und Buensdorf (2014) combined simple string matching, n-gram 

and a Jaccard similarity coefficient for their “name game”. All these approaches have in 

common that all the matching results are transitive, be it by the method used or enforced 

by following cleaning up. The latter is seen problematic but imposed nevertheless as “the 

only plausible course of action” (Trajtenberg et.al., 2006). The results of the SearchEngine 

can also be forced into transitivity by applying a feedback of 1 transforming the identity into 

a weighted Jaccard index. The advantage of transitive matching in respect to disambiguation 

is the consistent mapping of entities into groups. Intransitive matching means that the 

identity of the reversed match can differ from the original identity. The reverse match can 

even return a value below the identity threshold. If transitive pairs define a network 

consisting of easy to identity clusters of fully connected subgraphs, intransitive links 

between nodes create complex directed subgraphs. The connection strength between two 

nodes can be defined as a tuple consisting of the maximum and the minimum of both 

identities eliminating the direction of the edges, but the graphs are still not complete. 

Fig. B.2: undirected graph 
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It is obvious that a network analysis is required to identity the clusters in such a 

network. This requires a lot more effort than simply collecting the clusters in the network of 

complete subgraphs defined by the transitive match. But this effort is justified by the 

additional freedom of the intransitive match. Intransitive matching allows pairs consisting of 

over-specified and relatively underspecified search terms to exist as connected nodes. An 

over-specified search term has additional clutter that distracts from the actual target, i.e. 

mentioning subdivisions that obfuscate the firm name. As long as the actual target exists in 

the data in a proper specified form it will collect all the over-specified entries even if these 

are not able to find the actual target on their turn. 

A high identity threshold provides that the single connections in the network are 

believable. But the size and the structure of a graph can lead to initially unexpected 

composition of a cluster. Two meta structures can be identified as the main perpetrators in 

this regard: black holes and thickets. A black hole is a node that has a suspicious number of 

connections. These are caused by underspecified data artefacts, i.e. a company name 

consisting only of a legal state or a city name. Luckily these can easily be detected and 

mitigated before the traversal of the network by cutting all weak connections of a node 

whose number of connections exceeds an artifact threshold. 
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Fig. B.3: a black hole and a thicket 

 

A thicket can’t be identified pre traversal. Its structure is chaotic and only discernable 

from a healthy cluster during traversal. It is the direct result of under- and over-specified 

terms that build upon each other. An over-specified term can link to several underspecified 

terms which open the way to their own subgraphs containing over-specified terms and so 

on. In this context “over-specified” does not automatically mean “clutter”, but also proper 

specified terms of common words. To solve this problem suspicious large clusters can be 

traversed again, but now with a limit on the connection strength. A more efficient method 

to this approach is the cascaded traversal. 

 Cascaded Traversal 1.6

Originally introduced to cut down thickets, cascaded traversal has some additional benefits. 

The basic idea was to identify thickets during traversal and not after the complete network 

analysis to save computing time. Every time a cluster reaches a defined node limit the 

traversal has to start again with a more limiting threshold for the connection strengths. The 

cluster size limit is a discrete value that can be determined by answering questions like: 
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“How many misspellings are imaginable for a name?” or “How many different variants of a 

company name seem to be plausible?”. The answers may be arbitrary but as there are 

usually multiple cascades with increasingly restrictive conditions in place, the whole process 

can be adjusted for adaptability. To define a cascade following conditions and steps have to 

be considered: 

• Define a set of rules with increasingly restrictive conditions for the validity of a 

connection. Any rule has to include the restrictions of the previous rule. 

• Attach a maximum cluster size to every rule, i.e.: 

unrestricted, min > 90 @ 3, min > 92 @ 5, min > 95 @ 5, min > 97 @ 10 

• The rules will be exclusively activated in order of definition. The active rule will 

be replaced if the cluster size of the following rule is exceeded. 

• Every time a new rule is activated, the traversal of the network starts again for a 

given start node with the new rule in place. 

• A valid start node is any node that does not already belong to a cluster created 

by another start node. 

Any rule creates a new virtual network that is a thinned out version of the network 

defined by the previous rule. As the propagation of this thinning out process is independent 

from the start node, there is no overlapping of the resulting clusters. As the cluster size limit 

can grow from rule to rule to reflect the increase of the connection quality of the remaining 

network, the cascade adjusts itself by being easy on smaller groups and even letting larger 

groups survive, as long as the connections are strong.  
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Fig. B.4: a cascade with incremental cluster limits is thinning out a thicket 

 

As manual checking is often not feasible for large numbers of observations the identity 

threshold for the disambiguation of the applicants and inventor names is quite high to 

guarantee that the connections in the resulting graph already have a good quality. The 

maximum value for a connection is always equal or higher than the identity threshold. The 

minimum value for a connection can be zero if the search in the reversed direction returned 

an identity below the threshold. For this reason only the minimum is used for the rules. The 

rule set for the inventor names should be more restricting than the rules defined for the 

applicants, because the inventor name index is the base for the next step to identify 

individual inventor careers. The applicant variant index is only used as an instrument to 

identity these careers in conjunction with the inventor name index. The probability that two 

inventors with the same name index have patents for two different applicants that are by 

mistake in the same variant group is quite miniscule. Given the quality of the patent data an 

additional variant index can be created for the home addresses of the inventors. 
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2 The Inventor Mobility Index 

The inventor name index defines a name space into which all patents of inventors with this 

name belong. There are two extreme positions imaginable: all patents are from one person 

only or all patents are from different namesakes. The truth most probably lies in between. 

By investigating the data available for the patents of this name space it becomes clear that 

these patents have different types of connections between them. This could be two patents 

being invented at the same employer (applicant) or inventor home address, sharing some 

co-inventors, citing each other or are about a similar technology. These pairwise 

connections span a network with heterogeneous definitions of connection strength. One 

way to solve this problem is a network analysis of the whole graph using patents as nodes. 

Because of the high interconnectivity and the disparity of the connection quality the high 

probability of thickets could be countered with cascaded traversal. But as the criteria for the 

cluster size limit is the number of patents it becomes obvious that the definition of a rule set 

will be uncomfortably arbitrary. The number of patents per inventor is an endogenous 

criteria and the definition of the connection restrictions require some kind of ranking or 

weighting of the different connection types. The better solution is to define a hierarchical 

order of the connection types. First only the more trustworthy types are used for traversal. 

The resulting clusters are the basic milestones of the inventor career. These clusters are also 

called hypernodes as they become new nodes of a nested-graph model (Alexandra 

Poulovassilis and Mark Levene, 1990, 1994) as the different layers of connection types are 

applied in order of reliability. This approach has two major advantages: it is possible to 

aggregate the data of the patents within a hypernode to create additional information a 

single patent could not provide and it is more comfortable to define a cascade using career 
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milestones. Also, the cascaded traversal implicitly solves the common name problem. One 

symptom of a common name is a huge name space occupied by dense thickets. Cascaded 

traversal keeps the number of milestones within a tolerable limit for an inventor career 

without the explicit knowledge about the commonness of a name. 

 Home Address 2.1

Having the home address on the inventors is the ideal case. After defining a variant key for 

the different existing addresses using the SearchEngine it is possible to define the first layer 

of hypernodes within a name space. A hypernode contains all the patents a person invented 

at a specific home address. As the nested graph is complete no traversal is required to 

collect the patents of a hypernode. From this point on the unit of the cluster size limit for a 

cascade is the relocation. 

 Applicant 2.2

Usually the applicant is the employer of the inventor. In cases where the inventor address is 

missing or not exact, i.e. not on street level, the applicant is the substitute for the home 

address to define a career milestone. In contrast to the home address a patent can have 

multiple applicants resulting in an incomplete graph. Albeit this is a seldom occurrence 

network traversal is required. If the home address is already used as the first layer of 

hypernodes, the different applicant variant keys within a hypernode define the links 

between the nodes. It is not possible to run a differentiated cascade because the affiliation 

to an applicant is a binary decision. There are no stronger or weaker connections to 

discriminate. This is a problem for very large companies in conjunction with common 

inventor names. The only solution is a simple cascade that cuts all connections if the cluster 

size limit is exceeded leaving the hypernodes unconnected. The size limit should not be 
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defined on patent level but on the number of relocations. The consequence is the inevitably 

overestimation of the number of inventors for large companies. The unit of the cluster size 

limit for the following connection type is the job change. 

 Citations 2.3

A citation creates a strong link between two patents. If the same inventor name appears in 

both documents the probability of them being the same person is very high. In spite of this 

excellent connecting property this connection type is only at third position as a patent not 

necessarily has citations that connects back to the same data source. Like the employment 

the connection by citation is also binary but much more trustworthy. The unit of the cluster 

size limit for the following connection type is called the environment change. 

 Peers 2.4

This is finally a connection type that implements the advantages of the hierarchical 

approach. Using the already defined hypernodes it becomes possible to not only connect 

single patents by co-inventors but research environments by peers. All co-inventors within a 

hypernode are the colleagues at a specific career milestone. The strength of a connection is 

defined by the absolute number of shared colleague names and the Jaccard similarity index 

based on colleague names between both hypernodes (the weighted mean of both shares of 

the absolute number of shared colleague names in respect to the corresponding colleague 

name counts). A cascade will require ascending limits for these values. A higher absolute 

value should cancel out any restriction based on the relative value as the risk of an invalid 

connection decreases with the probability to draw the same combination of names by 

chance. The minimum can be used in case the absolute number is low and the number of 

colleagues is high, increasing the potential of accidental drawing the same lean combination 
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by chance. This connection layer often identifies reorganized applicant entities that could 

not be joined by a variant id because of name and location changes. The unit of the cluster 

size limit for the following connection type is the community change. 

 Expertise 2.5

The international patent classification (IPC) codes describe the technologies that define the 

inventiveness of a patent and thus indirectly the expertise of its inventors. The codes follow 

a hierarchical system which allows for truncation at specific positions to get a broader view 

on the involved technology respectively expertise. Only the first 4 positions of the code are 

used. The ambiguity whether a code is associated with the expertise of the inventor or not 

increases with the number of co-inventors for a specific patent. To reflect this correlation all 

codes of a patent get a weight equal to the inverse of the number of inventors. The overall 

expertise scheme of an inventor within a hypernode is defined as a list of the distinct codes 

along with their share on the cumulated weights. A connection between two hypernodes is 

created by the codes they have in common. As the sums of the associated shares will differ 

the connection streng is defined as a tuple. The first cascades use the higher of both values 

because of the heterogeneity of the hypernodes. The role of an inventor in a small 

institution may be much more pronounced than her work in an institution with larger 

teams. The later cascade levels have to restrict the connections by the lower value of the 

tuple to keep the cluster sizes under control. The expertise is a relatively weak connection 

type and should always be the last in the traversal order because larger hypernodes allow 

for a better assessment of the work of an inventor. If there would be further cascades the 

unit of the cluster size limit for the following connection type is the reorientation. 
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 Final Discussion 2.6

A good benchmark for the adjustment of the cascades is the observation of unique names. 

The more exotic ones can easily be identified by common sense. The more technical 

approach is to separate the distinct inventor names into first and last name and look for last 

names that have one or at least only a small number of first names. The name spaces of 

these inventors are equivalent to their careers. After the final clustering all patents of a 

benchmark inventor should end up in one hypernode. Naturally this will not happen in all 

cases as there may be simply no connections between some hypernodes. The adjustments 

to the cascades should not enforce perfect identification of the benchmark group as this will 

inevitably lead to false positives within the not controlled cases. There is nothing to say 

against clustering the benchmark group by their name spaces afterwards.  
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