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Non-technical summary

Research Question

We propose some technical modifications to the option implied probability of default (option

iPoD) methodology suggested in Capuano (2008). The framework allows to estimate a

probability distribution for a firm’s/bank’s future value of assets in such a way that an

implicit probability of default for the firm/bank can be derived. For the estimation process

solely the information from equity option prices is needed. Despite its general attractiveness,

the application of the originally suggested form of the option iPoD framework is difficult to

apply due to computational problems that arise in the estimation of the asset distribution

and the PoD. This paper largely solves these problems.

Contribution

We stabilize the estimation process of the asset distribution by deriving an alternative objec-

tive function which can be solved for arbitrary applications. For the new objective function

we can solve the involved integrals analytically which further stabilizes the estimation pro-

cedure. Moreover, we propose a new algorithm to determine the PoD after showing that

the algorithm used in Capuano (2008) gives rise to arbitrary results. Finally, we carry out

comprehensive numerical evaluations for the updated framework.

Results

Numerical evaluations for the suggested framework - using a large number of hypothetical

PoDs and asset distributions - show the accuracy of the algorithms. In addition, we provide

an illustrative empirical application of the updated option iPoD framework by applying

it to real world option data and show that the methodology was able to anticipate the

downgrading of Bank of America by Moody’s in 2011.



Nicht-technische Zusammenfassung

Forschungsfrage

In diesem Papier werden technische Modifikationen für die in Capuano (2008) vorgestell-

te statistische Methodik zur Schätzung von Ausfallwahrscheinlichkeiten aus Optionspreisen

vorgeschlagen. Diese Methodik erlaubt es, eine Wahrscheinlichkeitsverteilung für den zu-

künftigen Vermögenswert einer Firma/Bank zu schätzen, wobei hieraus implizit eine Aus-

fallwahrscheinlichkeit für die jeweilige Firma/Bank abgeleitet werden kann. Als Daten für die

Schätzung der Verteilung werden ausschließlich Aktienoptionen zu verschiedenen Ausübungs-

preisen benötigt. Trotz der generellen Attraktivität des Ansatzes ist die Anwendbarkeit der

Methodik – in der Form wie sie in Capuano (2008) vorgeschlagen wurde – stark einge-

schränkt, da es technische Probleme bei der Schätzung der optimalen Vermögensverteilung

sowie der Ausfallwahrscheinlichkeit gibt. Dieses Papier löst diese Probleme weitestgehend.

Beitrag

Wir stabilisieren die Schätzungen durch die Herleitung einer neuen Zielfunktion, welche

Lösungen für beliebige Anwendungen liefert. Die Integrale der neuen Zielfunktion können

analytisch gelöst werden, was die Schätzungen zusätzlich stabilisiert und die Präzision der

Ergebnisse erhöht. Weiterhin wird ein alternativer Algorithmus zur Bestimmung der Aus-

fallwahrscheinlichkeit aus der Vermögensverteilung entwickelt, da der ursprünglich von Ca-

puano (2008) vorgeschlagene Algorithmus die Generierung weitgehend beliebiger Ergebnisse

begünstigt.

Ergebnisse

Numerische Evaluationen – unter Verwendung einer Vielzahl von hypothetischen Ausfall-

wahrscheinlichkeiten und Wahrscheinlichkeitsverteilungen für den Vermögenswert – zeigen,

dass die aktualisierte Methodik gute Schätzungen für die Ausfallwahrscheinlichkeit ermög-

licht. Zudem wenden wir den Ansatz auf reale Optionsdaten an und geben dadurch ein

illustratives Beispiel für die praktische Relevanz des Ansatzes. Es zeigt sich, dass die ermit-

telten Ausfallwahrscheinlichkeiten frühzeitig eine klare Indikation für den durch Moody’s im

Jahr 2011 vorgenommenen Downgrade der Bank of America geben konnten.
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1 Introduction

This paper deals with methodological issues concerning the so-called option implied proba-

bility of default (option iPoD) approach suggested in Capuano (2008). In the option iPoD

approach option implied risk neutral densities (RNDs) are estimated in such a way that they

reveal information about the probability of default (PoD) of the issuer of the underlying.

Default in this framework corresponds to the event that the stock price of the firm falls

to zero during the time to maturity of the options. As shown in this paper, the approach

derives the PoDs in a purely statistical way, and neither accounting data nor recovery rate

assumptions are needed. This contrasts the methodology to traditional concepts of PoD es-

timation, which in general are either based on the so called ‘structural approach’ of Merton

(1974) (see eg Crosbie and Kocagil (2003), J.P.Morgan (1997)) or use debt based financial

instruments, like Credit Default Swaps (CDS) or bonds (see eg Chan-Lau (2006)).

In structural approaches the PoDs are measured as the probability that the asset value of

a firm falls below the value of its debt (default barrier). The main drawback of structural

approaches is that they are based on historical data. While the firm’s asset distribution is

derived from historical stock prices, the default barrier is calculated from accounting data.

On the one hand this leads to properties of the asset distribution that are mostly based

on investors’ expectations in the past, and on the other hand to simplified definitions of

default points based on the book value of liabilities. Especially for firms with liquid assets,

volatile leverages and highly complex and opaque capital structures (including eg off balance

liabilities) the structural approach is too restrictive and hence hard to apply. Particularly

critical in this context are applications to financial institutions, as eg pointed out in Crosbie

and Kocagil (2003). In theory more appealing is to use information in prices of debt based

market instruments (credit spreads), like for CDS or bonds. It is generally agreed on that

it is extremely difficult to permanently ‘beat the market’, meaning that the degree to which

information is processed by the market is hardly outperformed by any single model. The

problem, though, is that in order to derive the PoDs from credit spreads, it is necessary to

make assumptions about the recovery rate in the case of default. To assign reliable values to
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the recovery rate is difficult in practice since especially in the case of financial institutions

the volatility of asset values and liabilities makes it hard to predict firm values in the event

of default. While this difficulty in practice is often neglected by assuming constant recovery

rates across firms and over time, the uncertainty about the recovery rates has severe impact

on the information content of extracted PoDs since we do not know whether credit spreads

differ/change due to differences/changes in recovery rates or due to the PoDs.

The option iPoD approach overcomes these shortcomings, because it does neither require

balance sheet nor recovery rate information, and derives asset distributions using exclusively

up-to-date information implied by the daily observed set of option prices. While the frame-

work is applicable to any type of firm for which equity options are available, the framework is

particularly well suited for applications to financial institutions due to the problems pointed

out above. Capuano (2008) applies the approach to financial firms facing the early stage

of the US subprime crisis and presents promising results regarding the signalling power of

the framework. Hence, the methodology seems apt to derive financial distress indicators.

Moreover, it provides an optimal basis for modelling multivariate distributions of financial

systems using copulas, since the entire (marginal) asset distributions of the firms are esti-

mated.∗

The idea of the option iPoD methodology is i) to determine for a firm the risk-neutral density

of its future asset value from option prices and ii) to specify a sub-domain of the risk-neutral

density on which the future asset prices imply a future stock price of zero. The probability

assigned to the sub-domain then defines the PoD. In order to implement this idea, a highly

flexible RND estimation approach is required. First, it has to allow for an interaction be-

tween the shape of the RND and the level of the PoD, such that the combination that best

fits the observed prices can be identified. Second, as shown in section 4, it is essential for

the PoD algorithm that the RND can take arbitrary shapes at the left tail of the distri-

bution, such that for any length of the sub-domain the PoD can be roughly approximated.
∗For copula approaches marginals and the dependence structure between the marginals are needed. The

dependence structure could be calculated on basis of estimated time series of marginals.
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A straightforward implementation is possible with the so-called cross-entropy approach as

suggested in Capuano (2008).† The cross entropy approach is a semi-parametric estima-

tion procedure, which uses moment constraints and the entropy concept (Shannon (1948))

to derive densities under limited information. Redefining the RND domain transforms the

basic entropy based RND estimation set-up, introduced in Buchen and Kelly (1996),‡ into

the option iPoD framework. The entropy based approach has the appealing property that

in the estimation process no more information (in the entropic sense) is imposed as what is

known from the data (see eg Jaynes (1957a)).

Despite the depicted general attractiveness of the method proposed by Capuano (2008), it

suffers from two methodological problems: First, the optimization process in the RND esti-

mation is numerically very unstable and second, the PoD determination algorithm is rather

arbitrary.

The contributions of this paper are: We suggest technical modifications to the original frame-

work which solve the methodological problems to a large degree and hence considerably im-

prove the general applicability of the option iPoD approach. The first modification concerns

the optimization procedure for the cross entropy distribution as the approach applied in Ca-

puano (2008) is generally known to be highly unstable due to singularity problems in wide

ranges of the relevant parameter space. Following Alhassid, Agmon, and Levine (1978), the

search for the roots of a highly non-linear system of equations is transformed into a stable

and computationally efficient minimization problem for a strictly convex scalar function.

Further, we provide an analytical solution to the integrals of the objective function, such

that no numerical methods are necessary.

The second modification concerns the determination of the correct PoD. By analysing the

underlying statistical mechanisms and carrying out numerical evaluations we show that the
†The idea could in theory also be implemented with modifications of more frequently used RND estimation

frameworks, like truncated mixtures of normals, but there would be the additional problem to decide how
many mixtures are required in each specific case.
‡Other applications of the concept to option pricing are eg Avellaneda (1998), Choe and Jeong (2008),

Guo (2001), Neri and Schneider (2012), Stutzer (1996), Stutzer (2000), Rompolis (2010).
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procedure suggested by Capuano (2008) for the estimation of the PoD is unreliable and

crucially depends on discretionary model parameters. In Capuano (2008) these model pa-

rameters were taken from balance sheet information as the framework there is interpreted

as a structural approach based model with an endogenous distress barrier. In contrast, we

stress that the approach is of a purely statistical nature and that the use of balance sheet

information leads to arbitrary results. For this reason we suggest an alternative procedure

which is based on the evolution of the Lagrange multipliers when estimating the RND for

different default barriers. Despite of the ad hoc nature of our approach, the numerical eval-

uations show clearly its accuracy. We illustrate the practical use of the updated framework

with an empirical application to real world option data.

The remainder of the paper is organized as follows. In section 2 we present the option iPoD

framework and contrast our purely statistical point of view to the interpretation given in

Capuano (2008). Section 3 presents the basic estimation set-up used in Capuano (2008) and

then ’updates‘ the methodology for the estimation of the cross-entropy density. The update

comprises a detailed derivation of a new objective function and an analytical solution to

the involved integrals. Section 4 provides an analysis of the mechanism that allows for the

estimation of the option iPoD followed by an discussion on how to determine the optimal

PoD. In this context an ad-hoc procedure is suggested whose accuracy is comprehensively

evaluated in section 5. The evaluation comprises numerical examples as well as an illustrative

real world application. Section 6 offers some conclusions and prospects on future research.

2 The Option iPoD Framework

We start by presenting the basic idea of the option iPoD framework from a purely statistical

point of view, which contrasts the ‘structural approach’ interpretation given in Capuano

(2008). The aim of the option iPoD is to modify traditional RND estimation approaches

such that it is possible to estimate a ‘mass point’ in the RND that indicates the probability

that the underlying of a stock option will have value zero at time of maturity of the option.

A RND, f(ST ), is a density function that describes the investors’ expectations regarding the
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value of the underlying stock S at time of maturity T implied by the observed option prices

for different strikes K. The mass point can be interpreted as a PoD if we assume that a stock

price of zero implies a firm’s default. In order to be able to estimate the potential ‘jump’ in

the RND (if a PoD exists) at a stock price of zero within a continuous estimation framework

a ’trick’ has to be applied. The trick is to extend the domain of the RND for the stock

price such that all realisations within this additional interval of values imply a future stock

price of zero. The integral over the density assigned to this interval corresponds to our PoD

estimate. The additional interval of values is obtained by shifting the domain of ST upwards

by some constant D, and estimating f(VT ), with VT = ST +D. The pay-off for a call option

with strike Ki in T using the new domain is now defined by: CKi
T = max(VT −D −Ki; 0),

and consequently, there will be no pay-off for asset values within the interval [0;D]. In the

RND estimation, a density will be assigned to this interval such that an optimal fit to the

observed option prices is achieved and the PoD is then given by:

PoD(D) =

D∫
0

f(VT )dVT . (1)

As shown in section 4, any PoD level can be approximated if we choose the length of the

interval D correctly.

In Capuano (2008) the above described mechanism is interpreted as a ‘structural approach’

based model (Merton (1974)) with an endogenous distress barrier. In the structural ap-

proach a firm’s value of assets is given by the value of its debt plus the value of its equity.

The firm defaults if the value of assets does not cover the value of debt. Hence, in the

PoD mechanism V can be interpreted as value of assets, S as the value of equity and D as

the value of debt. Capuano (2008) uses balance sheet information about a firm’s debt and

value of assets to define bounds on the domain for the RND which, as we will see in section

4, critically influences the search for the optimal D and leads to arbitrary effects on the

estimated PoD. Henceforward, we will adopt the ‘structural approach’ interpretation solely

to give a theoretical meaning to the variables involved in the PoD estimation procedure.

It is important to note, though, that the assumptions of the structural approach have no
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implications for our PoD estimation.

To estimate the option implied RND, f(VT ), we will use moment constraints given by the

theory of risk neutral pricing (Cox and Ross (1976)) and observed call option prices.§ The

theory of risk neutral pricing postulates that for a given strike Ki the expectation over all

possible pay-offs of an option in T (measured in years), discounted with the (annual) risk

free rate r, should be equal to the current option price observed at the market. Hence, our

moment constraints read as follows:

CKi
0 = e−rT

∞∫
VT=D+Ki

(VT −D −Ki)f(VT )dVT , i = 1 . . . B, (2)

with B denoting the number of observable option prices CKi
0 , whereat the current stock price

S0 is included as an option with strike K1 = 0.

One intends to solve the system of equations (2) with respect to the unknown density for

given option prices CKi
0 at different strikes Ki. One faces an under-determined estimation

problem, as we do not have an infinite set of strikes. Different statistical approaches are

possible to determine a unique density f(VT ) out of the infinite many that are compatible

with the observed prices (see eg Jackwerth (2004)).

We apply the so called cross-entropy function, originally introduced by Kullback and Leibler

(1951), to find a unique density. The cross-entropy-function CE[f(VT ), f 0(VT )] is defined as

CE[f(VT ), f
0(VT )] =

∞∫
0

f(VT ) log
f(VT )

f 0(VT )
dVT (3)

and for a given density f 0(VT ), we find the optimal f(VT ) by minimizing (3) under the mo-

ment constraints given by the system of equations (2).

The cross entropy function is based on the concept of entropy which - as shown by Shan-
§Whether put or calls are used does not matter as they are deterministically linked by the put-call parity.
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non (1948) - can be interpreted as a measure of the average uncertainty in a random vari-

able. Using a weak law of large numbers and Stirling’s approximation, the entropy function

H[f(x)] = −
∫∞
0
f(x) log f(x)dx can be directly derived from the multinomial coefficient in

which the relative frequencies of the different outcomes are replaced by probabilities (see eg

Jaynes (1968)). Each vector of probabilities (assignable to a given domain) entails a cer-

tain number of possible outcomes, whereat the degree of uncertainty in a random variable

increases with the number of possible outcomes. The maximum entropy distribution for a

range of possible outcomes (domain) will hence be that distribution that provides the most

uncertainty regarding a future outcome and it is therefore the least informative distribution.

On a closed interval this will be the uniform distribution, on a unbounded positive real val-

ued domain (for a given mean) the exponential distribution and on a unbounded real valued

interval (given a mean and a variance) the normal distribution.

The related cross entropy function (3), that we minimize in our estimations, can be inter-

preted as an entropic measure of the discrepancy between the two probability distributions

f(x) and f 0(x). In the following the latter can be thought of as a prior distribution. As

suggested by Jaynes (1957a), both, the entropy and the cross entropy function, can be used

for the estimation of probability distributions when there is only partial information avail-

able. Minimizing the cross-entropy function and maximizing the entropy function yield the

same optimal solution if the prior distribution f 0(VT ) in (3) is chosen to be of maximal

entropy on the defined domain. In both cases the principle of maximum entropy (Jaynes

(1957a), Jaynes (1957b)) holds, which states that given the information from the data (the

moment constraints) the distribution which best describes our current state of knowledge is

the one that maximizes the entropy.¶ The reason why we use the cross entropy instead of

the maximum entropy concept, is that it is a more general framework for which (if available)

additional prior information can be used in the estimation.

As shown in the next section, the minimum cross-entropy density will be in the family of
¶In our case this means that we minimize the additional assumed knowledge about the future realisation

of the stock price beyond what is known from the data (the option prices).
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exponential distributions where the number of parameters equals the number of available

option prices. This implies that the more data is available the more flexible shapes we can

approximate. A great advantage over eg the use of (truncated) mixtures of normals is that

we do not have to decide how much flexibility we allow for modelling the density (by choosing

the number of used mixtures) as this will be automatically determined by the amount of

data available.‖

3 Estimation of the RND

3.1 Basic Setup

Using the cross-entropy principle, the option implied RND is obtained by minimizing equa-

tion (3) under the moment constraints given by the equations (2).

Applying the Lagrange multiplier technique and taking into account the additivity constraint∫∞
0
f(VT )dVT = 1 to ensure that the density integrates to one, the optimization problem of

Capuano (2008) reads as:

L =

∞∫
VT=0

f(VT )

[
log

f(VT )

f 0(VT )

]
dVT + λ0

1− ∞∫
VT=0

f(VT )dVT


+

B∑
i=1

λi

CKi
0 − e−rT

∞∫
VT=D+Ki

(VT −D −Ki)f(VT )dVT

 (4)

where f 0(VT ) is the distribution of maximum entropy on the defined domain and λ0, . . . , λB

are the Lagrange multipliers. To obtain the first-order conditions for f(VT ), one needs the

derivative of the Lagrange function with respect to the density (see eg, Cover and Thomas

(2006)), which then yields:

f ∗(VT ) = f 0(VT ) exp

[
λ0 − 1 +

B∑
i=1

λie
−rT1VT>D+Ki

(VT −D −Ki)

]
(5)

‖In addition, as eg shown in Bahra (1997) and Cooper (1999), already the use of a small number of
log-normals leads to quite irregular RND estimates with ‘spikes’.
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where f ∗(VT ) is an infinite-dimensional vector and 1 is an indicator function that is one if

the condition is true and zero otherwise.

By inserting equation (5) in the additivity constraint, exp[λ0−1] can be expressed as function

of the remaining λi such that f ∗(VT ) can be rewritten as:

f ∗(VT ) =
1

µ(λ)
f 0(VT ) exp

[
B∑
i=1

λie
−rT1VT>D+Ki

(VT −D −Ki)

]
(6)

with

µ(λ) = exp(1− λ0) = exp(−λ′0) =
∞∫

VT=0

f 0(VT ) exp

[
B∑
i=1

λie
−rT1VT>D+Ki

(VT −D −Ki)

]
dVT

(7)

It turns out that for a given value of debtD the optimization for f(VT ) results in the necessity

to determine the optimal set of λi’s in (6). In Capuano (2008) this is achieved by inserting

equation (6) in equation (4), deriving the resulting function with respect to the remaining

λi’s and setting the latter to zero. One obtains the following non-linear system of equations

consisting of the partial derivatives:

∂L

∂λi
= e−rt

∞∫
VT=0

1VT>D+Ki
(VT −D −Ki)f

∗(VT )dVT − CKi
0

!
= 0 i = 1 . . . B (8)

The optimal set is calculated in Capuano (2008) by solving (8) with a multivariate Newton-

Raphson algorithm (see eg, Zellner and Highfield (1988)), that is by linearising the system

with a first order Taylor approximation. Unfortunately, the search for the roots of the system

is infeasible in many applications for various reasons. First, the Jacobi matrix resulting from

the Taylor approximation has near singularities in large regions of the λ-space which makes

the required inversion of the Jacobi matrix numerically impossible in most cases. Matters are

further complicated by the fact that the iterative procedure used by the Newton-Raphson

algorithm is very vulnerable to inaccuracies in the numerical solution of the integrals involved

in equation (8). As a result, the search for the roots is unstable and converges only for a
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small number of constraints and when the initial values for λ are set near the final solution

(see eg, Ormoneit and White (1999), Maasoumi (1993)). To overcome these problems we

suggest a robust and computationally efficient algorithm to calculate the optimal set of λ in

equation (6) by applying an approach introduced by Alhassid et al. (1978).

3.2 Derivation of the New Objective Function

Alhassid et al. (1978) showed that a function can be defined such that for any trial set of

parameters λT1 . . . λTB it provides a theoretical upper bound to the entropy of the maximum

entropy density that satisfies the imposed moment conditions. Equivalently, we will derive

a lower bound to the cross entropy of the corresponding minimum cross-entropy.

To derive the objective function, we start by denoting every density that satisfies the moment

constraints given by equations (2) with f(VT ) and the particular f(VT ) that is of minimum

cross entropy with f ∗(VT ). Further we define fTr(VT ) as any (trial) distribution of minimum

cross entropy, that is a distribution of form (6) with parameters λTr1 . . . λTrB . Subsequently

we will show that a strictly convex function W of λTr1 . . . λTrB exists which has a minimum

at that set of λTri = λ∗i that satisfies the system of equations (8) and therefore provides us

with f ∗(VT ).

In order to obtain W we use the non-negativity characteristic (Cover and Thomas (2006),

p. 28) of the cross entropy function, that is

CE[f(VT ), f
Tr(VT )] =

∞∫
VT=0

f(VT ) log
f(VT )

fTr(VT )
dVT ≥ 0. (9)

Adding and subtracting
∫∞
VT=0

f(VT ) log f
0(VT )dVT on the LHS of (9) and rearranging terms

yields:

CE[f(VT ), f
0(VT )] =

∞∫
VT=0

f(VT ) log
f(VT )

f 0(VT )
dVT ≥

∞∫
VT=0

f(VT ) log
fTr(VT )

f 0(VT )
dVT (10)

with equality if and only if f(VT ) = fTr(VT ). Next we insert equation (6) for fTr(VT ) and
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get for the RHS of (10):

∞∫
VT=0

f(VT )

[
λTr

′

0 +
B∑
i=1

λTri e
−rT1VT>D+Ki

(VT −D −Ki)

]
dVT (11)

where λTr′0 = (λTr0 − 1).

As it holds that
∫∞
VT=0

f(VT )λ
Tr′
0 dVT = λTr

′
0 and

∫∞
VT=0

f(VT )e
−rT1VT>D+Ki

(VT−D−Ki)dVT =

CKi
0 , one finally obtains:

CE[f(VT ), f
0(VT )] ≥ CE[f ∗(VT ), f

0(VT )] ≥ λTr
′

0 +
B∑
i=1

λTr
′

i CKi
0 , (12)

whereat the first inequality holds because f ∗(VT ) is just a particular f(VT ) such that the

RHS also applies to CE[f ∗(VT ), f 0(VT )]. Therefore equation (12) provides a lower bound on

the cross-entropy of the distribution of minimum cross entropy, with equality if and only if

fTr(VT ) = f ∗(VT ), implying λTr1 . . . λTrB = λ∗1 . . . λ
∗
B.

Rewriting (12) we get our working function W :

W =

(
CE[f ∗(VT ), f

0(VT )]− (λTr
′

0 +
B∑
i=1

λTri C
Ki
0 )

)
≥ 0 (13)

which can be interpreted as a ’goodness of fit’ measure of fTr(VT ) regarding f ∗(VT ) and is

therefore minimized.

The FOCs for W are given by the conditions:

∂W/∂λTri
!
= 0 or − ∂λTr′0 /∂λTri

!
= CKi

0 i = 1 . . . B (14)

In the Appendix it is shown that W is a strictly convex function for any set of λTri imply-

ing a unique minimum. Consequently one faces a simple minimization problem for a scalar
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function in B variables which, given that there is a solution∗∗, will yield convergence for

arbitrary starting values λTri,0 .

In practice we will minimize the function F = −λTr′0 −
∑B

i=1 λiC
Ki
0 rather than W as the

two functions differ only by the constant CE[f ∗(VT ), f 0(VT )] and hence F is also strictly

convex and has a unique minimum. Further, following Agmon, Alhassid, and Levine (1979),

we can calculate F in a computationally more efficient way by multiplying equation (5) with

exp(
∑B

i=1 λiC
Ki
0 −

∑B
i=1 λiC

Ki
0 ), yielding:

exp(−λTr′′0 ) = exp(−λTr′0 +
B∑
i=1

λTri C
Ki
0 ) (15)

and

F = −λTr′′0 = log


∞∫

VT=0

f 0(VT ) exp

[
B∑
i=1

λTri (e−rT1VT>D+Ki
(VT −D −Ki)− CKi

0 )

]
dVT


(16)

which is the function that we minimize in our applications. Subsequently we show that we

can carry out the integration implied by (16) analytically such that no numerical quadrature

methods are necessary.

3.3 Analytical Solution of the Integrals

In order to derive an analytical solution for the integration we assume a finite domain for VT

with a generally defined lower bound Vmin ∈ [0;D] (until now we assumed: Vmin = 0) and

an upper bound Vmax. Further we define an uniform prior, ie f 0(VT ) =
1

Vmax−Vmin
. Then we

split up the integral in (16) such that we can rewrite the objective function F without the
∗∗This requires the derivative to change sign from positive to negative as the set λTr

i varies from −∞ to
+∞ (see Alhassid et al. (1978)).
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indicator function:

F = log

(
1

Vmax − Vmin

)
+ log


D∫

Vmin

exp

(
−

B∑
i=1

λiC
Ki
0

)
dVT

+
B−1∑
i=1

D+Ki+1∫
D+Ki

exp

(
i∑

j=1

λj(e
−rT (VT −D −Kj)− C

Kj

0 )−
B∑

k=i+1

λkC
Kk
0

)
dVT

+

Vmax∫
D+KB

exp

(
B∑
j=1

λj(e
−rT (VT −D −Kj)− C

Kj

0 )

)
dVT

 (17)

For this form of F the implied integrals can be solved in a straightforward way, leading to:

F = log

(
1

Vmax − Vmin

)
+ log

{
exp

(
−

B∑
i=1

λiC
Ki
0

)
(D − Vmin)

−
B−1∑
i=1

exp
(∑i

j=1 λj(e
−rT (Ki −Kj)− C

Kj

0 )−
∑B

k=i+1 λkC
Kk
0

)
e−rT (

∑i
j=1 λj)

−
exp

(∑i
j=1 λj(e

−rT (Ki+1 −Kj)− C
Kj

0 )−
∑B

k=i+1 λkC
Kk
0

)
e−rT (

∑i
j=1 λj)



−

exp
(∑B

j=1 λj(e
−rT (KB −Kj)− C

Kj

0 )
)
− exp

(∑B
j=1 λj(e

−rT (Vmax −D −Kj)− C
Kj

0 )
)

e−rT (
∑B

j=1 λj)


(18)

4 Estimation of the Option iPoD

So far we focused on the estimation of the optimal set of λ where we had to assume that

the default barrier D is known. In this section we turn to the estimation of the optimal D

and the related determination of the PoD. We first analyse the statistical mechanism which

allows to estimate the option iPoD, such that we can show that i) a book value based def-

inition of the RND domain bounds, as in Capuano (2008), is unnecessary and under some

circumstances will severely bias the results (section 4.1), and ii) the cross-entropy based D
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estimation approach of Capuano (2008) leads to arbitrary results (section 4.2). After de-

scribing the drawbacks of the originally suggested approach, we propose in section 4.2 a new

algorithm to estimate the PoD which incorporates the evolution of the Lagrange multipliers

if the RND is estimated for different D.

To allow for comparisons with the Capuano (2008) framework, we will use the generally de-

fined lower bound Vmin ∈ [0;D] for our domain throughout this section. In Capuano (2008)

the lower bound Vmin is defined by a firm’s book value of debt (per share).†† Similarly the

upper bound Vmax is based on the book value of assets.‡‡

Further, we introduce the following definitions: We refer to the intervals [Vmin, D] and

[D, Vmax] as the PoD domain and the pricing domain respectively. The density that we

assume to have priced the observable options we denote as the True Pricing Density (TPD)

with mass point f(ST = 0) = PoDTPD.

4.1 The Model Parameters

Choice of the Domain Bounds

To obtain an option implied PoD we allow in the RND estimation for a mass point at the

value of zero for the future stock price. In order to estimate that mass point we define an uni-

form prior f 0(VT ) =
1

(Vmax−Vmin)
for an interval [Vmin, Vmax], with Vmin ≤ D < Vmax. Hence,

Vmin and Vmax are the domain bounds for our VT . These bounds influence the estimation

results solely through the domain length (Vmax − Vmin) that they define, but not by their

actual values. This is because the future pay-offs max(VT −D−Ki; 0) are for VT > D (and

a given K) the same for arbitrary pricing domains [D, Vmax] with constant length. Equally,

the pay-offs for VT ≤ D are the same for any PoD domain [Vmin, D] with constant length,

as all values within this domain imply a future pay-off of zero. It follows that book value
††Note that in Capuano (2008) Vmin is denoted by D0, the initial guess for the debt value of the firm. We

find the term Vmin more apt as the prior and hence the domain is defined from Vmin to Vmax.
‡‡More precisely, it is derived from the book value of the assets, the growth rate of the value of assets over

the last year and its standard deviation.
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based domain bounds, as in Capuano (2008), do not have a real life meaning since any do-

main with the same length implies identical results. In contrast, a book value based domain

length will influence the results in a bad way if the implied domain is too short as we see next.

From a statistical point of view we should choose the domain large enough to have enough

possible pay-offs to price the options correctly. The PoD domain must be large enough

to approximate the mass point and the pricing domain must be large enough to price the

options with the residual probability 1− PoD. If the pricing domain is larger than needed

(ie the implied pay-offs of the true pricing density (TPD) are a subset of the implied pay-offs

of the empirical domain), a density of (‘practically’) zero will be assigned to the additional

pay-offs on the upper part of the domain as the options are optimally priced using solely the

TPD domain. As the spare domain implies large pay-offs, assigning density to these values

would significantly influence the price of the option and hence ‘destroy’ the optimal fit. For

this reason, the pricing domain can be chosen very large without (significantly) influencing

the results. Put another way, there won’t be significant damage if we choose the domain

(compared to the TPD) too large, but there will be an severe impact on the results if we

choose it too small.

Influence of the Distress Barrier D on the PoD Estimation

For given domain bounds we are left with the choice of the optimal D and hence the length

of the PoD domain. As will be seen, the decision about D crucially influences the size of

our estimated PoD. The estimation procedure uses the moment constraints (2) to modify

the prior to the posterior density where for any VT ≤ D all restrictions are zero except of

the additivity constraint. The additivity constraint assigns constant density according to

f ∗(VT ) =
1

(Vmax−Vmin)

exp(−
∑B

i=1 C
Ki
0 λi)

exp(F )
to all VT in the PoD domain. As the pay-offs are zero

for all VT ≤ D the VT in the PoD domain do not influence the option prices directly. But

because the pricing domain density does not integrate up to one if density is assigned to the

PoD domain there is an indirect effect of these values on the prices.

Of course, as the density assigned to the spare pay-offs in the upper part of the domain is never exactly
zero, an ‘unreasonably’ large domain will still influence the results to some degree. In practice we set the
domain length five times the stock price.
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Knowing that the integral over the PoD domain corresponds to our PoD we can define the

following PoD function:

PoD(λ,D) =
1

(Vmax − Vmin)
exp(−

∑B
i=1C

Ki
0 λi)

exp(F (λ,D))
(D − Vmin), (19)

which provides further insights into the mechanism. First, the PoD function shows that the

size of the density assigned to the PoD domain is a non-linear function of all RND shape

parameters λi, i = 1...B, which implies that the PoD and the shape of the pricing domain

density interact. Hence, for a given D the combination of PoD and RND shape that best

fits the prices is identified as optimal. Second, equation (19) reveals that the PoD depends

crucially on the length of the PoD domain, ie for a given Vmin on the choice of the ‘optimal’

D = D∗. If we rewrite the PoD-function as PoD(λ,D) = f ∗(VT = D)(D−Vmin), we immedi-

ately see that in order to obtain the true PoD (PoDTPD) it must hold: D∗ = Vmin+
PoDTPD

f∗(VT=D∗)
.

This simply means that for D∗ the mass point of the TPD must be perfectly approximable

as the integral over the density in the PoD domain. As a consequence also the TPD for

ST > 0 is only perfectly approximable by f ∗(VT > D) if D = D∗.

If D 6= D∗ then the TPD will not be estimateable and instead the TPD will be ‘modified’

such that the prices can be met given the ‘wrong’ PoD domain. The more strikes we have,

the more flexible shapes are possible (as one has more λi). The parameter λ1 belonging to

the moment constraint given by S0 will provide flexibility at VT ≈ D which is necessary to

roughly approximate PoDTPD also for ‘wrong’ PoD domains. If D < D∗, then a good fit

is achieved if, compared to the TPD, f ∗(VT = D) is larger than f ∗(VT = D∗) and/or higher

density is assigned to very small pay-offs (and consequently less density to high pay-offs).

For D > D∗, f ∗(VT = D) will be be smaller than f ∗(VT = D∗) and/or less density is assigned

to very small pay-offs. For too large Ds the PoD will in general be larger than PoDTPD due

to the fact, as will be seen in the numerical evaluations, that the estimation framework will

Note that for our method it is not required to have information from out of the money options to provide
PoD estimates. Any data set of options might be priced more consistently if the RND exhibits a PoD. This
flexibility is provided because any shape parameter λi influences the PoD function.
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assign as much density as possible to the PoD domain given that the prices are still met.

The reason is that by assigning density to the PoD domain the density as a whole gets more

entropic, ie more uniform.

The Figures 1.(a)-1.(d) as well as the Tables 1 and 2 illustrate the described effects using

numerical evaluation examples for our estimation procedure.

Figure 1.(a): Specified TPD (PoD= 0.032). Figure 1.(b): Cross-Entropy density
(Vmin = 9, D = 10, Est. PoD=0.010).

Assigning density to the pricing domain always requires some ‘structure’ as this density influences the
prices directly. Hence, assignment to the PoD domain is always ‘the more entropic’ alternative.
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Figure 1.(c): Cross-Entropy density
(Vmin = 4, D = 10, Est. PoD=0.32).

Figure 1.(d): Cross-Entropy density
(Vmin = 4, D = 10). PoD assigned to
VT = D.

For the numerical evaluation, artificial TPDs were created (see Figure 1.(a)) and the theo-

retically implied option prices for different strike prices were calculated from these densities.

The theoretical option prices were then used as input data in the cross-entropy estimations

for different lengths of the PoD domain (see Figures 1.(b)-1.(d)). To obtain a realistic im-

pression of the reliability of the estimates in practice, we used about ten equally spaced

different strike prices within a range of [0.7×S0, 1.3×S0] in order to estimate the respective

densities. Such a set of strikes corresponds roughly to the available strikes of 3 month option

contracts for major financial institutions, which, as stressed in the introduction, are the type

of firms the iPoD approach seems most appropriate for.

The Figures 1.(b) and 1.(c) illustrate the effect of differing lengths of the PoD domain on the

estimated densities. The option iPoD procedure provides correct PoDs and smooth density

estimates if the length of the PoD domain allows to approximate the mass point of the TPD.

The smoothness is provided as the cross-entropy function acts as a type of smoothness cri-

terion that ‘dislikes’ deviations from the uniform prior distribution. As the PoD domain in

Figure1.(b) is too short more spiky densities are required to fit the option prices. The fit is

provided by assigning large density to small pay-offs and removing density for larger pay-offs.

Note, if we would have used strike prices closer to zero in the estimation then the sharp increase in the
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The Tables 1 and 2 show the PoD estimates for differing lengths of the PoD domain (D−Vmin)

for two different TPDs. As expected the estimated PoDs increase with the length of the

intervals, but notably the procedure approximates the magnitude of the PoDs even for too

long intervals quite well. A further notable fact is, as will be illustrated in section 4.2, that

the approach clearly discriminates between TPDs exhibiting PoDs and TPDs that do not.

D − Vmin 1 2 3 4 5 6 10 15 20
PoD 0.010 0.017 0.022 0.027 0.027 0.032 0.037 0.042 0.045

Table 1: Estimated PoDs for different lengths of the PoD domain (Specified PoD: 0.031).

D − Vmin 1 2 3 4 5 7 10 15 20
PoD 0.0004 0.0009 0.0012 0.0016 0.0020 0.00279 0.0037 0.0055 0.0065

Table 2: Estimated PoDs for different lengths of the PoD domain (Specified PoD: 0.0028).

4.2 Approximation of the Correct PoD

A closer look at the results in Table 1 and 2 reveals that we should aim for more than just

rough estimates for the PoD. The framework provides very accurate estimates for any PoD

level and RND form if we are able to identify the correct interval length.

Analysis of the Approach Suggested in Capuano (2008)

The approach suggested in Capuano (2008) evaluates the objective function (18) for different

D. We can derive a formula for the optimal D for a given set of λ from the objective function

in (18). Solving ∂F
∂D

= 0 for D yields

D∗ = Vmax −
∑B

j=1 λjKj∑B
j=1 λj

. (20)

density for small pay-offs would be closer to D. The increase would be larger and the PoD (the resulting
f∗(VT = D)) would be higher.
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Inserting this formula for D in the objective function and optimizing will give us the optimal

interval length.

However, the flexibility of our approach is a curse here. To show this, a loss function is

defined which measures the quadratic distance between the observed prices and the prices

implied by the respective RND estimates for differing lengths of the PoD domain (keeping

Vmin fixed). In Figure 2.(a) the loss function for the numerical example of Table 1 is dis-

played. One finds that for arbitrary interval lengths a good fit to the data can be obtained.

Hence, there are no moment restrictions to identify the optimal D as many D provide a

good fit, and only the cross-entropy is minimized in the optimization of (18). Consequently

the density that is closest to the uniform distribution will be identified as optimal.

As discussed before, density is uniformly assigned to the PoD domain which implies that

the ’uniform nature’ of the posterior will increase with increasing D. Hence, the D closest

to Vmax that still provides a good fit to the data will be identified as optimal. The fit de-

creases if the pricing domain becomes too short to cover the pay-offs of the TPD. Hence,

given enough pay-offs in the pricing domain, the length of the PoD domain will be maximized.

Eventually, the estimated PoD will depend on the length of the RND domain. Since we can

not infer the domain length of the TPD from any theoretical considerations, the suggested

PoD mechanism will produce arbitrary results for the PoD. This is also holds for the book

value based definition of the domain bounds in Capuano (2008). Figure 2.(b) illustrates

the described problem of the Capuano (2008) approach by showing the value of the cross

entropy function for estimated densities with different D (and keeping Vmin fixed) using the

same numerical example as in Table 1.

We would have to know how long the true PoD domain is. But the PoD domain is a purely statistical
concept solely used to be able to approximate the mass point f(ST = 0).

20



Figure 2.(a): Quadratic loss function for
estimates with different lengths of the PoD
domain (keeping Vmin fixed).

Figure 2.(b): Value of cross-entropy func-
tion for different lengths of the PoD domain
(keeping Vmin fixed).

The ‘Averaging Approach’ to Estimate the PoD

Noting the arbitrariness of the PoD estimates in the Capuano (2008) framework, we suggest

an alternative procedure. It is important to note that the D estimation must not depend

on the domain length [Vmin, Vmax], since we can not infer the TPD domain by any means.

Our approach is still quite ad hoc and requires further research but, as will be seen in sec-

tion 5, provides very promising results. It is based on the evolution of the PoD function

(19) and of the Lagrange multipliers when estimating the optimal density for different D

(and setting Vmin = 0). We start by looking at a numerical example in which we spec-

ify a TPD with no PoD and estimate it for different D. Figure 3.(a) shows the evolution

of the PoD and Figure 3.(b) the ‘aggregated’ evolution of the estimated Lagrange multipliers.

It can be seen that the estimated Lagrange multipliers stay the same for all chosen D and

consequently the PoD function increases linearly with growing interval length (which is im-

plied by the PoD function (19) for constant λi). The reason is that there is no PoD to assign

to the PoD domain and hence no shape modifications have to be carried out in the pricing

domain (would be displayed in changing λs) for changing D.
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In contrast, we now look at the evolution of the PoD and the Lagrange multipliers if we

define the same RND as for Table 1 (see Figure 4.(a) and 4.(b)). The evolution of the

Lagrange multipliers illustrates the shape adjustments that are necessary for increasing D

in order to get a good fit to the data in each case. The PoD function displays roughly a

concave form and hence the slope of the function decreases with growing D. Empirically we

found the PoD to be more concave if the PoD is high. Looking at the evolution of the λs

one detects strong fluctuations. These fluctuations will be the stronger the higher the PoD

is. But equal to the PoD function (which is governed by the λ) the λ-function is flattening

with increasing D. This characteristic would clearly be more striking if the function would

be smoothed.

Figure 3.(a): Evolution of the PoD for dif-
ferent D (Vmin = 0); Specified PoD=0.

Figure 3.(b): Sum of estimated Lagrange
multipliers (

∑B
i=1 λi); Specified PoD=0.
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Figure 4.(a): Evolution of the PoD for dif-
ferent D (Vmin = 0); Specified PoD=0.031

Figure 4.(b): Sum of estimated Lagrange
multipliers (

∑B
i=1 λi); Specified PoD=0.031

The exact nature of the evolution of the PoD and the λ-Function are matter of current

research. It seems that the exact determination of the optimal interval length has to be

based on the second derivative of the functions as the slope of the functions is the steepest

before reaching the optimal interval length of six (see Table 1) and is flattening afterwards.

This fast convergence to the true PoD was found in all of our empirical evaluations. So far

though, it is not clear what the exact decision rule should be as the degree of flattening

depends on the level of the PoD.

Until now we suggest the following ad hoc procedure which led to convincing results in our

numerical experiments (see section 5). Since we do not know the exact decision rule, we de-

cide to average estimated PoDs over several lengths of the PoD domain ((setting Vmin = 0))

after having defined an upper bound to the length, ie we average over the PoD estimates for

D = 1 . . . Dmax. Empirically we found that choosing 20 as Dmax provides accurate results for

arbitrary PoD levels and RND forms. The decision for Dmax = 20 is backed by the finding

that the PoD function is quite flat for this value of D for any PoD level that we specified in

our numerical experiments. This strongly indicates that in practical applications the ‘true

PoD’ can be very well approximated with an maximal interval length of 20, and averaging

over estimates for lengths close to the optimal one will provide good results. To identify
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the optimal D and RND one chooses that length for the PoD domain that provides the

PoD estimate closest to the ’average PoD’. Finally, it is important to note, that the reason

for the mechanism to work is the flexibility of the entropy based estimation approach which

guarantees that the true PoD can be roughly approximated for any length of the PoD domain.

5 Evaluation

As addressed in the previous section, we evaluate the suggested estimation procedure by

defining different densities (TPDs) from which we generate our option data.

Figure 5.(a) and 6.(a) show two TPDs, Table 3 their respective statistical characteristics.

The density in 5.(a) exhibits the typical shape of RNDs often found in empirical studies

(negative skewness and positive excess kurtosis (’fat tails’)) except that the entire density

below the default barrier is assigned to D leading in this case to a negative (excess) kurtosis.

In contrast, in Figure 6.(a) a density of quite unusual form is specified such that the great

flexibility of the estimation procedure can be demonstrated. In Figures 5.(b), 6.(b) and

Table 3 the respective results of the estimation are shown.

Figure 5.(a): TPD with PoD= 0.049. Figure 5.(b): Cross-Entropy density for the
density in Figure 5.(a), with vector of strikes
K = (0, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39).
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Figure 6.(a): TPD with PoD= 0.0027. Figure 6.(b): Cross-Entropy density for the
density in Figure 6.(a), with vector of strikes
K = (0, 55, 60, 65, 70, 75, 80, 85, 90, 95).

One can easily verify the accuracy of the estimates regarding shape and PoD of the RNDs.

In each case the optimal PoD was determined as the mean of the PoDs estimated for differing

interval lengths (Dmax = 20). The optimal density was then identified as the density that

exhibits a PoD that is the closest to the average PoD.

PoD Mean Variance Skewness Kurtosis
Figure 5.(a) 0.0496 40.6024 213.3029 -0.4614 -0.6215
Figure 5.(b) 0.0478 40.6205 214.1831 -0.4392 -0.6058
Figure 6.(a) 0.0027 85.8212 680.5172 -0.1146 -0.6574
Figure 6.(b) 0.0032 86.2269 676.8333 -0.0584 -0.4193

Table 3: PoDs and moments of the TPDs and their corresponding cross-entropy density
estimates.
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PoD Mean Variance Skewness Kurtosis
Specified 0.1977 45.8692 179.3605 0.5490 -0.0811

Estimated 0.2044 45.0393 185.9304 0.7241 0.5073
Specified 0.0838 70.6151 9.5013 0.6569 4.5840

Estimated 0.0873 70.6192 8.8162 0.3001 1.4496
Specified 0.0159 23.0837 23.1187 -0.5768 -0.0459

Estimated 0.0188 23.1054 23.5051 -0.5481 0.0833
Specified 0.0010 70.0067 8.8962 -0.6949 0.4190

Estimated 0.0040 70.0634 8.9593 -0.7501 0.8354
Specified 0.000078 90.6685 51.5272 -3.6873 24.6349

Estimated 0.000121 90.6784 51.3571 -3.6397 19.8385
Specified − 155.1997 24.9505 -1.0545 2.4086

Estimated 10−23 155.0426 25.4788 -0.9470 1.9518

Table 4: PoDs and Moments of specified TPDs and their corresponding (optimal) Cross-
Entropy density estimates.

In Table 4 one can see the results of density estimates for further TPD specifications with

PoDs ranging from very high (≈ 20%) to very low (0.0078%) and differing statistical mo-

ments. Also, in these numerical experiments the framework provided very reliable results.

Especially remarkable is that our simple ad hoc procedure regarding the determination of the

PoD is able to obtain accurate estimates for any levels of the true PoD. A clear feature of the

framework seems to be that lower PoDs can be estimated more accurately than high PoDs.

This is due to the strong shape modifications that have to be carried out when estimating

RNDs with high PoDs for different interval lengths. Consequently the PoD estimates for

different D vary more for high PoDs than for low PoDs and the averaging approach is less

accurate.

Finally, we want to provide a short empirical illustration of our framework with real option

prices of banks. It shows that the proposed framework also produces plausible and promising

results if applied to real world data. To evaluate the results of the approach we contrast the

estimation results with real events, since the true RND shapes and PoDs of the banks are of

course not known.

On 9/21/2011 the Bank of America (BoA) was downgraded two levels by Moody’s. This
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implies that BoA should clearly exhibit a higher level of PoD than eg, JP Morgan Chase

& Co. (JPM), whose top rating stayed unchanged. We now want to test if our frame-

work is able to identify this elevated risk for BoA relative to JPM months before the ac-

tual downgrade did happen. We look at two data sets, each available at Yahoo!Finance

(http://finance.yahoo.com). One for 4/25/2011, and one for 8/30/2011. The used options

are 3 month contracts with maturity at 07/15/2011 and 11/19/2011 respectively.

We clearly see by comparing the results in the Tables 5 and 6 that the framework indicates an

elevated PoD for BoA relative to JPM for both dates. In addition, the PoD for BoA increases

sharply getting closer to the date of the downgrading, which seems highly plausible. Finally,

there is an increasing variance for both banks, JPM and BoA, which might indicate a general

increase in risk perception in the market regarding financial institutions.

4/25/2011 PoD Mean Variance Skewness Kurtosis
JP Morgan Chase & Co. (JPM) 5.8×10−9 54.8529 19.9191 0.0382 0.6768

Bank of America (BoA) 0.00152 22.4115 3.5336 -0.3701 6.6342

Table 5: PoD and moments of RNDs for JP Morgan Chase & Co. and Bank of America
based on Options from 4/25/2011.

8/30/2011 PoD Mean Variance Skewness Kurtosis
JP Morgan Chase & Co. (JPM) 2.4×10−14 47.6295 42.8599 1.3031 0.9717

Bank of America (BoA) 0.04568 17.4347 8.2326 -0.2795 2.6762

Table 6: PoD and moments of RNDs for JP Morgan Chase & Co. and Bank of America
based on Options from 8/30/2011.

We want to stress that this is not meant to be an comprehensive empirical evaluation of

the methodology, for which we refer to Matros and Vilsmeier (2012). There, the proposed

method is used to estimate time series of PoDs for a sample of major US financial institutions.

It is found that the informational content in the time series of option iPoDs is superior to

the one implied by time series of CDS spreads during the 2007/2008 US sub-prime crisis.

Note that both data sets have the same time to maturity such that the densities for both dates can be
compared, as the maturity dependence is equal in both cases.

For the applications time series of PoDs were estimated. This can be achieved by using alternately call
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6 Conclusion

In this paper we presented some technical modifications to the framework proposed in Ca-

puano (2008) to derive an option implied probability of default (option iPoD). The first

modification concerns the optimization algorithm to calculate the cross-entropy density as-

sociated with the option prices observed at the market. We derived an objective function

whose minimization is stable and yields unique solutions for the Lagrange parameters which

determine the optimal density. Further, we show how the integrals of the objective function

can be solved analytically. Another modification was proposed regarding the determination

of the optimal PoD. After reasoning that a pure entropic approach to determine the optimal

default barrier leads to arbitrary results, we suggested an easy to implement algorithm for

the calculation of the optimal PoD based on the characteristics of the PoD function. Both

modifications to the framework increase the general practical applicability of the option iPoD

framework.

In section 5 we comprehensively tested our approach by applying it to option prices generated

from user-specified RNDs. The results are very convincing as the estimation procedure was

shown to be highly accurate regarding the estimation of the moments and the PoD of the true

density. Especially remarkable is the ability of the framework to estimate densities with very

low probability of defaults. This is essential for practical applications where one will mostly

deal with low-PoD densities. In an illustrative application to real option data the framework

is able to anticipate the downgrading decision taken by Moody’s regarding Bank of America.

Further, throughout the paper we showed the purely statistical nature of the option iPoD

framework which implies that no theoretical default model or exogenous book values are

needed to derive the PoDs. This contrasts the interpretation of the methodology as a ‘struc-

tural approach’ based model with endogenous distress barrier provided in Capuano (2008).

options with a fixed maturity cycle as eg 5-,6-, and 7-months. The inherent maturity dependence can be
removed by estimating (non-linearly) the maturity effect for the respective time to maturities on basis of
pooled PoDs over a large period of time and several banks/firms. By doing so in Matros and Vilsmeier
(2012), iPoDs exhibiting a theoretical evaluation horizon of 6-month were derived.
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We conclude that the suggested framework provides a promising tool for the estimation of

(risk neutral) PoDs for firms with exchange traded options. Compared to competing ap-

proaches, as structural approach based models or the derivation of PoDs from debt based

market instruments, the methodology has the great advantage that neither historical bal-

ance sheet data nor recovery rate assumptions are required. Particularly attractive seem

applications to financial institutions, which due to volatile assets and leverage as well as

their complex capital structures are highly sensible to the assumptions in the competing

approaches. In addition, the fact, that we derive the PoDs jointly with the corresponding

risk neutral densities, provides an optimal basis for multivariate - copula based - density

modelling. Hence, the estimation of an option implied multivariate asset distribution for a

proxy portfolio of the financial system, based on time series of option iPoDs/RNDs, would

be an obvious empirical application of the framework.

Further research is required regarding the exact nature of the PoD function and the evolution

of the Lagrange multipliers when the length of the PoD domain is changed. The objective

should be to derive an exact decision rule for the determination of the optimal option iPoD.
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Appendix

Proof A: The Strict Convexity of W

The proof follows strongly Alhassid et al. (1978) and it is shown that the Hessian matrix for

the function W is positive definite. We start by deriving the negative definiteness and hence

strict concavity for the function F ′′ = −F = λTr
′

0 +
∑B

i=1 λ
Tr
i C

Ki
0 .

From our definition forW in equation (13) it follows that F ′′ is smaller than CE[f ∗(VT ), f 0(VT )]

for arbitrary λTr1 . . . λTrB , except if λTr1 . . . λTrB = λ∗1 . . . λ
∗
B for which both terms are equal.

Therefore, F ′′ is a concave function with a unique maximum at F ′′ = CE[f ∗(VT ), f
0(VT )] if

its Hessian matrix is negative definite for arbitrary λTr1 . . . λTrB .

We define the following shorthand notations:

φi(VT ) = e−rT1VT>D+Ki
(VT −D −Ki) (21)
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and

CKi,T r
0 =

Vmax∫
0

φi(VT )f
Tr(VT )dVT

=

Vmax∫
0

φi(VT )
1

µ(λ)
f 0(VT ) exp

[
B∑
i=1

λTri φi(VT )

]
dVT = −∂λTr′0 /∂λTri (22)

Hence, we get for the first derivative of F ′′ with respect to λTri :

∂F ′′/∂λTri = ∂λTr
′

0 /∂λTri + CKi
0 = CKi

0 − C
Ki,T r
0 (23)

and the Hessian of F ′′ is given by:

∂F ′′2/∂λTri ∂λ
Tr
j = −∂CKi,T r

0 /∂λTrj = −∂CKj ,T r
0 /∂λTri

= (CKi,T r
0 C

Kj ,T r
0 )−

Vmax∫
0

φi(VT )φj(VT )f
Tr(VT )dVT

= −
Vmax∫
0

fTr(VT )
[
φi(VT )− CKi,T r

0

] [
φj(VT )− C

Kj ,T r
0

]
dVT (24)

where we use the expansion ±CKi,T r
0 C

Kj ,T r
0 and the fact that CKi,T r

0 C
Kj ,T r
0 can be rewritten

as CKi,T r
0

∫ V max
0

fTr(VT )φj(VT )dVT to get from the second to the third line.

The Hessian can be interpreted as a covariance matrix of φi(VT ) and φj(VT ) where CKi,T r
0

and CKj ,T r
0 are the respective expected values. To formally show that the Hessian is positive

definite we have to show that for linearly independent constraints the matrix M with

Mi,j = ∂F ′′2/∂λTri ∂λ
Tr
j (25)

satisfies for any column vector x (x 6= 0), xtMx > 0. To do so we note that we can write

Mi,j as a (weighted) scalar-product of the two constraints Bi(VT ) = φi(VT ) − CKi,T r
0 and

Bj(VT ) = φj(VT )− C
Kj ,T r
0 (see eg, Brockwell and Davis (1991) for the axioms that define a
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scalar product), ie,

Mi,j = −
Vmax∫
0

fTr(VT )Bi(VT )Bj(VT )dVT = − < Bi, Bj >
fTr

(26)

where fTr(VT ) is a strictly positive weighting function. Using the properties of a scalar

product we can further write xtMx as:

xtMx = −
B∑

i,j=1

xi < Bi, Bj >
fTr

xj = − <
B∑
i=1

xiBi,

B∑
j=1

xjBj >
fTr

= − < C,C >fTr

(27)

An alternative way to write < C,C > is:

< C,C >= (x1B1(V1) + . . .+ xBBB(V1))
2 + . . .+ (x1B1(VVmax) + . . .+ xBBB(VVmax))

2 (28)

so that that it holds that xtMx < 0 and hence M is negative definite for arbitrary sets of

λTri if C 6= 0. One obtains C = 0 if and only if for every VT holds:

B∑
i=1

xiBi =
B∑
i=1

xiφi(VT )−
B∑
i=1

xiC
Ki,T r
0 = 0 (29)

or
B∑
i=0

xiφi(VT ) = 0 (30)

with φ0 = 1 and x0 equal to the second term in (29). Equation (30) will only be satisfied if

one or more constraints are linearly dependent. If this is the case the cross entropy distribu-

tion will be still unique but the magnitude of the λTri are not identified uniquely. In practice

one can always eliminate one or more constraints in order to obtain a linearly independent

set of moment conditions (constraints).

The derivation of the positive definiteness for our working function W is straightforward as

we defined F ′′ = −F and W = CE[f ∗(VT ), f
0(VT )] + F where CE[f ∗(VT ), f 0(VT )] is just a

constant.
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