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Abstract

We study the impact of differential fertility levels for the food-insecure and food-
secure population on the long-run values of the population distribution and resources
in a descriptive model, where the food security states are determined by a historically
given food distribution and by the endogenous food production with resources and
labor as inputs. Furthermore, we assume that the resource stock is reduced by poverty-
driven environmental degradation. Moreover, we incorporate nutritional effects on labor
productivity and mortality. By applying local bifurcation theory, we show that the
model may exhibit multiple equilibria. Furthermore, the orbits of resources and the
population distribution may be characterized by quasi-periodic behavior. Sustainable
development in terms of approaching a steady state with positive values of resources
and food-secure population is only promoted by low fertility levels of the food-insecure
and food-secure population.

JEL Classification: C62, I32, Q01.

Keywords: Food Distribution, Fertility, Land Degradation, Dynamic Systems, Multiple Equi-
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1 Introduction

“Over the past thirty years, most of sub-Saharan Africa has experienced very rapid population
growth, sluggish agricultural growth, and severe environmental degradation” and there is
evidence that these three phenomena are connected in a mutually reinforcing manner (Cleaver
and Schreiber 1994). This nexus is commonly known as ‘vicious circle’ in the literature.

The concept of the ‘vicious circle of poverty’ dates back to the 1950s, when Ragnar Nurkse
observed that “in discussion of the problem of economic development a phrase that crops up
frequently is the ‘vicious circle of poverty’. [...] It implies a circular constellation of forces
tending to act and react upon one another in such a way as to keep a poor country in a state
of poverty (Ascher and Healy 1990). Similarly, Lutz and Scherbov (2000) describe the vicious
circle model as being “based on the assumption that high fertility, poverty, low education and
low status of women and children are bound up in a web of interactions with environmental
degradation and declining food production, in such a way that stress from one of these sources
can trap certain rural societies, especially those living in marginal lands, into a vicious circle
of increasingly destructive responses.” Ascher and Healy (1990) tried to categorize this
complex web of intervening factors into four distinct sectors: economic production, income
distribution, natural resources and environment.1 They argue that in this rather complex
web, various vicious circles involving two or more sectors may be observed (for examples see
Ascher and Healy 1990, pages 20–23).

One example of such a vicious circle is illustrated by the parable of firewood (Nerlove
and Meyer 1997). Gathering firewood, water, etc. is mainly the task of women and children.
As deforestation proceeds the borders of the forests are pushed further away from the vil-
lage, then firewood collection becomes more time consuming. Consequently, children become
more valuable for their parents and the demand for them may rise, which reinforces fertility.
Summing up, environmental degradation may itself increase fertility and subsequently popu-
lation growth.2 Hence, Nerlove and Meyer (1997) argue that“[t]he relation between fertility
and environmental degradation depends primarily on the way parents perceive the benefits
of having children and not primarily on the effect of population size on the environment,
as long as the environment is adversely affected by larger population”. Similarly, Dasgupta
(1993) finds that in poor countries children are also considered as income-earning assets which
provides an additional motivation of households for having children.

In the spirit of the concept of the vicious circle, Lutz and Scherbov (2000) developed a
quantitative simulation model, called PEDA (Population, Environment, Development and
Agriculture), which links “population parameters and education to land degradation, food
production and distribution” (Lutz and Scherbov 2000) and has been applied to several
African countries, e.g. Burkina Faso, Cameroon, Madagascar, Mali, Uganda and Zambia (Lutz
et al. 2002).

The PEDA model is a population-based simulation model by considering, besides age and
sex structure, the literacy and food-security status as well as the place of residence of the

1However, Dworak (2002) argues that this categorization is still incomplete, since e.g. population (including
its age and sex distribution, fertility, mortality, migration, education, etc.) and other institutional settings
(security issues, property rights) are missing.

2This controversial causal link has been tested empirically for data of Pakistan and Nepal by Filmer and
Pritchett (1997) and Loughran and Pritchett (1997) in Asia. Filmer and Pritchett (1997) verify several
effects that enhance the plausibility of the hypothesis that environmental scarcity could possibly raise the
demand for children. Although, there are several findings which may be inconsistent with the hypothesis.
However, Loughran and Pritchett (1997) reject the hypothesis, i.e. environmental scarcity lowers the demand
for children for Nepalese data. For sub-Saharan African cross-country data Cleaver and Schreiber (1994) find
a positive relation between total fertility rates and the rate of deforestation. However, the significance was
ambiguous (Cleaver and Schreiber 1994).
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population. In sum, the PEDA model refers to about 1600 population states. It considers
a natural resources module (land and water) and an agricultural production module and
contains a food distribution mechanism, in order to account for the inequality in the access
to food.

In particular, the PEDA model includes the vicious circle reasoning. The growth of the
rural (illiterate and food-insecure) population contributes to land degradation, thus lower-
ing agricultural production, and thereby increasing the number of food-insecure population.
However, the PEDA model does not assume increasing fertility as a direct response to food
insecurity because of its controversial empirical foundation. “Rather, the food-secure and
food-insecure fractions of the population are assumed to have different fertility levels (sub-
ject to exogenously-defined trends) and hence the aggregate fertility level only responds to
changes in the food insecurity through changing weights of the groups in the calculation of
overall fertility.” (Lutz et al. 2003)

In this paper, we aim to investigate the assumption of differential fertility levels for
the food-insecure and food-secure population in a reduced-form derivative of the PEDA
model as presented in Lutz et al. (2002). Furthermore, we extend the PEDA framework by
incorporating nutritional effects on labor productivity and mortality. In short, each time-
period, the rural food-secure and food-insecure population together with the natural resource
stock determine total food production. But, the population lowers the resource stock by land
degradation. The total amount of food produced is distributed each time-period according
to the prevailing food distribution function, thereby dividing the population into food-secure
and food-insecure population.

The remainder of the paper is organized as follows. Section 2 presents the model and
discusses the underlying assumptions. Section 3 investigates the long-run evolution of the
resources, the food-insecure and food-secure population. In particular, by applying bifurca-
tion theory we analyze the effects of changing degree of inequality and fertility differentials.3

Finally, section 4 concludes and presents further extensions.

2 The Model

Population Dynamics

At each time point t, population Pt consists of two groups, the food-secure population,
denoted by PSt, and the food-insecure population, PIt, with Pt = PSt + PIt. Let us denote
the threshold level ỹ as the minimum level of calories necessary to be food secure. Then,
a person belongs to group PSt or PIt, respectively, if he or she receives a level of food that
exceeds (falls short of) ỹ. The dynamics of the sub-populations are composed of natural
population growth and the transition between the food security states (cf. Figure 1), i.e.4

∆PIt = (bI − d(yIt))PIt + M(Yt, PIt, PSt) (1)

∆PSt = (bS − d(ySt))PSt − M(Yt, PIt, PSt), (2)

3In a substantially different but methodological related context, Kremer and Chen (1999) show that the
positive feedback between fertility differentials and income inequality may lead to multiple steady states of
the long-run population distribution of skilled and unskilled population. In particular, Kremer and Chen
(1999) investigate the positive feedback between fertility differential and income inequality created by the
fact that higher wages reduce fertility and that children of the unskilled are more likely to be unskilled than
of the skilled.

4The symbol ∆ represents the first order difference, i.e. ∆xt = xt+1 − xt. Furthermore, the prime after
function names denotes the first derivative and the double prime the second derivative.
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Figure 1: Flow chart of population dynamics.

PIt PSt
-� M(Yt, PIt, PSt)

dI
?

dS
?

? ?

bI bS

where bI and bS denote the (exogenously given) birth rate for the food-insecure and food-
secure population, respectively. We assume, that the death rates of the food-insecure and
food-secure population depend on the per capita food entitlement of the respective sub-
population, yIt and ySt, where mortality decreases when food entitlement rises, i.e. d′ < 0.

Obviously, the transition from food-secure to food-insecure population represented by the
function M hinges on food Yt to be distributed among the two sub-populations PIt and PSt

and on the distribution of food.
In particular, we assume the following functional form for the crude death rates

d(yj) = dnat +
dmax

1 + exp (δ(yj − ym))
, for j = I, S, (3)

which has been proposed in Strulik (1995) and has also been used in Prskawetz et al. (2000).
In particular, dnat indicates a minimum death rate which is approached for values of the per
capita food entitlement rising to infinity. Furthermore, dnat + dmax are approximately the
maximum death rate for a per capita food entitlement close to zero. Within these upper
and lower bounds of mortality, the crude death rates fall with increasing per capita food
entitlement, where the rate of decrease is initially rising and then decreasing. Furthermore,
δ measures the slope of the mortality function. Finally, if the per capita food entitlement
equals ym, then the mortality amounts to about half of its maximum value (Strulik 1995).

Moreover, it seems reasonable to assume that bI , bS < dnat+dmax holds, which implies that
for a per capita food entitlement close to zero, the natural growth rates of the sub-populations
are negative.

Food Distribution

At the end of each time period the total amount of food available Yt is distributed among the
population. We postulate a historically given food distribution function which is represented
by a Lorenz curve in order to be consistent with the original PEDA model (for alternative
measures of inequality like the variance, the Gini coefficient, etc. see Atkinson 1970, Roth-
schild and Stiglitz 1973). This curve plots cumulative shares of food L(F (z)) as a function
of cumulative population shares F (z) when individuals are ranked in increasing order of the
food z that they receive (see Appendix A.1 for a discussion of the Lorenz curve). For instance,
L(P It/Pt) indicates the share of total food which the food-insecure population receives.5 The
food distribution function together with the total amount of food Yt to be distributed in each

5Hence, the per capita food entitlement at time t of the food-insecure population is defined as yIt =
YtL(P It/Pt)/PIt. Furthermore, the per capita food entitlement at time t of the food-secure population is
given by ySt = Yt(1 − L(1 − P St/Pt))/PSt.
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time period and the threshold level of food ỹ determine the share of food-secure PS,t+1 and
food-insecure people PI,t+1, respectively, in the following period.

Recalling some basic mathematical properties of the Lorenz curve, we can derive an
analytical expression for the transition from the food-secure population to the food-insecure
population PIt in each time period.6 We exploit the fact that the slope of the Lorenz curve
at any point F (z) is inversely proportional to per capita food production y = Y/P and
proportional to the corresponding food level z (see Appendix A.1 for the derivation of this
result)

dL(F (z))

dF (z)
= l(F (z)) =

1

y
z. (4)

Assuming further that we can analytically solve for the inverse of the derivative of the Lorenz
curve, equation (4) can be written as

F (z) = l(−1)

(

z

y

)

. (5)

Since F represents a distribution function, it has to be constrained by one from above.
Obviously, the corresponding level of food zmax for which F (zmax) = 1 holds first, indicates
the maximum level of food entitlement in the economy. Equation (5) then implies that the
maximum level of food will depend on the prevailing level of per capita food production y
and the functional form of the Lorenz curve. Unless the economy is in a stationary state,
per capita food production y and henceforth the maximum level of food zmax will vary over
time.

Recalling that ỹ indicates the threshold level of food, a person needs to be food secure,
equation (5) evaluated at z = ỹ gives the proportion of the population becoming food insecure.
Hence, if F (ỹ, y) exceeds the actual proportion of food-insecure population PIt/Pt, then
the stock of food-insecure people will rise.7 Consequently, the movement from food-secure
population to food-insecure population is determined by

M(Yt, PIt, PSt) =

(

F (ỹ, yt) −
PIt

PIt + PSt

)

(PIt + PSt) , (6)

where yt = Yt/(PIt + PSt). Note, that when ỹ exceeds the maximum food entitlement zmax,
then F (ỹ, y) equals one and the entire population will become food insecure in the next
period.

Figure 2 illustrates the derivation of the share of the population that falls short of the
minimum requirement graphically. According to condition (4), the slope of the Lorenz curve
evaluated at the share of the population falling short of the minimum requirement equals the
ratio of the minimum requirement and the per capita food entitlement. Hence, for a given
minimum requirement and per capita food entitlement it remains to find the abscissa value,
where the condition (4) holds, as illustrated in Figure 2 for two examples (points A and B).
Obviously, the higher the per capita food entitlement relative to the subsistence level is, the
less is the share of the population falling short of the latter.

Food is produced according to a Cobb-Douglas production function with the inputs agri-
cultural labor, represented by the rural population, and resources.8 Aggregation over the

6To simplify the notation we shall skip the time argument in the subsequent mathematical derivations.
7In order to highlight the dependency of the share of the population falling short of the minimum require-

ment F (ỹ) on per capita food entitlement, we add y as second argument in what follows.
8In this analysis, we restrict to food crops and abstain from cash crops. Hence, markets are not modelled.
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Figure 2: Graphical derivation of the share of the population falling short of the minimum
requirement of calories.
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exogenous production factors and production adjustments of the PEDA model, as outlined
above, yields the production function

Yt = T (hIPIt + hSPSt)
β1Rβ2

t , hI + hS = 1, (7)

where hI and hS denote constant values of labor efficiency of the food-insecure and food-secure
population, respectively. Furthermore, we normalize the efficiency units and we assume that
hI < hS. The latter assumption is based on the fact that “a person’s consumption-intake
affects his productivity” (Dasgupta and Ray 1987).9 Furthermore, T indicates the constant
technology parameter and Rt represents the resource stock at time t. In addition, β1 and β2

denote the production elasticities with respect to labor and resources, respectively.
For the numerical analysis we postulate the following simple functional form for the Lorenz

curve10:
L(F (z)) = (F (z))α α > 1. (8)

This simple Lorenz curve fulfills the assumption that the first derivative is analytically in-
vertible, which has been postulated above. Moreover, it has the advantage that a single
parameter, namely α, uniquely governs the degree of inequality and therefore ranks the food
distributions.

However, the specific functional form (8) for the Lorenz curve implicitly assumes a zero
minimum food entitlement. Since the minimum requirement of calories in order to be food
secure is strictly positive, there will always be a strictly positive number of people falling

9An empirical confirmation of the nutrition-productivity hypothesis using household-level data from Sierra
Leone is provided in Strauss (1986).

10See Chotikapanich (1993) for alternative functional forms of the Lorenz curve.
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short of this minimum requirement. Hence, we will not obtain a steady state with a zero
number of food-insecure population.

By using this specific form of the Lorenz curve, equations (5) and (6) are transformed to

F (z) =

(

z

αy

)1/(α−1)

, (9)

and

M(Yt, PIt, PSt) =

(

min

{

(

ỹ

αy

)1/(α−1)

, 1

}

−
PIt

PIt + PSt

)

(PIt + PSt) , (10)

where yt = Yt/(PIt + PSt).

Resource Dynamics

The stock of resource increases by indigenous growth/regeneration and is lowered by envi-
ronmental degradation, i.e.

∆Rt = g(Rt) − D(PIt, Pt, Rt), (11)

where we assume a declining rate of regeneration. That means, the higher the resource stock
is, the lower is the rate of regeneration. Hence, we assume a saturation level or maximum
level of the resource stock, R̄, which is the stationary solution of R if the resource is not
degraded. In particular, we assume that regeneration can be represented by the difference
of the maximum level, R̄, and the actual resource stock, Rt, times the speed at which the
resource regenerates, a:

g(Rt) = a(R̄ − Rt)

In addition, we assume that resource degradation hinges on the number of food-insecure
population and on the stock of available resources. More specific, we postulated that the
degradation function is increasing in both arguments. In particular, Lutz et al. (2002) assume

D(PIt, Pt, Rt) = γ
Pt

R̄
PIt

Rt

Rt + η
(12)

where γ and η are fixed parameters. While, it is assumed that degradation increases linearly
in PI , degradation is modelled to rise at a decreasing rate with the level of the resources. This
assumption reflects the fact that environmental stress is less, the higher the available resource
stock is. Furthermore, degradation is zero, if the resources are completely degraded. Simi-
larly, if the entire population is food secure, the resources will not be degraded.11 Moreover,
degradation is scaled by population density in order to reflect the fact that poverty induced
environmental degradation is reinforced by population pressure. Dworak (2002) conducts a
sensitivity analysis of the results with respect to the functional form of the degradation func-
tion in a framework of zero population growth. Surprisingly, the results show to be rather
robust with respect to the functional form of the resource equation. Furthermore, Dworak
(2002, chapter 8) reformulates the resource equation in order to incorporate soil quality and
quantity explicitly, as they are affected differently by population pressure.

11“Land degradation is by no means caused only by the poor. Irresponsible rich farmers sometimes exploit
the land, but by and large, farmers with secure tenure and capital are more likely to conserve natural
resources. When natural disasters occur they can turn to alternative sources of income, borrow and repay
in better years. These alternatives are not open to the poor” (Young 1998). The focus of this paper is to
analyze how the vicious circle of poverty and environmental degradation can be broken. Therefore, we only
model poverty-driven environmental degradation and disregard differently motivated degradation.
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Figure 3: Graphical representation of the postulated mortality function
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Calibration

The parameter values used in the remainder of this paper are calibrated for the case of Mali.
In particular, we use the parameters given in Lutz and Scherbov (2000), which were also
used in Dworak (2002). However, the model studied here extends the PEDA framework by
incorporating nutritional mortality effects. The calibration of the parameter values of the
mortality function as well as the assumptions about fertility is described below.

The time series data necessary to estimate the parameters dnat, dmax, and δ are sparse
or hardly to obtain, if they even exist. For instance, the reports about the state of food
insecurity (Food and Agriculture Organization 1999, 2000, 2001), which appear annually
since 1999, estimate only in the year 2000 the depth of food insecurity for the single countries
for 1996–98. Hence, there are only estimates for the per capita dietary energy supply of the
food-insecure and food-secure population for 1996–98. Moreover, there are not any data
about mortality by food security status. However, the latter constraint can be overcome by
writing the crude death rate of the total population as weighted average of the crude death
rates of the sub-populations, where the weights are given by the share of the respective sub-
population, which are monitored annually by the Food and Agriculture Organization of the
United Nations, i.e.

dt = d(yIt)
PIt

Pt

+ d(ySt)

(

1 −
PIt

Pt

)

= dnat + dmax

(

PIt/Pt

1 + exp (δ(yIt − ym))
+

1 − PIt/Pt

1 + exp (δ(ySt − ym))

)

.

(13)

Nevertheless, the data sets are too sparse in order to obtain reliable parameter estimates.
Therefore, we have to base our parameter estimations primarily on assumptions than on
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real data. For instance, Strulik (1995) assumes that dnat and dmax equal 0.01 and 0.1,
respectively, which seem plausible also for our purpose. Furthermore, it seems reasonable to
assume that ym is less than the minimum requirement of calories in order to be food secure.
For the following simulations we postulate that ym equals 0.6, which is half of the minimum
requirement in order to be food secure. Combining these assumptions with the estimates
for the crude death rate of the total population, the share of the food-insecure population,
and the per capita dietary energy supply for the food-insecure and food-secure population,
respectively, yields an estimate for the slope of the mortality function, δ, about 2.57. Figure 3
plots the mortality function under the assumption of these parameter values.

Moreover, there does not exist any time series data of fertility by food security status.
Hence, the fertility differential between the food-insecure and food-secure population has to
be based on assumptions.

Finally, Table 1 summarizes the parameter values used.

Table 1: Summary of parameter values.
Parameter Value Description

a 0.02 Indigenous growth rate of resources
α 1.3 Degree of inequality
bI 0.05 Crude birth rate of the food-insecure population
bS 0.03 Crude birth rate of the food-secure population
β1 0.534 Production elasticity with respect to labour
β2 0.088 Production elasticity with respect to resources
dnat 0.01 Crude death rate independent from food entitle-

ment
dmax 0.1 Maximum crude death rate which depends on food

entitlement
δ 2.57 Slope of the mortality function
η 0.6̇ Concavity parameter of the degradation function
γ 0.008̇ Degradation impact factor
hI 0.2 Labor efficiency of the food-insecure population
hS 0.8 Labor efficiency of the food-secure population
R̄ 1 Maximum resource stock
T 2.28 Technology parameter of the production function
ỹ 1.2 Minimum requirement of calories
ym 0.6 Food entitlement, where the crude death rate

reaches half of its maximum value

3 Dynamics and Bifurcation Analysis

Putting the pieces together, the dynamical system studied in this paper is given by

PI,t+1 = (1 + bI − d(yIt)) PIt + M(Yt, PIt, PSt) (14)

PS,t+1 = (1 + bS − d(ySt)) PSt − M(Yt, PIt, PSt) (15)

Rt+1 = Rt + a(R̄ − Rt) − γ
P

R̄
PIt

Rt

Rt + η
. (16)

In the remainder of the paper, we proceed as following. First, we compute the steady
states of the difference equation system (14)–(16). By applying local bifurcation theory, we
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determine regions of different long-run evolution of the orbits (i.e. multiple equilibria, quasi-
periodic orbits) in the parameter space in order to identify the long-run effects of parameter
changes.

Proposition 1 If the natural population growth rate of the food-insecure population for a per

capita food entitlement of ỹ/α is positive, then there exists a non-trivial steady state where

the entire population is food insecure.

The proof is given in Appendix A.2. However, whether there exist further fixed points with
an equilibrium share of the food-insecure population less than one can only be determined
numerically.

In Figures 4–5, we investigate numerically the long-run behavior of the dynamical sys-
tem (14)–(16) by jointly changing the degree of inequality and the fertility differential, as
well as the crude birth rates, respectively. In particular, there exist either one or three fixed
points. As evident from Figures 4–5, the orbits may become quasi-periodic in the long run
as represented by a closed invariant curve in the state space.12

In particular, in Figure 4 the effect of a jointly changing degree of inequality and the
fertility differential between the food-insecure and food-secure population is investigated,
where we fix the crude birth rate of the food-insecure population. For α exceeding 1.584,
there exists only one fixed point, which is stable (region d©) or unstable and surrounded
by a stable closed invariant curve (region e©). In contrast for α less than 1.584, it is also
possible that three fixed points exist (regions b© and c©), where the equilibrium number of
food-secure population equals zero for one of the fixed points. Furthermore, the latter fixed
point is always stable, where in region b© there exists a second stable fixed point, which is
unstable in region c©. This second equilibrium exhibits a high equilibrium resource stock and
a relatively low population size, where the equilibrium share of the food-insecure population
is low.

Moving from the left to the right in Figure 4 the distribution effect, which is extensively
discussed in Prskawetz et al. (2003), can be detected. In particular, Prskawetz et al. (2003)
investigate the effect of the inequality in the distribution of food in the PEDA framework
under the assumption of zero population growth and constant resources. Thereby, they split
the ambiguous effect of varying the degree of inequality in a distribution and a production
effect. In particular, an increase in the degree of inequality, ceteris paribus, will intuitively
increase the share of the food-insecure population as more food is distributed to the upper
classes. However, Prskawetz et al. (2003) demonstrate that this must not necessarily be true.
It may happen that the share of food-insecure population even decreases, as the degree of
inequality increases.13 In this case, food entitlement of the poorest of the poor is shifted to
the upper food entitlement classes, thereby increasing also the food entitlement of those who
just fall short of the minimum requirement

In addition, a change in the degree of inequality also effects the maximum food entitle-
ment αy and henceforth determines whether the entire population will be food insecure in
the long run. In particular, as more food is distributed to the upper food entitlement classes,
the maximum food entitlement of the economy will rise (distribution effect). However, as
the number of food-insecure population varies due to a change of the degree of inequality,
the total amount of food produced and henceforth, the maximum food entitlement vary,
too (production effect). If the share of the less efficient food-insecure people increases as a
consequence of a rising degree of inequality, the total amount of food produced declines and

12For the technical details of the bifurcation analysis see Appendix A.3.
13Prskawetz et al. (2003) also demonstrate that the existence of such a result can be shown for a general

food distribution function by using mean preserving spreads as introduced by Rothschild and Stiglitz (1970).

9



Figure 4: Bifurcation diagram with respect to the degree of inequality, α and the fertility
differential between the food-insecure and food-secure population. All other parameters are
set as in Table 1. The dot indicates the parameter values of α and the fertility differential, bI−

bS assumed in Table 1. For the technical details of the bifurcation analysis see Appendix A.3.
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e© Unique unstable fixed point surrounded by a stable closed invariant curve.

thus lowering the maximum food entitlement. Summing up, if a negative production effect
dominates the distribution effect, the maximum food entitlement decreases and the proba-
bility that the entire population will be food insecure in the long run, increases. However,
if the distribution effect dominates, then at least the richest person is entitled to sufficiently
food to be food secure in the long run. Hence, the equilibrium share of the food-insecure
population falls below one if the degree of inequality is sufficiently increased (cf. Figure 4 as
α passes the value 1.584).

Moving in the left part of Figure 4 from the bottom to the top (i.e. from region a© to
b©) a second stable equilibrium emerges. In this case, the fertility level of the food-secure
population is sufficiently lower than that of the food-insecure population implying that the
natural growth rate of the food-secure population may turn negative and there may be
a positive number of food-secure people in the long run. However, the negative natural
population growth rate for the food-secure population implies a continuous flow from the
food-insecure to the food-secure population in the equilibrium. Hence, for the existence of
such an equilibrium a high resource stock together with a low total population size is required.

However, the results presented in Figure 4 crucially depend not only on the fertility
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Figure 5: Bifurcation diagram with respect to the crude birth rates of the food-insecure and
food-secure population. All other parameters are set as in Table 1. The dot indicates the
parameter values of bS and bI assumed in Table 1. For the technical details of the bifurcation
analysis see Appendix A.3.
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differential between the food-insecure and the food-secure population but also on the fertility
level of the food-insecure population, which was held fixed so far. Hence, Figure 5 illustrates
the change of the long-run behavior as the crude birth rates of the food-insecure and food-
secure population are varied simultaneously. For high fertility of the food-insecure population,
everybody will be food insecure in the long run. If the crude birth rate of the food-secure
population is sufficiently low, a second fixed point with a low total population size but with
a positive share of the food-secure population emerges. A low crude birth rate of the food-
secure population in the presence of high fertility levels of the food-insecure population may
decrease the share of the food-insecure population in the long run but simultaneously implies
also a low total population in equilibrium. The long-run behavior drastically changes if the
crude birth rate of the food-insecure population falls below 0.04. Then, there exists either
a stable fixed point with a positive number of food-secure population or for higher fertility
levels of the food-secure population there exists an unstable fixed point surrounded by a stable
closed invariant curve as illustrated already in Dworak (2002, chapter 6). Consequently, low
fertility levels of both sub-populations promote sustainable development. However, we did
not consider crude birth rates below 0.01 in our analysis, since for such low fertility rates the
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population will be extinct in the long run. Proposition 2 summarizes the findings.

Proposition 2 Low fertility levels of the food-secure population in the presence of high crude

birth rates of the food-insecure population enhances chances for sustainable development by

eventually decreasing the long-run share of the food-insecure population but implies simulta-

neously a low total population in equilibrium. Only low fertility levels of both sub-populations

yield sustainable development for all initial values.

4 Conclusions and Extensions

The major part of the literature concerning income distribution and differential fertility is
devoted to the context of investment in human capital.

As noted in the introduction, Kremer and Chen (1999) show that the positive feedback
between fertility differentials and income inequality may lead to multiple steady states of the
long-run distribution of skilled and unskilled population. Translating the skilled and unskilled
population into food-insecure and food-secure population, where labor productivity depends
on the nutritional status, enables us to compare our results to Kremer and Chen (1999).

Nevertheless, the model of Kremer and Chen (1999) differs substantially from our frame-
work in several aspects. First, Kremer and Chen (1999) derive multiple steady states of the
ratio of unskilled to skilled population, where the population growth rates are constant, but
not necessarily equal to zero, in the steady states. Hence, Kremer and Chen (1999) consider
a stable population rather than a stationary population in the equilibrium. Since we are
considering a framework of limited resources and constant technology, the population has to
become stationary in order to obtain a steady state.

Secondly, Kremer and Chen (1999) derive an inverse relationship between fertility rates
and wages by assuming a simple utility function. Hence, they endogenously define the pop-
ulation growth rates. In contrast, PEDA assumes different, but constant fertility levels for
the food-insecure and food-secure population, respectively. Therefore, overall fertility rates
vary only through compositional changes of the population.

However, Kremer and Chen (1999) and the PEDA framework have in common that they
impose an exogenously given distribution of education costs in the case of Kremer and Chen
(1999) and of food in the PEDA model. This exogenously defined distribution mainly governs
the dynamics of the long-run population distribution.

In contrast, Galor and Zeira (1993) explore the relationship between wealth distribu-
tion and investment in human capital in an overlapping generations framework with inter-
generational altruism, where the wealth distribution endogenously evolves over time via be-
quests. They also find that the long-run distribution of skilled and unskilled workers depend
on the initial wealth distribution.14 However, Galor and Zeira (1993) derive multiple equilib-
ria of the long-run distribution of the skilled and unskilled population in a framework of zero
population growth. Similarly, Dworak (2002, chapter 5) finds multiple steady states of the
long-run distribution of the food-insecure and food-secure population in the reduced-form
derivative of the PEDA model under the assumption of zero population growth for both
sub-populations. Hence in Galor and Zeira (1993) and Dworak (2002, chapter 5), multiple
equilibria are mainly generated by the positive feedback between the income/food distribution
and labor productivity depending on the educational/nutritional status within a framework
of stationary populations.

14The existence of the multiple steady states of the long-run distribution basically depends on the assump-
tion of technological non-convexity and imperfect credit markets (Galor and Zeira 1993).
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Maintaining the assumption of differential population growth for the food-insecure and
food-secure population but setting aggregate population growth to zero, Dworak (2002, chap-
ter 6) identifies that differential population growth only affects the domain of attraction of
the respective steady states. Adding aggregate, exogenous population growth reduces the
number of equilibria to a unique steady state. However, this unique steady state may be
unstable and the orbits either tend to unlimited growth of the population while resources
become extinct or the total population size approaches zero while the resources tend to its
maximum level in the long run (Dworak 2002, chapter 6). Assuming endogenous death
rates prevents that the population grows unlimited in the long run and henceforth, allowing
multiple equilibria again.

The aim of the paper was to identify the role of differential fertility of the food-insecure
and food-secure population within a framework of unequal access to food. We find out that a
higher fertility differential in terms of the difference of the fertility level of the food-insecure
population minus that of the food-secure population may decrease the steady state number
of food-insecure population, but the latter is mainly driven by the degree of inequality and
the respective fertility levels. In particular, only low fertility levels for both sub-populations
promote sustainable development in terms of positive levels of resources and population and
independent of the initial distribution of food-secure versus food-insecure population.

These results highlight the role of population growth as it is linked to poverty. As we
demonstrate, food insecurity may even persist in a stationary population with an unequal
distribution of food, where population growth exacerbates poverty. In our framework, fertility
reductions of the food-insecure and food-secure population mitigate the stress on resources
and subsequently on food production. The latter result is a prominent claim of classical
economics. However, it is even acknowledged by some of the neoclassical economists, who
regard high population growth as a neutral factor, “that fertility reduction can buy time while
resource substitutes are found or market or institutional inefficiencies are addressed” (Jolly
1994).

In the PEDA framework, the institutional settings are only reflected by the assumption
of a historically given, unequal food distribution. However, there is no justification given
about the underlying assumptions about the institutions (e.g. property regimes, access to
markets), although the institutional settings reflect the transition between the food-security
states as well as the resource equation, particularly, the degradation function. Beaumont and
Walker (1996) nicely address the latter, where they investigate the optimal choice of labor
input and intensity of farming under different property regimes. Dworak (2002, chapter 8)
proposes a reformulation of the resource equation by distinguishing between quantity and
quality of soil as they are reflected differently by population pressure. A combination of
these two approaches would substantially improve the modelling of the resource side in the
PEDA framework.

Another drawback of the PEDA framework is that the degree of inequality is held constant
over time. Galor and Zeira (1993) present an endogenously evolving wealth distribution by
the means of micro-foundation of bequests. The incorporation of bequests together with the
property regimes would make the PEDA framework much more realistic.
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A Appendix

A.1 Discussion of the Lorenz Curve

As already stated above, the Lorenz curve L(F (z)) plots cumulative shares of income as
a function of cumulative population shares F (z) when individuals are ranked in increasing
order of income z (Lam 1988, p. 143 ff).

Consequently, the Lorenz curve is a monotonically increasing and convex function, where
L(0) = 0 and L(1) = 1 (see Chotikapanich 1993, Ogwang and Rao 1996). Furthermore, the
Lorenz curve fulfills (Chotikapanich 1993)

0 < L(F (z)) < F (z) < 1. (A.1)

A mathematical representation of the Lorenz curve can be derived as follows. Given an
income distribution function with density function f(x), the horizontal axis of the Lorenz
curve is given by the cumulative distribution function

F (z) =

∫ z

0

f(x)dx (A.2)

and the vertical axis is given by the first moment distribution function

L(F (z)) =
1

y

∫ z

0

xf(x)dx =
1

y

[

zF (z) −

∫ z

0

F (x)dx

]

(A.3)

where y denotes the first moment of the density function f (i.e. the mean income/entitlement).
The second identity has been derived by applying partial integration (see Atkinson 1970, Lam
1988). Differentiating equation (A.3) with respect to z yields

dL(F (z))

dz
=

1

y
zf(z). (A.4)

Furthermore, the following condition holds

dL(F (z))

dz
=

dL(F (z))

dF (z)

dF (z)

dz
=

dL(F (z))

dF (z)
f(z). (A.5)

Combining equations (A.4) and (A.5) yields

dL(F (z))

dF (z)
f(z) =

1

y
zf(z), (A.6)

or equivalently
dL(F (z))

dF (z)
=

1

y
z. (A.7)

The last equality establishes the assertion that the slope of the Lorenz curve is inversely
proportional to the mean income y.

Figure 6 plots Lorenz curves for various degrees of inequality in the food distribution,
where the convexity of the Lorenz curve measures the degree of inequality which prevails in
the economy, as proven below.

If the Lorenz curve coincides with the 45o−line, the slope of the Lorenz curve equals one
at each point. Hence, everyone in the economy would receive the mean income/entitlment,
i.e. ‘perfect equality’ would prevail.
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Figure 6: Lorenz curve
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Recalling equation (A.7), we can determine the share of the population that receives an
income/entitlement less than or equal to the mean income/entitlement in the economy for
each Lorenz curve by marking the points on each Lorenz curve, where the slope equals one.
The Lorenz curve which is denoted by the dotted line yields a higher percentage of population
that receives income/entitlement less or equal to the mean income/entitlement (point B) than
the Lorenz curve which is indicated by the solid line (point A). Consequently, the Lorenz
curve that relates to the point B represents a higher degree of inequality. Obviously, this
Lorenz curve is more convex.

A.2 Proof of Proposition 1

The computation of the steady states is constrained to the case ỹ > αy since the transition
function between the sub-population then simplifies to

M(Yt, PIt, PSt) = PSt.

For ỹ < αy the fixed points have to be determined numerically.
Taking

PI,t+1 = PIt = PI and PS,t+1 = PSt = PS ∀t

into account, equations (14)–(15) simplify to

(bI − d(yI)) PI + PS = 0 (A.8)

(bS − d(yS)) PS − PS = 0. (A.9)

Equation (A.9) yields that either the equilibrium number of food-secure population equals
zero or that the natural population growth rate of the food-secure population equals one.
For plausible parameter values one can abstain from the latter case.
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Furthermore, Dworak (2002, chapter 5) demonstrates that there exists a unique negative
relationship between the number of food-insecure population and the resource stock for a
given number of food-secure population.

Moreover, the equilibrium number of the food-secure population equaling zero implies
that either also the food-insecure population equals zero in the equilibrium or the natural
population growth rate of the food-insecure equals zero from equation (A.8). However, the
right-hand side of the difference equation system (14)–(15) is not defined for a zero total
population size.

The condition of zero natural population growth for the food-insecure population implies
that the per capita food entitlement of the food-insecure population equals the following
expression

yI(PI , 0, R) = ym +
1

δ
ln

(

dmax

bI − dnat

− 1

)

. (A.10)

The equation above exhibits a unique solution for R taking also the negative relationship
between R and PI into account.

For the existence of the fixed point, the equilibrium values has to fulfill the condition
ỹ > αy(P̂I , 0, R̂). However, since the number of food-secure population equals zero, the
per capita food entitlement of food-insecure population equals that of the total population
i.e yI = y. Hence, the condition above may be transformed to

ỹ

α
> yI = ym +

1

δ
ln

(

dmax

bI − dnat

− 1

)

, (A.11)

which is equal to
bI − d(ỹ/α) > 0.

A.3 Technical Details of the Bifurcation Analysis

As evident from Figures 4–5, there exist either one or three fixed points. In general, the
regions of the differing number of fixed points are separated by fold curves, which collide in a
Cusp point. Furthermore, the stability of the fixed point changes and a closed invariant curve
emerges when passing the Neimark-Sacker curves, which are abbreviated by ‘NS’ in Figures 4–
5, where a ‘+’ or ‘−’ in the subscript denote whether the Neimark-Sacker bifurcation is
subcritical or supercritical, respectively.15 Furthermore, the fold and the Neimark-Sacker
curve meet tangentially in a strong resonance bifurcation 1:1 (denoted by R1 : 1).16

However, at ỹ = αyI(P̂I , 0, R̂) which is equivalent to

nI

(

ỹ

α

)

= bI − d

(

ỹ

α

)

= 0,

the right-hand side of the equation system (14)–(16) is not differentiable. Hence, the bifur-
cation behavior cannot be inferred from the multipliers of the fixed point and, therefore, it
has to be determined by observing orbits.

15At a supercritical Neimark-Sacker bifurcation the fixed point looses its stability and a stable closed
invariant curve emerges. In contrast, at a subcritical Neimark-Sacker bifurcation, the fixed point becomes
stable and an unstable closed invariant curve emerges.

16Furthermore, along the Neimark-Sacker curve an infinite number of Arnold tongues may be rooted. More-
over, according to Kutsnetsov (1998), there may exist transversal homoclinic structures in an exponentially
narrow parameter region bounded by two smooth homoclinic tangencies curves. In addition, the fold curves
delimiting the Arnold tongues accumulate on these homoclinic tangencies curve (Kutsnetsov 1998).
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For instance passing from region a© to e© by crossing nI(ỹ/α) = 0, the unique fixed point
looses its stability and simultaneously an attracting closed invariant curve emerges, which is
characteristic for a supercritical Neimark-Sacker bifurcation. Furthermore, passing from b©

to d©, the stable fixed point with zero food-secure population and the unstable fixed point
collide and vanish similar to a fold bifurcation. Moreover passing from c© to e©, it seems
that both bifurcations occur, i.e. the stable and the unstable fixed points collide and vanish
and a stable closed invariant curve appears.

Moreover, since the right-hand side of the equation system (14)–(16) is not differentiable
everywhere, backwards iteration is not possible everywhere. Therefore, further unstable
closed invariant curves may exist but cannot be detected or, if their existence is detected by
subcritical Neimark-Sacker bifurcations, they cannot be continued as the parameters change.
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