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Abstract 
 

Since policy-makers often prefer to think in terms of alternative scenarios, 
the question has arisen as to whether it is possible to make conditional 
population forecasts in a probabilistic context. This paper shows that it is 
both possible and useful to make these forecasts. We do this with two dif-
ferent kinds of examples. The first is the probabilistic analog of determi-
nistic scenario analysis. Conditional probabilistic scenario analysis is es-
sential for policy-makers because it allows them to answer “what if” type 
questions properly when outcomes are uncertain. The second is a new 
category that we call “future jump-off date forecasts”. Future jump-off 
date forecasts are valuable because they show policy-makers the likeli-
hood that crucial features of today’s forecasts will also be present in fore-
casts made in the future. 
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Conditional Probabilistic Population Forecasting 

 
Warren Sanderson, Sergei Scherbov, Brian O’Neill, and Wolfgang Lutz 

 

1. Introduction 

The last decade and a half has witnessed rapid development in the area of probabilistic popu-
lation forecasting (see Alho (1990 and 1997), Alho and Spencer (1985), Keilman, Pham, and 
Hetland (2002), Lee (1998), Lee and Tuljapurkar (1994), Lutz, Sanderson, and Scherbov 
(1996, 1997, and 2001), Lutz and Scherbov (1998), and Pflaumer (1988) among others). A 
probabilistic forecast goes beyond a traditional deterministic one by providing an integrated 
estimate of the forecast’s uncertainty, often a crucial quantity for decision-makers. These 
forecasts give distributions of outcomes rather than single numbers resulting from alternative 
scenarios. Since policy-makers often prefer to think in terms of alternative scenarios (for ex-
ample, outcomes with and without a certain policy), the question has arisen as to whether it is 
possible to make conditional forecasts in a probabilistic context. 

This paper answers that question by demonstrating how to obtain conditional probabilistic 
population forecasts. We do this with two different kinds of examples. The first is the prob-
abilistic analog of deterministic scenarios and the second is a new category that we call “fu-
ture jump-off date forecasts”. Both are important for policy analysis.  

Scenario analysis is essential for policy-makers because it allows them to answer “what if” 
type questions. For example, they may want to know what the age structure of their country 
would be in fifty years if fertility were lower than in the official projections. Future jump-off 
date forecasts are valuable because they help in answering questions about the value of wait-
ing to learn about how the future is unfolding. For example, a country may be deciding on 
whether to build up a retirement fund for its citizens. The decision could be made to raise 
taxes now or to wait ten years to improve its projections of future population aging. Future 
jump-off date forecasts allow us to assess how much uncertainty about the future is likely to 
be resolved by waiting.  

In Section 2, we briefly discuss the probabilistic forecasting methodology used in Lutz, San-
derson, and Scherbov (2001). It is the basis for the quantitative examples in the next two sec-
tions. In Section 3, we discuss the probabilistic counterpart of traditional scenario analysis. 
Section 4 presents a first look at future jump-off date forecasts. Section 5 contains some con-
cluding thoughts. 

2. An Introduction to the Methodology 

Creating population forecasts from an initial distribution of the population by age and sex and 
forecasts of total fertility rates (TFRs), life expectancies at birth, and net migration rates is a 
widely accepted procedure. Probabilistic population forecasts differ from deterministic fore-
casts in that they quantify the uncertainty of the course of future rates and therefore must 
specify future total fertility rates, life expectancies, and net migration rates as distributions 
and not as points. Distributions can also be used to quantify other uncertainties such as those 
relating to the base population size.  

In order to generate the required distributions, Lutz, Sanderson, and Scherbov (2001)  
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let v be the total fertility rate, the change in life expectancy at birth, or net migration to be 
forecasted for periods 1 through T and vt be its forecasted value at time t. The forecasted 
value, vt , can be expressed as the sum of two terms, its trend (mean) at time t, tv , and its de-
viation from the mean at time t, εt. In other words, ttt vv ε+= , where εt is the idiosyncratic 
noise. The tv  were chosen based on the arguments given in Lutz (1994 and 1996) and up-
dated based on subsequent information. The εt term is assumed to be a normally distributed 
random variable with mean zero and standard deviation σ(εt). The σ(εt) are also based on ar-
guments from the same sources.  

Because of the persistence of the factors represented by the εt, we would generally, expect 
them to be autocorrelated. One of the most commonly used methods of specifying how the εt 
term evolves over time is the simple autoregressive formation (AR(1)), where 

ttt u+⋅= −1εαε , where ut is an independently distributed normal random variable with mean 
zero and standard deviation σ(u). Another commonly used method is the moving average 
formation of order q, MA(q) where q is the number of lagged terms in the moving average. 
We use the following moving average specification: 

∑
=

−⋅=
q

i
itit u

0
αε , where ut-i are independently distributed standard normal random variables. 

To ensure that the standard deviation of εt is equal to its prespecified value, ( )
1+

=
q

t
i

εσα .  

The choice between AR(1) and MA(q) does not have to do with estimation, but rather with 
representation. Data do not exist that would allow the estimation of the parameters of either 
specification at the regional level used in Lutz, Sanderson, and Scherbov (2001). Neither is 
more theoretically correct than the other. Both are just approximations to a far more complex 
reality. When comparably parameterized, they produce very similar distributions of εt  

The choice between the two, therefore, rests on which more accurately reflects arguments 
concerning the future. From our perspective, the moving average approach has the advantage 
that the σ(εt) terms appear explicitly making it easier to translate ideas about the future into 
that specification. 

 
 

The future levels of vital rates can be correlated in different ways. Most important are (a) the 
correlations between deviations from assumed average trends in fertility and mortality rates, 
(b) the autocorrelation of deviations within each series of vital rates and (c) the correlations 
among the deviations from the average vital rate trends in different world regions. The fore-
casts of the world’s population used in this paper assume: (1) a zero correlation between fer-
tility and mortality deviations from their trends within regions, (2) a 31 term moving average 
specification separately for fertility and mortality deviations, which implies an autocorrelation 
between deviations one year apart of around 0.96, and (3) cross-regional correlations of fertil-
ity and mortality deviations within each year of 0.7 and 0.9 respectively. This methodology is 
considerably different from the one used in Lutz, Sanderson, and Scherbov (1996, 1997), 
where piecewise linear paths for future vital rates were used.  

Because of temporal and regional correlations, vital rates paths for all regions are determined 
simultaneously and then used to make population forecasts, which were aggregated to the 
world total. This process was repeated 2,000 times, generating a distribution of world popula-
tion sizes for each year from 2001 to 2100. 
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3. Conditional Probabilistic Forecasting and Scenario Analysis 

One important audience for probabilistic forecasts is the user community. Often when demog-
raphers want to communicate the importance of particular variables in their forecasts to mem-
bers of this community, they use scenarios. In population forecasting, scenarios are typically 
clear “if...then” statements in which the implications of a certain set of assumptions on fertil-
ity, mortality and migration are being demonstrated (Lutz 1995). Such scenarios can illustrate 
the laws of population dynamics but do not give the user any information about the likelihood 
of the described path. For instance, an immediate replacement fertility scenario merely shows 
what would happen if fertility immediately jumped to the replacement level without saying 
that this is a likely or even plausible path. For policy makers who want to know what would 
be the long-term consequences of alternative fertility trends resulting from alternative poli-
cies, for example, such scenarios can nonetheless be useful guides. Conditional probabilistic 
forecasting is a way of posing and answering the same type of question within a probabilistic 
framework.  

The first discussion of conditional probabilistic population forecasts, of which we are aware, 
appears in Alho (1997). Alho first turned the deterministic world population forecasts in Lutz, 
Prinz, and Langgassner (1994) forecast into a probabilistic one and computed the probability 
of the world’s population falling between the high and low scenarios. Next, Alho considered 
the case where the UN’s world population forecasts for 2025 could be regarded as a Lutz, 
Prinz, and Langgassner (1994) forecast conditional on the success of family planning pro-
grams. Alho showed that if the probability of being between the UN’s high and low variants 
was 75 percent, then those programs would have to reduce the variance of the probabilistic 
version of the Lutz, Prinz, and Langgassner (1994) forecasts by at least 42 percent. Alho re-
gards this as “much too high to be credible” in light “of the past record of ineffectiveness of 
government interventions concerning fertility in the industrialized countries” (p. 83). He 
showed that if the reduction in the variance were less than 42 percent, then the probability 
content of the interval between the UN high and low variants must be less than 75 percent.  

Alho (1997) is an example of taking known unconditional and conditional distributions and 
learning about the nature of the conditional distribution by studying the plausibility of the 
conditions needed to obtain it from the unconditional one. Here an example that is at the other 
end of the continuum is presented. Starting with unconditional distributions and conditions 
that are of interest to policy-makers, the example demonstrates how probabilistic forecasting 
can produce conditional distributions that are useful in scenario analysis. There are many pos-
sible intermediate cases as well, where information about some aspects of conditional distri-
butions and some features of the conditions themselves are combined in order to investigate 
particular questions. An example of this can be found in the O’Neill (2003).  

The approach used here was developed in Sanderson et al. (forthcoming). An application on 
whether immigration can compensate for Europe’s low fertility appears in Lutz and Scherbov 
(2002). The example begins with Figure 1, which shows the distribution of the world’s popu-
lation in 2050 conditional on average fertility and mortality levels for the world over the pe-
riod 2000-2050. The x-axis is divided into three ranges labeled “low fertility,” “medium fertil-
ity” and “high fertility.” Low fertility includes all of the 2,000 simulated futures where the 
average total fertility rate in 2000-2050 was below 1.6. Medium fertility includes those paths 
where the average total fertility rate was between 1.6 and 1.8; and high fertility includes paths 
in which the average total fertility rate (over the whole projection period) was above 1.8. 
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Figure 1. Median and interdecile ranges for the world population, conditional on three alterna-
tive fertility and mortality levels. The three lines within each category refer to the low (left), 
central (middle) and high (right) groups of life expectancy. Source: Authors’ calculations. 

Within each of the three panels there are three lines that have different symbols near their cen-
ters. The lines with the diamonds near their centers refer to paths where the global average life 
expectancy at birth was lower than 68 years. The lines with the dented squares refer to paths 
where the average life expectancy was between 68 and 71 and the lines with triangle shapes to 
paths with average life expectancies over 71. The aggregations of the total fertility rates and 
life expectancies at birth were chosen so that one-third of our paths was in each group. The 
symbols are placed at the medians of the distributions. The circles at the endpoints of the lines 
indicate the 80 percent prediction intervals. 

Now we are in the position to answer some “what-if”-type questions. For example, what 
would be the effect on world population size in 2050 of high fertility trends versus low fertil-
ity trends over the coming decades combined with the medium range of uncertainty for future 
mortality? We can immediately read the answer off the figure. In the middle group, the me-
dian population of the world in 2050, if we experienced low fertility, would be around 7.7 bil-
lion people with the 80 percent prediction interval covering the range 7.0 to 8.3 billion people. 
If we experienced a high fertility world, the median population would be considerably higher, 
around 10.0 billion people, with a prediction interval between 9.0 and 10.9 billion people. The 
difference between the medians is 2.3 billion people, which is quite large considering that the 
median of the unconditional population distribution is 8.8 billion people. Clearly, the differ-
ence in fertility is very significant. 

We can also read the figure to tell us about the influence of differences in life expectancies on 
future population size. We can do this easily by looking at the middle panel, labeled “medium 
fertility.” When life expectancies are in the low group, the median population size is 8.3 bil-
lion. When they are in the high group, the median population is 9.2 billion. Therefore, in 2050 
the effect on population size of moving from low to high fertility, keeping life expectancy 
constant, is much larger than the effect of moving from low to high life expectancy, keeping 
fertility constant. 

 5



Figure 2 is similar to Figure 1, except that it deals with the proportion 60 years and above. As 
fertility increases, the proportion 60 and above decreases, but as life expectancy increases, the 
proportion gets larger. Let us consider the difference in the proportion due to having high fer-
tility as opposed to low fertility, again assuming medium life expectancy. The median propor-
tion is 25 percent when fertility is low and around 19 percent when it is high. Assuming me-
dium fertility and varying mortality, we see that when mortality is low the proportion is below 
20 percent, compared to 24 percent when mortality is high. Thus, the effects of fertility and 
mortality are more similar in determining the proportion 60 and above than they are in deter-
mining population size. 
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Figure 2. Median and interdecile ranges for the global proportion above age 60, conditional 
on three alternative fertility and mortality levels. The three lines within each category refer to 
the low (left), central (middle) and high (right) groups of life expectancy. Source: Authors’ 
calculations. 

The two examples in this section show that in making the transition from deterministic to 
probabilistic forecasting, we do not have to give up on answering the kinds of “what-if” ques-
tions that users and policy-makers so often pose. 

4. Conditional Probabilistic Forecasts with Future Jump-Off Dates 

In many policy areas, we come across the question: Should we act now or should we wait un-
til we learn more? Waiting has a cost because it can foreclose certain policy options or make 
them more expensive. On the other hand, by waiting policy-makers could possibly acquire 
important and relevant information, and avoid potentially unnecessary policy interventions. 
Since population is an important driver of many processes, it is valuable to know how much 
the demographic outlook might change if we wait.  

For example, the question of whether to act now or wait to learn more is central to the debate 
over climate change policy. The climate change issue is characterized by both long timescales 
– today’s emissions of greenhouse gases will affect climate for decades to centuries – and 
substantial uncertainties in climate impacts on society and costs of emissions reductions. 
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Many argue that it would be beneficial to wait to learn more (and reduce uncertainties) before 
deciding whether, and how much, to reduce emissions. This strategy would avoid investments 
in emissions reductions that may turn out to be unnecessary. Others argue that reductions 
should begin now, because if climate change turns out to be serious, we would later regret not 
acting early. The question of how the potential for learning about various aspects of the prob-
lem affects today’s optimal decision remains unresolved (Webster, 2002). It is possible that 
learning about the outlook for future population growth could impact such decisions. Popula-
tion is one factor affecting the outlook for future greenhouse gas emissions. If, by waiting a 
decade or two, we learn that population is likely to be much lower in the future than we cur-
rently expect, our outlook for future emissions will likely also be revised downward, reducing 
the urgency of emissions reductions. If we learn that population is likely to be much higher, 
our outlook for emissions will also be higher, justifying more aggressive action to reduce 
emissions. 

Probabilistic forecasts with future jump-off dates are constructed to help us learn about the 
value of waiting for more information. These forecasts are, of course, conditional on what 
happens between the beginning of the current forecast period and the future jump-off date. 
For example, imagine that it is the year 2000 and forecasts are made of the distribution of the 
size of the world’s population in 2050. How different would the forecasted distribution of 
population sizes be in 2050 if the forecast were made in 2010 instead of 2000? We do not 
have to wait to 2010 to answer this question. The technique of making probabilistic forecasts 
with future jump-off dates allows us to think about this question now.  

Projections in 2010 may differ from projections in 2000 because something is learned be-
tween now and then. At a minimum, the values of demographic variables like population size, 
fertility, mortality, and migration in that ten year period will be observed. Other factors such 
as new policies, economic trends, or social conditions that are relevant to the outlook for fu-
ture demographic rates will also be observed. It is possible as well that demographic theory 
will be improved through research, that new breakthroughs in health (or new epidemics of 
disease) will occur, or that new contraceptive technology will be developed. All of these types 
of learning could change the outlook for the future. Learning based on these other factors is 
not considered here. In the example below, learning is only based on the observation of 
demographic variables. While learning by observation is only one type of learning, it is likely 
to be an important one in population projections. 

In this section, we take some small first steps toward understanding how this passive learning 
process takes place, so that users of forecasts are not surprised when forecasts change and so 
that policy makers can use probabilistic forecasts in the design of adaptive policies.  

Let us imagine that it is now 2010 and all the relevant population information has been com-
piled and is available. Certainly it would be appropriate to make new forecasts, even if the 
methodology and assumptions that were originally used were completely correct. The fore-
casts based in 2010 would take into account what actually happened between 2000 and 2010. 
Without actually making new forecasts, the projections made in 2000 could be used to antici-
pate what new projections would look like.  

In order to make this inquiry practical, a very simple approach will be used here. Instead of 
observing exact population characteristics, the assumption is made that only whether or not 
global population size is above or below the median of its distribution can be observed. There 
is nothing theoretically attractive in dividing the observations into only two groups in 2010, 
but it makes this introduction to passive demographic learning as simple as possible. 
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Table 1. Panel A 
Forecasted distributions of the world’s population size beginning in 2000 and beginning in 2010. 
 
World           (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A:  2000 Jump-Off Date 
      

 
 

Below 6 6 to 7 7 to 8 8 to 9 9 to 10 
 

10 to 11 
 

11 to 12 
 

Above 12 
 

Median RIDR* 
2000 0      

           
           
           
           
           
           
           
           
           
           

100 0 0 0 0 0 0 6055 0
2010 0 85.05 14.95 0 0 0 0 0 6828 0.062
2020 0 8.05 81.45 10.5 0 0 0 0 7538 0.129
2030 0.1 3.05 41.85 47.35 7.5 0.15 0 0 8085 0.195
2040 0.15 3.75 24.85 40.25 25.15 5.2 0.65 0 8525 0.27
2050 0.5 5.05 18.95 30.95 26.8 13.45 3.3 1 8796 0.352
2060 1.55 7 17.45 25.75 22.35 16.25 6.45 3.2 8935 0.427
2070 4 8.35 16.9 21.2 19.9 15.05 8.5 6.1 8974 0.52
2080 6.8 10.1 16 18.45 18.45 12.55 9 8.65 8890 0.606
2090 10 12.75 14.85 17.9 15 12.25 6.45 10.8 8678 0.702
2100 14.25 14.05 14.45 16.5 12.9 10.45 6.85 10.55 8413 0.779

* Relative Interdecile Range (RIDR) is measured as the difference between the ninth decile and the first decile divided by 
 the median. 
Source: Authors’ calculations. 
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Table 1. Panel B 
Forecasted distributions of the world’s population size beginning in 2000 and beginning in 2010.  
 

Panel B: 2010 Jump-Off Date 
      

       
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           

 Below 6 6 to 7 7 to 8 8 to 9 9 to 10 
 

10 to 11 
 

11 to 12 
 

Above 12 
 

Median RIDR* 
2020/L 0 16.1 83.9 0 0 0 0 0 7268 0.088
2020/H 0 0 79 21 0 0 0 0 7787 0.081
2030/L 0.2 6.1 70.3 23.4 0 0 0 0 7704 0.147
2030/H 0 0 13.4 71.3 15 0.3 0 0 8486 0.139
2040/L 0.3 7.5 42.3 42.4 7.4 0.1 0 0 7996 0.224
2040/H 0 0 7.4 38.1 42.9 10.3 1.3 0 9083 0.216
2050/L 1 9.9 31.1 36.6 17.9 3.2 0.3 0 8152 0.294
2050/H 0 0.2 6.8 25.3 35.7 23.7 6.3 2 9521 0.279
2060/L 3.1 12.8 26.9 31.3 17.3 6.8 1.6 0.2 8256 0.389
2060/H 0 1.2 8 20.2 27.4 25.7 11.3 6.2 9760 0.352
2070/L 7.8 13.6 23.9 25.2 17.4 8.7 1.9 1.5 8213 0.485
2070/H 0.2 3.1 9.9 17.2 22.4 21.4 15.1 10.7 9891 0.438
2080/L 12.5 14.7 22.2 19.8 16.9 7.9 4.1 1.9 8045 0.568
2080/H 1.1 5.5 9.8 17.1 20 17.2 13.9 15.4 9816 0.536
2090/L 16.1 18 18.5 18.3 13.3 9.4 3.6 2.8 7888 0.641
2090/H 3.9 7.5 11.2 17.5 16.7 15.1 9.3 18.8 9638 0.647
2100/L 22 17.7 16.6 17.6 9.9 9 3.6 3.6 7652 0.716
2100/H 6.5 10.4 12.3 15.4 15.9 11.9 10.1 17.5 9328 0.734

* Relative Interdecile Range (RIDR) is measured as the difference between the ninth decile and the first decile divided by 
 the median. 
Source: Authors’ calculations. 
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Table 1 consists of two panels. Panel A provides the distributions of future world population 
size expressed in intervals below 6 billion, 6 to 7 billion, 7 to 8 billion, and so on with the up-
permost interval being above 12 billion. The numbers in the cells are the percentages of our 
2,000 simulated future population paths. Median population sizes are in column 9. The tenth 
column contains an uncertainty measure, the relative interdecile range (RIDR) defined as the 
difference between the ninth decile and the first decile of the distribution divided by the me-
dian.  

[Table 1] 

Panel B is based on a division of the 2010 distribution into population paths that were above 
the median in that year and those that were below it. There are 1,000 observations in each of 
these subgroups. There are two rows in Panel B for each decade following 2010, one labeled 
with an “L” and another with an “H.” The “L” rows are the population distributions at the in-
dicated date for the observations that were below the median in 2010 and the “H” rows are 
from the paths that were above the median in 2010.  

On disadvantage of this very simplified example is that the forecasts with jump-off dates in 
2000 and 2010 are not exactly comparable. The vital rate paths used in the 2000 forecasts all 
start at their observed values, while the paths in forecasts that have the 2010 jump-off date 
have a distribution of starting values. One way of testing the plausibility of this example is to 
consider the uncertainty of forecasts of various durations based on a jump-off date of 2000 
and a jump-off date of 2010. Holding duration constant, the example would be questionable if 
the uncertainties of N year ahead forecasts were very different depending on whether they 
were made in 2000 or 2010. When the jump-off date is the year 2000 and a forecast is made 
for 10 years into the future, the uncertainty measure in 2010 is 0.062, which can be read off 
the row in Panel A labeled 2010. In the case of a forecast made10 years ahead based on being 
below the median in 2010, the uncertainty measure in 2020 is 0.088. This can be read off the 
row in Panel B labeled 2020/L. The uncertainty measures for 10- through 90-year ahead fore-
casts based on 2000 and the two sub-samples from 2010 are shown in Figure 3. The results 
from the two 2010 groups track those from 2000 quite well, but are always slightly higher 
than the uncertainty measures based on 2000. Figure 3 is what is expected given the construc-
tion of the example and it suggests that it is plausible to proceed.  
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Figure 3. Comparison of the Relative Interdecile Ranges (RIDR) for forecasts made for 10 
through 90 years ahead starting from 2000 and starting from an observation either above the 
median or below the median in 2010. Source: Authors’ calculations. 
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The median population forecast for 2100 based on information up to 2000 is 8.414 billion 
people. After a 10 year wait, the median forecast for 2100, based on being above or below the 
median in 2010, would either be 7.652 billion or 9.328 billion. It would seem that if anyone 
were to predict 914 million more people in the world in 2100 from the perspective of 2010, 
the forecaster must have made a big mistake in 2000. Yet, this could well happen even if the 
methodology is probabilistically correct. A prediction of a 2100 population size in 2010 that is 
762 million smaller than the one that was predicted in 2000 is also easily possible. These are 
substantial differences. Clearly, forecasts of the future will be different in 2010 than they are 
today. One interesting feature of probabilistic forecasting is that it can give us some idea 
about how much different future forecasts could be from current ones, and with what likeli-
hood. 

Population size in 2010 has such a persistent effect because of a number of factors. First, past 
population size influences future population size. Paths that yield large populations in 2010 
will also yield large populations in 2100, even if population growth rates after 2010 are the 
same. Second, some populations are large in 2010 because they had high fertility rates. These 
high fertility rates alter the age structure of the population making it younger. Younger popu-
lations tend to grow more, other things being equal, a process that demographers call “popula-
tion momentum.” Fertility and mortality themselves have persistence built into them. The per-
sistence of fertility and mortality means that on paths where fertility was high and mortality 
was low, leading to relatively large populations in 2010, they are likely to remain high and 
low respectively for a while. The effects of the persistence of fertility and mortality over time 
are compounded by the relatively high interregional correlations of fertility and mortality, by 
the persistence caused by population momentum and by the size effect itself. 

It is crucially important that attention be given not only to the effects of the passage of time 
on the median forecast, but to the entire distribution of forecasted population sizes. Most of 
the differences in the distributions based on the paths above and below the median in 2010 are 
in the extremes (tails) of the distributions. For example, 6.5 percent of the paths that were 
above the median in 2010 resulted in populations of less than 6 billion in 2100, compared to 
22.0 percent of the paths that were below the median in 2010. The difference at the high end 
of the distribution is even more striking. Over 17 percent of the paths that were above the me-
dian in 2010 ended the century with 12 billion people or more. In contrast only 3.6 percent of 
the paths that were below the median in 2010 did so. 

This has been a very short and simplified presentation of the basic concepts of conditional 
probabilistic forecasting with future jump-off dates. It is meant only to be suggestive. This 
analysis of learning with the passage of time has illustrated how sensitive the long-term popu-
lation outlook is to near-term trends. It can also help to understand why projections of popula-
tion size in 2100 have changed so significantly over the past 10 years. We have simply 
learned a great deal over the past decade. During this decade population growth has been 
lower than originally expected and this has significantly decreased our new long-term expec-
tations. 

5. Concluding Thoughts 

Conditional probabilistic projections represent a way to combine the benefits of probabilistic 
projections, particularly the quantification of uncertainty, with the benefits of alternative sce-
narios, which give clear indications of the sensitivity of results to underlying assumptions. We 
have shown that the same kinds of conclusions about, for example, the relative importance of 
fertility and mortality trends to population size outcomes can be drawn using conditional 
probabilistic forecasts as can be drawn using alternative deterministic scenarios. An added 
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benefit is that the conditional probabilistic forecasts provide an estimate of the likelihood of 
the underlying demographic conditions, as well as an estimate of their effect on outcomes. 
These projections can be extremely useful to both the research and policy communities. For 
instance, many analyses of the potential for long-term environmental change are based on the 
approach of considering a set of alternative future scenarios conditional on different sets of 
assumptions about future development. The scenario approach dominates as a response to 
deep uncertainty about the many socio-economic, technological, and environmental factors 
that must be included in such analyses. Conditional probabilistic projections present a possi-
ble means of retaining some of the advantages of the probabilistic approach without discard-
ing the benefits of conditional scenarios (see O’Neill in this volume for an example).  

Probabilistic projections with future jump-off dates, which are conditional on how population 
characteristics evolve between now and the future jump-off date, present a new way to ad-
dress an important set of research questions that are also policy relevant. They provide a 
means of anticipating how our forecasts might change in the future and how likely those 
changes appear to be at the moment. These kinds of analyses cannot be done deterministi-
cally. Because there can be costs and benefits to changes in the outlook for the future, these 
projections could have interesting new applications. For example in the climate change issue, 
the prospects of learning about technological costs, or about physical aspects of the climate 
system, have been incorporated into analyses of whether it is better to act now or to wait to 
learn more. However as far as we are aware, no such analysis – for climate change or any 
other issue – has been performed taking into account the prospects for learning about the out-
look for population. 
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