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Maintenance and Production Scheduling on a Single

Machine with Stochastic Failures

W. von Hoyningen-Huene, G.P. Kiesmüller

Abstract In this paper we study the problem of determining a production schedule for an

order of n jobs on a single machine which is subject to stochastic machine failures. To avoid

long downtime of the machine caused by unexpected failures, preventive maintenance should be

planned as well. If a failure cannot be averted, a corrective maintenance activity is performed.

Both maintenance activities are assumed to restore the machine to become ‘as good as new’.

Furthermore it is assumed that jobs, interrupted by a machine failure, have to get restarted after

the corrective maintenance is finished (non-resumable case). The aim is to minimise the aver-

age cost, composed of cost through order tardiness, when exceeding a due date, and cost for

preventive as well as corrective maintenance activities. In order to regard practical relevance

we compare simple production and maintenance scheduling rules for a huge number of jobs. In

the course of a simulation study we first illustrate that in general an adjusted First Fit Decreas-

ing algorithm generates the best results compared to other common used scheduling rules. We

secondly show that the optimal length of the preventive maintenance interval can be estimated

by using an extended decomposition approach which regards the non-resumable case, even if

the processing times of the jobs are very long.

Keywords: Maintenance, Scheduling, Stochastic Failures, Non-Resumable, Simulation Study
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1 Introduction

The problem discussed in this paper is to schedule an order of n non-resumable jobs on

a single machine, while this machine is affected by stochastic breakdowns. If jobs are non-

resumable, these jobs have to be started anew when they are interrupted by a machine failure.

To avoid the production stops, preventive maintenance (PM) activities are embedded in the

production schedule. If PM activities are conducted, cost for staff and material accrue as well

as cost for the time the activity delays the order. But, if a breakdown occurs, a corrective

maintenance (CM) activity is performed. CM activities cause repair and delay cost, including

also the order delay through the repeating times of those jobs, which have to get restarted. The

aim is to find simple decision rules to gain a sequence of jobs and PM activities, such that

the average cost for maintenance activities and for delaying the finishing time of the order are

minimised.

In practice, PM activities are often scheduled periodically at a fixed point in time, for ex-

ample once a week, and therewith independently of production scheduling decisions. If jobs

are non-preemptive, this results in high cost through machine idle times and production delays.

Additionally, the possibility of unexpected machine failures is often ignored when the schedule

for the production process is determined. But, machine failures cause cost for CM activities

as well as for production delays and therewith are affecting the completion time of the jobs.

In literature these deterministic problems of integrating production scheduling and periodically

conducted maintenance activities are modelled by using an availability constraint. Overviews

of these problems are given in Lee (1996), Sanlaville and Schmidt (1998), Schmidt (2000) and

Ma et al. (2010). Similar to that, Chen (2008) solves an integrated scheduling and maintenance

problem where maintenance activities are inserted periodically, but in a flexible time interval.

He applies the First Fit Decreasing (FFD) algorithm for this deterministic case. Since the occur-

rence of failures is not included and the number of PM activities is predetermined, the algorithm

is used to arrange the batches of jobs and the positions of the PM activities in its flexible interval

to minimise makespan. In a note on this paper Xu et al. (2009) show this algorithm to be the
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best possible approximation in polynomial time for the considered problem.

If the maintenance and production scheduling is considered in an integrated manner while

failures can occur stochastically, this is mostly done under the assumption that jobs are resum-

able. If jobs are resumable, it is possible to continue an interrupted job after machine repair. For

example Cassady and Kutanoglu (2003) investigate a model for the integrative problem min-

imising job tardiness if scheduling and maintenance decisions are made simultaneously. They

solve the problem by complete enumeration and compare the optimal solution with a heuristic.

This heuristic first schedules the jobs optimal, ignoring the occurrence of failures, and secondly

inserts the PM activities. The length of the time interval between two consecutive PM activities

is determined by maximising the availability of the machine. The integrated approach leads to

improvements of around 30%, but the enumeration can only be used for orders with a maximum

of eight jobs. A similar approach is used in Cassady and Kutanoglu (2005) to find schedules

minimising the total weighted completion time. Sortrakul et al. (2005) also minimise the total

weighted completion time, but solve the problem using a genetic algorithm and for up to 30

jobs. Pan et al. (2010) present a model to minimise the maximum weighted tardiness if the time

to perform a PM activity is dependent on the age of the machine. For a small number of jobs

schedules are determined by complete enumeration. The presented papers operate with a PM

interval calculated by maximising the availability of a machine. If jobs are non-resumable, the

availability is not a reliable quantity, since the availability of a machine increases when jobs are

repeated. Another observation is, that these papers just address a small number of jobs since

they make use of complex solution approaches. We are looking for practical relevance and

therewith for simple decomposition approaches to regard a huge number of jobs.

Besides, few work has been done regarding the non-resumable case. If jobs are non-resumable,

an interruption of a job results in an even higher impact of machine failures on the cost of a pro-

duction process and job order delay. Adiri et al. (1989) assume the jobs to be non-resumable and

consider the occurrence of a single breakdown but do not schedule PM activities. They found

that the Longest Processing Time (LPT) is the optimal sequence for minimising the makespan if

the distribution function for the time to failure is convex. Otherwise, if the distribution function
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is concave, the Shortest Processing Time (SPT) is shown to be optimal. Later we expose that

this is not true if several failures are possible during a schedule and PM activities are included

in the decision process.

In order to gain simple approaches for practical usage, we are considering those priority rules

suggested in the literature (SPT, LPT and FFD) for the scheduling part and examine suitable

formula for PM intervals. To determine the PM interval we make use of a decomposition

approach also found in literature. Since this common used formula is not suitable for an order

of non-resumable jobs, adaptations are made to regard the non-resumable case. The estimations

of the PM interval are compared to the optimal interval, which is found by simulation. We also

show how the PM intervals are reacting on the different scheduling rules and parameter values

as for example on the time to failure.

The paper is organised as follows: In the next section the problem is described in more de-

tail. In section 3 the tested scheduling and maintenance insertion rules are presented. Section

4 contains the simulation study. It includes the settings and the results of the simulation study

comparing different job scheduling rules in section 4.1 and 4.2. In section 4.3 and 4.4 the expla-

nation of our decomposition approaches follows. The decomposition approaches are proposed

to estimate the optimal preventive maintenance interval and connect them with the considered

scheduling rules. In the simulation study these approaches are compared and the results are

discussed in section 4.5 and 4.6. The last section contains a summary and a conclusion.

2 Problem Definition

We consider an order of n jobs to be scheduled on a single machine. A job j ( j = 1,2, . . . ,n)

has a processing time p j. These given processing times are assumed to be constant and can be

different for each job. The whole job order is available at time zero. Further, a common due date

dd for the whole order is given. Exceeding this due date results in cost cl for every time unit

the delivery is delayed. We further assume that the machine wears out with ongoing production

process. The time to failure T is therefore modelled in an Increasing Failure Rate (IFR) mode.
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If a machine fails during processing a job, this job has to get restarted (non-resumable case).

To avoid machine failures and therewith unexpected expensive production stops, PM tasks are

inserted in the production schedule. It is assumed that each PM causes cost cp for material or

payment of maintenance providers and requires tp time units. A PM is not allowed to interrupt

a job, thus the non-preemptive case is assumed. If a failure could not be averted, a CM is

performed to repair the machine and renew damaged items. This results in cost cc for repair

(with cc > cp) and in tc (with tc > tp) time units of conduction. We address time as well as cost

aspects to regard the schedule time preference and the maintenance cost preference respectively.

The expected cost can be written as:

K = cm · cc + pm · cp +(Cmax−dd) · cl (1)

with cm and pm being the expected number of CM activities and PM activities, respectively.

Cmax is the expected makespan of the whole schedule. The makespan is defined as the com-

pletion time of the last produced job. Here, the expected makespan consists of the sum of

processing times, the expected time which is spent for PM activities and unexpected repairs,

and the time units trepeat resulting from repeated production due to job interruption:

Cmax =
n

∑
j=1

p j + cm · tc + pm · tp + trepeat. (2)

We consider the expected number of PM activities, because we are assuming an age replace-

ment policy (see also for example Barlow and Hunter (1960), Bosch and Jensen (1983) and

Beichelt (1993)). An illustration of this policy is given in Figure 1 for the maintenance part.

The age of the machine increases continuously while producing the jobs. We suppose that a PM

activity is inserted by no later than a predetermined time interval denoted as τ , thus a specific

age of the machine. If a PM activity is inserted, the machine will be restored to become ‘as

good as new’. This implies that the age of the machine returns to zero and increases again with

the further production process. Whenever the machine fails, a CM is conducted to restore the
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Figure 1: The age replacement policy.

machine to be ‘as good as new’. If the resumable case is assumed, it makes sense to conduct

a minimal repair after a CM activity. A minimal repair causes that the probability of a failure

rises further after the CM. This assumption simplifies the calculation of PM intervals, because

a breakdown does not change this prior determined PM interval. Since we are interested in

the non-resumable case, a minimal repair is no realistic assumption, because a restart of the

interrupted job might result in an endless loop of failures and restarted jobs. Thus, we assume

that if a failure occurs, a CM is conducted, the machine age becomes zero and the next time

interval starts right after the repair. It means that the following originally planned PM activities

are reordered. Therefore, at the beginning of production the actual number of PM tasks is not

known.

However, some PM activities have to be included into the schedule independent from the job

schedule, at least (pmleast) to avoid machine failure. Since the distribution of the time to failure

is assumed to be known, the number of expected failures, if no PM is inserted, is also known.

It is calculated by dividing the sum of the processing times of the jobs by the Mean Time To

Failure (MT T F):

pmleast =
∑

n
j=1 p j

MT T F
. (3)

Thus, it is assumed that for these expected failures a number of PM activities is always needed.

Since these activities are not relevant for our decision process, they can be excluded from the

average cost. In the cost function we just include cost due to additional PM activities (pm =
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pmall− pmleast).

In the next section the used solution approaches are explained regarding the scheduling rules

as well as the decision rule, when to insert a PM activity.

3 Solution Approaches

The aim of this paper is to compare the performance of simple scheduling decisions and

PM insertion rules. As mentioned before, we are using a PM time interval (τ) which is the

maximal time between two consecutive PM activities. In special, a PM task is inserted in the

production schedule right in front of a job, if the age of the machine after finishing this job

would exceed the time interval. Thus, a τ has to be found which minimises the expected cost,

but the actual intervals are created by the production schedule itself. To find a formula for PM

intervals regarding the non-resumable case in order to minimise the expected cost, we underlie

several job sequences. We consider three different scheduling rules mentioned in literature as

well as a random order of jobs. The Shortest Processing Time (SPT) and the Longest Processing

Time (LPT) are chosen. An example of scheduling jobs in LPT order is given in Figure 2 with

processing times given in Table 1 and τ = 10.

Table 1: Job processing times.
Job 1 2 3 4 5 6 7
p j 1 2 3 4 4 7 8

Figure 2: Jobs scheduled in LPT rule with τ = 10.

A hypothesis was, that scheduling jobs in LPT must be more advantageous than scheduling

them by SPT rule with regard to the cost for restarted jobs as shown in Adiri et al. (1989).
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Despite that hypothesis, both rules (SPT and LPT) have in common that they mostly schedule

either just long jobs between two consecutive PM activities or just short jobs. Since failures

are more likely at the end of a renewal cycle, it should be beneficial to schedule long jobs

right after a PM when the age of the machine is low, and small jobs at the end of an interval.

Thus, if a failure occurs, the repeating times of a job will be rather small. To consider this,

another scheduling rule was created which is based on the First Fit Decreasing (FFD) algorithm

in bin packaging problems and is therefore called the FFD rule, here. The FFD algorithm is a

heuristic which fills bins of equal length in the way, that first the items which have to be packed

are ordered in non-increasing order of their size. Then one item after another is inserted into

that bin where it fits first (see Coffman et al. (1997)). The aim is to minimise the number of used

bins. Assigned to our problem, the bins describe the time intervals between the PM activities

and the items are the jobs. In detail, the job is chosen next, to get inserted into the production

schedule, which fits best in the remaining space between the finishing time of the latest inserted

job and the next assumed PM activity. Figure 3 shows the example of Table 1 in FFD scheduling

sequence. Since this rule has a close upper bound to the optimal solution in the bin packaging

Figure 3: Jobs scheduled in FFD rule with τ = 10.

problem (see Li and Yue (1997)), it is assumed that it is also able to generate few additional PM

activities. Additionally, the rule shall insert the short jobs when the probability of a failure is

high, and uses the advantage of the age replacement policy in the case of also reordering jobs

after a failure. Thus, if a CM activity has to be conducted, the interrupted job does not have to

get repeated right after the repair, but is scheduled in the following intervals where it fits best.

Scheduling in SPT or LPT has no effect on this, because the next job chosen after repair is again

the shortest respectively the longest remaining job which is the same as the interrupted one.
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4 Simulation Study

In this simulation study we first compare the scheduling rule performances using their opti-

mal PM interval. We further create and analyse different formulae to estimate the optimal PM

intervals with the help of the explained scheduling rules.

4.1 Parameter

In the simulation study n=100 jobs are scheduled with processing times which are uniformly

distributed in different intervals, where the mean processing time is fixed to 50 (Table 2): five

times in the interval of 1 to 100, two times with 50 jobs having processing times uniformly

distributed in the interval of {15-35} and 50 out of {65-85}, one production schedule with 50

jobs having processing times of 90 and 50 of 10. These different jobs are created to evaluate if

the length and the variability of processing times do have an impact on the results.

Table 2: 8 different job orders.
Order No. number of jobs x processing times
1-5 100 x uniform {1-100}
6-7 50 x uniform {15-35}; 50 x uniform {65-85}
8 50 x 90; 50 x 10

It is assumed that the time to failure (T ) can be modelled as a Weibull random variable with

shape parameter β , scale parameter α and the cumulative distributions function:

F(t) = 1− e−(
t
α
)β

. (4)

In order to have an IFR (and therewith a convex distribution function), β has to be above one.

To consider different quantities of possible failures during a schedule, 6 scenarios were created

which differ in the MT T F and in the coefficient of variation (cv =
σ

MT T F ) of the time to failure

(Table 3). σ is the standard deviation of the time to failure and the MT T F of the Weibull
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distribution is

MT T F = α ·Γ
(

1+
1
β

)
(5)

with Γ being the complete Gamma function. The two blocks differ in their MT T F so that in

the first block on average 10 failures occur during the production schedule if no PM is inserted

and in the second block round about 5 failures. It was abandoned to evaluate scenarios with less

failures, because this resulted in weak estimators. Within each block the coefficient of variation

and therewith the variation of the time to failure increases.

Table 3: 6 scenarios of time to failure for 100 jobs and mean processing time 50.
k MTTF cv number of failures
1 500 0.1
2 500 0.3 ≈ 10 failures
3 500 0.5
4 1000 0.1
5 1000 0.3 ≈ 5 failures
6 1000 0.5

The parameter value for tp is set to 7 and for cp to 20. For the remaining parameters different

values are chosen: tc ∈ {10, 20, 30}, cc ∈ {40, 69, 100}, cl ∈ {2, 10, 20}. In total 1296 instances

are tested for every scheduling rule with each running 50,000 times to ensure accuracy of our

estimates.

4.2 Comparison of the Scheduling Rules

In the first part of the simulation study a comparison of the four scheduling rules (v ∈

V ={SPT, LPT, Random, FFD}) is conducted for all instances underlying their optimal PM

interval. In order to be able to find the optimal PM interval (τopt) by simulation, a complete

enumeration is used for each of the 1296 instances. Since all jobs have integer processing

times, just integer interval lengths were tested. To compare the performances of the scheduling

rules the relative percentage deviation is calculated which is determined by the comparison of
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the average cost K̄v underlying scheduling rule v, and the minimum average cost obtained by

the four scheduling rules:

RPDv =
K̄v−min

s∈V
(K̄s)

min
s∈V

(K̄s)
·100%. (6)

The best scheduling rule has a RPDv = 0. The results are shown in Table 4 for the different

MT T F , the values of cv, the 8 different orders with unequal processing times and the cost

respectively time parameter values. For every scheduling rule the average RPDv ‘Av’ value is

listed as well as the maximum and the minimum value found if the parameter in the left row is

fixed on the corresponding value and all other parameters are enumerated.

Table 4: RPDv of the four tested scheduling rules.
SPT LPT Random FFD
Av Max Min Av Max Min Av Max Min Av Max Min

MT T F=500 5.1 15.9 0.9 4.7 14.7 0.0 3.6 22.3 0.0 0.0 2.4 0.0
MT T F=1000 4.3 14.6 0.5 2.5 13.8 0.0 2.3 13.5 0.0 0.2 2.4 0.0
cv = 0.1 8.2 15.9 1.5 6.2 14.7 0.0 5.4 22.3 0.0 0.1 2.4 0.0
cv = 0.3 3.8 13.8 0.7 3.1 13.8 0.0 2.5 11.1 0.0 0.1 2.4 0.0
cv = 0.5 2.1 6.3 0.5 1.5 5.6 0.0 1.0 5.3 0.0 0.1 1.4 0.0
Order1 3.9 10.1 0.7 3.4 9.6 0.1 2.4 9.5 0.0 0.0 0.3 0.0
Order2 4.2 11.9 0.7 2.7 11.0 0.0 1.4 3.7 0.0 0.1 1.4 0.0
Order3 5.2 14.6 0.7 4.1 14.5 0.4 2.1 9.5 0.0 0.2 1.8 0.0
Order4 4.4 12.1 0.5 3.2 14.1 0.0 2.8 10.1 0.0 0.1 1.5 0.0
Order5 4.3 12.6 0.9 2.9 12.6 0.1 2.1 10.2 0.0 0.1 0.9 0.0
Order6 4.7 15.0 0.9 4.0 11.8 0.2 3.6 15.4 0.0 0.0 0.3 0.0
Order7 5.0 14.8 0.8 4.3 14.6 0.2 3.8 11.0 0.0 0.1 2.4 0.0
Order8 5.9 15.9 1.4 4.2 14.7 0.0 5.3 22.3 0.0 0.2 2.4 0.0
tc = 10 5.3 15.9 0.8 4.0 14.7 0.0 3.2 22.3 0.0 0.1 2.4 0.0
tc = 20 4.7 13.4 0.6 3.6 12.0 0.0 2.9 19.7 0.0 0.1 2.0 0.0
tc = 30 4.1 12.4 0.5 3.3 12.0 0.0 2.7 14.4 0.0 0.1 2.4 0.0
cc = 40 5.0 15.9 0.9 3.7 14.7 0.0 3.0 22.3 0.0 0.1 2.4 0.0
cc = 69 4.7 14.7 0.7 3.6 14.1 0.0 2.9 18.0 0.0 0.1 2.4 0.0
cc = 100 4.5 14.4 0.5 3.5 13.3 0.0 2.9 13.5 0.0 0.1 2.4 0.0
cl = 2 3.6 15.9 0.5 2.9 14.7 0.0 2.2 22.3 0.0 0.1 2.4 0.0
cl = 10 5.1 13.6 0.9 3.9 14.5 0.0 3.2 18.3 0.0 0.1 1.6 0.0
cl = 20 5.4 14.8 1.2 4.1 14.6 0.0 3.4 15.7 0.0 0.1 2.4 0.0

It is obvious that the FFD rule outperforms the other scheduling rules in every instance.

Since the RPDFFD is on average no more than 0.2%. Even the maximum values of the FFD
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rule are always better than the average RPDv values of SPT and LPT. We found out that this

is also true for the makespan. Thus, if more than one breakdown is possible to occur and PM

activities are inserted in the scheduling process, LPT is not optimal anymore as for the problem

discussed in Adiri et al. (1989).

For the FFD rule the variation of the parameter values does not have any impact. For a closer

look on the other scheduling rules Figure 4 illustrates the effect of ascending the MT T F on the

left side and increasing cv on the right side, with respect to the RPDv. If the MT T F increases,

the RPDLPT decreases significantly, because the longer the time to failure, the shorter are the

jobs in front of a PM if the jobs are scheduled in LPT sequence. Thus, the repeating times

are getting smaller if the MT T F moves from 500 to 1000. Another significant effect evolves

if cv, and therewith the variance of the time to failure, increases. The RPDv of SPT, LPT and

Random decreases with increasing variance, making the performance of all scheduling rules

more similar. Thus, if the variance is high it is nearly unimportant which scheduling rule is

implemented, since it is quite impossible to anticipate the failures.

Figure 4: RPDv of the scheduling rules for different MT T F and cv values.

Since the FFD rule outperforms the other scheduling rules, it is most interesting if the op-

timal PM interval of the FFD rule can be estimated. Nevertheless, SPT and LPT are easier to

implement. Thus, it might also be easier to find their optimal intervals. Therefore, in the next

section decomposition approaches are determined to find out if the optimal length of the PM

interval can be estimated isolated from the scheduling rule.
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4.3 Decomposition Approaches

To find the optimal PM intervals, we investigate two different approaches based on different

cost expressions. These expressions are used to derive estimates for the PM intervals.

The first one is often used in maintenance optimisation literature without considering produc-

tion scheduling decisions (see for example Barlow and Hunter (1960), Bosch and Jensen (1983),

Beichelt (1993), Brandolese et al. (1996)), where the optimal time interval is derived by min-

imising average maintenance cost per time unit given as:

K1(τ) =
E(Kcy(τ))

E(L)
=

ccF(τ)+ cp · F̄(τ)∫
τ

0 F̄(t)dt
. (7)

E(Kcy(τ)) denotes the expected cost in a maintenance cycle and E(L) is the expected length

of this cycle. E(Kcy(τ)) consists of the expected cost composed of the repair cost weighted

by the probability that the machine fails before reaching the time interval τ and the PM cost

weighted by the converse probability (F̄(τ) = 1−F(τ)). This cost function is derived based

on the assumption of an infinite time horizon and does not take into account any production

scheduling challenges. However, the derived PM interval depends on the cost for maintenance

performance as well as on the distribution of the time to failure. This influence can also be

observed for our cost function, as shown in Figure 5. Here, the cost averaged over all simulation

runs is illustrated as a function of the PM interval length for different failure scenarios. Scenario

1 reflects about 10 possible failures and a low variance in the time to failure, scenario 3 a high

variance of the time to failure and scenario 4 about 5 possible failures and a low variance in

the time to failure. All other scenarios were spared for the reason of clarity. But, the functions

of the other scenarios behave consistently to those illustrated. The average cost of the shown

three scenarios were calculated with high values for repair and lateness cost parameters (tc = 30,

cc = 100, cl = 20). The jobs are scheduled in SPT rule. All scenarios have in common, that

for low interval length lots of unnecessary PM activities are inserted, resulting in high average

cost. With increasing interval length less preventive, but more CM activities occur. The average

cost decrease until the additional summarised cost for CM activities exceed the reduction of the
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cost for PM activities. Further, the average cost increase until they terminate at a level where

only CM activities are conducted. If the curves are considered separately, it is obvious that

Figure 5: The average cost for different PM interval length; scenario 1, 3 and 4 in SPT, tc = 30,
cc = 100, cl = 20.

their properties depend on the value of the MT T F and the coefficient of variation of the time to

failure. With increasing τ the average cost for scenario 1 decrease to a much lower minimum

than for scenario 3. This implies that with a high variance in the time to failure it is not possible

to abandon many PM activities, making the curve much flatter and the differences in cost for

different τ values lower. Since the MT T F is higher for scenario 4 than for 1, τ can be increased

much more without additional failures.

Of course, cost calculated by equation (7) are much smaller and the curves are flatter for

small and high values of τ . Nevertheless, at first sight the behaviour of our cost function seems

quite similar to those generated by (7). But contrary to (7), the curves are not smooth as can be

seen in Figure 6 for scenario 1 and 4. The steps emerge as a result of production scheduling.

In the course of a step, the occurrence of failures rises until τ increases to a level where lots

of PM activities can be saved compared to the increasing number of breakdowns. Increasing a

small τ excludes the PM activities between small jobs. Additionally, the higher τ , the higher

the increase of τ has to be to save the next set of PM activities. Therefore, the steps of the

cost function for scenario 1 are much smaller than those for scenario 4. The general slope of

these steps is highly driven by the non-resumable jobs, making it even harder to find the optimal
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Figure 6: The average cost for different PM interval length around the minimum; scenario 1
and 4 in SPT, tc = 30, cc = 100, cl = 20.

PM interval since a small deviation in τ leads to high cost deviations. Thus, cost function (7)

does not fit exactly to our model assumptions, since it does not regard jobs repeating times, the

finite time horizon and cost for order lateness. Therefore, we adapt the approach to the studied

situation and obtain a second cost function. In the second cost function, the average cost for

the whole schedule are estimated, taking into account the whole working time of the machine

(∑n
j=1 p j + trepeat). The working time of the machine consists of the processing times of the

jobs and the time units induced by the repetition of jobs interrupted by breakdowns. Divided

through the cycle length, the expected number of maintenance cycles for the whole schedule

can be estimated as

Ac(τ) =
∑

n
j=1 p j + trepeat∫

τ

0 F̄(t)dt
. (8)

Since trepeat is dependent on the number of breakdowns, it can be written as:

trepeat =
∑

n
j=1 p j∫

τ

0 F̄(t)dt
·F(τ) · tr (9)

with tr defined as the averaged time units per failure spent for the repetition of jobs due to

interruption. How to determine tr is explained in section 4.4. It is multiplied with the number of

estimated expected maintenance cycles
(

∑
n
j=1 p j∫

τ

0 F̄(t)dt

)
, if the repeating times are excluded, and the
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probability that the machine fails during a time interval. The number of expected maintenance

cycles becomes:

Ac(τ) =
∑

n
j=1 p j

(
1+ F(τ)·tr∫

τ

0 F̄(t)dt

)
∫

τ

0 F̄(t)dt
. (10)

The assessed cost function based on equation (1) and equation (7) can thus be written as:

K2(τ) = F(τ) ·Ac(τ) · cc + F̄(τ) · (Ac(τ)− pmleast) · cp +(Cmax−dd) · cl. (11)

The expected cost in a maintenance cycle are calculated similar as in equation (7) but are multi-

plied with the expected number of cycles in the schedule. Another adaption is made to calculate

just the additional PM activities: pmleast is the expected number of PM activities, which have

to be conducted at least (see equation (3)). Therewith the number of expected maintenance

cycles weighted by the probability that no failure occurs during τ , is decreased by the number

of predictable PM activities. Since pmleast is constant, it has no effect on the calculation of τ .

Finally, the makespan is estimated as follows with regard to equation (2):

Cmax =
n

∑
j=1

p j +F(τ) ·Ac(τ) · (tc + tr)+ F̄(τ) ·Ac(τ) · tp. (12)

To find the time intervals by minimising K1(τ) or K2(τ), a numerical optimisation is conducted,

which is explained in the next section.

4.4 The Due Date and the Time tr

In order to be able to compare the different decomposition approaches, a due date and an

estimation of tr is needed. Since the expected number of failures without PM activities is known,

it is assumed that the planner considers this in lead time negotiations. Thus, the due date is

assumed to consist of the sum of processing times of the jobs plus the work time which is
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needed to fulfil the minimum number of expected PM activities:

dd =
n

∑
j=1

p j + pmleast · tp. (13)

The assessed cost function (11) for the decomposition approach, with the makespan and the due

date inserted, turns to:

K2(τ) = F(τ) ·Ac(τ) · cc + F̄(τ) · (Ac(τ)− pmleast) · cp + (14)(
n

∑
j=1

p j +F(τ) ·Ac(τ) · (tc + tr)+ F̄(τ) ·Ac(τ) · tp−

(
n

∑
j=1

p j + pmleast · tp

))
· cl

which can be shortened to:

K2(τ) = F(τ) ·Ac(τ) · (cc +(tc + tr) · cl)+(F̄(τ) ·Ac(τ)− pmleast) · (cp + tp · cl). (15)

To determine the PM intervals for K2(τ), the parameter tr still needs to be estimated. tr

contains the repeated time units of a job per breakdown. To get an idea, if this parameter is

decisional relevant for the estimation of τoptv, in a first trial tr is set to zero. With another

calculation we tested the dependence of the repeating times on the mean p̄ of the processing

times per order. This is motivated by the fact that longer jobs have a higher probability of long

repeating times if a failure occurs. Here just the results are shown if tr is set to 0.5 · p̄. Table 5

summarises the three resulting different approaches with τd defining the calculated PM interval

of decomposition method d. All other used parameters are set to the values as described in

section 4.

Table 5: Decomposition approaches with different values of tr.
d cost function tr derived τd
1 K1(τ) - τ1
2 K2(τ) 0 τ2
3 K2(τ) 0.5 · p̄ τ3
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4.5 Comparison of the Decomposition Approaches

In this section the performance of the estimated PM intervals τd is shown through the use

of simulation. The average cost K̄v(τd), using scheduling rule v and PM interval τd , created

by the decomposition method d, are compared with the average cost K̄v(τoptv), if integrating

the optimal interval of a scheduling rule v into the considered scheduling rule. The relative

percentage deviation of these cost is calculated by the following equation in order to assess the

quality of the decomposition approach:

Divvd =
K̄v(τd)− K̄v(τoptv)

K̄v(τoptv)
·100% (16)

This implies, that for example the performance of the FFD rule using an estimated time interval

is compared to the performance of the FFD rule with its optimal PM interval.

The relative percentage deviation of the PM intervals is calculated by:

Divτvd =
τd− τoptv

τoptv
·100%. (17)

In Table 6 the percentage cost deviations of scheduling in SPT, LPT and FFD are given for all

instances and intervals generated by K1(τ1). The results for the random scheduled sequence are

not included, because of clarity and because the sequence has no added value for the compari-

son. Table 6 shows Divv1 for the three scheduling rules on average ’Av’ as well as the maximum

value found, when the parameter on the left side is fixed. Additionally, the percentage aver-

age relative deviations Divτv1 from the estimated τ1 to τoptv is listed in the last column of each

scheduling rule block. The estimation of τ1 through K1 results in relative deviations from the

minimum cost of about 17% for SPT and LPT sequence and about 22% if scheduled in FFD

rule. Since K1 does not regard the finite time horizon and cost for lateness, this estimation cre-

ates time intervals which are too high. On average the estimated time intervals are at least 20%

higher than the optimal. The deviations of the PM interval are even higher for the FFD rule,

because τoptFFD is smaller than those of the other scheduling rules. Figure 7 shows this as an
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Table 6: Divv1 between K̄v(τ1) and K̄v(τoptv) and Divτv1 for each scheduling rule.
SPT LPT FFD

Av Max Av Divτv1 Av Max Av Divτv1 Av Max Av Divτv1

MT T F=500 11.5 61.1 21.6 11.7 63.4 20.9 19.8 93.7 34.5
MT T F=1000 22.9 112.0 28.0 22.3 116.8 27.4 24.5 121.8 34.1
cv = 0.1 21.9 112.0 3.4 22.5 116.8 3.2 28.9 121.8 9.3
cv = 0.3 16.1 85.1 18.0 15.5 81.4 17.4 22.1 100.7 25.9
cv = 0.5 13.6 58.2 53.0 12.9 54.5 51.9 15.4 60.5 67.7
Order1 18.7 104.9 24.1 16.4 75.1 24.6 22.9 116.0 35.5
Order2 15.6 99.1 24.5 15.0 86.2 23.7 22.8 115.2 33.8
Order3 17.8 92.9 25.0 18.3 110.0 25.0 23.8 113.5 36.2
Order4 16.8 112.0 25.2 17.8 116.8 25.0 23.6 121.8 35.2
Order5 17.7 84.2 24.9 18.6 91.8 24.1 22.0 107.3 34.6
Order6 19.1 106.7 23.4 17.8 87.8 23.2 22.1 112.7 32.7
Order7 16.9 82.9 23.1 16.8 88.5 23.6 21.3 101.9 32.8
Order8 14.9 94.6 28.3 15.3 97.7 23.9 18.6 100.7 33.5
tc=10 13.6 90.1 18.5 13.2 89.5 17.7 16.0 78.4 26.6
tc=20 17.1 101.3 24.7 16.9 104.4 23.8 22.2 102.0 34.3
tc=30 20.9 112.0 31.2 20.9 116.8 30.9 28.3 121.8 42.0
cc=40 39.5 112.0 54.5 37.7 116.8 53.5 48.0 121.8 66.2
cc=69 6.8 26.2 17.2 7.4 33.7 16.4 14.5 51.8 25.7
cc=100 5.3 45.1 2.8 5.8 50.7 2.5 3.9 14.8 10.9
cl=2 11.3 76.7 16.3 11.3 80.1 15.2 13.1 59.4 24.2
cl=10 19.1 105.6 27.8 18.8 110.5 27.1 25.1 110.2 37.7
cl=20 21.2 112.0 30.3 20.8 116.8 30.1 28.1 121.8 41.0

example for scenario 1 and high cost and lateness parameters. The FFD curve seems to be a

left and down shifted version of the other scheduling rule curves. The FFD rule can generate

smaller cost with a lower time interval, because of its manner to fill the intervals between to PM

activities more equal than the other scheduling rules.

Since tc and cl are not included in the cost function K1, cc is the only driver of τ1. τ1 does not

change if tc or cl increase. In contrast to this τoptv decreases with increasing cost parameters.

Therefore, the deviation from the optimum increases when tc and cl are raised. If cc increases, τ1

decreases as well as the deviation in average cost. Noticeable is also that the relative deviation

of cost decreases if the variance in the time to failure increases, although the relative deviation

of the PM interval is much higher. This is caused by the fact that the cost curve is flatter for

higher variance in the time to failure, especially when τ is overestimated (see again Figure 5).
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Figure 7: Comparison of the average cost for the scheduling rules at different PM interval
length; scenario 1 in SPT, tc = 30, cc = 100, cl = 20.

Table 7: Divv2 between K̄v(τ2) and K̄v(τoptv) and Divτv2 for each scheduling rule.
SPT LPT FFD

Av Max Av Divτv2 Av Max Av Divτv2 Av Max Av Divτv2

MT T F=500 15.2 189.1 29.4 14.8 205.1 28.5 25.8 237.8 43.1
MT T F=1000 24.4 192.9 36.3 23.4 228.4 35.6 32.1 227.8 42.6
cv = 0.1 21.5 192.9 5.3 22.1 228.4 5.2 40.4 237.8 11.3
cv = 0.3 21.2 127.5 23.6 19.9 115.1 22.9 28.2 145.2 31.8
cv = 0.5 16.6 67.6 69.5 15.3 60.5 68.2 18.3 68.2 85.5
Order1 20.5 138.0 32.2 19.4 108.0 32.6 29.9 168.1 44.3
Order2 20.0 105.1 32.5 18.8 127.8 31.6 29.9 175.8 42.4
Order3 20.0 108.0 33.1 20.2 140.0 33.1 32.0 185.2 45.3
Order4 19.7 113.3 33.4 19.4 96.4 33.0 30.7 184.9 43.8
Order5 19.4 126.1 32.9 19.2 106.7 32.2 29.4 163.7 43.2
Order6 20.0 125.8 31.1 18.6 103.3 31.0 27.4 154.3 40.8
Order7 18.1 103.0 30.8 17.5 135.9 31.5 27.7 168.4 40.9
Order8 20.5 192.9 36.5 19.6 228.4 31.6 24.7 237.8 42.3
tc = 10 42.0 192.9 58.6 39.2 228.4 57.7 53.4 237.8 70.0
tc = 20 11.7 54.8 24.8 12.3 60.4 24.0 21.6 72.3 34.5
tc = 30 5.5 38.7 15.0 5.7 46.0 14.6 11.9 45.7 24.1
cc = 40 27.7 192.9 43.1 26.5 228.4 42.1 38.8 237.8 53.5
cc = 69 18.0 104.3 31.4 17.4 99.2 30.5 27.1 139.3 41.1
cc = 100 13.7 95.9 24.0 13.4 89.8 23.6 21.0 97.4 34.0
cl = 2 8.4 67.9 17.4 8.4 62.4 16.1 13.9 69.1 25.2
cl = 10 21.8 113.3 36.6 20.8 104.5 35.9 31.9 150.8 47.2
cl = 20 29.1 192.9 44.4 28.0 228.4 44.3 41.0 237.8 56.3
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Table 7 illustrates the results if τ2 is estimated with cost function K2 when the repeating time

tr is not considered. These results are on average even worse than the results created with cost

function K1, although cost for lateness are involved. But, since the time horizon changed from

infinity to a specific length, failures are less punished and τ is even more overestimated. Since

the repair time is now considered, the relative deviation of τ2 from the optimal interval is getting

less if tc increases. But still the relative deviation from the optimal time interval gets worse if

the cost for lateness increase. Thus, it is preferable to accept more failures instead of paying

the delay of the order caused through additional PM activities. This implies that the penalty for

failures is still too low for the estimated cost function.

In summary, the results of estimating τ2 are rather insufficient. It is possible to find the

minimum average cost for each scheduling rule, but since the maximum values are very high,

the variance of the results is high, too.

Table 8: Divv3 between K̄v(τ3) and K̄v(τoptv) and Divτv3 for each scheduling rule.
SPT LPT FFD

Av Max Av Divτv3 Av Max Av Divτv3 Av Max Av Divτv3

MT T F=500 3.7 35.6 -5.5 3.9 37.3 -6.0 2.8 21.5 4.0
MT T F=1000 7.4 47.9 -0.3 8.5 52.7 -0.8 5.0 44.1 4.4
cv = 0.1 14.0 47.9 -4.0 15.6 52.7 -4.1 8.7 44.1 1.5
cv = 0.3 2.1 13.1 -2.8 2.3 13.5 -3.4 2.3 15.5 3.6
cv = 0.5 0.4 2.6 -1.8 0.6 2.9 -2.6 0.7 6.1 7.5
Order1 6.9 47.9 -3.6 7.0 49.0 -3.1 3.7 41.9 5.1
Order2 5.8 46.6 -2.8 6.9 50.1 -3.4 3.3 26.5 4.3
Order3 5.8 45.2 -2.7 6.8 47.6 -2.6 4.3 43.4 5.8
Order4 4.9 41.7 -2.5 5.3 45.3 -2.6 4.1 43.7 5.0
Order5 6.5 42.6 -3.0 7.7 52.7 -3.4 3.5 41.6 4.4
Order6 6.5 47.7 -4.0 6.8 48.4 -4.2 3.7 40.1 2.9
Order7 5.0 45.1 -4.3 5.2 38.7 -3.7 4.3 44.1 2.9
Order8 2.7 35.6 -0.2 3.7 37.3 -3.9 4.3 26.6 3.2
tc = 10 4.5 45.1 -0.9 4.7 50.9 -1.5 3.6 26.5 5.8
tc = 20 6.7 46.6 -3.4 7.5 52.7 -3.9 2.6 42.9 3.8
tc = 30 5.4 47.9 -4.4 6.3 49.0 -4.8 5.6 44.1 3.0
cc=40 4.8 47.9 -2.1 5.4 50.5 -2.6 4.4 43.7 4.9
cc=69 5.4 46.0 -2.7 6.0 52.7 -3.4 3.7 42.2 4.1
cc=100 6.3 46.6 -3.8 7.1 50.7 -4.1 3.7 44.1 3.6
cl = 2 5.3 47.9 -3.1 5.8 52.7 -4.0 3.0 44.1 3.4
cl = 10 5.7 45.0 -2.8 6.5 50.9 -3.2 4.2 43.2 4.4
cl = 20 5.5 42.4 -2.8 6.2 50.5 -2.9 4.5 43.7 4.8
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In Table 8 the results are illustrated estimating τ3 through assuming tr to be 50% of the

mean processing time referred to the considered order. The relative deviations in cost are for

the FFD rule around 4% and for SPT and LPT around 6%. Negative values in the columns of

’Av τ’ imply, that the estimated interval is less than the optimal. Thus, if tr is considered, the

estimation of τoptv is much better than before. Precisely, τoptv is slightly overestimated for the

FFD rule, but for SPT and LPT rule the time interval is now underestimated. It is superior to

estimate the time interval a bit above τoptv instead of a bit beneath, like Figure 6 shows. This is

also in evidence if the PM intervals, which lead to the minimum relative deviation in average

cost, are compared to those leading to a maximum relative deviation. In Figure 8 the relative

deviations of τ3 from τoptv per order are plotted, which lead to the maximum deviation in cost

(left side) and to the minimum deviation (right side). The intervals at the minimum are small

positive numbers and at the maximum mostly small negative values. Because of this fact on

Figure 8: Relative deviation of τ3 from τopt at maximum and minimum relative deviation of
cost.

average the FFD rule creates the best results using τ3, although the distinctions in the deviations

between the different scheduling rules are small. But, since the FFD rule creates smaller average

cost (see Table 4), the estimation of τ3, integrated to the FFD rule, leads to less average cost

than integrated into the other scheduling rules.
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4.6 Impact of the Processing Times

After comparing the quality of the different estimations of τ , it is obvious, that the approach

including tr in the decision process works well. But, all evaluated orders have the same mean

in processing times of about 50. Therefore, no assertion can be made if the intervals depend

on the mean of processing times. To evaluate this, other orders are tested differing in the mean

of processing times. The three orders are: Order50100: 50 jobs with mean processing time

100, Order12540: 125 jobs with mean processing time 40 and Order25020: 250 jobs with mean

processing time 20. For a better comparison, the sum of processing times is still 5000. For the

three new orders the results are presented with estimations of τ by decomposition method 2 and

3. In Table 9 the RPDv of the different scheduling rules are given for the new orders if all other

parameter values are enumerated. It can be seen that the relative differences in cost are getting

smaller with decreasing mean processing time of the jobs. The FFD is still significantly the best

scheduling rule if the mean of the order is 100 and 40. But, with a mean of 20, just the SPT rule

is slightly worse than the other rules and never generates the best results. Thus, with smaller

mean job length the minimal average cost generated through different scheduling rules become

more similar and therewith the advantage of scheduling in FFD sequence decreases. Figure 9

Table 9: RPDv of 50 jobs with p̄ = 100, 125 jobs with p̄ = 40 and 250 jobs with p̄ = 20.
SPT LPT Random FFD

Av Max Min Av Max Min Av Max Min Av Max Min
Order50100 11.8 22.6 2.6 10.7 22.5 1.2 9.0 26.0 0.0 0.0 1.5 0.0
Order12540 3.2 8.0 0.7 2.3 9.4 0.0 3.0 10.0 0.0 0.3 1.5 0.0
Order25020 1.4 5.4 0.2 0.5 5.6 0.0 0.3 1.8 0.0 0.3 2.5 0.0

illustrates the relative deviations from the minimum average cost for the scheduling rules SPT,

LPT and FFD, when tr is set to zero and when tr = 0.5 · p̄. If the mean of the jobs is 100,

the average cost using FFD rule are on average 56% higher than the minimum cost integrating

the optimal τ into the FFD rule and it never reaches the optimum. Since the jobs are longer,

it becomes more important to create small and equal intervals between two PM activities to

keep the repeating times low. The simulation indicated that the repeating times are higher if the
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processing times of the jobs are longer (round about 30% higher if the mean of the processing

times doubles). Thus, if tr is not considered, the relative deviation of cost is larger for longer

jobs. Integrating p̄ in the scheduling decision results in relative deviations from the minimum

Figure 9: Average relative deviation from minimum average cost for the scheduling rules if
tr = 0 and if tr = 0.5 · p̄ in %.

average cost of less than 10%. And if the mean of processing times decreases, the deviations are

even smaller. If the repeating times are smaller, the average cost curves get flatter. This is the

reason why it is easier to estimate the optimal interval and becomes nearly unimportant, which

scheduling rule to take. Nevertheless, if the non-resumable case is considered as a whole, then

it is recommended to schedule in FFD rule and using a problem adapted PM interval like τ3.

5 Conclusion

In this paper we studied the problem of scheduling jobs and PM activities if failures can

occur stochastically and jobs are non-resumable. The aim was to find simple decision rules

to minimise cost for the maintenance activities and for order lateness. Through simulation

studies we showed that the optimal PM interval is dependent on the production schedule. It

was also exposed, that the FFD rule, which is more responsive to the problem assumptions,

creates better results than the common used SPT and LPT sequences. During the estimation of

the PM interval it was shown that for the non-resumable case it is advantageous to adapt the
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problem assumptions on the calculation of τ instead of using other existing methods, since the

optimal cost are very sensitive to the estimation of τ if jobs are non-resumable. But even if the

processing times of the jobs are very long, we were able to find good estimates of the optimal τ

setting the amount of repeating times on the mean processing time of a job order.
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