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1 Introduction

The choice of which classic panel data estimator to employ for a linear static regression
model depends upon the hypothesized correlation between the individual effects and the
regressors. Random effects assume that the regressors are uncorrelated with the indi-
vidual effects, while fixed effects assume that all of the regressors are correlated with the
individual effects (see Mundlak (1978) and Chamberlain (1980)). When a subset of the re-
gressors are correlated with the individual effects, one employs the instrumental variables
estimator of Hausman and Taylor (1981). In contrast, a Bayesian needs to specify the dis-
tributions of the priors (and the hyperparameters in hierarchical models) to estimate the
model. It is well-known that Bayesian models can be sensitive to misspecification of these
distributions. In empirical analyses, the choice of specific distributions is often made out
of convenience. For instance, conventional proper priors in the normal linear model have
been based on the conjugate Normal-Gamma family essentially because all the marginal
likelihoods have closed-form solutions. Likewise, statisticians customarily assume that the
variance-covariance matrix of the slope parameters follow a Wishart distribution because
it is convenient from an analytical point of view.

Often the subjective information available to the experimenter may not be enough for
correct elicitation of a single prior distribution for the parameters, which is an essential
requirement for the implementation of classical Bayes procedures. The robust Bayesian
approach relies upon a class of prior distributions and selects an appropriate prior in a
data dependent fashion. An interesting class of prior distributions suggested by Berger
(1983, 1985) is the ε-contamination class, which combines the elicited prior for the pa-
rameters, termed as base prior, with a possible contamination class of prior distributions
and implements Type II maximum likelihood (ML-II) procedure for the selection of prior
distribution for the parameters. The primary advantage of using such a contamination
class of prior distributions is that the resulting estimator obtained by using ML-II proce-
dure performs well even if the true prior distribution is away from the elicited base prior
distribution.

The objective of our paper is to propose a robust Bayesian approach to linear static
panel data models. This approach departs from the standard Bayesian model in two ways.
First, we consider the ε-contamination class of prior distributions for the model parameters
(and for the individual effects). The base elicited prior is assumed to be contaminated and
the contamination is hypothesized to belong to some suitable class of prior distributions.
Second, both the base elicited priors and the ε-contaminated priors use Zellner’s (1986) g-
priors rather than the standard Wishart distributions for the variance-covariance matrices.
The paper contributes to the panel data literature by presenting a general robust Bayesian
framework. It encompasses the above mentioned conventional frequentist specifications
and their associated estimation methods and is presented in Section 2.

In Section 3 we derive the Type II maximum likelihood posterior mean and the
variance-covariance matrix of the coefficients in a two-stage hierarchy model. We show
that the ML-II posterior mean of the coefficients is a shrinkage estimator, i.e., a weighted
average of the Bayes estimator under a base prior and the data-dependent empirical Bayes
estimator. Furthermore, we show in a panel data context that the ε-contamination model
is capable of extracting more information from the data and is thus superior to the classical
Bayes estimator based on a single base prior.

Section 4 introduces a three-stage hierarchy with generalized hyper-g priors on the
variance-covariance matrix of the individual effects. The predictive densities corresponding
to the base priors and the ε-contaminated priors turn out to be Gaussian and Appell
hypergeometric functions, respectively. The main differences between the two-stage and
the three-stage hierarchy models pertain to the definition of the Bayes estimators, the
empirical Bayes estimators and the weights of the ML-II posterior means.
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Section 5 investigates the finite sample performance of the robust Bayesian estimators
through extensive Monte Carlo experiments. These include the standard random effects
model as well as Mundlak-type, Chamberlain-type and Hausman-Taylor-type models. We
find that the three-stage hierarchy model outperforms the standard frequentist estimation
methods. Section 6 compares the relative performance of the robust Bayesian estimators
and the standard classical panel data estimators with real applications using panel data
on earnings and crime. We conclude the paper in Section 7.

2 The general setup

Let us specify a Gaussian linear mixed model:

yit = X ′itβ +W ′itbi + εit , i = 1, ..., N , t = 1, ..., T, (1)

where X ′it is a (1×K1) vector of explanatory variables excluding the intercept, and β is
a (K1 × 1) vector of slope parameters. Furthermore, let W ′it denote a (1×K2) vector of
covariates and bi a (K2 × 1) vector of parameters. The subscript i of bi indicates that the
model allows for heterogeneity on theW variables. Finally, εit is a remainder term assumed
to be normally distributed, i.e. εit ∼ N

(
0, τ−1

)
. The distribution of εit is parametrized

in terms of its precision τ rather that its variance σ2
ε (= 1/τ) . In the statistics literature,

the elements of β do not differ across i and are referred to as fixed effects whereas the bi
are referred to as random effects.1 The resulting model in (1) is a Gaussian mixed linear
model. This terminology differs from the one used in econometrics. In the latter, the
bi’s are treated either as random variables, and hence referred to as random effects, or as
constant but unknown parameters and hence referred to as fixed effects. In line with the
econometrics terminology, whenever bi is assumed to be correlated (uncorrelated) with all
the X ′its, they will be termed fixed (random) effects.2

In the Bayesian context, following the seminal papers of Lindley and Smith (1972)
and Smith (1973), several authors have proposed a very general three-stage hierarchy
framework to handle such models (see, e.g., Chib and Carlin (1999), Greenberg (2008),
Koop (2003), Chib (2008), Zheng et al. (2008), Rendon (2013)):

First stage : y = Xβ +Wb+ ε, ε ∼ N(0,Σ),Σ = τ−1INT
Second stage : β ∼ N (β0,Λβ) and b ∼ N (b0,Λb)

Third stage : Λ−1
b ∼Wish (νb, Rb) and τ ∼ G(·).

(2)

where y is (NT × 1), X is (NT ×K1), W is (NT ×K2), ε is (NT × 1), and Σ = τ−1INT
is (NT ×NT ). The parameters depend upon hyperparameters which follow random dis-
tributions. The second stage (also called fixed effects model in the Bayesian literature)
updates the distribution of the parameters. The third stage (also called random effects
model in the Bayesian literature) updates the distribution of the hyperparameters. As
stated by Smith (1973, pp. 67) “for the Bayesian model the distinction between fixed,
random and mixed models, reduces to the distinction between different prior assignments
in the second and third stages of the hierarchy”. In other words, the fixed effects model is
a model that does not have a third stage. The random effects model simply updates the
distribution of the hyperparameters. The precision τ is assumed to follow a Gamma dis-
tribution and Λ−1

b is assumed to follow a Wishart distribution with νb degrees of freedom
and a hyperparameter matrix Rb which is generally chosen close to an identity matrix.

1See Lindley and Smith (1972), Smith (1973), Laird and Ware (1982), Chib and Carlin (1999), Green-
berg (2008), and Chib (2008) to mention a few.

2When we write fixed effects in italics, we refer to the terminology of the statistical or Bayesian literature.
Conversely, when we write fixed effects (in normal characters), we refer to the terminology of panel data
econometrics.
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In that case, the hyperparameters only concern the variance-covariance matrix of the b
coefficients3 and the precision τ . As is well-known, Bayesian models may be sensitive to
possible misspecification of the distributions of the priors. Conventional proper priors in
the normal linear model have been based on the conjugate Normal-Gamma family because
they allow closed form calculations of all marginal likelihoods. Likewise, rather than speci-
fying a Wishart distribution for the variance-covariance matrices as is customary, Zellner’s
g-prior (Λβ = (τgX ′X)−1 for β or Λb = (τhW ′W )−1 for b) has been widely adopted be-
cause of its computational efficiency in evaluating marginal likelihoods and because of
its simple interpretation as arising from the design matrix of observables in the sample.
Since the calculation of marginal likelihoods using a mixture of g-priors involves only a
one dimensional integral, this approach provides an attractive computational solution that
made the original g-priors popular while insuring robustness to misspecification of g (see
Zellner (1986) and Fernandez, Ley and Steel (2001) to mention a few). To guard against
mispecifying the distributions of the priors, many suggest considering classes of priors (see
Berger (1985)).

3 The robust linear static model in the two-stage hierarchy

Following Berger (1985), Berger and Berliner (1984, 1986), Zellner (1986), Moreno and
Pericchi (1993), Chaturvedi (1996), Chaturvedi and Singh (2012) among others, we con-
sider the ε-contamination class of prior distributions for (β, b, τ):

Γ = {π (β, b, τ | g0, h0) = (1− ε)π0 (β, b, τ | g0, h0) + εq (β, b, τ | g0, h0)} . (3)

π0 (·) is then the base elicited prior, q (·) is the contamination belonging to some suitable
class Q of prior distributions, 0 ≤ ε ≤ 1 is given and reflects the amount of error in π0 (·) .
The precision τ is assumed to have a vague prior p (τ) ∝ τ−1, 0 < τ <∞. π0 (β, b, τ | g0, h0)
is the base prior assumed to be a specific g-prior with β ∼ N

(
β0ιK1 , (τg0ΛX)−1

)
with ΛX = X ′X

b ∼ N
(
b0ιK2 , (τh0ΛW )−1

)
with ΛW = W ′W.

(4)

β0, b0, g0 and h0 are known scalar hyperparameters of the base prior π0 (β, b, τ | g0, h0).
The probability density function (henceforth pdf) of the base prior π0 (.) is given by:

π0 (β, b, τ | g0, h0) = p (β | b, τ, β0, b0, g0, h0)× p (b | τ, b0, h0)× p (τ) . (5)

The possible class of contamination Q is defined as:

Q =

{
q (β, b, τ | g0, h0) = p (β | b, τ, βq, bq, gq, hq)× p (b | τ, bq, hq)× p (τ)

with 0 < gq ≤ g0, 0 < hq ≤ h0

}
(6)

with  β ∼ N
(
βqιK1 , (τgqΛX)−1

)
b ∼ N

(
bqιK2 , (τhqΛW )−1

)
,

(7)

where βq, bq, gq and hq are unknown. The ε-contamination class of prior distributions for
(β, b, τ) is then conditional on known g0 and h0 and two estimation strategies are possible:

3Note that in (2), the prior distribution of β and b are assumed to be independent, so Var[θ] is block-
diagonal with θ = (β′, b′)′. The third stage can be extended by adding hyperparameters on the prior
mean coefficients β0 and b0 and on the variance-covariance matrix of the β coefficients: β0 ∼ N (β00,Λβ0),
b0 ∼ N (b00,Λb0) and Λ−1

β ∼Wish (νβ , Rβ) (see for instance, Greenberg (2008), Hsiao and Pesaran (2008),
Koop (2003), Bresson and Hsiao (2011)).
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1. a one-step estimation of the ML-II posterior distribution4 of β, b and τ ;

2. or a two-step approach as follows:

(a) Let y∗ = (y −Wb). Derive the conditional ML-II posterior distribution of β
given the specific effects b.

(b) Let ỹ = (y − Xβ). Derive the conditional ML-II posterior distribution of b
given the slope coefficients β.

We use the two-step approach because it simplifies the derivation of the predictive
densities (or marginal likelihoods). In the one-step approach the pdf of y and the pdf
of the base prior π0 (β, b, τ | g0, h0) need to be combined to get the predictive density. It
thus leads to a complicated expression whose integration with respect to (β, b, τ) may be
difficult. Using a two-step approach we can integrate first with respect to (β, τ) given b and
then, conditional on β, we can next integrate with respect to (b, τ) . Thus, the marginal
likelihoods (or predictive densities) corresponding to the base priors are:

m (y∗ | π0, b, g0) =

∞∫
0

∫
RK1

π0 (β, τ | g0)× p (y∗ | X, b, τ) dβ dτ

and

m (ỹ | π0, β, h0) =

∞∫
0

∫
RK2

π0 (b, τ | h0)× p (ỹ |W,β, τ) db dτ,

with

π0 (β, τ | g0) =
(τg0

2π

)K1
2
τ−1 |ΛX |1/2 exp

(
−τg0

2

(
β − β0ιK1)′ΛX(β − β0ιK1)

))
,

π0 (b, τ | h0) =

(
τh0

2π

)K2
2

τ−1 |ΛW |1/2 exp

(
−τh0

2
(b− b0ιK2)′ΛW (b− b0ιK2)

)
.

Solving these equations is considerably easier than solving the equivalent expression in the
one-step approach.

3.1 The first step of the robust Bayesian estimator

Let y∗ = y − Wb. Combining the pdf of y∗ and the pdf of the base prior, we get the
predictive density corresponding to the base prior5:

m (y∗ | π0, b, g0) =

∞∫
0

∫
RK1

π0 (β, τ | g0)× p (y∗ | X, b, τ) dβ dτ (8)

= H̃

(
g0

g0 + 1

)K1/2
(

1 +

(
g0

g0 + 1

)(
R2
β0

1−R2
β0

))−NT
2

with

H̃ =
Γ
(
NT

2

)
π(NT2 )v (b)(

NT
2 )

, (9)

4“We consider the most commonly used method of selecting a hopefully robust prior in Γ, namely choice
of that prior π which maximizes the marginal likelihood m (y | π) over Γ. This process is called Type II
maximum likelihood by Good (1965)” (Berger and Berliner (1986), page 463.)

5Derivation of all the following expressions can be found in the Appendix.
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R2
β0 =

(β̂ (b)− β0ιK1)′ΛX(β̂ (b)− β0ιK1)

(β̂ (b)− β0ιK1)′ΛX(β̂ (b)− β0ιK1) + v (b)
, (10)

β̂ (b) = Λ−1
X X ′y∗ and v (b) = (y∗ − Xβ̂ (b))′(y∗ − Xβ̂ (b)) and where Γ (·) is the Gamma

function.
Similarly, for the distribution q (β, τ | g0, h0) ∈ Q from the class Q of possible contam-

ination distribution, we can obtain the predictive density corresponding to the contami-
nated prior:

m (y∗ | q, b, g0) = H̃

(
gq

gq + 1

)K1
2

(
1 +

(
gq

gq + 1

)(
R2
βq

1−R2
βq

))−NT
2

, (11)

where

R2
βq =

(β̂ (b)− βqιK1)′ΛX(β̂ (b)− βqιK1)

(β̂ (b)− βqιK1)′ΛX(β̂ (b)− βqιK1) + v (b)
. (12)

As the ε-contamination of the prior distributions for (β, τ) is defined by π (β, τ | g0) =
(1− ε)π0 (β, τ | g0) + εq (β, τ | g0), the corresponding predictive density is given by:

m (y∗ | π, b, g0) = (1− ε)m (y∗ | π0, b, g0) + εm (y∗ | q, b, g0) (13)

and
sup
π∈Γ

m (y∗ | π, b, g0) = (1− ε)m (y∗ | π0, b, g0) + ε sup
q∈Q

m (y∗ | q, b, g0) . (14)

The maximization of m (y∗ | π, b, g0) requires the maximization of m (y∗ | q, b, g0) with
respect to βq and gq. The first-order conditions lead to

β̂q =
(
ι′K1

ΛXιK1

)−1
ι′K1

ΛX β̂ (b) (15)

and

ĝq = min (g0, g
∗) (16)

with g∗ = max

((NT −K1)

K1

(β̂ (b)− β̂qιK1)′ΛX(β̂ (b)− β̂qιK1)

v (b)
− 1

)−1

, 0


= max

(NT −K1)

K1

 R2
β̂q

1−R2
β̂q

− 1

−1

, 0

 .
Denote supq∈Qm (y∗ | q, b, g0) = m (y∗ | q̂, b, g0). Then

m (y∗ | q̂, b, g0) = H̃

(
ĝq

ĝq + 1

)K1
2

1 +

(
ĝq

ĝq + 1

) R2
β̂q

1−R2
β̂q

−NT2 . (17)

Let π∗0 (β, τ | g0) denote the posterior density of (β, τ) based upon the prior π0 (β, τ | g0).
Also, let q∗ (β, τ | g0) denote the posterior density of (β, τ) based upon the prior q (β, τ | g0).
The ML-II posterior density of β is thus given by:

π̂∗ (β | g0) =

∞∫
0

π̂∗ (β, τ | g0) dτ

= λ̂β,g0

∞∫
0

π∗0 (β, τ | g0) dτ +
(

1− λ̂β,g0
) ∞∫

0

q∗ (β, τ | g0) dτ

= λ̂β,g0π
∗
0 (β | g0) +

(
1− λ̂β,g0

)
q̂∗ (β | g0) (18)
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with

λ̂β,g0 =

1 +
ε

1− ε

 ĝq
ĝq+1
g0
g0+1

K1/2


1 +

(
g0
g0+1

)(
R2
β0

1−R2
β0

)
1 +

(
ĝq
ĝq+1

)( R2
β̂q

1−R2
β̂q

)


NT
2


−1

. (19)

Note that λ̂β,g0 depends upon the ratio of the R2
β0

and R2
βq

but primarily on the sample

size NT . Indeed, λ̂β,g0 tends to 0 when R2
β0
> R2

βq
and λ̂β,g0 tends to 1 when R2

β0
< R2

βq

irrespective of the model fit (i.e, the absolute values of R2
β0

or R2
βq

). Only the relative

values of R2
βq

and R2
β0

matter.

It can be shown that π∗0 (β | g0) is the pdf (see the Appendix) of a multivariate t-

distribution with mean vector β∗(b | g0), variance-covariance matrix

(
ξ0,βM

−1
0,β

NT−2

)
and de-

grees of freedom (NT ) with

M0,β =
(g0 + 1)

v (b)
ΛX and ξ0,β = 1 +

(
g0

g0 + 1

)(
R2
β0

1−R2
β0

)
. (20)

β∗(b | g0) is the Bayes estimate of β for the prior distribution π0 (β, τ) :

β∗ (b | g0) =
β̂ (b) + g0β0ιK1

g0 + 1
. (21)

Likewise q̂∗ (β) is the pdf of a multivariate t-distribution with mean vector β̂EB (b | g0),

variance-covariance matrix

(
ξq,βM

−1
q,β

NT−2

)
and degrees of freedom (NT ) with

ξq,β = 1 +

(
ĝq

ĝq + 1

) R2
β̂q

1−R2
β̂q

 and Mq,β =

(
(ĝq + 1)

v (b)

)
ΛX , (22)

where β̂EB (b | g0) is the empirical Bayes estimator of β for the contaminated prior distri-
bution q (β, τ) given by:

β̂EB (b | g0) =
β̂ (b) + ĝqβ̂qιK1

ĝq + 1
. (23)

The mean of the ML-II posterior density of β is then:

β̂ML−II = E [π̂∗ (β | g0)] (24)

= λ̂β,g0E [π∗0 (β | g0)] +
(

1− λ̂β,g0
)
E [q̂∗ (β | g0)]

= λ̂β,g0β∗(b | g0) +
(

1− λ̂β,g0
)
β̂EB (b | g0) .

The ML-II posterior mean of β, given b and g0 is a weighted average of the Bayes esti-
mator β∗(b | g0) under base prior g0 and the data-dependent empirical Bayes estimator
β̂EB (b | g0). If the base prior is consistent with the data, the weight λ̂β,g0 → 1 and the
ML-II posterior mean of β gives more weight to the posterior π∗0 (β | g0) derived from the

elicited prior. In this case β̂ML−II is close to the Bayes estimator β∗(b | g0). Conversely, if

the base prior is not consistent with the data, the weight λ̂β,g0 → 0 and the ML-II posterior
mean of β is then close to the posterior q̂∗ (β | g0) and to the empirical Bayes estimator
β̂EB (b | g0). The ability of the ε-contamination model to extract more information from
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the data is what makes it superior to the classical Bayes estimator based on a single base
prior.

The ML-II posterior variance-covariance matrix of β is given by (see Berger (1985) p.
207):

V ar
(
β̂ML−II

)
= λ̂β,g0V ar [π∗0 (β | g0)] +

(
1− λ̂β,g0

)
V ar [q̂∗ (β | g0)]

+ λ̂β,g0

(
1− λ̂β,g0

)(
β∗(b | g0)− β̂EB (b | g0)

)(
β∗(b | g0)− β̂EB (b | g0)

)′
= λ̂β,g0

(
ξ0,β

NT − 2

v (b)

g0 + 1

)
Λ−1
X (25)

+
(

1− λ̂β,g0
)( ξq,β

NT − 2

v (b)

ĝq + 1

)
Λ−1
X

+ λ̂β,g0

(
1− λ̂β,g0

)(
β∗(b | g0)− β̂EB (b | g0)

)(
β∗(b | g0)− β̂EB (b | g0)

)′
.

3.2 The second step of the robust Bayesian estimator

Let ỹ = y −Xβ. Moving along the lines of the first step, the ML-II posterior density of b
is given by:

π̂∗ (b | h0) = λ̂b,h0π
∗
0 (b | h0) +

(
1− λ̂b,h0

)
q̂∗ (b | h0)

with

λ̂b,h0 =

1 +
ε

1− ε

 ĥ

ĥ+1
h0
h0+1

K2/2


1 +

(
h0
h0+1

)(
R2
b0

1−R2
b0

)
1 +

(
ĥ

ĥ+1

)( R2
b̂q

1−R2
b̂q

)


NT
2


−1

, (26)

where

R2
b0 =

(̂b (β)− b0ιK2)′ΛW (̂b (β)− b0ιK2)

(̂b (β)− b0ιK2)′ΛW (̂b (β)− b0ιK2) + v (β)
, (27)

R2
b̂q

=
(̂b (β)− b̂qιK2)′ΛW (̂b (β)− b̂qιK2)

(̂b (β)− b̂qιK2)′ΛW (̂b (β)− b̂qιK2) + v (β)
,

with b̂ (β) = Λ−1
W W ′ỹ and v (β) = (ỹ −Wb̂ (β))′(ỹ −Wb̂ (β)),

b̂q =
(
ι′K2

ΛW ιK2

)−1
ι′K2

ΛW b̂ (β) (28)

and

ĥq = min (h0, h
∗) (29)

with h∗ = max

((NT −K2)

K2

(̂b (β)− b̂qιK2)′ΛW (̂b (β)− b̂qιK2)

v (β)
− 1

)−1

, 0


= max

(NT −K2)

K2

 R2
b̂q

1−R2
b̂q

− 1

−1

, 0

 .
π∗0 (b | h0) is the pdf of a multivariate t-distribution with mean vector b∗(β | h0), variance-

covariance matrix

(
ξ0,bM

−1
0,b

NT−2

)
and degrees of freedom (NT ) with

M0,b =
(h0 + 1)

v (β)
ΛW and ξ0,b = 1 +

(
h0

h0 + 1

)
(̂b (β)− b0ιK2)′ΛW (̂b (β)− b0ιK2)

v (β)
. (30)

7



b∗(β | h0) is the Bayes estimate of b for the prior distribution π0 (b, τ | h0) :

b∗(β | h0) =
b̂ (β) + h0b0ιK2

h0 + 1
. (31)

q∗ (b | h0) is the pdf of a multivariate t-distribution with mean vector b̂EB (β | h0), variance-

covariance matrix

(
ξ1,bM

−1
1,b

NT−2

)
and degrees of freedom (NT ) with

ξ1,b = 1 +

(
ĥq

ĥq + 1

)
(̂b (β)− b̂qιK2)′ΛW (̂b (β)− b̂qιK2)

v (β)
and M1,b =

(
ĥ+ 1

v (β)

)
ΛW (32)

and where b̂EB (β | h0) is the empirical Bayes estimator of b for the contaminated prior
distribution q (b, τ | h0) :

b̂EB (β | h0) =
β̂(b) + ĥq b̂qιK2

ĥq + 1
. (33)

The mean of the ML-II posterior density of b is hence given by:

b̂ML−II = λ̂bb∗(β | h0) +
(

1− λ̂β
)
b̂EB (β | h0) (34)

and the ML-II posterior variance-covariance matrix of b is given by:

V ar
(
b̂ML−II

)
= λ̂b,h0

(
ξ0,b

NT − 2

v (β)

h0 + 1

)
Λ−1
W (35)

+
(

1− λ̂b,h0
)( ξ1,b

NT − 2

v (β)

ĥq + 1

)
Λ−1
W

+ λ̂b,h0

(
1− λ̂b,h0

)(
b∗(β | h0)− b̂EB (β | h0)

)(
b∗(β | h0)− b̂EB (β | h0)

)′
.

As our estimator is a shrinkage estimator, it is not necessary to draw thousands of multi-
variate t-distributions to compute the mean and variance after burning draws. We can use
an iterative shrinkage approach as suggested by Maddala et al. (1997) (see also Baltagi
et al. (2008)) to compute the ML-II posterior mean and variance-covariance matrix of β
and b.

4 The robust linear static model in the three-stage hierar-
chy

As stressed earlier, the Bayesian literature introduces a third stage in the hierarchical
model in order to discriminate between fixed effects and random effects. Hyperparameters
can be defined for the mean and the variance-covariance of b (and sometimes β). Our ob-
jective in this paper is to consider a contamination class of priors to account for uncertainty
pertaining to the base prior π0 (β, b, τ), i.e., uncertainty about the prior means of the base
prior. Consequently, assuming hyper priors for the means β0 and b0 of the base prior is
tantamount to assuming the mean of the base prior to be unknown, which is contrary to
our initial assumption. Following Chib and Carlin (1999), Greenberg (2008), Chib (2008),
Zheng et al. (2008) among others, hyperparameters only concern the variance-covariance
matrix of the b coefficients. Because we use g-priors at the second stage for β and b, g0 is
kept fixed and assumed known. We need only define mixtures of g-priors on the precision
matrix of b, or equivalently on h0.
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Zellner and Siow (1980) proposed a Cauchy prior on g which is not as popular as the
g-prior since closed form expressions for the marginal likelihoods are not available. More
recently, and as an alternative to the Zellner-Siow’s prior, Liang et al. (2008) (see also Cui
and George (2008)) have proposed a Pareto type II hyper-g prior whose pdf is defined as:

p (g) =
(k − 2)

2
(1 + g)−

k
2 , g > 0, (36)

which is a proper prior for k > 2. One advantage of the hyper-g prior is that the posterior
distribution of g, given a model, is available in closed form. Unfortunately, the normalizing
constant is a Gaussian hypergeometric function and a Laplace approximation is usually
required to compute the integral of its representation for large samples, NT , and large
R2. Liang et al. (2008) have shown that the best choices for k are given by6 2 < k ≤ 4.
Maruyama and George (2011, 2014) proposed a generalized hyper-g prior:

p (g) =
gc−1 (1 + g)−(c+d)

B (c, d)
, c > 0, d > 0, (37)

where B (·) is the Beta function. This Beta-prime (or Pearson Type VI) hyper prior for g is
a generalization of the Pareto type II hyper-g prior since the expression in (36) is equivalent

to that in (37) when c = 1. In that specific case, d = (k−2)
2 . Using the generalized hyper-g

prior specification, the three-stage hierarchy of the model can be defined as:

First stage : y ∼ N (Xβ +Wb,Σ) , Σ = τ−1INT (38)

Second stage : β ∼ N
(
β0ιK1 , (τg0ΛX)−1

)
, b ∼ N

(
b0ιK2 , (τh0ΛW )−1

)
Third stage : h0 ∼ β′(c, d) → p (h0) =

hc−1
0 (1 + h0)−(c+d)

B (c, d)
, c > 0, d > 0.

As our objective is to account for the uncertainty about the prior means of the base prior
π0 (β, b, τ), we do not need to introduce an ε-contamination class of prior distributions
for the hyperparameters of the third stage of the hierarchy. Moreover, Berger (1985, p.
232) has stressed that the choice of a specific functional form for the third stage matters
little. Sinha and Jayaraman (2010a, 2010b) studied a ML-II contaminated class of priors
at the third stage of hierarchical priors using normal, lognormal and inverse Gaussian
distributions to investigate the robustness of Bayes estimates with respect to possible
misspecification at the third stage. Their results confirmed Berger’s (1985) assertion that
the form of the second stage prior (the third stage of the hierarchy) does not affect the
Bayes decision. Therefore we restrict the ε-contamination class of prior distributions to
the first stage prior only (the second stage of the hierarchy, i.e., for (β, b, τ)).

The first step of the robust Bayesian estimator in the three-stage hierarchy is strictly
similar to the one in the two-stage hierarchy. But the three-stage hierarchy differs from
the two-stage hierarchy in that it introduces a generalized hyper-g prior on h0. The
unconditional predictive density corresponding to the base prior is then given by

m (ỹ | π0, β) =

∞∫
0

m (ỹ | π0, β, h0) p(h0)dh0 (39)

=
H̃

B (c, d)

1∫
0

(ϕ)
K2
2

+c−1 (1− ϕ)d−1

(
1 + ϕ

(
R2
b0

1−R2
b0

))−NT
2

dϕ

6In their Monte Carlo simulations, Liang et al. (2008) use k = 3 and k = 4.
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which can be written as:

m (ỹ | π0, β) =
B(d, K2

2 + c)

B (c, d)
H̃ ×2 F1

(
NT

2
;
K2

2
+ c;

K2

2
+ c+ d;−

(
R2
b0

1−R2
b0

))
, (40)

where 2F1(.) is the Gaussian hypergeometric function (see Abramovitz and Stegun (1970)
and the Appendix). As shown by Liang et al. (2008), numerical overflow is problematic for
moderate to large NT and large R2

b0
. As the Laplace approximation involves an integral

with respect to a normal kernel, we follow the suggestion of Liang et al. (2008) and develop

an expansion after a change of variable given by φ = log
(

h0
h0+1

)
(see the Appendix).

Similar to the conditional predictive density corresponding to the contaminated prior
on β (see eq(17)), the unconditional predictive density corresponding to the contaminated
prior on b is given by:

m (ỹ | q̂, β) =

∞∫
0

m (ỹ | q̂, β, h0) p(h0)dh0 (41)

=
H̃

B (c, d)
×

h∗∫
0


(

h0
h0+1

)K2/2
(

1 +
(

h0
h0+1

)( R2
b̂q

1−R2
b̂q

))−NT
2

×hc−1
0

(
1

1+h0

)c+d
 dh0

+
H̃

B (c, d)

(
h∗

h∗ + 1

)K2
2

1 +

(
h∗

h∗ + 1

) R2
b̂q

1−R2
b̂q

−NT2 ×
∞∫
h∗

hc−1
0

(
1

1 + h0

)c+d
dh0.

m (ỹ | q̂, β) = (42)

=
H̃

B (c, d)



2.
(

h∗
h∗+1

)K2
2 +c

K2+2c

× F1

(
K2
2 + c; 1− d; NT2 ; K2

2 + c+ 1; h∗

h∗+1 ;− h∗

h∗+1

(
R2
b̂q

1−R2
b̂q

))

+



( h∗

h∗+1

)K2
2

(
1 +

(
h∗

h∗+1

)( R2
b̂q

1−R2
b̂q

))−NT
2


×

 B (c, d)−
(

h∗
h∗+1

)c
c

×2F1

(
c; d− 1; c+ 1; h∗

h∗+1

)






,

where F1(.) is the Appell hypergeometric function (see Appell (1882), Slater (1966), and
Abramovitz and Stegun (1970)). m (ỹ | q̂, β) can also be approximated using the same
clever transformation as in Liang et al. (2008) (see the Appendix).

We have shown earlier that the posterior density of (b, τ) for the base prior π0 (b, τ | h0)
in the two-stage hierarchy model is given by:

π̂∗ (b, τ | h0) = λ̂b,h0π
∗
0 (b, τ | h0) +

(
1− λ̂b,h0

)
q∗ (b, τ | h0) ,

with

λ̂b,h0 =
(1− ε)m (ỹ | π0, β, h0)

(1− ε)m (ỹ | π0, β, h0) + εm (ỹ | q̂, β, h0)
.
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Hence, we can write

λ̂b =

∞∫
0

λ̂b,h0p(h0)dh0 =

[
1 +

(
ε

1− ε

)
.
m (ỹ | q̂, β)

m (ỹ | π0, β)

]−1

. (43)

Therefore, under the base prior, the Bayes estimator of b in the three-stage hierarchy
model is given by:

b∗ (β) =

∞∫
0

b∗ (β | h0) p(h0)dh0 =
1

c+ d

[
d · b̂ (β) + c · b0ιK2

]
.

Thus, under the contamination class of priors, the empirical Bayes estimator of b for the
three-stage hierarchy model is given by

b̂EB (β) =

∞∫
0

b̂EB (β | h0) p(h0)dh0 (44)

=
1

B (c, d)

 b̂ (β)
h∗∫
0

hc−1
0

(
1

1+h0

)c+d+1
dh0 + b̂qιK2

h∗∫
0

hc0

(
1

1+h0

)c+d+1
dh0

+
{
b̂ (β)

(
1

g∗+1

)
+ b̂qιK2

(
h∗

h∗+1

)} ∞∫
h∗
hc−1

0

(
1

1+h0

)c+d
dh0



=
1

B (c, d)



b̂ (β)

(
h∗
h∗+1

)c
c ×2 F1

(
c;−d; c+ 1; h∗

h∗+1

)
+b̂qιK2

(
h∗
h∗+1

)c+1

c+1 ×2 F1

(
c+ 1; 1− d; c+ 2; h∗

h∗+1

)
+
{
b̂ (β)

(
1

h∗+1

)
+ b̂qιK2

(
h∗

h∗+1

)}
×

 B (c, d)−
(

h∗
h∗+1

)c
c

×2F1

(
c; d− 1; c+ 1; h∗

h∗+1

)



and the ML-II posterior density of b is given by:

π̂∗ (b) =

∞∫
0

π̂∗ (b, τ) dτ = λ̂b

∞∫
0

π∗0 (b, τ) dτ +
(

1− λ̂b
) ∞∫

0

q∗ (b, τ) dτ (45)

= λ̂bπ
∗
0 (b) +

(
1− λ̂b

)
q̂∗ (b) .

π∗0 (b) is the pdf of a multivariate t-distribution with mean vector b∗(β), variance-covariance

matrix

(
ξ0,bM

−1
0,b

NT−2

)
and degrees of freedom (NT ) with

M0,b =
(h0 + 1)

v (β)
ΛW and ξ0,b = 1 +

(
h0

h0 + 1

)(
R2
b0

1−R2
b0

)
. (46)

q̂∗ (b) is the pdf of a multivariate t-distribution with mean vector b̂EB (β), variance-

covariance matrix

(
ξq,bM

−1
q,b

NT−2

)
and degrees of freedom (NT ) with

ξq,b = 1 +

(
ĥq

ĥq + 1

) R2
b̂q

1−R2
b̂q

 and Mq,b =

(
(ĥq + 1)

v (β)

)
ΛW . (47)
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The mean of the ML-II posterior density of b is thus given by

b̂ML−II = E [π̂∗ (b)] = λ̂bE [π∗0 (b)] +
(

1− λ̂b
)
E [q̂∗ (b)] (48)

= λ̂bb∗(β) +
(

1− λ̂b
)
b̂EB (β)

and the ML-II posterior variance-covariance matrix of b is given by:

V ar
(
b̂ML−II

)
= λ̂b

(
ξ0,b

NT − 2
.
v (β)

h0 + 1

)
Λ−1
W (49)

+
(

1− λ̂b
)( ξq,b

NT − 2

v (β)

ĥq + 1

)
Λ−1
W

+ λ̂b

(
1− λ̂b

)(
b∗(β)− b̂EB (β)

)(
b∗(β)− b̂EB (β)

)′
.

The main differences with the two-stage hierarchy model relate to the definition of the
Bayes estimator b∗(β), the empirical Bayes estimator b̂EB (β) and the weights λ̂b (as
compared to b∗(β | h0), b̂EB (β | h0) and λ̂b,h0). Once again, as our estimator is a shrinkage
estimator, it is not necessary to draw thousands of multivariate t-distributions to compute
the mean and the variance after burning draws. We can use an iterative shrinkage approach
to calculate the ML-II posterior mean and variance-covariance matrix of β and b.

5 A Monte Carlo simulation study

5.1 The DGP of the Monte Carlo study

Following Baltagi et al. (2003, 2009) and Baltagi and Bresson (2012), consider the static
linear model:

yit = x1,1,itβ1,1 + x1,2,itβ1,2 + x2,itβ2 + Z1,iη1 + Z2,iη2 + µi + εit (50)

for i = 1, ..., N , t = 1, ..., T

with

x1,1,it = 0.7x1,1,it−1 + δi + ζit (51)

x1,2,it = 0.7x1,2,it−1 + θi + ςit (52)

εit ∼ N
(
0, τ−1

)
, (δi, θi, ζit, ςit) ∼ U(−2, 2) (53)

and β1,1 = β1,2 = β2 = 1. (54)

1. For a random effects (RE) world, we assume that:

η1 = η2 = 0 (55)

x2,it = 0.7x2,it−1 + κi + uit , (κ, uit) ∼ U(−2, 2) (56)

µi ∼ N
(
0, σ2

µ

)
, ρ =

σ2
µ

σ2
µ + τ−1

= 0.3, 0.8. (57)

x1,1,it, x1,2,it and x2,it are assumed to be exogenous in that they are not correlated
with µi and εit.
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2. For a Mundlak-type fixed effects (FE) world, we assume that:

η1 = η2 = 0; (58)

x2,it = δ2,i + ω2,it , δ2,i ∼ N(mδ2 , σ
2
δ2), ω2,it ∼ N(mω2 , σ

2
ω2

); (59)

mδ2 = mω2 = 1, σ2
δ2 = 8, σ2

ω2
= 2; (60)

µi = x2,iπ + νi, νi ∼ N(0, σ2
ν), x2,i =

1

T

T∑
t=1

x2,it; (61)

σ2
ν = 1, π = 0.8. (62)

x1,1,it and x1,2,it are assumed to be exogenous but x2,it is correlated with the µi and
we assume a constant correlation coefficient π = 0.8.

3. For a Chamberlain-type fixed effects (FE) world, we assume that:

η1 = η2 = 0; (63)

x2,it = δ2,i + ω2,it , δ2,i ∼ N(mδ2 , σ
2
δ2), ω2,it ∼ N(mω2 , σ

2
ω2

); (64)

mδ2 = mω2 = 1, σ2
δ2 = 8, σ2

ω2
= 2; (65)

µi = x2,i1π1 + x2,i2π2 + ...+ x2,iTπT + νi, νi ∼ N(0, σ2
ν); (66)

σ2
ν = 1, πt = (0.8)T−t for t = 1, ..., T. (67)

x1,1,it and x1,2,it are assumed to be exogenous but x2,it is correlated with the µi and
we assume an exponential growth for the correlation coefficient πt.

4. For a Hausman-Taylor (HT) world, we assume that:

η1 = η2 = 1; (68)

x2,it = 0.7x2,it−1 + µi + uit , uit ∼ U(−2, 2); (69)

Z1,i = 1, ∀i; (70)

Z2,i = µi + δi + θi + ξi, ξi ∼ U(−2, 2); (71)

µi ∼ N
(
0, σ2

µ

)
, and ρ =

σ2
µ

σ2
µ + τ−1

= 0.3, 0.8. (72)

x1,1,it and x1,2,it and Z1,i are assumed to be exogenous while x2,it and Z2,i are
endogenous because they are correlated with the µi but not with the εit.

For each set-up, we vary the size of our panel. We choose several (N,T ) pairs with
N = 100, 500 and T = 5, 10. We also choose N = 50, T = 20 as is typical for U.S. state
panel data or country macro-panels. We generate the data by choosing initial values of
x1,1,it and x1,2,it to be zero. We generate x1,1,it, x1,2,it, εit, ζit, uit, ςit, ω2,it over T + T0

time periods and we drop the first T0(= 50) observations to reduce the dependence on
initial values. We also use the robust Bayesian estimators for the two-stage hierarchy (2S)
and for the three-stage hierarchy (3S) with ε = 0.5.

We must define the initial hyperparameters β0, b0, g0, h0, τ for the initial distributions

of β ∼ N
(
β0ιK1 , (τg0ΛX)−1

)
and b ∼ N

(
b0ιK2 , (τh0ΛW )−1

)
. While we can choose

arbitrary values for β0, b0 and τ , the literature generally recommends the UIP, the RIC
and the BRIC for the g priors.7 In the normal regression case, and following Kass and
Wasserman (1995), the unit information prior (UIP) corresponds to g0 = h0 = 1/NT ,
leading to Bayes factors that behave like the Bayesian Information Criterion (BIC). Fos-
ter and George (1994) calibrated priors for model selection based on the Risk inflation

7We chose: β0 = 0, b0 = 0 and τ = 1.
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criterion (RIC) and recommended the use of g0 = 1/K2
1 , h0 = 1/N2. Fernández et

al. (2001) recommended the BRIC (mix of BIC and RIC) using g0 = 1/max(NT,K2
1 ),

h0 = 1/max(NT,N2). We use the UIP since the RIC and the BRIC lead to very small
h0 priors.

For the three-stage hierarchy (3S), we need to choose the coefficients (c, d) of the
generalized hyper-g priors. Liang et al. (2008) stressed that the best parameter for the
Pareto type II distribution was k = 4 which corresponds to c = d = 1 for the Beta-prime
distribution. In that case, the density is shaped as a hyperbola. In order to have the
same shape under the UIP principle (i.e., h0 close to 1/NT ), we chose c = 0.1 and d = 1.
As our 2S and 3S estimators are shrinkage estimators (see eq.(24), eq.(34) for 2S and
eq.(48) for 3S), we can use an iterative shrinkage approach as suggested by Maddala et al.
(1997) with only 50 iterations. For the three-stage hierarchy (3S), we could use Gaussian
hypergeometric functions 2F1 and Appel functions F1 with Laplace approximations but we
prefer to solve the integrals numerically with adaptive quadrature methods (see Davis and
Rabinowitz (1984), Press et al. (2007)). For each experiment, we run 1000 replications
and we compute the mean, standard error and root mean squared error (RMSE) of the
coefficients.

5.2 The results of the Monte Carlo study

5.2.1 The random effects world

Let us rewrite our general model (2): y = Xβ + Wb + ε, ε ∼ N(0,Σ), Σ = τ−1INT as
y = Xβ + Zµµ + ε where Zµ = IN ⊗ ιT is (NT ×N), ιT is a (T × 1) vector of ones
and µ is a (N × 1) vector of idiosyncratic parameters. When W ≡ Zµ, the random
effects, µ ∼ N

(
0, σ2

µIN
)
, are associated with the error term ν = Zµµ+ ε with Var (ν) =

σ2
µ (IN ⊗ JT ) + σ2

εINT , where JT = ιT ι
′
T and are estimated using Feasible Generalized

Least Squares (FGLS), (see Hsiao (2003) or Baltagi (2013)).
For the random effects world, we compare the standard FGLS estimator and our 2S and

3S estimators. In this specification, X = [x1,1, x1,2, x2], W = Zµ and b = µ. The results
in Table 1 are based on N = 100, T = 5 with ε = 0.5. The proportion of heterogeneity
in the total variance, measured by the ratio of the variance of the individual effects to
the total variance (ρ). This is allowed to be either 30% or 80%. Table 1 shows that the
2S and 3S robust estimators have good properties. The estimated coefficients are very
close to the true values. More interestingly, their standard errors (se) are much smaller
than those of FGLS. Indeed, the standard errors of the latter estimator are nearly twice
as large as those of the 2S and 3S estimators. The bias and RMSE, however, are similar
to those of FGLS. Estimates of the remainder variance (σ2

ε ≡ τ−1) are the same and very
close to the true value (σ2

ε = 1). The robust 3S also correctly estimates the variance
of the individual effects (σ2

µ). The 2S estimator yields unbiased coefficients but leads to
a biased σ2

µ. The weights λβ and λb show the trade-off between the Bayes estimators

(β∗(b) and b∗(β)) and the empirical Bayes estimators (β̂EB (b) and b̂EB (β)). In the 2S
model, λβ = 28% (λb = 49%) which indicates that the empirical Bayes estimator β̂EB (b)

(̂bEB (β)) accounts for 72% (51%) of the weight in estimating the slope coefficients. In the
3S model, these ratios decrease considerably, from 22% to 11% for λβ when ρ increases
from 0.3 to 0.8. Furthermore, λb dramatically drops to zero. This means that only the
empirical Bayes estimator is used in the estimation of the individual effects (b ≡ µ) . In
addition, the standard errors of the 2S and 3S are now three times smaller and the estimate
of σ2

µ of the 3S corresponds perfectly to the true value. These results are confirmed when
we increase the size of the sample of the short panel (large N , small T ) (see Appendix,
Tables A2 and A3).8 Note that when ρ increases from 30% to 80%, the bias in the variance

8For the sake of brevity, we only present results of the three-stage hierarchy (3S) in what follows.
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of the individual effects (σ2
µ) is reduced and is smaller than −1.2% for N = 100, T = 10.

It is also smaller than −0.04% for N = 500, T = 10. Even for a macro-panel (N small, T
large), these results still hold (see Appendix Table A3 for N = 50, T = 20, ρ = 0.8 with
ε = 0.5) and the bias in the variance of the individual effects (σ2

µ) is smaller than −1.3%.

5.2.2 The Mundlak-type fixed effects world

In the fixed effects world, we allow the individual effects µ and the covariates X to be
correlated. This is usually accounted for through a Mundlak-type (see Mundlak (1978))
or a Chamberlain-type specification (see Chamberlain (1982)). For the Mundlak-type
specification, the individual effects are defined as: µ = (Z ′µX/T )π + $, $ ∼ N(0, σ2

$IN )
where π is a (K1 × 1) vector of parameters to be estimated. The model can be rewritten

as y = Xβ + PXπ + Zµ$ + ε, where P =
(
IN ⊗ JT

T

)
is the between-transformation (see

Baltagi (2013)). We can concatenate [X,PX] into a single matrix of observables and let
Wb ≡ Zµ$.

For the Mundlak world, we compare the standard FGLS estimator on the transformed
model and our robust 3S estimator of the same specification. As µi = x2,iπ + νi, the
transformed model is given by: y = x1,1β1,1 + x1,2β1,2 + x2β2 + Px2π + Zµν + ε. In this
specification, X = [x1,1, x1,2, x2, Px2], W = Zµ and b = ν. The results are presented
in Table 2 for ε = 0.5. Once again, they show the very good performance of the 3S
estimator. Irrespective of the size of N and T , the estimated coefficients are very close
to their true values and their standard errors (se) are smaller with the robust approach
than with FGLS. They are much smaller for β1,1 and β1,2 — whose respective variables
are uncorrelated with µi — but the difference with FGLS is smaller for β2 and π. The bias
and RMSE are similar to those of FGLS. Estimates of the remainder variance (σ2

ε ≡ τ−1)
are very close to the true value (σ2

ε = 1). The weights λβ and λb confirm that there is no
trade-off between the Bayes estimators and the empirical Bayes estimators. Both λβ and
λb tend to zero, which means that only the empirical Bayes estimators are used in the
estimation of the slope coefficients and the individual effects.9 The same results hold for
(N small, T large) macro-type panel, (see Appendix Table A4 for N = 50, T = 20 with
ε = 0.5).

5.2.3 The Chamberlain-type fixed effects world

For the Chamberlain-type specification, the individual effects are given by µ = XΠ +$,
where X is a (N × TK1) matrix with Xi = (X ′i1, ..., X

′
iT ) and Π = (π′1, ..., π

′
T )′ is a

(TK1 × 1) vector. Here πt is a (K1 × 1) vector of parameters to be estimated. The model
can be rewritten as: y = Xβ + ZµXΠ + Zµ$ + ε. We can concatenate [X,ZµX] into a
single matrix of observables and let Wb ≡ Zµ$.

For the Chamberlain world, we compare the Minimum Chi-Square (MCS) estimator
(see Chamberlain (1982), Hsiao (2003), Baltagi et al. (2009)) with our robust 3S es-
timator.10 These are based on the transformed model: yit = x1,1,itβ1,1 + x1,2,itβ1,2 +

x2,itβ2 +
∑T

t=1 x2,itπt + νi + εit or y = x1,1β1,1 + x1,2β1,2 + x2β2 + x2Π + Zµν + ε. In
that specification, X =

[
x1,1, x1,2, x2, x2

]
, W = Zµ and b = ν. Table 3 reports results

for (N = 100, 500, T = 5). The estimated slope coefficients for the MCS and 3S are very
close to the true values, but the standard errors (se) of the latter are between 10% to 20%
smaller than those of MCS. The bias and RMSE of our robust 3S estimator are similar to
those of MCS. Focusing on the five πt coefficients, both MCS and 3S yield good estimates

9The concatenation of [X,PX] does not change R2
β0

(as compared to the RE world) but it increases
R2
β̂q

while remaining below 0.5. It therefore drives λβ to zero.
10See the Appendix for a short presentation of the MCS estimator.
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but the standard errors of the latter (se) are in most cases roughly 10% smaller. The 3S
and the MCS give very close results both for the remainder variance (σ2

ε) and the variance
of the individual effects (σ2

µ). Just as with the Mundlak-type FE world, the weights λβ
and λb confirm that there is no trade-off between the Bayes estimators and the empirical
Bayes estimators.11 Only the empirical Bayes estimators are used in the estimation of the
slope coefficients and the individual effects irrespective of the value of N . One can note
that σ2

µ is biased for MCS but not for 3S.
When we increase T from 5 to 10, we estimate ten πt coefficients. The convexity of

these time-varying coefficients is strong (from π1 = 0.13 to π10 = 1) (see Tables A5-A6
in the Appendix) and both estimators manage to estimate the πt parameters precisely.
Likewise, the β parameters are very close to their true values and the standard errors
are very similar across estimators. As a consequence, the RMSE’s are nearly identical.
Results in Tables 3, A5 and A6 show that 3S yields more precise estimates for small
N . Whenever N or T increase, both MCS and 3S generate somewhat similar parameter
estimates (β’s and πt), standard errors and RMSE’s. The main advantage of 3S is that it
provides unbiased estimates of σ2

ε and σ2
µ irrespective of N and T . The advantages of 3S

over MCS are also illustrated in Table A7 in the Appendix. There we consider a typical
macro panel data set consisting of N = 50 , and T = 20 observations. Table A7 shows
that both estimators yield parameter estimates (β’s and πt) that are very close to their
true values. Yet, the RMSE associated with 3S are systematically smaller that those of
MCS. In addition, 3S and MCS yield estimates for both σ2

ε and σ2
µ that are close to their

true values.

5.2.4 The Hausman-Taylor world

The Hausman-Taylor model (henceforth HT, see Hausman and Taylor (1981)) posits that
y = Xβ +Zη+Zµµ+ ε, where Z is a vector of time-invariant variables, and that subsets
of X (e.g., X ′2,i) and Z (e.g., Z ′2i) may be correlated with the individual effects µ, but
leave the correlations unspecified. Hausman and Taylor (1981) proposed a two-step IV
estimator.12 For our general model (2): y = Xβ +Wb+ ε, we assume that (X ′2,i, Z

′
2i and

µi) are jointly normally distributed: µi(
X ′2,i
Z ′2i

)  ∼ N

 0(

E
X′2

EZ′2

)  ,

(
Σ11 Σ12

Σ21 Σ22

) , (73)

where X ′2,i is the individual mean of X ′2,it. The conditional distribution of µi | X ′2,i, Z ′2i is
given by:

µi | X ′2,i, Z
′
2i ∼ N

(
Σ12Σ−1

22 .

(
X ′2,i − EX′2
Z ′2i − EZ′2

)
,Σ11 − Σ12Σ−1

22 Σ21

)
. (74)

Since we do not know the elements of the variance-covariance matrix Σjk, we can write:

µi =
(
X ′2,i − EX′2

)
θX +

(
Z ′2i − EZ′2

)
θZ +$i, (75)

where $i ∼ N
(
0,Σ11 − Σ12Σ−1

22 Σ21

)
is uncorrelated with εit, and where θX and θZ are

vectors of parameters to be estimated. In order to identify the coefficient vector of Z ′2i and

11The concatenation of [X,ZµX] increases the set of information to estimate β and Π. It does not change
R2
β0

(as compared to the RE world) but it increases strongly R2
β̂q

while remaining below 0.5, therefore

driving λβ to zero.
12See the Appendix for a short presentation of the Hausman-Taylor estimator.
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to avoid possible collinearity problems, we assume that the individual effects are given by:

µi =
(
X ′2,i − EX′2

)
θX + f

[(
X ′2,i − EX′2

)
�
(
Z ′2i − EZ′2

)]
θZ +$i, (76)

where � is the Hadamard product and f
[(
X ′2,i − EX′2

)
�
(
Z ′2i − EZ′2

)]
can be a non-

linear function of
(
X ′2,i − EX′2

)
�
(
Z ′2i − EZ′2

)
. The first term on the right-hand side of

equation (76) corresponds to the Mundlak transformation while the middle term captures
the correlation between Z ′2i and µi. The individual effects, µ, are a function of PX and
(f [PX � Z]), i.e., a function of the column-by-column Hadamard product of PX and Z.
We can once again concatenate [X,PX, f [PX � Z]] into a single matrix of observables
and let Wb ≡ Zµ$.

For our model, yit = x1,1,itβ1,1 + x1,2,itβ1,2 + x2,itβ2 + Z1,iη1 + Z2,iη2 + µi + εit or
y = X1β1+ x2β2 + Z1η1 + Z2η2 + Zµµ+ ε. Then, we assume that

µi = (x2,i − Ex2) θX + f [(x2,i − Ex2)� (Z2i − EZ2)] θZ + νi.

We propose adopting the following strategy: If the correlation between µi and Z2i is quite
large (> 0.2), use f [.] = (x2,i − Ex2)2 � (Z2i − EZ2)s with s = 1. If the correlation is
weak, set s = 2. In real-world applications, we do not know the correlation between
µi and Z2i a priori. We can use a proxy of µi defined by the OLS estimation of µ:
µ̂ =

(
Z ′µZµ

)−1
Z ′µŷ where ŷ are the fitted values of the pooling regression y = X1β1+

x2β2 + Z1η1 + Z2η2 + ζ. Then, we compute the correlation between µ̂ and Z2. In our
simulation study, it turns out the correlations between µ and Z2 are large: 0.97 and 0.70
when ρ = 0.8, and ρ = 0.3, respectively. Hence, we choose s = 1. In this specification,
X = [x1,1, x1,2, x2, Z1, Z2, Px2, f [Px2 � Z2]], W = Zµ and b = ν.

For the Hausman-Taylor world, we compare the IV method proposed by Hausman
and Taylor (1981) with our robust 3S estimator. Table 4 gives the results for N = 100,
T = (5, 10), ε = 0.5 and ρ = 0.3, 0.8. It shows very good estimates of the slope coefficients
with 3S, except for η2 which is slightly biased. The coefficient β2 of the time-varying
variable x2, (correlated with µi), is also well estimated. Similarly, the coefficient η1 of the
time-invariant variable Z1, (uncorrelated with µi), is also well estimated. In contrast, the
coefficient η2 of the time-invariant variable Z2, (correlated with µi), is slightly biased (3%
to 4.7% for (N = 100, T = 5) and 2.1% to 2.9% for (N = 100, T = 10)). This bias does
not change when N increases (see Table A8 in the Appendix). However, the standard
errors are considerably lower, especially for the coefficients η1 and η2 of the two time-
invariant variables. The 95% confidence intervals obtained with 3S are much narrower
and are entirely nested within those obtained with the IV procedure of Hausman-Taylor.
For instance, from Table 4, the average over 1, 000 replications of the 95% confidence
intervals for η2 are:

95% confidence intervals for η2 3S IV HT

min max min max

N = 100, T = 5 ρ = 0.3 0.965 1.096 0.740 1.249
ρ = 0.8 0.984 1.107 0.643 1.356

N = 100, T = 10 ρ = 0.3 0.971 1.070 0.838 1.156
ρ = 0.8 0.983 1.076 0.721 1.296

The HT procedure is known to generate large confidence intervals for all the coefficients
of the time-invariant variables. Despite the fact that our 3S method leads to a slight bias
for the coefficient η2 of the time-invariant variable Z2 (correlated with µi), the uncertainty
about the permissible values is significantly reduced compared to HT.
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While the biases are similar to those of HT, the RMSE are much smaller (for instance,
the RMSE of η2 is three times smaller when N = 100, T = 10 and ρ = 0.8). Whereas 3S
and HT fit the remainder variance rather well (σ2

ε), 3S tends to slightly over-estimate the
individual effects variance (σ2

µ) when ρ is small, and under-estimate it when ρ is large.
When ρ = 0.3, the bias of σ2

µ for HT declines from 17.05% to 4.57% when T doubles.
The comparable decline for 3S is from 36.40% to 15.04% when T doubles. This bias shrinks
considerably when ρ = 0.8. In fact, for HT, there is a reduction in the bias from 8.16% to
2.75% when T doubles. The comparable reduction in the bias for 3S is from −0.57% to
2.49%. These results continue to hold when N increases (see Table A8 in the Appendix).

Just like the Mundlak and Chamberlain-type FE worlds, the weights λβ and λb indicate
that there is no trade-off between the Bayes estimators and the empirical Bayes estimators.
Only the empirical Bayes estimators are used in the estimation of the slope coefficients and
the individual effects. For a typical macro-panel (N small, T large), all these results carry
through, and in some cases are even improved (see Table A9 in the Appendix for N = 50,
T = 20, ρ = 0.8 with ε = 0.5). We see that the bias on the coefficient η2 of the time-
invariant variable Z2 (correlated with µi) is reduced to 1.5%, and more importantly the
standard errors are 8 times smaller than those obtained for the IV procedure of Hausman-
Taylor. Once again the 95% confidence interval for η2 obtained with 3S [0.966; 1.065] is
smaller and nested within that obtained for the HT estimator [0.606; 1.397]. Moreover,
the bias of σ2

µ for HT is larger (3.06%) than that for 3S (−0.52%).
To investigate the properties of our proposed strategy, we computed the biases (η2 −

η̂2,3S) under s = 1, 2, 3. Figures 1 and 2 in the Appendix plot the ratios of the biases
for s = 2, 3 relative to the bias for s = 1 for different sample sizes. The figures confirm
that when the correlation between µi and Z2i is more than 20%, it is best to use s = 1 to
reduce the bias. Whereas when the correlation between µi and Z2i is less than 20%, it is
best to use s = 2, 3 to reduce the bias.

5.3 Sensitivity to ε and non-normality

As a final check on the properties of our proposed 3S estimator, we conducted two ad-
ditional sets of experiments. First, we checked the sensitivity of our results to changing
the values of ε, the contamination part of prior distributions. We allowed ε to vary be-
tween 10% and 90%. Only the results for the RE world and the Hausman-Taylor world
(N = 100, T = 5, ρ = 0.8) are reported in Tables A10 and A11 in the Appendix. For the
RE and HT worlds, this does not change the estimated slope coefficients, standard errors,
biases or RMSE of the coefficients. It also does not change the estimated values of the
remainder variances (σ2

ε). Only for HT do we observe some differences in the variances
of the individual effects (σ2

µ). The closer we are to the intermediate values (ε = 0.3, 0.7),
the more important is the bias (−2.5%). For extreme values (ε = 0.1 or 0.9), the bias is
smaller (−1.75%). For ε = 0.5, we get the smallest bias (−0.75%). Moving from ε = 0.1
to ε = 0.9 leads to a W shape for the bias on σ2

µ.
Last, but not least, we checked the sensitivity of various estimators to a non-normal

framework. The remainder disturbances (εit) were assumed to follow a right-skewed t-
distribution ST (0, df = 3, shape = 2) (see Fernández and Steel (1998)) instead of the
N(0, 1) (see equation (53)). Results in Tables A12-A14 in the Appendix show that, irre-
spective of the estimator considered, our 3S significantly dominates in terms of bias and
precision of the slope parameters for RE, Chamberlain-type fixed effects and Hausman-
Taylor worlds. In addition, the estimated variances of the individual effects and remainder
terms are much closer to the true theoretical values compared to the classical estimators.
What is remarkable is that our 3S estimator remains unbiased and has very small standard
errors relative to the classic estimators. It also yields variances of the individual effects
σ2
µ and remainder terms σ2

ε that are very similar to the theoretical ones. For example,
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for the Hausman-Taylor world, Table A14 in the Appendix shows that the bias of our 3S
estimator for η2 is −0.38%, while that for HT is 1.02%. But most surprising, the 95%
confidence interval of η2 is very narrow [0.8447; 1.1628] as compared to the wide 95% confi-
dence interval [0.3035; 1.6761] for HT. The estimates of σ2

ε of our 3S estimator (7.221) and
the HT estimator (7.211) are close to the theoretical variance

(
σ2
ε = 7.227

)
. However, this

is not the case for the estimated individual effects variance σ2
µ. Our 3S estimator (4.571)

is relatively closer to the theoretical value (σ2
µ = 4) as compared to that of HT estimator

(5.558). Last but not least, λβ is small but slightly more important than that for the
Gaussian cases.

6 Applications

6.1 The Cornwell-Rupert earnings equations

Cornwell and Rupert (1988) estimate a returns to schooling example based on a panel of
595 individuals observed over the period 1976 − 82 and drawn from the Panel Study of
Income Dynamics (PSID). In particular, log wage is regressed on years of education (ED),
weeks worked (WKS), years of full-time work experience (EXP), occupation (OCC=1, if
the individual is in a blue-collar occupation), residence (SOUTH = 1, SMSA = 1, if the
individual resides in the South, or in a standard metropolitan statistical area), industry
(IND = 1, if the individual works in a manufacturing industry), marital status (MS = 1,
if the individual is married), sex and race (FEM = 1, BLK = 1, if the individual is female
or black), union coverage (UNION = 1, if the individual’s wage is set by a union contract)
(see also Baltagi and Khanti-Akom (1990)). We let X1 = (OCC,SOUTH,SMSA, IND),
X2 = (EXP,EXP2,WKS,MS,UNION), Z1 = (FEM,BLK) and Z2 = ED. For the
Mundlak estimation, we drop Z1 and Z2 and we consider that only the variables in X2
are correlated with the individual effects.

The estimation results are reported in Table 5. There are very few differences between
the Within, the FGLS estimates on the transformed model (i.e., the Mundlak-type FE)
and our 3S estimator. Since we assume that only the X2 variables are correlated with
the individual effects, Within estimates do not exactly match the Mundlak-type FE. One
can note that the FE estimates are slightly different from those of the two other methods
(Mundlak-type FE and 3S), especially for OCC, SOUTH and SMSA. But for the main
variables of the earnings equation, we get similar results. A comparison between the
Mundlak-type FE and 3S shows that the estimate of IND becomes significantly different
from zero. With the three-stage robust Bayesian estimator, we get more precise estimates
of all coefficients. Estimation of the π values from the 3S and the FGLS on the transformed
model are quite similar. The estimated variances of the individual effects (σ2

µ) and the
residuals (σ2

ε) are roughly the same for 3S and Mundlak-type fixed effects.
For the HT model, we need to reintroduce Z1 and Z2 into the model. The assump-

tion that there is correlation between the individual effects and the explanatory vari-
ables X2 and Z2 justifies the use of the IV method with instruments given by AHT =
[QXX1, QWX2, PX1, Z1] where QW = INT −P is the within-transform. To choose the s
parameter of our function f [.] = (x2,i − Ex2)2� (Z2i − EZ2)s, we estimate the OLS proxy

of the individual effects µ̂ =
(
Z ′µZµ

)−1
Z ′µŷ where ŷ are the fitted values of the pooling

regression y = X1β1+ X2β2 + Z1η1 + Z2η and then compute the correlation between µ̂
and Z2. The estimated correlation is large (0.612), so we set s = 1. From the estimates
reported in Table 6, we see little differences between the HT and our 3S estimators. Of
course, the RE estimates are biased but they are presented here for the sake of compar-
ison with the HT and 3S estimates. The three-stage robust Bayesian estimator leads to
more precise and significant coefficients compared to those of the IV estimator, except
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for SMSA. With the IV method, we get non significant effects for OCC, SOUTH and
IND and a surprising negative effect for SMSA. In contrast, with the 3S estimator,
OCC and SOUTH have the expected negative effects. IND has an expected positive
effect but SMSA has a non significant effect. With 3S, gender and race effects are now
significant and the plausible negative gender impact dominates the negative race effect.
If EXP and EXP2 have the same impact in both the 3S and HT, the effect of ED is
slightly lower (11.43% against 13.79%).13 More interestingly, the 95% confidence interval
of ED is narrow [11.02%; 11.83%] as compared to the one obtained with the IV method
[9.63%; 17.56%]. This sizeable difference between the standard errors of 3S and those of
the IV method are expected from our Monte Carlo study. However, there is no statistical
difference between these two estimates, since the confidence interval of ED for IV nests
the one for 3S. From an economic policy point of view, though, the effect of education on
earnings is better estimated with 3S than with IV. It is difficult to imagine an economic
adviser telling a policy-maker that the returns to schooling effects can vary between 9%
and 17%. Yet, one may wonder whether the average education effect estimated with 3S
may be under-estimated, the difference being less than 2.4%.14

6.2 The Cornwell-Trumbull crime model

Cornwell and Trumbull (1994) estimated an economic model of crime using panel data on
90 counties in North Carolina over the period 1981 − 1987. The empirical model relates
the crime rate to a set of explanatory variables which include deterrent variables as well
as variables measuring returns to legal opportunities. All variables are in logs except for
the regional dummies (west, central). The explanatory variables include the probability
of arrest PA , the probability of conviction given arrest PC , the probability of a prison
sentence given a conviction PP , the number of policemen per capita as a measure of
the county’s ability to detect crime (Police), the population density, (Density), percent
minority (pctmin), regional dummies for western and central counties. Opportunities
in the legal sector are captured by the average weekly wage in the county by industry.
These industries are: transportation, utilities and communication (wtuc); manufacturing
(wmfg).

From Table 7, there is not much difference between the MCS and 3S estimates on
the transformed model.15 All the confidence intervals for MCS and 3S estimates overlap.
Estimation of the πt coefficients obtained from 3S lead to more statistically significant co-
efficients than those from MCS. We only report coefficients that are statistically significant
at the 5% level. But, more interestingly, we note a strong coherency between the Within
estimates (FE) and 3S. The MCS estimates are slightly different from the FE estimates,
with, for example, PC having an estimate of −0.23 for MCS as compared to −0.31 for
FE and 3S. Note, however, that the 95% confidence intervals overlap with each other.
The estimated variances of the individual effects (σ2

µ) and the residuals (σ2
ε) are sighltly

different (0.05 for 3S and 0.07 for MCS).
We also estimated a Mundlak-type FE model. Table 8 reveals slight differences between

the Within, the Mundlak-type and 3S estimation results. The most notable differences
concern the dummies, the π values and the standard errors between 3S and Mundlak-
type FE. Estimation of all the coefficients by 3S are more precise than those of the FGLS

13Baltagi and Bresson (2012), using a robust HT estimator, show that the returns to education are
roughly the same but the gender effect becomes significant and the race effect becomes smaller as compared
to those obtained in the classical HT case.

14Recall that the coefficient of the endogeneous time-invariant variable was slightly biased (1.7% to 5%)
in the simulation study for 3S, even though the RMSE for 3S, was lower than that for HT.

15Results are obtained using one hundred iterations on the MCS estimator to match the results of Baltagi
et al. (2009).
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on the transformed model for Mundlak-type FE. But, more interestingly, we note once
again a strong coherency between the Within estimates (FE), the 3S and the FGLS on
the transformed model. Just as with the MCS estimation, the estimated variances of the
individual effects (σ2

µ) and of the residuals (σ2
ε) are roughly the same (0.03 for Mundlak-

type FE and 0.04 for 3S).

7 Conclusion

To our knowledge, our paper is the first to analyze the static linear panel data model
using an ε-contamination approach with two-stage and three-stage hierarchies. The main
benefit of this approach is its ability to extract more information from the data than the
classical Bayes estimator with a single base prior. In addition, we have shown that our
approach encompasses a variety of specifications such as random effects, Hausman-Taylor,
Mundlak, and Chamberlain-type models. The frequentist approach, on the other hand,
requires separate estimators for each model.

Following Singh and Chaturvedi (2012), we estimate the Type II maximum likelihood
(ML-II) posterior distribution of the coefficients, β, and the individual effects, b, using a
two-step procedure. Indeed, we first subtract Wb from y and derive the ML-II posterior
distribution of β given b and g0 (the Zellner’s g-prior of the base elicited prior of the
variance-covariance matrix of β). It turns out that the ML-II posterior density of β is a
weighted average of the conditional posterior density of β based upon the base prior and
the conditional posterior density of β based on the ε-contaminated prior. We show that
each conditional posterior density of β is the pdf of a multivariate t-distribution which
also depends on both the Bayes estimator of β under the base prior g0 and the data-
dependent empirical Bayes estimator of β. If the base prior is consistent with the data,
the ML-II posterior density of β gives more weight to the conditional posterior density
derived from the elicited prior. Conversely, if the base prior is not consistent with the
data, the ML-II posterior density of β is then close to the conditional posterior density
derived from the ε-contaminated prior. Moreover, we derive the ML-II posterior mean
and variance-covariance matrix of β given b and g0. In the second step, we subtract
Xβ from y, and again derive the ML-II posterior distribution of b given β and h0 (the
Zellner’s g-prior of the base elicited prior for the variance-covariance matrix of b). Similar
conclusions as in the first step obtain. These derivations are useful in that they show how
the shrinkage estimators arise. They are also useful in that they avoid having to draw
thousands of multivariate t-distributions in order to compute the means and the variances
after burning draws. Our approach only requires a weighted average of the Bayes and the
empirical Bayes estimators and is relatively easy to implement.

Our approach is derived both for a two-stage and a three-stage hierarchy model. As
stressed in the literature, the Bayesian approach introduces a third stage in the hierarchical
model in order to discriminate between fixed effects and random effects. In general, and
more specifically in the context of panel data, hyperparameters are used only to model
the variance-covariance matrix of the individual effects b. We go one-step further and use
Zellner’s g-priors in the second stage on β and b, assuming g0 is fixed and known. We need
only define mixtures of g-priors on the precision matrix of b, or equivalently on h0. For this
purpose, we use a generalized hyper-g prior which is a Beta-prime (or Pearson Type VI)
hyper prior for h0 and we restrict the ε-contamination class of prior distributions to the
second stage of the hierarchy only (i.e., for (β, b)). The expression of the ML-II posterior
density of b is little affected by this specification. On the other hand, the predictive
densities of the Bayes estimator, the empirical Bayes estimator and the weights are now
Gaussian and Appell hypergeometric functions for the estimators based on the base elicited
prior and on the ε-contaminated prior, respectively. These functions are known to generate

21



overflows for moderate to large samples. This is likely to be problematic for microeconomic
panel data. However, we could use Laplace approximations of the integrals to circumvent
this difficulty.

The finite sample performance of the two-stage and three-stage hierarchy estimators
are investigated using Monte Carlo experiments. The experimental design includes a
random effects world, a Mundlak-type world, a Chamberlain-type world and a Hausman-
Taylor-type world. Using unit information prior in the two-stage hierarchy for the Zellner’s
g-priors g0 and h0 and a Beta-prime distribution in the three-stage hierarchy for h0, our
simulation results underscore the relatively superior performance of the three-stage hier-
archy estimator, irrespective of the data generating process considered. Indeed, estimated
β′s and b′s are always very close to their true values. Moreover, their biases and RMSE
are close and often smaller than those of the conventional estimators. In the two-stage hi-
erarchy, estimated weights show that their exists a trade-off between the Bayes estimators
and the empirical Bayes estimators. In the three-stage hierarchy, this trade-off vanishes
and only the empirical Bayes estimator matters in the estimation of the coefficients and
the individual effects. We also checked the sensitivity of our results to the values of ε, the
contamination part of the prior distributions. Our results are very robust, even when ε is
allowed to vary between 10% and 90%. Lastly, we have shown that our 3S estimators are
significantly better behaved than the classical estimators when the remainder disturbances
are not normally distributed.

The major conclusions from the Monte Carlo experiments is that our Bayesian ap-
proach, which encompasses a variety of specifications, leads to similar and often better
performance than that obtained by conventional methods. The simulation results also
hold in the empirical examples using panel data from earnings and crime. Analyses of
earnings data (Within, Mundlak-type world, Hausman-Taylor-type world) and crime data
(Within, Chamberlain-type world) show that our approach yields very similar results to
those of conventional estimators (Feasible GLS,Within, Minimum Chi Square, Instrumen-
tal Variables), but often times outperforms them in the sense of being statistically more
precise and definitely more robust.

The main originality of this paper lies in the application of the ε-contamination class
to the linear static panel data model. The framework we develop is very general and
encompasses various specifications. The robust Bayesian approach we propose is arguably
a relevant all-in-one panel data framework. In future work we intend to broaden its scope
by addressing issues such as heteroskedasticity, autocorrelation of residuals, general IV,
dynamic and spatial models.
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et Appliquées, 3ème série, (in French) , 8, 173–216.

http://portail.mathdoc.fr/JMPA/PDF/JMPA 1882 3 8 A8 0.pdf.

Baltagi, B.H., 2013, Econometric Analysis of Panel Data, fifth edition, Wiley, Chichester, UK.

Baltagi, B.H. and G. Bresson, 2012, A robust Hausman-Taylor estimator, in Advances in Econometrics:

Essays in Honor of Jerry Hausman, vol. 29, (Baltagi B.H., Carter Hill, R. Newey, W.K. and H.L.

White, eds.), Emerald Group Publishing Limited, 175-214.

Baltagi, B.H., Bresson, G. and A. Pirotte, 2003, Fixed effects, random effects or Hausman-Taylor? A

pretest estimator, Economics Letters, 79, 361-369.

Baltagi, B.H., Bresson, G. and A. Pirotte, 2008, To pool or not to pool?, in The Econometrics of Panel

Data: Fundamentals and Recent Developments in Theory and Practice, (Mátyás, L. and P. Sevestre,
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B Derivations

B.1 The first step of the robust Bayesian estimator in the two-stage
hierarchy1

B.1.1 Derivation of eq.(9)

As y = Xβ +Wb+ ε , ε ∼ N (0,Σ) with Σ = τ−1INT , the joint probability density function (pdf)
of y, given the observables and the parameters, is:

p (y | X, b, τ, β) =
( τ

2π

)NT
2

exp
(
−τ

2
(y −Xβ −Wb)′(y −Xβ −Wb)

)
.

Let y∗ = y −Wb. We can write (see Koop (2003), Bauwens et al. (2005) or Hsiao and Pesaran
(2008) for instance):

(y∗ −Xβ)′(y∗ −Xβ) = y∗′y∗ − y∗′Xβ − β′X ′y∗ + β′X ′Xβ

and

p (y∗ | X, b, τ) =
( τ

2π

)NT
2

exp
(
−τ

2
(y∗ −Xβ)′(y∗ −Xβ)

)
.

Let β̂ (b) = (X ′X)−1X ′y∗ = Λ−1
X X ′y∗ and v (b) = (y∗ −Xβ̂ (b))′(y∗ −Xβ̂ (b)). Then

ΛX β̂ (b) = X ′y∗ and β̂
′
(b)

ΛX = y∗′X(y∗ −Xβ)′(y∗ −Xβ)

= y∗′y∗ − β̂
′
(b) ΛXβ − β′ΛX β̂ (b) + β′ΛXβ

= y∗′y∗ − β̂
′
(b) ΛXβ − β′ΛX β̂ (b) + β′ΛXβ

+ β̂
′
(b) ΛX β̂ (b)− β̂

′
(b) ΛX β̂ (b)

+ β̂
′
(b) ΛX β̂ (b)− β̂

′
(b) ΛX β̂ (b)

(y∗ −Xβ)′(y∗ −Xβ) = y∗′y∗ + (β − β̂ (b))′ΛX

(
β − β̂ (b)

)
− β̂

′
(b) ΛX β̂ (b) + β̂

′
(b) ΛX β̂ (b)

− β̂
′
(b) ΛX β̂ (b) .

Since

y∗′y∗ − β̂
′
(b) ΛX β̂ (b) + β̂

′
(b) ΛX β̂ (b)− β̂

′
(b) ΛX β̂ (b) = y∗′y∗ − y∗′Xβ̂ (b)− β̂

′
(b)X ′y∗

+β̂
′
(b)X ′Xβ̂ (b)

=
(
y∗ −Xβ̂ (b)

)′
(y∗ −Xβ̂ (b))

= v (β)

then
(y∗ −Xβ)′(y∗ −Xβ) = (β − β̂ (b))′ΛX

(
β − β̂ (b)

)
+ v (β) .

So the joint pdf can be written as:

p (y∗ | X, b, τ) =
( τ

2π

)NT
2

exp
(
−τ

2

{
v (β) + (β − β̂ (b))′ΛX

(
β − β̂ (b)

)})
.

1Derivations of the second step of the robust Bayesian estimator in the two-stage hierarchy are not reported here
since they follow strictly those of the first step.
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The base prior of β is given by: β ∼ N
(
β0ιK1

, (τg0ΛX)
−1
)

with ΛX = X ′X. Combining the pdf

of y and the pdf of the base prior, we get the predictive density corresponding to the base prior:

m (y∗ | π0, b, g0) =

∞∫
0

∫
RK1

π0 (β, τ | g0)× p (y∗ | X, b, τ) dβ dτ

=

∞∫
0

∫
RK1

p (β | τ, β0, g0)× p (τ)× p (y∗ | X, b, τ) dβ dτ

=

∞∫
0

∫
RK1


(
τ
2π

)NT
2
(
τg0
2π

)K1
2
(

1
τ

)
|ΛX |1/2

× exp
(
− τg02 (β − β0ιK1

)′ΛX(β − β0ιK1
)
)

× exp
(
− τ2

{
v (b) + (β − β̂ (b))′ΛX(β − β̂ (b)

})
 dβ dτ

m (y∗ | π0, b, g0) =

∞∫
0

∫
RK1


(

1
2π

)NT+K1
2 g

K1
2

0 (τ)
NT+K1

2 −1 |ΛX |1/2

× exp

(
− τ2 {v (β)} − τ

2

{
(β − β̂ (b))′ΛX(β − β̂ (b)

+g0(β − β0ιK1
)′ΛX(β − β0ιK11

)

})  dβ dτ.

First, we will simplify the expression inside the exponential:

z = (β − β̂ (b))′ΛX(β − β̂ (b) + g0(β − β0ιK1
)′ΛX(β − β0ιK1

).

As the Bayes estimate of β is given by2 (see Bauwens et al. (2005)):

β∗(b | g0) =

(
β̂ (b) + g0β0ιK1

n∗

)
with n∗ = g0 + 1,

then

z = n∗(β
′ΛXβ − 2β′∗(b)ΛXβ) + g0β0ι

′
K1

ΛXιK11
+ β̂

′
(b) ΛX β̂ (b)

= n∗(β − β∗(b | g0))′ΛX(β − β∗(b | g0))− n∗β′∗(b)ΛXβ∗(b | g0)

+ g0β0ι
′
K1

ΛXιK1
+ β̂

′
(b) ΛX β̂ (b)

= n∗(β − β∗(b | g0))′ΛX(β − β∗(b | g0)) +
g0

n∗

(
β0ιK1

− β̂ (b)
)′

ΛX

(
β0ιK1

− β̂ (b)
)

= (g0 + 1) (β − β∗(b | g0))′ΛX(β − β∗(b | g0))

+

(
g0

g0 + 1

)(
β̂ (b)− β0ιK1

)′
ΛX

(
β̂ (b)− β0ιK1

)
.

We can then write

m (y∗ | π0, b, g0) =

∞∫
0

∫
RK1

(
1

2π

)NT+K1
2

g
K1
2

0 (τ)
NT+K1

2 −1 |ΛX |1/2

× exp

 − τ2 {v (β)}

− τ2

{
(g0 + 1) (β − β∗(b | g0))′ΛX(β − β∗(b | g0))

+
(

g0
g0+1

)(
β̂ (b)− β0ιK1

)′
ΛX

(
β̂ (b)− β0ιK1

) }
 dβ dτ

=

∞∫
0


∫

RK1

exp
[
−τ

2
(g0 + 1) (β − β∗(b | g0))′ΛX(β − β∗(b | g0))

]
dβ


×
(

1

2π

)NT+K1
2

g
K1
2

0 (τ)
NT+K1

2 −1 |ΛX |1/2

×
{

exp

[
−τ

2

{
v (b) +

(
g0

g0 + 1

)(
β̂ (b)− β0ιK1

)′
ΛX

(
β̂ (b)− β0ιK1

)}]
dτ

}
.

2Derivation of this estimator is presented below.
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The multiple integral

IRK1 =

∫
RK1

exp
(
−τ

2
(g0 + 1)(β − β∗(b | g0))′ΛX(β − β∗(b | g0))

)
dβ

can be written as

IRK1 =

∞∫
−∞

...

∞∫
−∞

exp
(
−τ

2
(g0 + 1)(β − β∗(b | g0))′ΛX(β − β∗(b | g0))

)
dβ1...dβK1

= |D|−1

∞∫
−∞

...

∞∫
−∞

exp
(
−τ

2
(g0 + 1) s′s

)
ds1...dsK1

,

where s = D(β − β∗(b | g0)). Then,

IRK1 = |D|−1

 ∞∫
−∞

exp
(
−τ

2
(g0 + 1) s2

)
ds

K1

,

and using the Gauss integral formula

∞∫
−∞

exp
(
−ax2

)
dx =

√
π

a

we get

IRK1 = |D|−1

(
2π

τ(g0 + 1)

)K1/2

= |ΛX |−1/2
(2π)

K1/2 . [τ(g0 + 1)]
−K1/2 .

Hence we can write

m (y | π0, b, g0) =

∞∫
0

(2π)
K1/2

(
1

2π

)NT+K1
2

g
K1/2
0 (g0 + 1)−K1/2. |ΛX |−1/2 |ΛX |1/2 τ−K1/2τ

NT+K1
2 −1

× exp

(
−τ

2

{
v (b) +

(
g0

g0 + 1

)
(β̂ (b)− β0ιK1

)′ΛX(β̂ (b)− β0ιK1
)

})
dτ

m (y | π0, b, g0) = (2π)
−NT/2

(
g0

g0 + 1

)K1/2
∞∫

0

τ
NT
2 −1 exp

−τ
2
v (b)

 1+(
g0
g0+1

)(
R2
β0

1−R2
β0

) 
 dτ,

where

R2
β0

=
(β̂ (b)− β0ιK1

)′ΛX(β̂ (b)− β0ιK1
)

(β̂ (b)− β0ιK1
)′ΛX(β̂ (b)− β0ιK1

) + v (b)
.

We thus get

m (y | π0, bg0) = H̃

(
g0

g0 + 1

)K1/2
(

1 +

(
g0

g0 + 1

)
(β̂ (b)− β0ιK1)′ΛX(β̂ (b)− β0ιK1)

v (b)

)−NT2

= H̃

(
g0

g0 + 1

)K1/2
(

1 +

(
g0

g0 + 1

)(
R2
β0

1−R2
β0

))−NT2
(9)

with

H̃ =
Γ
(
NT
2

)
π(NT2 )v (b)(

NT
2 )

.

Q.E.D
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B.1.2 Derivation of eq.(15) and eq.(16)

The maximization of m (y∗ | q, b, g0) is equivalent to maximizing logm (y∗ | q, b, g0). Write:

logm (y∗ | q, b, g0) = log H̃ +
K1

2
log

(
gq

gq + 1

)
−NT

2
log

(
1 +

(
gq

gq + 1

)
(β̂ (b)− βqιK1

)′ΛX(β̂ (b)− βqιK1
)

v (b)

)
.

Next we derive the above expression with respect to βq and gq to obtain the first order conditions:

∂ logm (y∗ | q, b, g0)

∂βq
= 0 and

∂ logm (y∗ | q, b, g0)

∂gq
= 0

The first term, (∂ logm (y∗ | q, b) /∂βq), leads to

∂ logm (y∗ | q, b, g0)

∂βq
= −

(
NT

2

)
∂

∂βq

{
log

(
1+(

gq
gq+1

)
(β̂(b)−βqιK1

)′ΛX(β̂(b)−βqιK1
)

v(b)

)}

= −
(
NT

2

)
.

 1

1 +
(

gq
gq+1

)
.
(β̂(b)−βqιK1

)′ΛX(β̂(b)−βqιK1
)

v(β)


×
(

gq
gq + 1

)
(−2) (β̂ (b)− βqιK1

)′ΛXιK1
= 0.

Since [
1 +

(
gq

gq + 1

)
(β̂ (b)− βqιK1

)′ΛX(β̂ (b)− βqιK1
)

v (β)

]−1

6= 0 and finite

it follows that
(β̂ (b)− βqιK1)′ΛXιK1 = 0.

Thus
β̂q =

(
ι′K1

ΛXιK1

)−1
ι′K1

ΛX β̂ (b) . (15)

The second term of the first order conditions is

∂ logm (y∗ | q, b)
∂gq

= 0.

This implies

∂ logm (y∗ | q, b, g0)

∂gq
=

∂

∂gq

{
K1

2
log

(
gq

gq + 1

)}
−
(
NT

2

)
∂

∂gq

{
log

(
1+(

gq
gq+1

)
(β̂(b)−βqιK1

)′ΛX(β̂(b)−βqιK1
)

v(b)

)}

=
K1

2

[
1

gq (gq + 1)

]
−
(
NT

2

)
(

R2
βq

1−R2
βq

)
(gq + 1) + gq

(
R2
βq

1−R2
βq

) 1

gq + 1

 = 0,

with

R2
βq =

(β̂ (b)− βqιK1
)′ΛX(β̂ (b)− βqιK1

)

(β̂ (b)− βqιK1
)′ΛX(β̂ (b)− βqιK1

) + v (b)
.

Therefore

K1

2

[
1

gq (gq + 1)

]
=

(
NT

2

)
(

R2
βq

1−R2
βq

)
(gq + 1)

[
(gq + 1) + gq

(
R2
βq

1−R2
βq

)]
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or equivalently

K1

2

[
1

gq

]
=

(
NT

2

)
(

R2
βq

1−R2
βq

)
(gq + 1) + gq

(
R2
βq

1−R2
βq

)


gq =

(
K1

NT

)gq
((

R2
βq

1−R2
βq

)
+ 1

)
+ 1(

R2
βq

1−R2
βq

)
 .

Hence

gq =
K1

NTB −K1

((
R2
βq

1−R2
βq

)
+ 1

) =

(
NT −K1

K1
.

(
R2
βq

1−R2
βq

)
− 1

)−1

.

It follows that

ĝq = min
(
g0, g

∗
q

)
(16)

with g∗q = max

0,

(
NT −K1

K1

(β̂ (b)− β̂qιK1
)′ΛX(β̂ (b)− β̂qιK1

)

v (b)
− 1

)−1


= max

0,

(
NT −K1

K1

(
R2
βq

1−R2
βq

)
− 1

)−1
 .

Q.E.D

B.1.3 Derivation of eq.(18), eq.(19), eq.(20) and eq.(22)

If π∗0 (β, τ | g0) denotes the posterior density of (β, τ) for the prior π0 (β, τ) and if q∗ (β, τ | g0)
denotes the posterior density of (β, τ) for the prior q (β, τ), then the ML-II posterior density of
(β, τ) is given by

π̂∗ (β, τ | g0) =
p (y∗ | X, b, τ) π̂ (β, τ | g0)

∞∫
0

∫
RK1

p (y∗ | X, b, τ) π̂ (β, τ | g0) dβ dτ

=
p (y∗ | X, b, τ) {(1− ε)π0 (β, τ | g0) + εq̂ (β, τ | g0)}

∞∫
0

∫
RK1

p (y∗ | X, b, τ) {(1− ε)π0 (β, τ | g0) + εq̂ (β, τ | g0)} dβ dτ

=
(1− ε) p (y∗ | X, b, τ)π0 (β, τ | g0) + εp (y∗ | X, b, τ) q̂ (β, τ | g0) (1− ε)

∞∫
0

∫
RK1

p (y∗ | X, b, τ)π0 (β, τ | g0) dβdτ

+ε
∞∫
0

∫
RK1

p (y∗ | X, b, τ) q̂ (β, τ | g0) dβdτ


.

Since

π̂∗ (β, τ | g0) =
(1− ε) p (y∗ | X, b, τ)π0 (β, τ | g0) + εp (y∗ | X, b, τ) q̂ (β, τ | g0)

(1− ε)m (y∗ | π0, b, g0) + εm (y∗ | q̂, b, g0)

= λ̂β

(
p (y∗ | X, b, τ)π0 (β, τ | g0)

m (y∗ | π0, b, g0)

)
+
(

1− λ̂β
)(p (y∗ | X, b, τ) q̂ (β, τ | g0)

m (y∗ | q̂, b, g0)

)
,

then
π̂∗ (β, τ | g0) = λ̂β,g0π

∗
0 (β, τ | g0) +

(
1− λ̂β,g0

)
q∗ (β, τ | g0)

with

λ̂β,g0 =
(1− ε)m (y∗ | π0, b, g0)

(1− ε)m (y∗ | π0, b, g0) + εm (y∗ | q̂, b, g0)
.
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λ̂β,g0 =

[
1 +

εm (y∗ | q̂, b, g0)

(1− ε)m (y∗ | π0, b, g0)

]

=

1 +
ε

1− ε

(
ĝ
ĝ+1
g0
g0+1

)K1/2
1 +

(
g0
g0+1

)
(β̂(b)−β0ιK1

)′ΛX(β̂(b)−β0ιK1
)

v(b)

1 +
(

ĝ
ĝ+1

)
(β̂(b)−β̂qιK1

)′ΛX(β̂(b)−β̂qιK1
)

v(b)


NT
2


−1

=

1 +
ε

1− ε

(
ĝ
ĝ+1
g0
g0+1

)K1/2

1 +
(

g0
g0+1

)(
R2
β0

1−R2
β0

)
1 +

(
ĝ
ĝ+1

)(
R2
βq

1−R2
βq

)


NT
2

−1

(19)

Integration of π̂∗ (β, τ | g0) with respect to τ leads to the marginal ML-II posterior density of β :

π̂∗ (β | g0) =

∞∫
0

π̂∗ (β, τ | g0) dτ = λ̂β,g0

∞∫
0

π∗0 (β, τ | g0) dτ +
(

1− λ̂β,g0
) ∞∫

0

q∗ (β, τ | g0) dτ.

We must first define π∗0 (β, τ | g0) and q∗ (β, τ | g0). As

π∗0 (β, τ | g0) =
p (y∗ | X, b, τ)π0 (β, τ | g0)

m (y∗ | π0, b, g0)
=

p (y∗ | X, b, τ)π0 (β, τ | g0)
∞∫
0

∫
RK1

p (y∗ | X, b, τ)π0 (β, τ | g0) dβdτ

,

where

m (y∗ | π0, b) =
Γ
(
NT
2

)
π(NT2 )v (b)(

NT
2 )

(
g0

g0 + 1

)K1/2

×

(
1 +

(
g0

g0 + 1

)
(β̂ (b)− β0ιK1)′ΛX(β̂ (b)− β0ιK1)

v (b)

)−NT2
,

and where

p (y∗ | X, b, τ)π0 (β, τ | g0) =


(
τ
2π

)NT
2
(
τg0
2π

)K1
2 τ−1 |ΛX |1/2

× exp
(
− τg02 (β − β0ιK1

)′ΛX(β − β0ιK1
)
)

× exp
(
− τ2

{
v (b) + (β − β̂ (b))′ΛX(β − β̂ (b)

})


= τ(NT+K1
2 −1) |ΛX |1/2

(
1

2π

)NT+K1
2

g
K1
2

0 × exp
(
−τ

2
ϕπ0,β

)
,

with

ϕπ0,β = v (β) + (g0 + 1) (β − β∗(b))′ ΛX (β − β∗(b))

+

(
g0

g0 + 1

)(
β̂(b)− β0ιK1

)′
ΛX

(
β̂(b)− β0ιK1

)
,

then
π∗0 (β, τ | g0) = L0 (b)× τ(NT+K1

2 −1) × exp
(
−τ

2
ϕπ0,β

)
,

where

L0 (b) =
2−(NT+K1

2 )

Γ
(
NT
2

)
.πK1/2

. (g0 + 1)
K1
2 .v (b)

NT
2 . |ΛX |1/2

×


1 +

(
g0

g0 + 1

) (β̂(b)− β0ιK1

)′
ΛX

(
β̂(b)− β0ιK1

)
v (b)


(NT2 )

 .
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Similarly, the expression of q∗ (β, τ | g0) is defined as:

q∗ (β, τ | g0) =
p (y∗ | X, b, τ) q̂ (β, τ | g0)

m (y∗ | q̂, b, g0)
=

p (y∗ | X, b, τ) q̂ (β, τ | g0)
∞∫
0

∫
RK1

p (y∗ | X, b, τ) q̂ (β, τ | g0) dβ dτ

= Lq̂ (b)× τ(NT+K1
2 −1) × exp

(
−τ

2
ϕq̂,β

)
,

with

ϕq̂,β = v (β) + (ĝ + 1)
(
β − β̂EB (b | g0)

)′
ΛX

(
β − β̂EB (b | g0)

)
+

(
ĝ

ĝ + 1

)(
β̂(b)− β̂qιK1

)′
ΛX

(
β̂(b)− β̂qιK1

)
and

Lq̂ (b) =
2−(K1)

Γ
(
NT
2

)
πK1/2

(ĝ + 1)
K1
2 v (b)(

NT
2 ) |ΛX |1/2

×


1 +

(
ĝ

ĝ + 1

) (β̂(b)− β̂qιK1

)′
ΛX

(
β̂(b)− β̂qιK1

)
v (β)


(NT2 )

 ,
and where β̂EB (b | g0) is the empirical Bayes estimator of β for the contaminated prior distribution
q (β, τ) (see the derivation below):

β̂EB (b | g0) =
β̂ (b) + ĝqβ̂qιK1

ĝq + 1
.

Integration of π̂∗ (β, τ | g0) with respect to τ leads to the marginal ML-II posterior density of β :

π̂∗ (β | g0) =

∞∫
0

π̂∗ (β, τ | g0) dτ = λ̂β,g0

∞∫
0

π∗0 (β, τ | g0) dτ +
(

1− λ̂β,g0
) ∞∫

0

q∗ (β, τ | g0) dτ

= λ̂β,g0π
∗
0 (β | g0) +

(
1− λ̂β,g0

)
q̂∗ (β | g0) (18)

So,

π∗0 (β | g0) =

∞∫
0

π∗0 (β, τ | g0) dτ

= L0 (b)

∞∫
0

τ(NT+K1
2 −1) × exp

(
−τ

2
ϕπ0,β

)
dτ

= L0 (b)× 2(NT+K1
2 )ϕ

(−NT+K1
2 )

π0,β
Γ

(
NT +K1

2

)
.

Then π∗0 (β | g0) is given by

π∗0 (β | g0) =
Γ
(
NT+K1

2

)
Γ
(
NT
2

)
π
K1
2

|ΛX |1/2 (g0 + 1)
K
2 v (b)(

NT
2 ) × ϕ(−NT+K1

2 )
π0,β

×

1 +

(
g0

g0 + 1

) (β̂(b)− β0ιK1

)′
ΛX

(
β̂(µ)− β0ιK1

)
v (b)


(NT2 )

.

We therefore get

π∗0 (β | g0) = H̃π0

(g0 + 1)
K1/2(

(g0 + 1) (β−β∗(b))′ΛX(β−β∗(b))
v(b) +

(
g0
g0+1

)
(β̂(b)−β0ιK1)

′
ΛX(β̂(b)−β0ιK1)
v(b) + 1

)NT+K1
2

,
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with

H̃π0
=

Γ
(
NT+K1

2

)
|ΛX |1/2

πK/2Γ
(
NT
2

)
v (β)

K1/2

×

1 +

(
g0

g0 + 1

) (β̂(b)− β0ιK1

)′
ΛX

(
β̂(b)− β0ιK1

)
v (b)


NT
2

.

If we suppose that M0,β = (g0+1)
v(b) ΛX , then |M0,β |1/2 =

(
g0+1
v(b)

)K1/2

|ΛX |1/2 and

π∗0 (β | g0) =
Γ
(
NT+K1

2

)
|M0,β |1/2

πK1/2Γ
(
NT
2

) (ξ0,β)
NT/2

[(β − β∗(b))′M0,β(β − β∗(b)) + ξ0,β ]
−NT+K1

2 ,

with ξ0,β = 1 +

(
g0

g0 + 1

) (β̂(b)− β0ιK1

)′
ΛX

(
β̂(b)− β0ιK1

)
v (b)

. (20)

So π∗0 (β | g0) is the pdf of a multivariate t-distribution with mean vector β∗(b), variance-covariance

matrix

(
ξ0,βM

−1
0,β

NT−2

)
and degrees of freedom (NT ) (see Bauwens et al. (2005)). q∗ (β | g0) is defined

equivalently by:

q̂∗ (β | g0) =

∞∫
0

q̂∗ (β, τ | g0) dτ = Lq̂ (b)

∞∫
0

τ(NT+K1
2 −1) × exp

(
−τ

2
ϕq̂,β

)
dτ.

Then q∗ (β) is given by

q∗ (β | g0) = H̃q
(ĝ + 1)

K1/2{
(ĝ + 1)

(β−β̂EB(b))
′
ΛX(β−β̂EB(b))
v(b) +

(
ĝ
ĝ+1

)
(β̂(b)−β̂qιK1)

′
ΛX(β̂(µ)−β̂qιK1)
v(b) + 1

}NT+K1
2

,

with

H̃q =
Γ
(
NT+K1

2

)
|ΛX |1/2

πK1/2Γ
(
NT
2

)
v (b)

K1/2

×

1 +

(
ĝ

ĝ + 1

) (β̂(b)− β̂qιK1

)′
ΛX

(
β̂(b)− β̂qιK1

)
v (b)


NT
2

.

Notice that q∗ (β | g0) is the pdf of a multivariate t-distribution with mean vector β̂EB (b), variance-

covariance matrix

(
ξ1,βM

−1
1,β

NT−2

)
and degrees of freedom (NT ) with

ξ1,β1 = 1 +

(
ĝ

ĝ + 1

) (β̂(b)− β̂qιK1

)′
ΛX

(
β̂(b)− β̂qιK1

)
v (b)

and M1,β =

(
(ĝ + 1)

v (β)

)
ΛX . (22)

Q.E.D

B.1.4 Derivation of eq.(21) and eq.(23).

To prove equation (23), start from Bayes’s theorem:

p (β|y∗) ∝ p (y∗|β) p (β) .

As y∗ ∼ N
(
Xβ, τ−1INT

)
and β ∼ N

(
β̂qιK1

, (τ ĝΛX)
−1
)

, then the product p (y∗|β) p (β) is pro-

portional to exp
{
− 1

2Q
∗} where Q∗ is given by (see Koop (2003), Bauwens et al. (2005) or Hsiao

and Pesaran (2008) for instance):
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Q∗ = τ (y∗ −Xβ)
′
(y∗ −Xβ) + τ ĝ

(
β − β̂qιK1

)′
ΛX

(
β − β̂qιK1

)
= τy∗

′
y∗ − τy∗

′
Xβ − τβ′X ′y∗ + τβ′X ′Xβ

+τ ĝβ′ΛXβ − τ ĝβ′ΛX β̂qιK1
− τ ĝβ̂qιK1

ΛXβ + τ ĝ
(
β̂q

)2

ι′K1
ΛXιK1

.

We can write

Q∗ =
{
τ ĝβ′ΛXβ + τβ′X ′Xβ − τ ĝβ̂qβ′ΛXιK1 − τβ′Xy∗ − τ ĝβ̂qιK1ΛXβ − τy∗

′
Xβ
}

+

{
τy∗

′
y∗ + τ ĝ

(
β̂q

)2

ι′K1
ΛXιK1

}
= β′ (τ ĝΛX + τX ′X)β − β′

(
τ ĝΛX β̂qιK1

+ τX ′y∗
)
− τ ĝβ̂qιK1

ΛXβ − τy∗
′
Xβ

+
{
τy∗

′
y∗ + τ ĝβ̂

2

qι
′
K1

ΛXιK1

}
LetD = (τ ĝΛX + τX ′X)

−1
. If we add and subtractR′DR inQ∗, withR =

(
τ ĝΛX β̂qιK1

+ τX ′y∗
)

,

then

Q∗ =

 β′ (τ ĝΛX + τX ′X)β − β′
(
τ ĝΛX β̂qιK1 + τX ′y∗

)
− τ ĝβ̂qιK1ΛXβ − τy∗

′
Xβ

+
(
τ ĝΛX β̂qιK1

+ τX ′y∗
)′
D
(
τ ĝΛX β̂qιK1

+ τX ′y∗
)


+

 τy∗′y∗ + τ ĝβ̂ (µ)
2

ι′K1
ΛXιK1

−
(
τ ĝΛX β̂qιK1 + τX ′y∗

)′
D
(
τ ĝΛX β̂qιK1 + τX ′y∗

)


= Q∗1 +Q∗2.

So

Q∗1 =

 β′ (τ ĝΛX + τX ′X)β − β′
(
τ ĝΛX β̂qιK1

+ τX ′y∗
)
− τ ĝβ̂qιK1

ΛXβ − τy∗
′
Xβ

+
(
τ ĝΛX β̂qιK1

+ τX ′y∗
)′
D
(
τ ĝΛX β̂qιK1

+ τX ′y∗
)


= β′D−1β − β′

(
τ ĝΛX β̂qιK1 + τX ′y∗

)
−
(
τ ĝΛX β̂qιK1 + τX ′y∗

)′
β

+
(
τ ĝΛX β̂qιK1

+ τX ′y∗
)′
D
(
τ ĝΛX β̂qιK1

+ τX ′y∗
)

= β′D−1β − β′D−1D
(
τ ĝΛX β̂qιK1 + τX ′y∗

)
−
(
τ ĝΛX β̂qιK1 + τX ′y∗

)′
D′D−1β

+
(
τ ĝΛX β̂qιK1

+ τX ′y∗
)′
D′D−1D (τ ĝΛXβ + τX ′y∗)

Let β̂EB(b | g0) = D
(
τX ′y∗ + τ ĝβ̂qΛXιK1

)
. Then

Q∗1 = β′D−1β − β′D−1β̂EB(b | g0)− β̂
′
EB(b | g0)D−1β + β̂

′
EB(b | g0)D−1β̂EB(b | g0)

=
(
β − β̂EB(b | g0)

)′
D−1

(
β − β̂EB(b | g0)

)
.

As

Q∗2 = τy∗
′
y∗ + τ ĝβ̂

2

qι
′
K1

ΛXιK1

−
(
τX ′y∗ + τ ĝβ̂qΛXιK1

)′
D
(
τX ′y∗ + τ ĝβ̂qΛXιK1

)
,

and as far as the distribution of p (β|y∗) is concerned, Q∗2 is a constant. So exp
{
− 1

2Q
∗
2

}
integrates to

1. Therefore, the marginal distribution of β given y∗ is proportional to exp
{
− 1

2Q
∗
1

}
. Consequently,

the empirical Bayes estimator β̂EB(b | g0) of β is given by

β̂EB(b | g0) = D
(
τX ′y∗ + τ ĝβ̂qΛXιK1

)
, with D = (τ ĝΛX + τX ′X)

−1
.
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Hence

β̂EB (b | g0) = D
(
τX ′y∗ + τ ĝβ̂qΛXιK1

)
= ((ĝ + 1) ΛX)

−1
(
X ′y∗ + ĝβ̂qΛXιK1

)
= ((ĝ + 1))

−1
(

Λ−1
X X ′y∗ + ĝβ̂qιK1

)
=
β̂ (b) + ĝβ̂qιK1

ĝ + 1
= β̂ (b)− ĝ

ĝ + 1

(
β̂ (b)− β̂qιK1

)
. (23)

Using Bayes’s theorem once again:

p (β|y∗) ∝ p (y∗|β) p (β) .

As y∗ ∼ N
(
Xβ, τ−1INT

)
and β ∼ N

(
β0ιK1 , (τg0ΛX)

−1
)

, then, following the previous derivations,

we can show that β∗(b | g0) is the Bayes estimate of β for the prior distribution π0 (β, τ | g0) :

β∗ (b | g0) =
β̂ (b) + g0β0ιK1

g0 + 1
. (21)

Q.E.D

B.2 The second step of the robust Bayesian estimator in the three-stage
hierarchy

B.2.1 Derivation of eq.(40) and eq.(42)

In the second step of the two-stage hierarchy, we have derived the predictive density corresponding
to the base prior conditional on h0:

m (ỹ | π0, β, h0) = H̃

(
h0

h0 + 1

)K2/2
(

1 +

(
h0

h0 + 1

)
(̂b (β)− b0ιK2

)′ΛW (̂b (β)− b0ιK2
)

v (β)

)−NT2

= H̃

(
h0

h0 + 1

)K2/2
(

1 +

(
h0

h0 + 1

)(
R2
b0

1−R2
b0

))−NT2
.

Then, the unconditional predictive density corresponding to the base prior is given by

m (ỹ | π0, β) =

∞∫
0

m (ỹ | π0, β, h0) p(h0)dh0

=
H̃

B (c, d)
×
∞∫

0


(

h0

h0+1

)K2/2
(

1 +
(

h0

h0+1

)(
R2
b0

1−R2
b0

))−NT2
× hc−1

0

(
1

1+h0

)c+d
 dh0,

since

p (h0) =
hc−1

0 (1 + h0)
−(c+d)

B (c, d)
, c > 0, d > 0

Let ϕ = h0

h0+1 . Then 1− ϕ = 1
h0+1 , h0 = ϕ

1−ϕ and dh0 = (1− ϕ)
−2
dϕ, so

m (ỹ | π0, β) =
H̃

B (c, d)

1∫
0

(ϕ)
K2
2 +c+1

(1− ϕ)
d−1

(
1 + ϕ

(
R2
b0

1−R2
b0

))−NT2
dϕ (40)

=
B(d, K2

2 + c)

B (c, d)
H̃ ×2 F1

(
NT

2
;
K2

2
+ c;

K2

2
+ c+ d;−

(
R2
b0

1−R2
b0

))
,
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where 2F1 is the Gaussian hypergeometric function.3 Following the lines of the second step of the
robust estimator in the two-stage hierarchy, we have

ĥq = min (h0, h
∗) ,

with h∗ = max

0,

{(
NT −K2

K2

)(
R2
bq

1−R2
bq

)
− 1

}−1


so

ĥq =

{
h0 if h0 ≤ h∗
h∗ if h0 > h∗

and the predictive density corresponding to the contaminated prior conditional on h0 is:

m (y | q̂, b, h0) =


H̃
(

h0

h0+1

)K2
2

(
1 +

(
h0

h0+1

)(
R2
bq

1−R2
bq

))−NT2
if h0 ≤ h∗

H̃
(

h∗

h∗+1

)K2
2

(
1 +

(
h∗

h∗+1

)(
R2
bq

1−R2
bq

))−NT2
if h0 > h∗.

Then the unconditional predictive density corresponding to the contaminated prior is given by:

m (ỹ | q̂, β) =

∞∫
0

m (y | q̂, β, h0) .p(h0)dh0

=
H̃

B (c, d)
×

h∗∫
0


(

h0

h0+1

)K2/2
(

1 +
(

h0

h0+1

)(
R2
bq

1−R2
bq

))−NT2
×hc−1

0

(
1

1+h0

)c+d
 dh0

+
H̃

B (c, d)

(
h∗

h∗ + 1

)K2
2

(
1 +

(
h∗

h∗ + 1

)(
R2
bq

1−R2
bq

))−NT2
×

∞∫
h∗

hc−1
0

(
1

1 + h0

)c+d
dh0.

3The Euler integral formula is given by (see Abramovitz and Stegun (1970)):

1∫
0

(t)a2−1 (1− t)a3−a2−1 (1− zt)−a1 dt = B(a2, a3 − a2)×2 F1 (a1; a2; a3; z)

=
Γ (a2) Γ (a3 − a2)

Γ (a3)
×2 F1 (a1; a2; a3; z)

where 2F1 (a1; a2; a3; z) is the Gaussian hypergeometric function with 2F1 (a1; a2; a3; z) ≡2 F1 (a2; a1; a3; z). This
is a special function represented by the hypergeometric series. For | z |< 1, the hypergeometric function is defined
by the power series:

2F1 (a1; a2; a3; z) =∞j=0

(a1)j(a2)j

(a3)j

zj

j!

where (a1)j is the Pochhammer symbol defined by

(a1)j =

{
1 if j = 0

a1 (a1 + 1) ... (a1 + j − 1) =
Γ(a1+j)

Γ(a1)
if j > 0
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Let ϕ = h0

h0+1 . Then

m (ỹ | q̂, β) =
H̃

B (c, d)
×

h∗
h∗+1∫
0

(ϕ)
K2
2 +c−1

(1− ϕ)
d−1

(
1 + ϕ

(
R2
bq

1−R2
bq

))−NT2
dϕ

+
H̃

B (c, d)
×
(

h∗

h∗ + 1

)K2
2

(
1 +

(
h∗

h∗ + 1

)(
R2
bq

1−R2
bq

))−NT2

×
1∫

h∗
h∗+1

(ϕ)
c−1

(1− ϕ)
d−1

dϕ,

so we get two incomplete Gaussian hypergeometric functions. Let ϕ =
(

h∗

h∗+1

)
t. The solution of

the first one is given by:

h∗
h∗+1∫
0

(ϕ)
K2
2 +c−1

(1− ϕ)
d−1

(
1 + ϕ

(
R2
bq

1−R2
bq

))−NT2
dϕ =

=

(
h∗

h∗ + 1

)K2
2 +c

1∫
0

t
K2
2 +c−1

(
1−

(
h∗

h∗ + 1

)
t

)d−1
(

1 +

(
h∗

h∗ + 1

)(
R2
bq

1−R2
bq

)
t

)−NT2
dt

=

(
h∗

h∗ + 1

)K2
2 +c

×
Γ
(
K2

2 + c
)

Γ
(
K2

2 + c+ 1
)

× F1

(
K2

2
+ c;

NT

2
; 1− d;

K2

2
+ c+ 1;

(
h∗

h∗ + 1

)
;−
(

h∗

h∗ + 1

)(
R2
bq

1−R2
bq

))

=
2
(

h∗

h∗+1

)K2
2 +c

K2 + 2c
× F1

(
K2

2
+ c;

NT

2
; 1− d;

K2

2
+ c+ 1;

(
h∗

h∗ + 1

)
;−
(

h∗

h∗ + 1

)(
R2
bq

1−R2
bq

))
,

where F1(.) is the Appell hypergeometric function.4 The second incomplete Gaussian hypergeo-
metric function can be written as:

1∫
h∗
h∗+1

(ϕ)
c−1

(1− ϕ)
d−1

dϕ =

1∫
0

(ϕ)
c−1

(1− ϕ)
d−1

dϕ−

h∗
h∗+1∫
0

(ϕ)
c−1

(1− ϕ)
d−1

dϕ

= B (c, d)−

(
h∗

h∗+1

)c
c

×2 F1

(
c; d− 1; c+ 1;

(
h∗

h∗ + 1

))
.

4The Appell hypergeometric function (see Appell (1882), Abramovitz and Stegun (1970), Slater (1966)) is a
formal extension of the hypergeometric function to two variables:

F1 (a; b1; b2; c;x; y) = ∞
j=0
∞
k=0

(a)j+k(b1)j(b2)k

(c)j+k

xj

j!

yk

k!

=
Γ (c)

Γ (a) Γ (c− a)

1∫
0

(t)a−1 (1− t)c−a−1 (1− xt)−b1 (1− yt)−b2 dt

where (a1)j is the Pochhammer symbol.
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Then the unconditional predictive density corresponding to the contaminated prior is given by:

m (ỹ | q̂, β) = (42)

=
H̃

B (c, d)



2.( h∗
h∗+1 )

K2
2

+c

K2+2c

× F1

(
K2

2 + c; 1− d; NT2 ; K2

2 + c+ 1; h∗

h∗+1 ;− h∗

h∗+1

(
R2
bq

1−R2
bq

))

+



[(
h∗

h∗+1

)K2
2

(
1 +

(
h∗

h∗+1

)(
R2
bq

1−R2
bq

))−NT2 ]

×

 B (c, d)− ( h∗
h∗+1 )

c

c

×2F1

(
c; d− 1; c+ 1; h∗

h∗+1

) 





B.2.2 Derivation of eq.(44)

Under the contamination class of prior, the empirical Bayes estimator of b in the two-stage hierarchy
(conditional on h0) can be written as:

b̂EB (β | h0) =

(
b̂ (β) + ĥq b̂qιK2

ĥq + 1

)

=


(

1
h0+1

)
b̂ (β) +

(
h0

h0+1

)
b̂qιK2 if h0 ≤ h∗(

1
h∗+1

)
b̂ (β) +

(
h∗

h∗+1

)
b̂qιK2 if h0 > h∗.

The (unconditional) empirical Bayes estimator of b for the three-stage hierarchy model is thus
given by

b̂EB (β) =

∞∫
0

b̂EB (β | h0) p(h0)dh0

=
1

B (c, d)

 b̂ (β)
h∗∫
0

hc−1
0

(
1

1+h0

)c+d+1

dh0 + b̂qιK2

h∗∫
0

hc0

(
1

1+h0

)c+d+1

dh0

+
{
b̂ (β)

(
1

g∗+1

)
+ b̂qιK2

(
h∗

h∗+1

)} ∞∫
h∗
hc−1

0

(
1

1+h0

)c+d
dh0

 .
Let ϕ = h0

h0+1 . Then

b̂EB (β) =
1

B (c, d)


b̂ (β)

h∗
h∗+1∫
0

(ϕ)
c−1

(1− ϕ)
d
dη + b̂qιK2

h∗
h∗+1∫
0

(ϕ)
c

(1− ϕ)
d−1

dϕ

+
{
b̂ (β)

(
1

h∗+1

)
+ b̂qιK2

(
h∗

h∗+1

)} 1∫
h∗
h∗+1

(ϕ)
c−1

(1− ϕ)
d−1

dϕ

 .

We get three incomplete Gaussian hypergeometric functions. Let ϕ =
(

h∗

h∗+1

)
t. The solution of

the first one is given by

h∗
h∗+1∫
0

(ϕ)
c−1

(1− ϕ)
d
dη =

1∫
0

(
(

h∗

h∗ + 1
)t

)c−1(
1− (

h∗

h∗ + 1
)t

)d
(

h∗

h∗ + 1
)dt

=

(
h∗

h∗+1

)c
c

×2 F1

(
c;−d; c+ 1;

h∗

h∗ + 1

)
.
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The solution of the second one is:

h∗
h∗+1∫
0

(ϕ)
c

(1− ϕ)
d−1

dϕ =

1∫
0

(
(

h∗

h∗ + 1
)t

)c(
1− (

h∗

h∗ + 1
)t

)d−1

(
h∗

h∗ + 1
)dt

=

(
h∗

h∗+1

)c+1

c+ 1
×2 F1

(
c+ 1; 1− d; c+ 2;

h∗

h∗ + 1

)
,

and the solution of the third one is:

1∫
h∗
h∗+1

(ϕ)
c−1

(1− ϕ)
d−1

dϕ =

1∫
0

(ϕ)
c−1

(1− ϕ)
d−1

dϕ−

h∗
h∗+1∫
0

(ϕ)
c−1

(1− ϕ)
d−1

dϕ

= B (c, d)−

(
h∗

h∗+1

)c
c

×2 F1

(
c; d− 1; c+ 1;

(
h∗

h∗ + 1

))
.

It follows the empirical Bayes estimator of b for the three-stage hierarchy model is given by:

b̂EB (β) =
1

B (c, d)



b̂ (β)
( h∗
h∗+1 )

c

c ×2 F1

(
c;−d; c+ 1; h∗

h∗+1

)
+b̂qιK2

( h∗
h∗+1 )

c+1

c+1 ×2 F1

(
c+ 1; 1− d; c+ 2; h∗

h∗+1

)
+
{
b̂ (β)

(
1

h∗+1

)
+ b̂qιK2

(
h∗

h∗+1

)}
×

 B (c, d)− ( h∗
h∗+1 )

c

c

×2F1

(
c; d− 1; c+ 1; h∗

h∗+1

) 


. (44)

C Laplace approximations

C.1 Laplace approximation of the predictive density based on the base
prior

The unconditional predictive density corresponding to the base prior is given by

m (ỹ | π0, β) =

∞∫
0

m (ỹ | π0, β, h0) .p(h0)dh0

=
H̃

B (c, d)
×
∞∫

0


(

h0

h0+1

)K2/2
(

1 +
(

h0

h0+1

)(
R2
b0

1−R2
b0

))−NT2
× hc−1

0

(
1

1+h0

)c+d
 dh0

=
B(d, K2

2 + c)

B (c, d)
H̃ ×2 F1

(
NT

2
;
K2

2
+ c;

K2

2
+ c+ d;−

(
R2
b0

1−R2
b0

))
.

As shown by Liang et al. (2008), numerical overflow is problematic for moderate to large NT and
large R2

b0
in Gaussian hypergeometric functions. As the Laplace approximation involves an integral

with respect to a normal kernel, we follow the suggestion of Liang et al. (2008) to develop the

expansion after a change of variables to φ = log
(

h0

h0+1

)
. Thus 1

h0+1 = (1− exp [φ]) , h0 = exp[φ]
1−exp[φ]

and dh0 = exp[φ]

(1−exp[φ])2
dφ. Then:

m (ỹ | π0, β) =
H̃

B (c, d)

0∫
−∞

exp

[
φ

(
K2

2
+ c

)]
(1− exp [φ])

d−1

(
1 + exp [φ] .

(
R2
b0

1−R2
b0

))−NT2
dφ

(1)
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Let l (φ) be the logarithm of the integrand function of (1):

l (φ) = φ

(
K2

2
+ c

)
+ (d− 1) log (1− exp [φ])− NT

2
log

[
1 + exp [φ]

(
R2
b0

1−R2
b0

)]
. (2)

The Laplace approximation is given by:

0∫
−∞

exp [l (φ)] dφ '
√

2π.σ̂l. exp
[
l
(
φ̂
)]

, with σ̂2
l =

(
− d2l (φ)

dφ2

∣∣∣∣
φ=φ̂

)−1

. (3)

Setting l′ (φ) = 0 gives a quadratic equation in exp [φ] :

l′ (φ) =

(
K2

2
+ c

)
− (d− 1)

exp [φ]

1− exp [φ]
−

NT exp [φ]

(
R2
b0

1−R2
b0

)
2

[
1 + exp [φ]

(
R2
b0

1−R2
b0

)] = 0

=
1

Den



2
(
K2

2 + c
)

(1− exp [φ])

[
1 + exp [φ]

(
R2
b0

1−R2
b0

)]
−2 (d− 1) exp [φ]

[
1 + exp [φ]

(
R2
b0

1−R2
b0

)]
−NT exp [φ] (1− exp [φ])

(
R2
b0

1−R2
b0

)


= 0 (4)

with Den = 2 (1− exp [φ])

[
1 + exp [φ]

(
R2
b0

1−R2
b0

)]
. As Den 6= 0, the quadratic equation in exp [φ]

is given by:

exp [2φ]

[(
R2
b0

1−R2
b0

)
{NT −K2 − 2(c+ d) + 2}

]

− exp [φ]

[(
R2
b0

1−R2
b0

)
{NT −K2 − 2c}+K2 + 2(c+ d)

]
+K2 + 2c = 0. (5)

The roots are given by: {
exp

[
φ̂
]}

1,2
=
C1 ±

√
∆

C2
, (6)

with

C1 =

(
R2
b0

1−R2
b0

)
{NT −K2 − 2c}+K2 + 2(c+ d) (7)

C2 = 2

(
R2
b0

1−R2
b0

)
{NT −K2 − 2(c+ d)}

∆ = [C1]
2

+ 2C2 [−2c−K1] .

As h0 ∈ ]0,+∞[, then exp
[
φ̂
]
∈ ]0, 1[ and only one root is positive, so:

exp
[
φ̂
]

=
C1 +

√
∆

C2
. (8)
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The corresponding variance is

σ̂2
l =

(
− d2l (φ)

dφ2

∣∣∣∣
φ=φ̂

)−1

=


(d−1) exp[2φ̂]
(1−exp[φ̂])2

+
(d−1) exp[φ̂]
(1−exp[φ̂])

−
NT exp[2φ̂]

(
R2
b0

1−R2
b0

)

2

[
1+exp[φ̂]

(
R2
b0

1−R2
b0

)]2 +
NT exp[φ̂]

(
R2
b0

1−R2
b0

)

2

[
1+exp[φ̂]

(
R2
b0

1−R2
b0

)]


−1

=

 (d− 1) exp
[
φ̂
]

(1− exp
[
φ̂
]
)2

+

NT exp
[
φ̂
](

R2
b0

1−R2
b0

)
2

[
1 + exp

[
φ̂
](

R2
b0

1−R2
b0

)]2


−1

. (9)

Then, the Laplace approximation of the predictive density based on the base prior is:

m (ỹ | π0, β) =
H̃

B (c, d)

0∫
−∞


exp

[
φ
(
K21

2 + c
)]

(1− exp [φ])
d−1

×
(

1 + exp [φ]

(
R2
b0

1−R2
b0

))−NT2
 dφ

' H̃
√

2π

B (c, d)
σ̂l exp

[
l
(
φ̂
)]
, (10)

with l
(
φ̂
)

given by (2) and (8) and σ̂l given by (9).

C.1.1 Laplace approximation of the predictive density based on the contaminated
prior

As

ĥ =

{
h0 if h0 ≤ h∗
h∗ if h0 > h∗

, (11)

with

h∗ = max

0,

[(
NT −K2

K2

)(
R2
bq

1−R2
bq

)
− 1

]−1
 (12)

then,

m (ỹ | q̂, β) =

∞∫
0

m (ỹ | q̂, β, h0) .p(h0)dh0

=
H̃

B (c, d)

h∗∫
0


(

h0

h0+1

)K2/2
[
1 +

(
h0

h0+1

)(
R2
bq

1−R2
bq

)]−NT2
× hc−1

0

(
1

1+h0

)c+d
 dh0

+
H̃

B (c, d)

(
h∗

h∗ + 1

)K2/2
[

1 +

(
h∗

h∗ + 1

)(
R2
bq

1−R2
bq

)]−NT2
(13)

×
∞∫
h∗

hc−1
0

(
1

1 + h0

)c+d
dh0

=
H̃

B (c, d)

I1 +

(
h∗

h∗ + 1

)K2/2
[

1 +

(
h∗

h∗ + 1

)(
R2
bq

1−R2
bq

)]−NT2
I2

 .
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Let l1 (φ) be the logarithm of the integrand function of I1, with φ = log
(

h0

h0+1

)
:

l1 (φ) = φ

(
K2

2
+ c

)
+ (d− 1) log (1− exp [φ])− NT

2
log

[
1 + exp [φ]

(
R2
bq

1−R2
bq

)]
(14)

As l1 (φ) is similar to l (φ) in (2) (except the ratio of R2
bq

), we get the same quadratic equation in

exp [φ] and the same roots
{

exp
[
φ̂
]}

1,2
. As h0 ∈ ]0, h∗], then exp

[
φ̂
]
∈
]
0, g∗

g∗+1

]
, so the only

root should be positive and bounded by
]
0, h∗

h∗+1

]
, i.e, exp

[
φ̂
]

= C1+
√

∆
C2

in (8) should lie within]
0, h∗

h∗+1

]
. The corresponding variance is similar to (9) and the Laplace approximation of I1 is

I1 '
√

2πσ̂l1 exp
[
l1

(
φ̂
)]
, (15)

with l1

(
φ̂
)

given by (14) and (8) and σ̂l1 given by (9). As

I2 =

∞∫
h∗

hc−1
0

(
1

1 + h0

)c+d
dh0 =

0∫
log( h∗

h∗+1 )

exp [cφ] (1− exp [φ])
d−1

dφ. (16)

Let l2 (φ) be the logarithm of the integrand function of I2:

l2 (φ) = cφ+ (d− 1) log (1− exp [φ]) . (17)

Setting l′2 (φ) = 0 gives a first order equation in exp [φ] :

l′2 (φ) = c− (d− 1)
exp [φ]

1− exp [φ]
= 0, (18)

and the root is given by:

exp
[
φ̂
]

=
c

c+ d− 1
. (19)

As h0 ∈ [h∗,∞[, then exp
[
φ̂
]
∈
[

h∗

h∗+1 , 1
[
, so d ∈

[
1, c−h

∗

h∗

[
. The corresponding variance is

σ̂2
l2 =

(
− d2l2 (φ)

dφ2

∣∣∣∣
φ=φ̂

)−1

=

 (d− 1) exp
[
φ̂
]

(1− exp
[
φ̂
]
)2

−1

(20)

and the Laplace approximation of I2 is

I2 '
√

2πσ̂l2 exp
[
l2

(
φ̂
)]
, (21)

with l2

(
φ̂
)

given by (17) and (19) and σ̂l2 given by (20). Then, the Laplace approximation of the

predictive density based on the contaminated prior is:

m (ỹ | q̂, β) =
H̃

B (c, d)

h∗∫
0


(

h0

h0+1

)K2/2
[
1 +

(
h0

h0+1

)(
R2
bq

1−R2
bq

)]−NT2
× hc−1

0

(
1

1+h0

)c+d
 dh0

+
H̃

B (c, d)

(
h∗

h∗ + 1

)K2/2
[

1 +

(
h∗

h∗ + 1

)(
R2
bq

1−R2
bq

)]−NT2

×
∞∫
h∗

hc−1
0

(
1

1 + h0

)c+d
dh0

' H̃

B (c, d)

 √
2πσ̂l1 exp

[
l1

(
φ̂
)]

+
(

g∗

g∗+1

)K1/2 [
1 +

(
g∗

g∗+1

)(
R2
u

1−R2
u

)]−NT2 √
2πσ̂l2 exp

[
l2

(
φ̂
)]
 .
(22)
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C.1.2 Laplace approximation of the empirical Bayes estimator

Under the contamination class of prior, the empirical Bayes estimator of β for the three-stage
hierarchy model is given by:

b̂EB (β) =

∞∫
0

b̂EB (β | h0) p(h0)dh0

=
1

B (c, d)

 b̂ (β)
h∗∫
0

hc−1
0

(
1

1+h0

)c+d+1

dh0 + b̂qιK2

h∗∫
0

hc0

(
1

1+h0

)c+d+1

dh0

+
{
b̂ (β)

(
1

g∗+1

)
+ b̂qιK2

(
h∗

h∗+1

)} ∞∫
h∗
hc−1

0

(
1

1+h0

)c+d
dh0



=
1

B (c, d)



b̂ (β)
( h∗
h∗+1 )

c

c ×2 F1

(
c;−d; c+ 1; h∗

h∗+1

)
+b̂qιK2

( h∗
h∗+1 )

c+1

c+1 ×2 F1

(
c+ 1; 1− d; c+ 2; h∗

h∗+1

)
+
{
b̂ (β)

(
1

h∗+1

)
+ b̂qιK2

(
h∗

h∗+1

)}
×

 B (c, d)− ( h∗
h∗+1 )

c

c

×2F1

(
c; d− 1; c+ 1; h∗

h∗+1

) 


.

Let us write

b̂EB (β) =
β̂ (b)

B (c, d)
D1 +

b̂qιK2

B (c, d)
D2 +

{
b̂ (β)

(
1

g∗+1

)
+ b̂qιK2

(
h∗

h∗+1

)}
B (c, d)

D3,

with

D1 =

h∗∫
0

hc−1
0

(
1

1 + h0

)c+d+1

dh0 =

log( h∗
h∗+1 )∫

−∞

exp [c.φ] (1− exp [φ])
d
dφ

D2 =

h∗∫
0

hc0

(
1

1 + h0

)c+d+1

dh0 =

log( h∗
h∗+1 )∫

−∞

exp [(c+ 1) .φ] (1− exp [φ])
d−1

dφ

D3 =

∞∫
h∗

hc−1
0

(
1

1 + h0

)c+d
dh0 ≡ I2 =

0∫
log( h∗

h∗+1 )

exp [c.φ] (1− exp [φ])
d−1

dφ.

Let lD1
(φ) be the logarithm of the integrand function of D1:

lD1
(φ) = cφ+ d log (1− exp [φ]) .

Setting l′D1
(φ) = 0 gives a first order equation in exp [φ] :

l′D1
(φ) = c− d exp [φ]

1− exp [φ]
= 0

and the root is given by:

exp
[
φ̂
]

=
c

c+ d
.

As h0 ∈ ]0,∞[, then exp
[
φ̂
]
∈ ]0,∞[.The corresponding variance is

σ̂2
lD1

=

(
− d2lD1

(φ)

dφ2

∣∣∣∣
φ=φ̂

)−1

=

 d exp
[
φ̂
]

(1− exp
[
φ̂
]
)2

−1
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and the Laplace approximation of D1 is

D1 '
√

2πσ̂2
lD1

exp
[
lD1

(
φ̂
)]

Let lD2
(φ) be the logarithm of the integrand function of D2:

lD2 (φ) = (c+ 1)φ+ (d− 1) log (1− exp [φ]) .

Setting l′D2
(φ) = 0 gives a first order equation in exp [φ] :

l′D2
(φ) = (c+ 1)− (d− 1)

exp [φ]

1− exp [φ]
= 0

and the root is given by:

exp
[
φ̂
]

=
c+ 1

c+ d+ 2
.

The corresponding variance is

σ̂2
lD2

=

(
− d2lD2

(φ)

dφ2

∣∣∣∣
φ=φ̂

)−1

=

 (d− 1) exp
[
φ̂
]

(1− exp
[
φ̂
]
)2

−1

and the Laplace approximation of D2 is

D2 '
√

2πσ̂2
lD2

exp
[
lD2

(
φ̂
)]
.

For I2, the Laplace approximation of I2 is

I2 '
√

2πσ̂l2 exp
[
l2

(
φ̂
)]

Then the Laplace approximation of the empirical Bayes estimator of β on the contaminated prior
is:

b̂EB (β) =
1

B (c, d)

 b̂ (β)
h∗∫
0

hc−1
0

(
1

1+h0

)c+d+1

dh0 + b̂qιK2

h∗∫
0

hc0

(
1

1+h0

)c+d+1

dh0

+
{
b̂ (β)

(
1

g∗+1

)
+ b̂qιK2

(
h∗

h∗+1

)} ∞∫
h∗
hc−1

0

(
1

1+h0

)c+d
dh0


' β̂ (b)

B (c, d)
.
√

2πσ̂2
lD1

exp
[
lD1

(
φ̂
)]

+
b̂qιK2

B (c, d)

√
2π.σ̂2

lD2
exp

[
lD2

(
φ̂
)]

+

{
b̂ (β)

(
1

g∗+1

)
+ b̂qιK2

(
h∗

h∗+1

)}
B (c, d)

√
2πσ̂l2 exp

[
l2

(
φ̂
)]
. (23)

D The minimum chi-square estimator

For the Chamberlain world, we have used the Minimum Chi-Square (MCS) estimator. Let yi =
(yi1, ..., yiT )

′
a (T × 1) vector and x′i = (x′i1, ..., x

′
iT ) a (1× TK) matrix. Let us consider for

generalization that x′it =
[
x

(0)′

it , x
(1)′

it , x
(2)′

it

]
where x

(0)′

it is a (1×K0) vector of intercept and dum-

mies, x
(1)′

it is a (1×K1) vector of variables uncorrelated with µi and x
(2)′

it is a (1×K2) vector
of variables correlated with µi where K = K0 + K1 + K2. In our simulation study: K0 = 0,

x
(1)′

it = [x1,1,it, x1,2,it] is a (1×K1 (≡ 2)) vector of variables uncorrelated with µi and x
(2)′

it = [x2,it]
is a (1×K2 (≡ 1)) vector of variables correlated with µi. The model is given by

yit = x′itβ + µi + εit (24)

with
µi = x

(2)′

i1 π1 + x
(2)′

i2 π2 + ...+ x
(2)′

iT πT + νi (25)
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where πt is a (K2 × 1) vector of parameters. Substituting (24) into (25) gives for each t:

yit = x′itβ + x
(2)′

i1 π1 + x
(2)′

i2 π2 + ...+ x
(2)′

iT πT + rit (26)

= x
(0)′

it β0 + x
(1)′

it β1 + x
(2)′

i1 π1 + x
(2)′

i2 π2 + ...+ x
(2)′

it (β2 + πt) + ...+ x
(2)′

iT πT + rit

= x
(0)′

it β0 + x
(1)′

it β1 + x
(2)′

i Πt + rit,

where rit = νi + εit, x
(2)′

i =
[
x

(2)′

i1 , x
(2)′

i2 , ..., x
(2)′

iT

]
and Πt =

(
π′1, π

′
2, ..., (β2 + πt)

′
, ..., π′T

)′
. The

“reduced form” can be expressed as (see Chamberlain (1982), Hsiao (2003)):

yi = XiΠ + ri, (27)

with yi a (1× T ) vector, Xi a (1× T [K0 +K1 + TK2]) vector and Π, a (T [K0 +K1 + TK2]× T )
matrix:

Xi =
( [

x
(0)′

i1 , x
(1)′

i1 , x
(2)′

i

] [
x

(0)′

i2 , x
(1)′

i2 , x
(2)′

i

]
· · ·

[
x

(0)′

iT , x
(1)′

iT , x
(2)′

i

] )
, (28)

Π =



β0 β0 · · · β0

β1 β1 · · · β1

β2 + π1 π1 · · · π1

π2 β2 + π2 · · · π2

...
...

. . .
...

πT πT · · · β2 + πT


. (29)

The ([K0 +K1 + (T + 1)K2]× 1) parameter vector of interest θ = (β′0, β
′
1, β
′
2, π
′
1, π
′
2, ..., π

′
T )′, from

the structural model is known to be related to the (T [K0 +K1 + TK2]× T ) matrix of reduced
form parameters Π. In particular: vec(Π) = h(θ) for a known continuously differentiable function

h(.). CMS estimation of θ entails first estimating Π by Π̂ and then choosing an estimator θ̂ of θ

by making the distance between vec
(

Π̂
)

and h(θ̂) as small as possible. As with GMM, the CMS

estimator uses an efficient weighted Euclidian measure of distance. Assuming that for an (S × S)
definite positive matrix Ω √

Nvec
(

Π̂−Π
)
asympt.∼ N (0,Ω) , (30)

with S = T [K0 +K1 + TK2] , it turns out that the CMS solves

min
θ

(
vec
(

Π̂
)
− h (θ)

)′
Ω̂−1

(
vec
(

Π̂
)
− h (θ)

)
. (31)

The restrictions between the reduced form and structural parameters are given by

vec (Π) = h (θ) = (IT ⊗ β) + λι
′

T , (32)

where β = (β′0, β
′
1, β
′
2)′, λ = (0′0, 0

′
1, π
′
1, π
′
2, ..., π

′
T )′ with 0j a (Kj × 1) vector of zeros (j = 0, 1).

The appropriate estimator of the asymptotic variance-covariance matrix of θ̂ is

Avar
(
θ̂
)

=
1

N

(
H ′Ω̂−1H

)−1

=
1

N

(
H ′
[
Avar

(
vec
(

Π̂
))]−1

H

)−1

, (33)

where H = ∂h(θ)
∂θ′ is the (S × S) Jacobian of h (θ), i.e., all 1s and 0s.
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The Jacobian H is then defined as:

H =



IK0
0 0 0 0 · · · 0

0 IK1
0 0 0 · · · 0

0 0 IK2 IK2 0 · · · 0
0 0 0 0 IK2 · · · 0

. . .

0 0 0 0 0 · · · IK2

IK0
0 0 0 0 · · · 0

0 IK1
0 0 0 · · · 0

0 0 0 IK2
0 · · · 0

0 0 IK2 0 IK2 · · · 0
. . .

0 0 0 0 0 0 IK2

· · · · · · · · · · · · · · · · · · · · ·
IK0

0 0 0 0 · · · 0
0 IK1

0 0 0 · · · 0
0 0 0 IK2

0 · · · 0
0 0 0 0 IK2 · · · 0

. . .

0 0 IK2 0 0 · · · IK2



. (34)

The estimator Ω̂ of Avar
√
Nvec

(
Π̂−Π

)
is the robust asymptotic variance for system OLS:

Ω̂ =
1

N

N∑
i=1

[
r̂ir̂
′
i ⊗ S−1

xxXiX
′
iS
−1
xx

]
, (35)

where r̂i is the vector of the OLS residuals, Xi is the ([K0 +K1 + TK2]× T ) matrix of Xi and

Sxx =
∑N
i=1

(
XiX

′
i

)
/N (see Chamberlain (1982), Wooldridge (2002), Hsiao (2003)). If the con-

ditional variance-covariance matrix of ri is uncorrelated with Xi and is homoskedastic, then the

estimator Ω̂ will converge to

Ω̂ =
1

N

N∑
i=1

r̂ir̂
′
i ⊗
(

1

N

N∑
i=1

XiX
′
i

)−1

. (36)

After the estimation of θ̂, Ω̂ is recalculated to estimate Avar
(
θ̂
)

and MCS can be iterated.

E The Hausman-Taylor estimator

For the Hausman-Taylor world, we used the IV method proposed by Hausman and Taylor (1981).
For our model, yit = x1,1,itβ1,1 + x1,2,itβ1,2 + x2,itβ2 + Z1,iη1 + Z2,iη2 + µi + εit or y = X1β1+
x2β2 + Z1η1 + Z2η2 + Zµµ+ ε. The HT procedure is defined by the following two-step consistent
estimator of β and η (see Baltagi (2013)):

1. Perform the fixed effects (FE) or Within estimator obtained by regressing ỹit = (yit − yi.),
where yi. =

∑T
t=1 yit/T , on a similar within transformation of the regressors. Note that the

Within transformation wipes out the Zi variables since they are time invariant, and we only
obtain an estimate of β which we denote by β̃W .

• HT next averages the within residuals over time

d̂i = ȳi. − X̄ ′i.β̃W ,

where X̄ ′i. is the vector of individual means X̄ ′i. = [x11i., x12i., x2i., ] .

• To get an estimate of η, HT suggest running a 2SLS of d̂i on Zi = [Z1,i, Z2,i] with the
set of instruments A = [X1, Z1] where X1 = [x1,1, x1,2,]. This yields

η̂2SLS = (Z ′PAZ)−1Z ′PAd̂,

where PA = A(A′A)−1A′.
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2. HT suggest estimating the variance-components as follows:

σ̂2
ε = (yit −X ′itβ̃W )′QW (yit −X ′itβ̃W )/N(T − 1)

and
σ̂2

1 = (yit −X ′itβ̃W − Z ′iη2SLS)′P (yit −X ′itβ̃W − Z ′iη2SLS)/N,

where σ2
1 = Tσ2

µ + σ2
ε . Once the variance-components estimates are obtained, the model is

transformed using Ω̂−1/2 where

Ω−1/2 =
1

σ1
P +

1

σε
QW .

Note that y∗ = σ̂εΩ̂
−1/2y has a typical element y∗it = yit − θ̂ȳi., where θ̂ = 1 − (σ̂ε/σ̂1) and

X∗it and Z∗i are defined similarly. In fact, the transformed regression becomes:

σ̂εΩ̂
−1/2yit = σ̂εΩ̂

−1/2Xitβ + σ̂εΩ̂
−1/2Ziη + σ̂εΩ̂

−1/2uit,

where uit = µi + εit. The asymptotically efficient HT estimator is obtained by running a
2SLS on this transformed model using AHT = [X̃, X̄1, Z1] as the set of instruments. In this

case, X̃ denotes the within transformed X and X̄1 denotes the time average of X1. More
formally, the HT estimator under over-identification is given by:(

β̂
η̂

)
HT

=

[(
X∗′

Z∗′

)
PAHT (X∗, Z∗)

]−1(
X∗′

Z∗′

)
PAHT y

∗,

where PAHT is the projection matrix on AHT = [X̃, X̄1, Z1].
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