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ABSTRACT: 

Peer influence through word-of-mouth (WOM) plays an important role in many 

information systems but identification of causal effects is challenging. We identify causal WOM 

effects in the empirical setting of game adoption in a social network for gamers by exploiting 

differences in individuals’ networks. Friends of friends do not directly influence a focal user, so 

we use their characteristics to instrument for behavior of the focal user’s friends. We go beyond 

demonstrating a large and highly significant WOM effect and also assess moderating factors of 

the strength of the effect on the sender and receiver side. We find that users with the most 

influence on others tend to be better gamers, have larger social networks, but spend less time 

playing. Interestingly, these are also the users who are least susceptible to WOM effects. 
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I. Introduction 

Understanding the flow of information within social networks becomes more and more 

important. This is partly due to the increasing ability to measure information flows within 

Internet mediated networks but also due to new possibilities in developing more effective Word-

of-Mouth (WOM) marketing campaigns (Kozinets et al. 2010). In general, WOM describes the 

process of the transmission of information from person to person in form of personal 

conversation or, increasingly, electronically as in online consumer reviews, blogs, emails or 

private messages in online social networks. Marketers and sociologists have recognized the 

importance of WOM already long before the Internet, proposing that informal unsolicited WOM 

affects the majority of all purchase decisions (Brooks 1957, Dichter 1966). 

With the more recent advent of online consumer reviews such as product ratings or 

product recommendation in blogs, information relating to WOM has become more easily 

observable and traceable. Every consumer is a potential source of WOM information that is 

available to potential purchasers. Easily observable WOM information displayed in 

recommendation systems and reviews form the basis of a growing understanding of how WOM 

affects product sales. Less well known is the role of more intimate or personal WOM such as 

recommendations in personal conversations or communications. This is likely to be remedied by 

the growing availability of granular data from online social media. 

Peer recommendations can be especially important for experience goods that feature 

greater product quality uncertainty. This is particularly true for entertainment goods because 

there is a constant flow of new products with unknown product features on both horizontal (e.g. 

genre) and vertical (e.g. quality) product characteristics. Marketing campaigns are being 

designed that exploit the ability to generate more and better peer recommendations. For example, 
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a WOM marketing campaign may seek to target “seed” key adopters who have relatively more 

influence within their social networks so as to increase the likelihood of a purchase by those who 

are more susceptible to such influence. Identifying the characteristics that lead to more influence 

or susceptibility would be key to implementing such a campaign. 

Inferring causal peer effects from an estimation procedure is fraught with many 

challenges. Broadly defined, there are two common approaches. With randomized control trials, 

such as Aral & Walker (2012) the researcher provides exogenous stimulus to a subject and 

observes how this stimulus affects the subject’s peers. Causality derives from the exogenous and 

randomized stimulation. However, in a social context, care must be taken to prevent the control 

group from ‘infecting’ themselves with the stimulus in ways that could bias estimates. While 

observational data, such as we use, is more available, causal inferences are based on the ability 

of the estimator to control for potential sources of bias. The common threat to identification is 

the selection of both the focal user and her local network into the treated group due to shared, but 

unobserved, characteristics, i.e., homophily (Bramoullé et al, 2009). Below, we will adapt these 

methods to our application. 

We examine the flow of product information in form of peer recommendations within a 

social network of video gamers. In particular, we identify WOM information as a ‘peer effect’ 

from the purchase decisions of a focal user’s friends to the focal user’s purchase decision. 

Because our context includes nearly 100,000 individuals and 150 video game launches, we 

observe considerable variation in the magnitude of the peer effect across senders and receivers of 

WOM information and across game characteristics. This allows us to identify which factors 

generate larger or smaller WOM effects. 
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Our results show a large and highly significant impact of the WOM peer effect on the 

focal user’s decision to adopt a particular game. We document a diminishing marginal effect of 

WOM from a larger share of the focal user’s friends adopting the game. The users with the most 

influence tend to be better gamers (i.e., accumulate more in-game awards), who send fewer 

signals (i.e., spend less time playing) and who have larger local networks. The most susceptible 

users tend to be the opposite; they are of lower ability, play often, and have smaller social 

networks. That is, the attributes that lead a user to have more influence in a WOM setting are 

precisely the attributes that lead them to be less susceptible to WOM information. 

The remainder of the paper is organized as follows. In section 2 we provide a condensed 

overview of the literature explaining WOM and its effects. In the following section we explain 

the econometric challenges in the identification of peer effects and our approach to achieve 

identification. Section 3 introduces our empirical model. Section 4 presents the data and is 

followed by section 5, presenting the empirical results. Finally, section 6 concludes. 

 

II. Previous Literature on Word-of-Mouth  

WOM describes the process of conveying information from person to person and plays a 

key role in each consumer’s buying decisions (Richins and Root-Shaffer 1988, Jansen et al. 

2009). The information exchange in form of WOM also influences consumer’s attitude and 

behaviors (Brown and Reiningen 1987, Gilly et al. 1998) as well as brand awareness or product 

knowledge. Overall, WOM can be transmitted in several forms, e.g. in personal conversation or 

electronically as in online consumer reviews, blogs, emails, instant messaging or private 
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messages in online social networks, reaching many other consumers or institutions 

simultaneously via the Internet (Hennig-Thurau et al. 2004).  

WOM in form of blogs as well as in recommendation systems, such as Yelp!, 

Booking.com, Amazon ratings, or even the Oprah book club are easily observed and so have 

been the basis of studies examining their effects in the market for books (Chevalier and Mayzlin 

2006, Carmi et al. 2010), movies (Liu, 2006, Zhang and Dellarocas 2006, Duan et al. 2008), and 

video games (Zhu and Zhang 2010). Overall, the empirical evidence obtained to explain the 

relationship between online consumer reviews and sales is mixed. On the one hand, several 

studies (i.e. Chevalier and Mayzlin 2006, Zhang and Dellarocas 2006, Zhu and Zhang 2010) find 

positive impacts. On the other hand, however, online reviews might as well serve as mere 

predictors that do not influence sales (Chen et al. 2004, Duan et al. 2008). For blogs, Kozinets et 

al. (2010) show that WOM does not simply increase or amplify marketing messages but alters 

content and meaning when embedding information in the community.  

Refraining from information available to the entire public we focus on more intimate 

recommendations such as song recommendations from audiophile friends, textbook adoption 

decisions based on colleagues’ input, and video game recommendations from online team 

members. Some past research has noted the importance of such brand recommendations in 

‘tweets’ (Jansen et al. 2009), that a consumers’ engagement in social networks for purchase 

decisions is moderated by different cultural contexts (Chu and Choi 2011), and that 

sender/receiver characteristics (tie strength, trust, influence, homophily) are likely to mediate 

WOM effects (Chu and Kim 2011). As far as we know, only Aral and Walker (2012) have 

identified characteristics and network structure tied to influence and susceptibility in social 

networks. Their results indicate that influential individuals are less susceptible to influence 
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themselves. While Aral and Walker (2012) run a randomized experiment to identify peer effects, 

our identification relies on behaviors within the social network structure. We explain our 

identification in detail in the following methodology section.  

 

III. Methodology  

A. Peer effects: endogenous, exogenous and correlated effects 

Identifying peer effects requires disentangling three different effects to explain how 

neighbors’ outcomes affect the focal user’s own outcome. These are: 1) the endogenous effect, or 

the influence of peer outcomes, 2) the exogenous peer effect, or the influence of exogenous peer 

characteristics, and 3) the correlated effects, stemming from individuals in the same reference 

group tending to behave similarly because they are alike or face a common environment 

(Bramoullé et al. 2009). Distinguishing the exogenous and the endogenous from correlated 

effects empirically can be difficult (Manski 1993). Randomized Control Trials (RCTs) have been 

implemented so as to eliminate any correlated effects (Sacredote 2001, Zimmerman 2003). But 

even without correlated effects simultaneity in behavior of interacting agents, the reflection 

problem, introduces a perfect collinearity between the expected mean outcome of the group and 

its mean characteristics, precluding the identification of separate endogenous and exogenous 

effects (Bramoullé et al. 2009).  

A method for resolving the reflection problem and identifying the endogenous from the 

exogenous peer effects has been proposed by Bramoullé et al (2009). For this method the 

network has to allow for overlapping but non-identical peers. Overall, a node’s neighborhood 

outcome is endogenous in explaining the focal nodes’ outcome but may be instrumented by 
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extended neighborhood effects, so called excluded peers (De Giorgi et al. 2010).1 This allows the 

researcher to relate variation in otherwise similar network members’ outcomes to variation in 

exposure due to variation the composition in their social networks. Still, if the researcher 

observes only incomplete networks, this method may lead to biased estimates of causal effects 

(Chandrasekhar and Lewis 2011).2  

B. Peer effects in our empirical setting 

Our application introduces additional challenges to identification of causal effects in 

networks and proposes potential solutions to these challenges. In our application the focal user is 

subjected to the endogenous peer effect as he infers information about the value of adopting a 

particular video game from information about the adoption decisions of his peers. He is also 

more likely to adopt a video game when his peers display certain characteristics associated with 

adoption regardless of whether these peers adopt or not. In most other applications, these 

characteristics are not affected by adoption decisions so their effect is usually referred to as the 

exogenous peer effect. In our application, however, the peer characteristics evolve through 

experience with multiple adoption decisions resulting in neither focal user characteristics nor 

peer characteristics being time invariant. As gamers adopt and play games, they develop skills 

and affinities for certain game attributes. Peer characteristics continuously evolve for two 

reasons. First, a user’s network evolves to include more homophilic or in some cases more 

1 As an example consider nodes i, j, and k. Assume that i and j as well as j and k are connected but there is no 
connection between i and k. Accordingly, k affects j endogenously, i.e. with its outcome, and exogenously, i.e. 
through its characteristics. However, k affects i only through j. Therefore, k’s characteristics may be used to 
instrument the endogenous effect of j’s outcome on i's outcome. Bramoullé et al. (2009) provide conditions for 
formal identification which is based on intransitive trials.  
2 Chandrasekhar and Lewis (2011) show that if the available network data are not complete censes but samples out 
of existing networks they will face measurement error due to non-observed missing links resulting in biased 
estimates. Our available data, however, are a complete census of the Raptr community network and we therefore are 
unlikely to miss any links. However, Raptr itself is a sample out of all gamers as it is as itself not mandatory for 
gaming activity. In addition, we cannot exclude the possibility that gamers do communicate with their peers outside 
of Raptr. Nevertheless, we suspect the measurement error to be negligible small in our given data. 
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different peers. Second, even if the network is fixed, the shared experience of playing games 

together in the past will make measured preference characteristics more similar. Since peer and 

focal user characteristics are likely to evolve together, neither are likely exogenous to the focal 

user’s adoption decisions.  

We adopt several measures to try to overcome this issue of endogeneity. First, following 

Bramoullé et al. (2009) and De Giorgi et al. (2010) we instrument for peer adoption decisions 

from non-identical, overlapping groups. As the shared experience of playing games together in 

the past will make measured preference characteristics more similar, we can use measured 

preference characteristics from the members of the focal user’s network of friends-of-friends 

who are not friends themselves (G2) as instrumental variables for the adoption decisions of his 

network of friends (G1). This is intended to isolate the effect of the shared experience of playing 

games together with members of the G2 network from the shared experience with the focal user 

itself. 

Second, we measure all of our characteristic information prior to the release of the game 

under investigation. Users will often adopt a game some days after a game is released. In the 

interim, both the focal user’s and his peers’ measured preference characteristics will continue to 

evolve. It is possible that the way that they co-evolve is affected by the release of the game under 

consideration. To avoid this specific confounding problem, we calculate characteristic values for 

the focal user, his network of friends G1 and his network of non-overlapping friends-of-friends 

G2 as of the game’s release date and not at a time in which the game could have affected the 

preference characteristics. 
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Third, because we observe multiple game adoption decisions for each user, we can 

include fixed effects for users and for games. Thus, parameter identification comes from 

deviations in measures across game adoption decisions. The characteristics we measure are 

associated with user preferences for different types of games. To the extent that underlying 

preferences are time invariant, the likely source of this variation would be through adapting to 

peer preferences – exactly what we wish to measure. 

C. Empirical Model 

In order to identify the magnitude of peer effects across senders and receivers of WOM 

information we explain the adoption decision of individual i by the peer effects he is subjected to 

due to the adoption and characteristics of his peer j for a particular game g. Therefore we 

estimate the following equation:  

(1) 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽𝛽𝛽�𝑌𝑌𝑗𝑗𝑖𝑖|𝑗𝑗 ∈ 𝐺𝐺1𝑖𝑖𝑖𝑖�+ 𝛾𝛾𝛽𝛽�𝑋𝑋𝑗𝑗𝑖𝑖|𝑗𝑗 ∈ 𝐺𝐺1𝑖𝑖𝑖𝑖�+ 𝛿𝛿𝑋𝑋𝑖𝑖𝑖𝑖 + 𝐶𝐶𝐶𝐶 + 𝑢𝑢𝑖𝑖𝑖𝑖,  

where Y is the a dummy indicating the adoption of game g by either individual i or i’s peer j and 

X is the vector of individual characteristics of either i or j related to game g. u is the typical 

normally distributed iid error term and CV is a vector of control variables including individual 

and game fixed effects. The endogenous peer effect which i is subjected to due to the adoption of 

game g by his friend j is captured in �𝑌𝑌𝑗𝑗𝑖𝑖|𝑗𝑗 ∈ 𝐺𝐺1𝑖𝑖𝑖𝑖�. Accordingly, �𝑋𝑋𝑗𝑗𝑖𝑖|𝑗𝑗 ∈ 𝐺𝐺1𝑖𝑖𝑖𝑖� captures the 

exogenous effect i is subjected to due to the characteristics of his friend j. We use the share of all 

of i’s peers, i.e. all of i’s G1 members, who adopted the game g prior to i for the endogenous 

effect and the average peer characteristics to measure the exogenous effect. We rely on fixed 

effects instrumental variable panel estimations with fixed game and user effects for inference and 
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instrument the endogenous effect of i’s peers on i as explained above with the characteristics of 

i’s G2 members. We explain all variables in detail in the next section introducing our data.  

 Although the dependent variable in equation (1) is an indicator variable suggesting a 

binary choice estimator such as probit or logit we instead rely on a simple Linear Probability 

Model (LPM) estimator for inference. We adopt the LPM for three reasons. First, non-linear 

estimators are computationally burdensome with three million observations and the number of 

parameters implied by two-way fixed effects. Second, the computational burden is exasperated 

with an instrumental variables Probit estimator. Third, with so many fixed effects, we suffer 

from the ‘incidental parameters bias’ (Lancaster, 2000). The LPM produces consistent 

coefficient estimates but may underestimate standard errors. In our application, the large number 

of observations leads the calculated standard errors to be quite small. Even if the correct standard 

errors were many multiples, we would still be confident in most of our tests. 

 

IV. Data 

We obtained user data from the Raptr3 platform for the period from January 2010 to 

November 2011 for about 200,000 distinct users. Raptr is the leading online social network 

community for gamers with up to 22 million users in 2014 (March). It offers several services for 

gamers that are available in-game, on the web, and on mobile devices. Each Raptr user can link 

her console or PC to the Raptr client, thereby receiving an individual profile in the social 

network that tracks all her gameplay activity for each individual game. Users can link to each 

other – “friend” each other – to communicate within a common social circle. Raptr offers a 

3 See www.raptr.com 
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condensed personalized news feed aggregating interesting discussions, news, videos, 

screenshots, and strategy guides based on the games the user, or his linked social circle, are 

currently playing. The Raptr client provides useful in-game features to gamers such as cross-

platform IM chat, web surfing, access to popular social media services as well as video and 

screenshot capturing that all facilitate the coordination of gameplay. WOM can be facilitated 

through the Raptr platform in multiple ways: first, the Raptr client displays which games are 

currently played by friends, second, gaming activity of friends is displayed in the news feed, and 

third, the chat client can be used to talk with friends about their new games. So users of Raptr are 

frequently exposed to game adoption decisions of their online friends, creating a potentially 

strong WOM channel and making the Raptr community a well-suited empirical context for 

studying WOM. In our overall data we observe 37 million gaming sessions by 195,337 distinct 

users. For illustration, Figure 1 pictures a Raptr profile page for a typical user giving an overview 

of all the information we have available for every user. 

A. Sample Creation 

The creation of the sample on which we test our hypotheses is driven by some unique 

features of the Raptr data. We follow a user’s gaming activity and ‘friending’ behavior over 

time. At the same time, there is a regular flow of new games being released from which Raptr 

users make adoption decisions. We observe that, over the course of a month, or even a week, 

gamers tend to: play older games out of their inventory, purchase and play a newly released 

game and choose not to purchase and play a different newly released game. Most users 

concentrate their game playing among games that have been recently released and purchased. 

We wish to focus upon the decision to purchase and play a newly released game and the factors 

that affect this decision. 
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We start by defining a sample of popular games released during our sample period. We 

identify the 263 games that have at least 1,000 adoptions. Of these, complete game information 

was obtainable for 150 games (i.e, verified release dates and measures of game quality).  

We next define game adoptions and the set of Raptr users who are ‘at risk’ to adopt the 

game. Since gamers join Raptr at different times, we do not observe game adoption decisions 

made before they joined. Some gamers join Raptr, experiment and then abandon the site while 

others have spells of inactivity between spells of regular activity. For our analyses, a game 

adopter is defined as a user if we observe that they began playing the game within 90 days after 

the game was released. The set of non-adopters include those who do not play the game within 

90 days but have played some other game during this period. Thus, we do not include inactive 

Raptr users among non-adopters. We also observe some game play by a few users prior to game 

release, usually by one to twelve months. These tend to involve a small number of users who 

appear to be beta testers for the game. As such, they do not fit the model of peer effects through 

word-of-mouth and they are not included among either the adopters or the non-adopters. Figure 2 

depicts the days from game release to game adoption for adopters. It appears that more than 70% 

of all game adoptions occur within our 90 day window.  

We use detailed information on social link formation, i.e. “friending,” to create our 

network measures. The Raptr data records the date and time when any two users form a link. For 

each game in the sample and for both adopter and non-adopters of the game, we create two 

different sets, the network of friends, G1ig, and his network of friends-of-friends who are not 

friends, G2ig. For each adoption decision, we take all links made prior to the game’s release and 

omit links made later, even those made during the 90 day adoption window. The goal is to only 

use the pre-determined friendship network and exclude friendships that might result from the 
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adoption of this game. Using the date that a link was formed means that the same user facing 

another game adoption decision at a later date will usually have a different G1ig and G2 ig for 

different games because new links can be formed between the two games’ release dates.  

The sample created by this process is large. We are left with nearly 100,000 distinct users 

facing 3.2 million game adoption decisions. These users have over 1 million friends, G1, and 10 

million friends-of-friends, G2. For each game adoption decision, we calculate the share of 

members of the focal user’s G1 network who adopted the game before him as our main 

explanatory variable capturing peer effect WOM. Note that we do not observe communications 

between users such as online messages via Instant Messaging tools or emails or personal 

meetings of users.  

B. User Characteristics 

For each user, we have created measures of user characteristics for each game adoption 

decision. These use only game playing information up to the time of the adoption decision. This 

way, they are predetermined from the point of view of the game adoption decision and less likely 

to be affected by the adoption decision itself. Along with the focal user’s characteristics, we 

generate the average values for G1 and G2 of adoption decisions and all characteristics. These 

user characteristics measure five separate dimensions of gamer preferences or human capital, 

which we each explain in detail below. 

1. A measure of user’s preference for a type of game is developed from industry 

genre categories. For all gaming sessions occurring prior to a game’s release, the hours spent in 

each genre are aggregated. This measure, sharegenreig, is defined as the fraction of a user’s past 

playing time spent in this game’s genre category. This varies over adoption decisions both 
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because the games in question are from different categories and because the user may gain more 

experience with different genres over time. Six broad gaming categories, “Strategy,” “Shooter,” 

“Action,” “Role Playing,” “Sports,” and “Casual” are defined based on over 120 finer 

descriptions of genres included in Raptr. Over all users, the largest category was “Shooter” with 

44% while the smallest was “Casual” with 5%. 

2. Another user preference measure is constructed for console platforms. For all 

gaming sessions occurring prior to a game’s release, the hours spent in each game on each 

console are aggregated. This measure, shareplatformeig, is defined as the fraction of a user’s past 

playing time spent on the platform this game was released on. Possible platforms included 

XBOX, PlayStation, Wii, or computer. However, in our available time period, the Raptr client 

was unable to track PlayStation activity. The Wii activity on Raptr was quite small. As a 

consequence, 80% of our measured activity is on the XBOX while 18% was with computer 

games. 

3. A third measure of a user’s preference is similarly developed for a game’s 

maturity of content level from industry “age appropriateness” categories. For all gaming sessions 

occurring prior to a game’s release, the hours spent in each category are aggregated. This 

measure, shareESRBig, is defined as the fraction of a user’s past playing time spent in this 

game’s maturity category. The ESRB designates each game introduced in the US as one of E, 

E10+, T, M or AO for “Everyone,” “Everyone aged ten or older,” “Teens,” “Mature audiences” 

or “Adults Only.” Since none of the games in our sample were rated AO we drop this category. 

However, some are not rated, usually because they are not introduced in the US, and fall into a 

fifth “other” category. About 57% of all game play was “Mature,” with 21% “Teen” and less 

than 10% for each of the others. 
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4. We feature two measures of human capital. The first, “gaming intensity” is 

calculated as a gamer’s average number of minutes spent playing video games per week. 

Information about what game a user is playing and how well he is doing will appear in his peers’ 

“newsfeeds” more often when they spend more time playing. This would be akin to a more 

active Facebook friend generating more posts in one’s newsfeed. Figure 3 depicts the distribution 

of the logarithm of the gaming intensity across users. 

5. As a second measure for human capital, an “award score” is created from the 

various awards and achievements gamers unlock through game play. This is meant to measure 

player ability. We develop a cardinal measure between 0 and 1 for each award earned in a game 

by calculating the percentile of the game’s adopters who earn this award. For example, if all 

100% of gamers earn an award for completing an initial tutorial, we would assign them each the 

lowest percentile value of 0. If another award is earned by only 14% of game adopters, we would 

assign a value of 0.86 to the user. We take the average of these measures over the games that the 

user has played. Figure 4 depicts the distribution of award scores across users. 

These measures are calculated for different groups of individuals and at the time of each 

game release event. Each of these variables are calculated for each focal user i, her immediate 

social network G1ig, and for her “second degree” network G2ig. Moreover, a Raptr user can have 

150 separate values of these variables if she was active in the network for all 150 game releases. 

Summary statistics for each of these groups are reported in table 1. Notice that a typical user will 

only adopt 3% to 4% of games available to her. 
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V. Empirical Results  

A. Baseline Results 

In order to identify the impact of peer effect WOM on game adoption we test two 

separate specifications. Table 2 reports the key results for our baseline regression. The vector X 

includes share of time spent in the game’s genre, platform, and ESRB rating, gaming intensity, 

award score and network size. The separate columns report both the first- and second-stage 

regression results. In the second-stage regression, values of X for both the focal user and for 

members of G1ig are included. In the first-stage regression, values for members of G2ig are also 

included. Regressions also include fixed effects for each game and each user. These two-way 

fixed effects imply that the X variables capture the change in the values for an individual 

between game releases. Our variable of interest is the share of G1i who adopted the game which 

is highlighted in red. 

The first-stage results generate a few consistencies. Gaming intensity and award score are 

not significant for the G1i and G2i users. Time spent playing games with the focal game’s genre, 

platform, and ESRB rating all increase the fraction of G1i adopting the focal game. This is true 

for values constructed from the focal user, the G1i users and the G2i users. The consistent 

patterns across the three groups may reflect a degree of homophily between these groups. As 

indicated above, the G2i variables are excluded in the second stage. Thus, the statistically 

significant coefficient estimates for the G2i variables indicate that variation in the endogenous 

peer effect (or WOM effect) is not under-identified. 

Estimated values in the second-stage generally conform to expectations. The estimated 

WOM effect is 1.41, indicating that, at the margin, a 1% increase in the share of G1i who adopt 

the game increases the focal user’s probability of adopting by 1.4%. In addition, an increase in 
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the focal user’s exogenous characteristics, time spent playing games with the focal game’s genre, 

platform, or ESRB rating, increases the probability of adopting. The adoption probability 

decreases with the award score, gaming intensity and network size. However, holding the 

endogenous WOM effect constant, the exogenous characteristics for peers among G1ig members 

tend to have the opposite sign.4  

 B. Diminishing Returns to WOM 

Another concern is the magnitude of the estimated WOM effect. A value greater than one 

is implausible for a global value. It implies an explosive feedback as an exogenous 1% increase 

in adoption for a user induces a 1.4% increase among her G1 network members, a 1.96% (1.42) 

increase among her G2 network members, and so on. While this may be a marketer’s dream, it 

may be an artifact of our specification and this coefficient value may not hold at all levels of the 

WOM peer effect. Table 3 indicates that, on average, for 89.8% of focal users, no members of 

G1ig will have adopted the game. The informational content of at least one member adopting the 

game is likely to be greater than the additional informational content of subsequent adoptions. 

That is, we might expect a diminishing marginal effect of WOM as a greater share of the people 

in the focal user’s network adopts the game. As the focal user becomes aware of more members 

of her network using the product, the marginal informational content conveyed about the product 

is still positive but of diminishing importance. 

To test this, we alter our WOM measure to dummy variables for the fraction of G1ig 

adopting the game. First, instead of measuring the endogenous WOM peer effect with the 

fraction of G1i adopting the game, we estimate a specification in which we use a dummy variable 

4 In specifications in which adoption by G1 members is omitted, the estimates of the coefficients of the 
characteristics of G1 members are positive. 
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for the 10.2% percent of observations in which any member of G1i adopted the game. Next, we 

estimate a specification that decomposes this dummy variable based on the median number who 

adopts the game. In about half of the times that a member of G1i adopts the game, fewer than 

0.273 will adopt it and in half of the time more than 0.273 will adopt it (see table 3). We include 

with two dummy variables – one if the fraction adopting is below the median and one if this 

fraction is above the median. We hypothesize that the effect of each adoption from a larger 

fraction of G1i members adopting the game will have a smaller effect on the focal user.  

Table 4 reports the first of these specifications and is analogous to table 2. In the first-

stage, time spent playing games with the focal game’s genre, platform, and ESRB rating for the 

focal user, the G1i users and the G2i users all increase the fraction of G1i adopting the focal 

game. The estimates for award score and gaming intensity are again not consistent across the 

three groups. The second-stage results are quite similar to those in table 2. The variable of 

interest, highlighted in red again, indicates that the focal user is 62% more likely to adopt a game 

if any member of G1i also adopted it. 

 Table 5 reports the second specification that decomposes the dummy variable based on 

the adoption fraction among the focal user’s social network. This specification implies two 

separate endogenous variables and two first-stage regressions. The first- stage regression 

estimates in columns 1 and 2 follow similar patterns as in tables 2 and 4. In particular, since the 

coefficients on the excluded variables from G2i characteristics differ enough across the two 

dummy variables, we can identify independent variation in each one. This is confirmed in 

column 3 with both endogenous variables entering highly significantly. Moreover, the coefficient 

estimates of these variables of interest indicate that the WOM peer effect is twice as large when 

more G1i members adopt the game as when fewer adopt (0.3923 versus 0.7696). However, table 
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3 indicates that the fraction adopting in the second group is four times as large as the first group 

(0.148 versus 0.595). Thus, the effect per G1 adoptee is half the size when more adopt. This is in 

line with our expectation of diminishing marginal effects from WOM exposure. 

This result may have important implications for WOM marketing campaigns. These campaigns 

attempt to “seed” a social network with product trials that would not have occurred otherwise so 

as to generate WOM effects on others. If these seeds are socially distinct from each other, they 

will have smaller effects on more local social networks. Reaching more distinct G1 networks 

would increase the reach of the campaign linearly. On the other hand, if they are socially close to 

each other, they are likely to both be in G1 for some of their “friends.” This will generate a larger 

effect but, all else equal, they will reach fewer distinct G1 networks. Our estimates indicate that 

the increase in effectiveness within G1 does scale the way that increasing the number of G1 

groups does. All else equal, a WOM campaign would tend to be more effective if it targets initial 

seeds that are not already linked. 

 C. Mediators of WOM Magnitudes 

Finally, we investigate how the characteristics of the focal user and her immediate 

network affect the magnitude of the WOM effect. For example, Aral and Walker (2012) show 

that various demographic features are associated with network members being more influential 

or susceptible. Social media marketers have obvious incentives to seek out more influential and 

susceptible network members so as to stimulate a larger response. Our data do not include 

demographic features but do include measures of user’s past video gaming behavior. Network 

members may be affected differently depending on how actively they participate in the activity 

the network is designed to facilitate.  
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We test for these effects by estimating the WOM effect for focal users with higher or 

lower values of measures related to their accumulated human capital. Specifically, we examine 

three measures related to gaming intensity (hours of game play per week), gaming ability (award 

score), and network engagement (size of their local network). For example, we examine how the 

focal user’s susceptibility is affected by award score by assigning each focal user to a quintile 

based on the award score they had achieved prior to this game’s release. Define φiq as an 

indicator function equal to 1 if focal user i is in quintile q and equal to 0 otherwise. We estimate 

five WOM parameters, one for members of each quintile, by interacting the quintile indicator 

variables with the share of G1ig members adopting the game.  

(2) 𝑌𝑌𝑖𝑖𝑖𝑖 = ∑ 𝛽𝛽𝑞𝑞𝜙𝜙𝑞𝑞𝛽𝛽�𝑌𝑌𝑗𝑗𝑖𝑖|𝑗𝑗 ∈ 𝐺𝐺1𝑖𝑖𝑖𝑖�5
𝑞𝑞=1 + 𝛾𝛾𝛽𝛽�𝑋𝑋𝑗𝑗𝑖𝑖|𝑗𝑗 ∈ 𝐺𝐺1𝑖𝑖𝑖𝑖�+ 𝛿𝛿𝑋𝑋𝑖𝑖𝑖𝑖 + 𝐶𝐶𝐶𝐶 + 𝑢𝑢𝑖𝑖𝑖𝑖,  

Since all five quintile WOM parameters are endogenous, we also generate instruments by 

interacting the quintile indicator variables with the X variables for the G2ig members. One 

desirable feature of this specification is that each of the five WOM parameter estimates depend 

only on the values from the quintile and are estimated independently from each other.5 

 Susceptibility results are reported in table 6 and are also displayed in figure 5. The three 

columns in the table and three panels in the figure report second-stage regression results for the 

three different measures of the focal user’s past activities.  

1. The coefficient estimates for award score form an inverted “U” shape. Users at the low 

end tend to be new to Raptr and may be wary of information they receive or may not yet 

know how to incorporate it into their decision making. Users at the higher end tend to be 

avid gamers and are less reliant on information they receive from others.  

5 With quintile interactions for a particular measure, the measure enters regression equation (2) as five quintile 
dummy variables rather than the underlying continuous variable in equation (1) 
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2. On the other hand, it is clear that users with more gaming intensity are clearly more 

susceptible to WOM effects. These gamers have a revealed preference for playing games 

and are likely to adopt more games. Further, they may seek games that they are more sure 

more enjoyable when played with members of their network. 

3. Finally, it appears that susceptibility falls with the focal user’s network size. With a larger 

local network, a gamer may have more options for a shared game experience within her 

network. As such, she need not be as easily swayed by adoptions with her network. 

 

We measure influence of the focal user’s peers on him similarly. We create quintile 

indicator variables for each of the three average accumulated human capital measures for G1ig. 

Thus, the top quintile for award score would be associated with users with a local network of 

high skill gamers. Define θiq as an indicator function equal to 1 if focal user i’s network is in 

quintile q and equal to 0 otherwise. 

(3) 𝑌𝑌𝑖𝑖𝑖𝑖 = ∑ 𝛽𝛽𝑞𝑞𝜃𝜃𝑞𝑞𝛽𝛽�𝑌𝑌𝑗𝑗𝑖𝑖|𝑗𝑗 ∈ 𝐺𝐺1𝑖𝑖𝑖𝑖�5
𝑞𝑞=1 + 𝛾𝛾𝛽𝛽�𝑋𝑋𝑗𝑗𝑖𝑖|𝑗𝑗 ∈ 𝐺𝐺1𝑖𝑖𝑖𝑖�+ 𝛿𝛿𝑋𝑋𝑖𝑖𝑖𝑖 + 𝐶𝐶𝐶𝐶 + 𝑢𝑢𝑖𝑖𝑖𝑖,  

We similarly create instruments based on the values of X for G2ig again calculated prior to the 

game’s release. We interpret the coefficient estimates for these quintiles as the relative influence 

that network members have based on these measures of their participation level. 

 Influence results are reported in table 7 and are also displayed in figure 6. The three 

columns in the table and three panels in the figure report results for the three different measures 

of the focal user’s past activities.  

1. The coefficient estimates for award score are increasing or form a “U” shape. More 

skilled gamers appear to have more influence than less skilled gamers.  
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2. The estimates for gaming intensity are clearly falling for higher quintiles. One 

interpretation of this is that information from network members who are less active has 

more weight. Networks in which members are very active may be flooding the focal user 

with information, which leads the focal users to discount it more. This interpretation 

aligns well with anecdotal evidence from other social media where users skim or filter 

out posts from network members who are particularly more active. 

3. It appears that influence may increase with the size of the networks of the network 

members, or with the size of G2ig. When network members themselves are part of larger 

networks, they are likely to receive and evaluate more bits of information. The 

information that they then pass on to the focal user tends to carry more weight. 

 

One interesting insight from these estimates is that the very thing that makes a network 

member more influential also makes them less susceptible. The shapes of each of the three 

measures in figure 6 essentially are inverses of the shapes from figure 5. Not only does influence 

increase where susceptibility decreases, but it generally increases at an increasing rate where the 

other decreases at an increasing rate. This would be consistent with network members having 

more influence because they are known to be less susceptible. When they pass on information, it 

is expected that the information has been vetted more thoroughly. 

These results suggest implications for WOM marketing campaigns. Such a campaign 

would naturally seek out more influential members as seeds. These would be members who: 1) 

are better at the activity the network is designed to facilitate, in this case, more skilled gamers 

with higher award scores; 2) are less active within the network, in this case, with lower gaming 

intensity; and 3) have larger social networks, as indicated by the effect of the number of links. 
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However, these potential seeds are precisely the network members who are hardest to be 

convinced to adopt through WOM. Presumably they would also be more difficult to seed by 

other means also. It is not clear if their increased influence more than compensates for their 

decreased susceptibility. 

 

VI. Conclusion  

There is growing interest in understanding how WOM information flows through social 

networks. The methods used to uncover these effects are generally classified into Randomized 

Control Trials (RCTs) on experimental data and Instrumental Variables (IV) estimation based on 

observational data. RCTs have the advantage in their ability to identify causal relationships. 

However, there are instances where RCTs may be difficult to implement but where observational 

data are available. For example, the RCT equivalent to our study would require that all members 

of the focal user’s local network, G1, be a part of the experiment. Otherwise, some members of 

G1 will endogenously adopt the product and the characteristics that are related to adoption are 

likely shared between them and the focal user leading to homophily bias. In our case, it seems 

implausible to be able to restrict game availability to so many avid gamers. Fortunately, with the 

increased availability of granular data, our IV method has potential applications to other product 

categories that make use of other social networks. 

We are able to glean insights due by exploiting key features of our observational data. 

First, multiple adoptions allow us to incorporate user fixed effects to reduce unobserved 

correlation between two users’ adoption decisions (e.g., homophily). Second, we observe 

predetermined characteristics of users that we use to create plausibly exogenous instrumental 
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variables. Third, since many of the user gaming characteristics are related to user affinity for the 

video game products, we are able to examine the effects of these characteristics on information 

flows. 

Our findings indicate a rather complicated role for user affinity. Better gamers with larger 

networks who are not constantly playing have more influence but are also less susceptible. While 

these measures are related to general consumer affinity, it is not clear if these findings are 

product specific or if they will generalize to comparable constructs in other product applications, 

calling for further studies in related domains.  
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Figure 1: Illustration of a typical Raptr Profile 
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Figure 2: Histogram of days to Game Adoption if less than 150 Days 
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Figure 3: Histogram of Logarithm of Gaming Intensity 
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Figure 4: Histogram of Award Score 
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Figure 5: Estimates of Moderators of Word-of-Mouth ‘Susceptibility’
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Figure 6: Estimates of Moderators of Word-of-Mouth ‘Influence’ 

 

  

33 
 



Table 1: Summary Statistics 

 Focal 
User i 

G1i 

Members 
G2i 

Members 
Game Adoption 0.0406 0.0378 0.0272 

(0.1974) (0.1467) (0.0769) 
Fraction of Time in Genreg 0.1719 0.1762 0.1775 

(0.2481) (0.2154) (0.1762) 
Fraction of Time in Platformg 0.7952 0.7773 0.7722 

(0.3888) (0.3586) (0.3225) 
Fraction of Time in ESRBg 0.2622 0.2601 0.2586 

(0.3334) (0.2868) (0.2403) 
Average Award Score 0.4208 0.4231 0.4185 

(0.1894) (0.1554) (0.1187) 
Ln Gaming Intensity 5.3938 5.4910 5.6984 

(1.2880) (1.0595) (0.7459) 
Ln Network Size 1.2217 3.4952 

 (0.9620) (2.1480) 
 Averages and standard deviations (in parentheses) for 3,195,694 user by 

game observations. The columns refer to values for the focal users, the 
members of the G1, and the members of G2. 
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Table 2: Basic Regression Results (WOM = share G1 adopting) 

 Fraction of G1i 
Adopting Game g 

Did i Adopt Game g 

Fraction of i’s Time in Genreg 0.0027** (0.0004) 0.0183** (0.0008) 
Fraction of i’s Time in Platformg 0.0019** (0.0004) 0.0411** (0.0007) 
Fraction of i’s Time in ESRBg 0.0024** (0.0003) 0.0177** (0.0006) 
Award Score i 0.0003 (0.0007) 0.0111** (0.0013) 
Gaming Intensity i -0.0002** (0.0001) -0.0031** (0.0002) 
Network Size i 0.0115** (0.0005) -0.0186** (0.0014) 
Fraction of G1i’s Time in Genreg 0.0286** (0.0005) -0.0338** (0.0027) 
Fraction of G1i’s Time in Platformg 0.0379** (0.0004) -0.0484** (0.0036) 
Fraction of G1i’s Time in ESRBg 0.0251** (0.0004) -0.0310** (0.0024) 
Award Score G1i -0.0010 (0.0009) -0.0007 (0.0017) 
Gaming Intensity G1i -0.0009 (0.0001) 0.0012** (0.0003) 
Network Size G1i -0.0013** (0.0002) 0.0016** (0.0004) 
Fraction of G1i Adopting Game g 

  
1.4054** (0.0866) 

Fraction of G2i’s Time in Genreg 0.0026** (0.0008) 
  Fraction of G2i’s Time in Platformg 0.0081** (0.0006) 
  Fraction of G2i’s Time in ESRBg 0.0090** (0.0006) 
  Award Score G2i -0.0003 (0.0012) 
  Gaming Intensity G2i 0.0002 (0.0002) 
       

User i Fixed Effects X  X  
Game g Fixed Effects X  X  
     
The table reports the results of coefficients from first and second stages of an IV regression of 
game adoption decisions from 3,195,694 observations. Included but not reported are both user 
and game fixed effects. Standard errors in parentheses ** p<0.001, * p<0.01 
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Table 3: Characteristics of Peers’ Game Adoption 

 Observations Percent of 
Sample 

Average 
Fraction 
Adopting 

No G1i Adoptions 2,869,913 89.8% 0.000 
Fraction of G1i Adopting Game g < 0.273 163,638 5.1% 0.148 
Fraction of G1i Adopting Game g > 0.273 162,143 5.1% 0.595 
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Table 4: Basic Regression Results (WOM = any of G1 adopting) 

 Any of G1i  
Adopting Game g 

Did i Adopt Game g 

Fraction of i’s Time in Genreg 0.0101** (0.0008) 0.0158** (0.0008) 
Fraction of i’s Time in Platformg 0.0077** (0.0007) 0.0388** (0.0007) 
Fraction of i’s Time in ESRBg 0.0032** (0.0006) 0.0195** (0.0006) 
Award Score i 0.0019** (0.0013) 0.0105** (0.0012) 
Gaming Intensity i -0.0004 (0.0002) -0.0031 (0.0002) 
Network Size i 0.1010** (0.0010) -0.0648** (0.0037) 
Fraction of G1i’s Time in Genreg 0.0477** (0.0011) -0.0234** (0.0020) 
Fraction of G1i’s Time in Platformg 0.0706** (0.0008) -0.0391** (0.0028) 
Fraction of G1i’s Time in ESRBg 0.0366** (0.0008) -0.0177** (0.0016) 
Award Score G1i -0.0052* (0.0017) 0.0014 (0.0016) 
Gaming Intensity G1i 0.0020 (0.0003) -0.0013** (0.0002) 
Network Size G1i -0.0001 (0.0004) 0.0000 (0.0003) 
Any of G1i Adopting Game g   0.6171** (0.0357) 
Fraction of G2i’s Time in Genreg 0.0098** (0.0016)   
Fraction of G2i’s Time in Platformg 0.0206** (0.0011)   
Fraction of G2i’s Time in ESRBg 0.0152** (0.0011)   
Award Score G2i -0.0066* (0.0024)   
Gaming Intensity G2i -0.0021** (0.0004)   
     
User i Fixed Effects X  X  
Game g Fixed Effects X  X  
     
The table reports the results of coefficients from first and second stages of an IV regression of 
game adoption decisions from 3,195,694 observations. Included but not reported are both user 
and game fixed effects. Standard errors in parentheses ** p<0.001, * p<0.01 
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(0.0016) 

G
am

ing Intensity G
1

i  
0.0032** 

(0.0002) 
-0.0012** 

(0.0002) 
-0.0004 

(0.0004) 
N

etw
ork Size G

1
i  

0.0034** 
(0.0003) 

-0.0036** 
(0.0003) 

0.0013 
(0.0005) 

Fraction of G
1

i  A
dopting G

am
e g < 0.273 

 
 

 
 

0.3923** 
(0.0833) 

Fraction of G
1

i  A
dopting G

am
e g > 0.273 

 
 

 
 

0.7696** 
(0.0623) 

Fraction of G
2

i ’s T
im

e in G
enre

g  
0.0065** 

(0.0012) 
0.0033* 

(0.0012) 
 

 
Fraction of G

2
i ’s T

im
e in Platform

g  
0.0085** 

(0.0008) 
0.0121** 

(0.0008) 
 

 
Fraction of G

2
i ’s T

im
e in E

SR
B

g  
0.0020* 

(0.0008) 
0.0133** 

(0.0009) 
 

 
A

w
ard Score G

2
i  

-0.0123** 
(0.0017) 

0.0057* 
(0.0018) 

 
 

G
am

ing Intensity G
2

i  
-0.0024** 

(0.0003) 
0.0003 

(0.0003) 
 

 
 

 
 

 
 

 
 

U
ser i Fixed E

ffects 
X

 
 

X
 

 
X

 
 

G
am

e g Fixed E
ffects 

X
 

 
X

 
 

X
 

 
 

 
 

 
 

 
 

T
he table reports the results of coefficients from

 first and second stages of an IV
 regression of gam

e adoption decisions from
 

3,195,694 observations. Included but not reported are both user and gam
e fixed effects. Standard errors in parentheses ** 

p<0.001, * p<0.01 
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 T
able 6: V

ariation in size of Peer E
ffect based on C

haracteristics of i – “Susceptibility” 

 
A

w
ard Score 

G
am

ing Intensity 
N

etw
ork Size 

Fraction of i’s T
im

e in G
enre

g  
0.0186** 

(0.0008) 
0.0190** 

(0.0008) 
0.0189** 

(0.0008) 
Fraction of i’s T

im
e in Platform

g  
0.0413** 

(0.0007) 
0.0409** 

(0.0007) 
0.0416** 

(0.0007) 
Fraction of i’s T

im
e in E

SR
B

g  
0.0179** 

(0.0006) 
0.0172** 

(0.0006) 
0.0180** 

(0.0006) 
A

w
ard Score i 

 
 

0.0117** 
(0.0012) 

0.0111** 
(0.0012) 

G
am

ing Intensity i 
-0.0031** 

(0.0002) 
 

 
-0.0032** 

(0.0002) 
N

etw
ork Size i 

-0.0178** 
(0.0013) 

-0.0157** 
(0.0012) 

 
 

Fraction of G
1

i ’s T
im

e in G
enre

g  
-0.0313** 

(0.0026) 
-0.0262** 

(0.0024) 
-0.0308** 

(0.0025) 
Fraction of G

1
i ’s T

im
e in Platform

g  
-0.0450** 

(0.0034) 
-0.0377** 

(0.0032) 
-0.0440** 

(0.0033) 
Fraction of G

1
i ’s T

im
e in E

SR
B

g  
-0.0287** 

(0.0023) 
-0.0242** 

(0.0022) 
-0.0283** 

(0.0023) 
A

w
ard Score G

1
i  

-0.0003 
(0.0016) 

-0.0005 
(0.0015) 

-0.0012 
(0.0016) 

G
am

ing Intensity G
1

i  
0.0011** 

(0.0003) 
0.0010** 

(0.0002) 
0.0010** 

(0.0002) 
N

etw
ork Size G

1
i  

0.0015** 
(0.0003) 

0.0014** 
(0.0003) 

-0.0002** 
(0.0003) 

Q
uintile 1 E

ffect 
1.2093** 

(0.0799) 
0.8550** 

(0.0855) 
1.3306** 

(0.0844) 
Q

uintile 2 M
arginal E

ffect 
0.1736** 

(0.0284) 
0.1767** 

(0.0303) 
0.0591 

(0.0309) 
Q

uintile 3 M
arginal E

ffect 
0.2248** 

(0.0295) 
0.3795** 

(0.0295) 
-0.0775* 

(0.0287) 
Q

uintile 4 M
arginal E

ffect 
0.1335** 

(0.0311) 
0.5122** 

(0.0301) 
-0.1139** 

(0.0320) 
Q

uintile 5 M
arginal E

ffect 
0.0466 

(0.0373) 
0.5150** 

(0.0336) 
-0.1446** 

(0.0315) 
 

 
 

 
 

 
 

U
ser i Fixed E

ffects 
X

 
 

X
 

 
X

 
 

G
am

e g Fixed E
ffects 

X
 

 
X

 
 

X
 

 
Q

uintile q Fixed E
ffects 

X
 

 
X

 
 

X
 

 
 

 
 

 
 

 
 

T
he table reports the results of coefficients from

 second stages of IV
 regressions of gam

e adoption decisions from
 3,195,694 

observations. First stage regressions are not reported. Included but not reported are user, gam
e, and quintile fixed effects. 

Standard errors in parentheses ** p<0.001, * p<0.01.  
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T
able 7: V

ariation in size of Peer E
ffect based on C

haracteristics of G
1

i  M
em

bers – “Influence” 

 
A

w
ard Score 

G
am

ing Intensity 
N

etw
ork Size 

Fraction of i’s T
im

e in G
enre

g  
0.0188** 

(0.0008) 
0.0186** 

(0.0008) 
0.0184** 

(0.0008) 
Fraction of i’s T

im
e in Platform

g  
0.0418** 

(0.0007) 
0.0420** 

(0.0007) 
0.0415** 

(0.0007) 
Fraction of i’s T

im
e in E

SR
B

g  
0.0181** 

(0.0006) 
0.0182** 

(0.0006) 
0.0180** 

(0.0006) 
A

w
ard Score i 

 
 

0.0108** 
(0.0013) 

0.0114** 
(0.0012) 

G
am

ing Intensity i 
-0.0032** 

(0.0002) 
 

 
-0.0035** 

(0.0002) 
N

etw
ork Size i 

-0.0174** 
(0.0013) 

-0.0204** 
(0.0014) 

 
 

Fraction of G
1

i ’s T
im

e in G
enre

g  
-0.0299** 

(0.0024) 
-0.0349** 

(0.0028) 
-0.0319** 

(0.0025) 
Fraction of G

1
i ’s T

im
e in Platform

g  
-0.0421** 

(0.0031) 
-0.0462** 

(0.0034) 
-0.0459** 

(0.0032) 
Fraction of G

1
i ’s T

im
e in E

SR
B

g  
-0.0271** 

(0.0021) 
-0.0304** 

(0.0024) 
-0.0291** 

(0.0022) 
A

w
ard Score G

1
i  

0.0022 
(0.0033) 

-0.0015 
(0.0017) 

-0.0013 
(0.0016) 

G
am

ing Intensity G
1

i  
0.0010** 

(0.0002) 
-0.0021** 

(0.0004) 
0.0008** 

(0.0002) 
N

etw
ork Size G

1
i  

0.0014** 
(0.0003) 

0.0012** 
(0.0003) 

-0.0010* 
(0.0004) 

Q
uintile 1 E

ffect 
1.2716** 

(0.0736) 
2.1022** 

(0.1355) 
1.3170** 

(0.0850) 
Q

uintile 2 M
arginal E

ffect 
-0.1145** 

(0.0277) 
-0.6337** 

(0.0617) 
-0.0080 

(0.0300) 
Q

uintile 3 M
arginal E

ffect 
-0.1256** 

(0.0283) 
-0.9345** 

(0.0726) 
0.0170 

(0.0304) 
Q

uintile 4 M
arginal E

ffect 
-0.0211 

(0.0325) 
-0.9542** 

(0.0743) 
0.0121 

(0.0304) 
Q

uintile 5 M
arginal E

ffect 
0.1867** 

(0.0458) 
-1.0055** 

(0.0735) 
0.1481** 

(0.0323) 
 

 
 

 
 

 
 

U
ser i Fixed E

ffects 
X

 
 

X
 

 
X

 
 

G
am

e g Fixed E
ffects 

X
 

 
X

 
 

X
 

 
Q

uintile q Fixed E
ffects 

X
 

 
X

 
 

X
 

 
 

 
 

 
 

 
 

T
he table reports the results of coefficients from

 second stages of IV
 regressions of gam

e adoption decisions from
 3,195,694 

observations. First stage regressions are not reported. Included but not reported are user, gam
e and quintile fixed effects. 

Standard errors in parentheses ** p<0.001, * p<0.01.  
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