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Abstract

We reconsider the issue of the (non-)equivalence of period and con-
tinuous time analysis in macroeconomic theory and its implications for
the existence of chaotic dynamics in empirical macroeconomics. We
start from the methodological precept that period and continuous time
representations of the same macrostructure should give rise to the same
quantitative outcome, i.e. in particular, that the results of period anal-
ysis should not depend on the length of the period. A simple example
where this is fulfilled is given by the Solow growth model, while all
chaotic dynamics in period models of dimension less than 3 are in con-
flict with this precept. We discuss a typical example from the recent
literature, where chaos results from an asymptotically stable continuous-
time macroeconomic model when this is reformulated as a discrete-time
model with a long period length. ———————
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1 Introduction

In this paper, we reconsider the issue of the (non-)equivalence of period and

continuous time analysis and its implications with respect to possible chaotic

dynamics in empirical macroeconomics. We start from Foley’s (1975) method-

ological precept that period and continuous time representations of the same

macrostructure should give rise to the same qualitative outcome, i.e., that the

qualitative results of period analysis should not depend on the length of the

period. A simple example where this is fulfilled is given by the conventional

one-dimensional Solow growth model, where period and continuous analysis

give qualitatively the same answer for any length of the period between zero

and infinity. The assumed clustering of production and investment activities

at possibly very distant points in time thus does not raise in this case the ques-

tion of which period length is the most appropriate one, though it may still

be asked whether the assumed type of clustering of economic activities really

makes sense from an applied macroeconomic point of view if periods longer

than one week or month are considered (for a detailed consideration of the role

of significant lags in macrodynamics the reader is referred to Invernizzi and

Medio (1991)).

We discuss in section 3 a typical example from the literature (by far not the

only one), where chaos results from a asymptotically stable continuous time

approach when reformulated as a “long-period” macro-model, then exhibit-

ing a sufficient degree of locally destabilizing overshooting. As we will show,

shortening the period lengths in such chaotic macro models, i.e., iterating them

with a finer step size, removes on the one hand “chaos” from such model types,

while it on the other hand (and at the same time) brings the model into closer

contact with what happens in the data generating process of the real world.1

In concluding, the paper therefore proposes that continuous time modeling (or

period modeling with a short period length) is the better choice to approach

macrodynamical issues compared to a period model where the length of the

1Note in this respect again that we focus in this paper on standard period models and
therefore do not yet consider, as it is done for example in Invernizzi and Medio (1991) and
Medio (1991a) the role of significant delays and exponential lags in economic activity.
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period remains unspecified, since it avoids the empirically uninterpretable sit-

uation of a uniform period length (with a length of one quarter, year or more)

with an artificial synchronization of economic decision making. If discrete time

formulations (not period analysis) are considered for macroeconomic model

building they should represent averages over the day as the relevant time unit

for complete models of the real-financial interaction on the macroeconomic

level (interactions which in fact should be the relevant perspective for all par-

tial macroeconomic model building). The stated dominance of continuous time

modeling (or quasi-continuous modeling with a short period length) not only

simplifies the stability analysis for macrodynamic model building, but also

questions the relevance of period model attractors that differ radically from

their continuous time analogue.

2 The J2-Status of Macrodynamic Period Analysis

Continuous vs. discrete time modeling, in macroeconomics, was discussed ex-

tensively in the 1970s and 1980s, sometimes in very confusing ways and often

by means of highly sophisticated, but also by an unnecessarily complicated

mathematical apparatus. There are however some statements in the litera-

ture, old and new, which suggest that period analysis in macroeconomics, i.e.,

discrete-time analysis where all economic agents are forced to act in a syn-

chronized manner (with a time unit that is usually left unspecified) can be

misleading from the formal as well as from the economic point of view. Foley

(1975, p.310) in particular formulates the following methodological precept for

the theoretical specification of macroeconomic models:

No substantive prediction or explanation in a well-defined macroe-

conomic period model should depend on the real time length of the

period.

After its intensive discussion in the 70’s, this statement seems however to have

become forgotten in recent times, being by far ignored in the great majority

of recent analytical and numerical investigations of complex or chaotic macro-

dynamics. In this extent, Sims (1998) represents a prominent exception to
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this faulty development, based however on a different, but in spirit similar

perspective on economic modeling: Sims (1998, p.318) analyzes the behavior

of a variety of models with real and nominal rigidities in a continuous time

formulation “[. . . ] to avoid the need to use the uninterpretable ‘one period’

delays that plague the discrete time models in this literature.”

In our view the core of the problem relies on to the discrepancy between the

frequencies of actual data generating and the corresponding data collection

processes of the great majority of macroeconomic variables. Indeed, while the

actual data generating process at the macroeconomic level is by and large of

a quasi continuous-time nature (with a less than daily frequency), the cor-

responding data collection frequency available nowadays, at least in the real

markets of the economy, is on a quarterly or even yearly basis. This discrep-

ancy is ignored in the majority of empirical mainstream macroeconomic models

which, focusing on aggregate macroeconomic variables available in general at a

quarterly basis, simply assume for the time intervals of the theoretical frame-

work the same periodicity as the data collection process. This strategy, which

is conditioned through the data collection technology available nowadays, can

be misleading when the resulting dynamic properties of the calibrated theoret-

ical model depend not on its intrinsic characteristics, but mainly on the length

of the iteration intervals.

This issue becomes particularly clear in discrete-time dynamic models of di-

mensions one or two which exhibit chaotic properties, whereas in their anal-

ogous continuous time representations the occurrence of such chaotic dynam-

ics is simply impossible from the mathematical point of view. This implies

that empirically applicable period macromodels (using annualized data) should

be iterated with a much finer frequency (for example with step size between

“1/365 year” and “1/52 year” with respect to the actual performance of econ-

omy) in order for them to generate results that may then in general equivalent

to the ones of their continuous time analogue (at least in dimensions one and

two). Furthermore, models that contain expectational variables may be refer-

ring to the data collection process, yet are subject to expectational smoothing

and thus should also be updated in shorter time intervals than the actually

observed data.
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These empirically applicable period models – which take account of the fact

that macroeconomic (annualized) data are generally updated each day – will

then not be able to give rise to chaotic dynamics in dimensions one and two,

suggesting that the literature on such chaotic dynamics is of questionable em-

pirical relevance (though mathematically often demanding and of interest from

this point of view). To exemplify this we consider in this paper a 1D nonlinear

production and real wage dynamics that has been used in a recent issue of

this Journal in a period framework to generate from its parameters a period

doubling route to chaos.

As a generalizing statement and conclusion, related to Foley’s (1975) observa-

tion, we would conclude that the empirical relevance of macroeconomic models

specified with a uniform period length across all sectors and activities and with

attractors whose dynamic properties differ substantially from their continuous-

time analogue should be questioned (this point in particular is addressed to

all macro-approaches that derive chaotic dynamics from 1 or 2 dimensional

dynamical systems, a very wide range of literature in macrodynamics, and is

thus not intended to specifically criticize the 1D example here considered, since

this problem is neglected by many (prominent) authors in this type of litera-

ture). Period models (and chaotic dynamics therein) thus in general depend

on their continuous-time analogues (possibly – if more advanced – with some

time delays) for their results, if empirically meaningful, and thus exhibit, in

terms of U.S. migration policies, only a “J2 status” (dependent on a J1 visitor

with work permission) in their macroeconomic implications. The next section

shows by means of a recent example from the literature what how this finds

formal expression in a basic one-dimensional dynamical system.

3 1D Chaotic Employment Cycles?

We start with a brief discussion of the model analyzed in Roa, Vazquez and

Saura (2008) in its original discrete time formulation, which uses an unspecified

period length, as it is nowadays common in the large majority of macroeco-

nomic models.

The production of final goods is assumed to be determined by a single-input
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production function according to which

Yt = µ(γLtht)
α,

with µ as the sector productivity, Lt as the total employment and ht as the

level of labor-enhancing technology at time t and γ as the fraction of time

devoted by people for the production of final goods.

Final production is assumed to equal the next period’s total demand in every

period, i.e. Yt = Dt+1. Aggregate demand for final goods in turn is assumed

to equal aggregate consumption in every period, that is, Dt+1 = Ct+1. Con-

sumption in turn is given by

Ct+1 = wtLt,

where wt denotes the real wage and Lt the level of total employment at t. Since

Yt = Dt+1 = Ct+1, it follows

Yt = wtLt.

By equating the demand and supply expressions and solving for Lt, Roa et al.

obtain the following term for the total labor demand in the economy:

Lt =

(
µ(γht)

α

wt

) 1
1−α

. (1)

Concerning the evolution of technical process, the stock of labor-augmenting

knowledge is assumed to grow at a given rate composed of the fraction 1 − γ

of people devoted to the accumulation of their stock of knowledge and of a

productivity index δ, that is

ht = exp(δ(1− γ))ht−1, 0 < δ < 1. (2)

The fourth equation is a linear real wage Phillips curve as used for example in

Goodwin’s (1967) growth cycle model, namely

wt+1

wt

= exp(−a + bLt), b > a > 0. (3)

Note that we neglect in contrast to Roa et al. natural growth, assuming a

labor supply growth rate n equal to zero and normalizing the then given labor
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supply A to 1 in order to simplify the presentation of the dynamics slightly.

The variable L is then equal to the rate of employment as in the Goodwin

(1967) model.

Using the expression given by eq.(1) for t and t + 1 delivers

Lt+1

Lt

=

((
ht+1

ht

)α
wt

wt+1

) 1
1−α

=

(
exp(δ(1− γ))α

exp(−a + bLt)

) 1
1−α

. (4)

By taking logarithms and then exponentials, Roa et al. arrive finally to the

following one dimensional law of motion for the labor market dynamics

Lt+1 = exp

(
αδ(1− γ) + a

1− α

)
· exp

(−bLt

1− α
Lt

)
, (5)

from which they generate the chaotic dynamics in employment and economic

growth discussed in their article.

The continuous time reformulation of the framework by Roa et al. (2008) is

given by eqs. (1)-(3)

L =

(
µ(γh)α

w

) 1
1−α

. (6)

ĥ = ḣ/h = δ(1− γ) (7)

ω̂ = ω̇/ω = −a + bL (8)

In the following we measure time in years and note that the definition of a

derivative like ω̇ ≈ ωt+∆t−ωt

∆t
automatically produces annualized values for the

growth rates of the model. Since growth rates are thus measured in annualized

form we can assume for the Phillips curve as numerical value approximately

b = 0.5 and for δ the value 1 as a first guess (with α = 0.7, γ = 0.5 and a = 0).

This only crudely exemplifies the size we can expect for the above parameters

values in the later stability investigations.

By means of conventional rules for growth rate calculations we obtain from

eq.(6) together with eqs. (7) and (8) the following continuous time law of

motion of the considered economy in terms of the state variable L

L̂ =
αĥ− ω̂

1− α
=

αδ(1− γ) + a− bL

1− α
= r − sL, (9)
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with r = αδ(1−γ)+a
1−α

, s = b
1−α

.

We use as state variable in this law of motion in the following however the

variable ` = ln(L) which transforms the above law of motion into the following

form:
˙̀ = r − s exp(`) (10)

Note that by defining ` = ln(L), eq.(4) can be reformulated as

∆`t = ln

(
Lt+1

Lt

)
=

1

1− α
[αδ(1− γ)− a + b exp(`t)] (11)

delivering the analogous discrete time expression for the change of the variable

`.

The interior steady state of the dynamic law of motion described by eq.(4) is

given by:2 `o = ln r− ln s and it is of course a global attractor for all negative

initial values of the variable `.3 In continuous time there is thus (of course) no

way whereby complex dynamics can arise in this model type. How then do the

authors obtain such a result in the discrete time analogue of the considered

model? To show this we start from the (mathematically obvious) discrete time

approximation, with step size ∆t :

`t+∆t − `t = ∆t(r − s exp(`t)), i.e., ln

(
Lt+∆t

Lt

)
= ∆t(r − sLt) (12)

In terms of logarithms this is exactly the difference equations considered by

Roa et al. (2008, p.7) in exponential form, if ∆t = 1 is assumed in addition.

As the diagram illustrated in Table 1 shows, our continuous time specification

delivers a valid approximation of the dynamics specified by Roa et al. in

discrete time, delivering at the end (despite of our use of logarithms in the

structural equations) a correct approximation in continuous time for the core

dynamics of the model, namely of employment.

For a stable equilibrium point we need that there holds the condition:

‖1−∆t s exp(`o)‖ < 1, i.e., ‖1−∆t r‖ < 1 or ∆t < 2/r

2Since Lo < 1 is needed in order to run the model with less than full employment, i.e.,
we need the side condition r < s in order to achieve this.

3We restrict ourselves to regimes of less than full employment here.
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Table 1: “Commutative” Diagram

Discrete Time Model Continuous Time Model

(1) Lt =
(

µ(γht)α

wt

) 1
1−α ⇐⇒ (6) L =

(
µ(γh)α

w

) 1
1−α

(2) ht = exp(δ(1− γ))ht−1 =⇒
ln(1+h)≈ln(h)

(7) ln
(

ht

ht−1

)
≈ ĥ = δ(1− γ)

(3) wt+1

wt
= exp(−a + bLt) =⇒

ln(1+w)≈ln(w)
(8) ln

(
wt

wt−1

)
≈ ω̂ = −a + bL

(4)Lt+1

Lt
=

(
exp(r)

exp(sLt)

)
⇓

⇑ ln
(

Lt+∆t

Lt

)
= `t+∆t − `t ⇓

(12) `t+∆t−`t

∆t
= r − s exp(`t) ⇐=

proxy
(10) ˙̀ = r − s exp(`)

If this condition is replaced by ∆t > 2/r we have (locally) that the sys-

tem moves away from its equilibrium point simply because we then have (in

terms of deviations from the steady state xt = `t − `o) the law of motion

xt+∆t = (1−∆tr)xt with 1−∆tr < −1. In this case the system jumps around

its equilibrium value with an increasing amplitude, generating thus spurious

“chaotic” dynamics.

Returning to our continuous time variant of the model we would argue now

that it represents the better approach from the applied perspective. The (an-

nualized) output value Y is in reality changing each day on the macroeconomic

level as does the stock of knowledge. The only variable where some lags in

adjustment may occur is the real wage ω. However, the macroeconomic price

index is also changing each day, as is the effective nominal wage level (while

wage negotiations may occur somewhat clustered, but nevertheless also in a

way that is scattered over the year). Hence, assuming a clustering of actual

activities (not the observation of their realizations) of quarter or even yearly

frequency is hard to digest from an empirical perspective.
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A rough estimate of the value of r can be obtained by assuming for example

α = 0.8, δ = 1, γ = 0.5, a = 0. This gives for r the value r = 2, i.e., the critical

value that separates local stability from local instability if ∆t = 1 holds.

In order to achieve instability as in Roa et al. (2008) it is therefore necessary to

assume for the period length ∆t that it exceeds 1. Since “1 year” is our point

of reference in the continuous time dynamics we get (since the continuous time

model is given in annualized terms as far as growth rates are concerned) that

all activities are assumed in discrete time to cluster for example at each first

day of the year and then remain inactive for the rest of the year. This is a

type of behavior that we can expect to happen in population dynamics (for

insects for example), but not within macroeconomics where most of indexes

are changing each day. A macroeconomic model should therefore be operated

with a step size much smaller than a year if it is meant to mirror the actual

data generating process (which has to be distinguished carefully from the data

collecting process which is not what the model is meant to explain). This will

then guarantee that the stability condition will definitely hold and no period

doubling route to chaos is possible.4

If stability gets lost by increasing the iteration step size ∆t such that the above

inequality becomes reversed, we can generate as in Roa et al. (2008) a period

doubling route to chaos, but do achieve this by making the macroeconomy

stiffer and stiffer in its totally synchronized or strictly clustered reaction pat-

terns. As already stated such things may occur in nature due to breeding

habits or in agriculture, both examples however, that are not of much rele-

vance in a macroeconomy dominated by manufacturing and services. Only if

the macroeconomy was moving as jerkily as a yearly – completely synchronized

– natural reproduction mechanism chaos could be feasible. These chaotic dy-

namics, however, would rely on an assumption quite at odds with the actual

4See also Asada, Flaschel, Proaño and Groh (2007). Flaschel, Franke and Proaño (2008)
apply the arguments of this paper to the 4D New Keynesian model with both staggered
wages and prices, see Gaĺı (2008, ch.6). They there provide a proof of determinacy for this
model type, using a generalized Taylor principle as suggested by Gaĺı (2008), a proof that
is possibly unavailable in the 4D period version of that New Keynesian framework. This
shows that our arguments can also be used to provide positive contributions in simplifying
the analysis of mathematical models considerably.
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dynamics of an economy at the macroeconomic level.

4 Concluding Remarks

We conclude this paper by pointing out again the importance of Foley’s (1975)

methodological precept for applied macroeconometric analysis, in particular

when possible “chaotic dynamics” at the macroeconomic level are investigated.

Since continuous time modeling (or period modeling with a short period length)

avoids the empirically counterfactual situation of a uniform period length of

a length of one quarter, a year or more where an artificial synchronization of

economic decision making is implied, we believe that it represents the better

choice to approach macrodynamical issues. If discrete time formulations (not

period analysis) are considered for macroeconomic model building they should

represent averages over a short period length such as a day as the relevant

time unit for complete models of the real-financial interaction on the macroe-

conomic level (interactions which in fact should be the relevant perspective for

all partial macroeconomic model building). The stated dominance of continu-

ous time modeling (or quasi-continuous modeling with a short period length)

not only simplifies the stability analysis for macrodynamic model building, but

also questions the empirical relevance of period macroeconomic models which

dynamical properties differ radically from those of their continuous time ana-

logues.
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