Hein, Eckhard; Vogel, Lena

Working Paper
Distribution and growth reconsidered - empirical results for Austria, France, Germany, the Netherlands, the UK and the USA

Provided in Cooperation with:
Macroeconomic Policy Institute (IMK) at the Hans Boeckler Foundation

Suggested Citation: Hein, Eckhard; Vogel, Lena (2007) : Distribution and growth reconsidered - empirical results for Austria, France, Germany, the Netherlands, the UK and the USA, IMK Working Paper, No. 3/2007, Hans-Böckler-Stiftung, Institut für Makroökonomie und Konjunkturforschung (IMK), Düsseldorf, http://nbn-resolving.de/urn:nbn:de:101:1-20080814227

This Version is available at:
http://hdl.handle.net/10419/105886

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

www.econstor.eu
Eckhard Hein
(IMK in the Hans Boeckler Foundation)

Lena Vogel
(University of Hamburg)

Distribution and growth reconsidered – empirical results for Austria, France, Germany, the Netherlands, the UK and the USA
Distribution and growth reconsidered – empirical results for Austria, France, Germany, the Netherlands, the UK and the USA*

Eckhard Hein and Lena Vogel

Abstract

We analyse the relationship between functional income distribution and economic growth in Austria, France, Germany, the Netherlands, the UK and the USA from 1960 until 2005. The analysis is based on a demand-driven distribution and growth model for an open economy inspired by Bhaduri/Marglin (1990), which allows for profit- or wage-led growth. We find that growth in France, Germany, the UK, and the USA has been wage-led, whereas Austria and the Netherlands have been profit-led. In the case of Austria a domestically wage-led economy is turned profit-led when including the effect of distribution on external trade. The Netherlands, however, are already profit-led without external trade. Our results so far only partially confirm Bhaduri/Marglin’s (1990) theoretical conclusion that wage-led growth becomes less feasible when the effects of distribution on foreign trade are taken into account. We conclude that following a strategy of profit-led growth via the net export channel, and therefore relying on a kind of ‘beggar thy neighbour’ policy, is not only harmful for the trading partners and hence for the world economy in the long run, but also for the wage-led countries pursuing such a strategy in the short run.

JEL code: E12, E21, E22, E23, E25

Key words: Distribution, growth, demand-led accumulation regimes

Corresponding author

PD Dr. Eckhard Hein
Macroeconomic Policy Institute (IMK) in the Hans Boeckler Foundation
Hans Boeckler Str. 39
40476 Duesseldorf
Germany
e-mail: eckhard-hein@boeckler.de

* For helpful comment on earlier versions we would like to thank Stefan Ederer, Camille Logeay, Engelbert Stockhammer, Till van Treeck, Achim Truger and Rudolf Zwiener. Remaining errors are, of course, ours.
1. Introduction
The relationships between wages, employment, distribution and growth have been among the most controversial in the history of economic thought. However, taking a look at the state of mainstream macroeconomics today, all of these debates seem to have been resolved by and large. In New Classical as well as in mainstream New Keynesian economics there is a clear cut inverse relationship between real wages and employment, at least in the long run. This is also true for ‘New Consensus’ macroeconomic models.\(^1\) Although the New Classical and the New Keynesian/New Consensus schools of thought differ with respect to the determinants of short-run economic activity, and also with respect to the effectiveness of macroeconomic policies, in the long run it is the real wage rate which is crucial for employment, and employment is crucial for growth. In neoclassical growth theories, old and new, growth is also affected by technological change, which is endogenously driven by investment in human capital and R&D in new growth theories (Grossman/Helpman 1994, Romer 1994, Solow 2000). Nevertheless, these models are completely supply-driven and have no role for effective demand (Setterfield 1994, Dutt 2003, Kurz/Salvadori 2003).

Therefore, the modern mainstream advocates ‘structural reforms’ in the labour market and in the welfare state when it comes to fighting persistent unemployment and low growth. These structural reforms usually include the reduction of employment protection legislation, of benefit replacement rates and durations, and of the tax wedge as well as the decentralisation of wage setting in order to adjust real wages to workplace productivity, which means real wage cuts. Macroeconomic policies are assumed to be ineffective in determining real variables in the long run and should therefore supply a ‘stable environment’, which means that monetary as well as fiscal policies should aim at assuring price stability. Long-run employment and growth are considered to be purely supply-side determined. ‘Employment friendly’ reforms of labour markets and social benefit systems and the associated redistribution of income in favour of profits should be conducive to both employment and growth.

Unfortunately for the proponents, this view does not meet the facts: In macro-econometric cross-country studies, the relationship between labour market institutions and unemployment has been found to be rather weak and little robust, while macroeconomic policies explain a

major part of unemployment differences between countries (Baker/Glyn/Howells/Schmitt 2005, IMF 2003, Palley 2006). The declining trend in nominal wage growth and in the wage share in the European Union since the early 1980s has been associated with an increasing trend of the unemployment rate, and not with decreasing unemployment (Hein/Schulten 2004). And a country like Germany, which has introduced more ‘employment friendly’ structural reforms than most other OECD or EU countries since the mid 1990s, has shown a particularly weak macroeconomic performance since then (Hein/Truger 2005, 2007).

Post-Keynesians have refrained from excluding effective demand from the analysis of long-run economic performance, because their models of distribution and growth are investment driven, independently of saving.\(^2\) In the models by Kaldor and Robinson,\(^3\) assuming full utilisation of productive capacities given by the capital stock in the long run, firms’ investment decisions, determined by ‘animal spirits’ and the expected profit rate, affect growth and functional income distribution. But capital accumulation and the real wage rate or the wage share are still inversely related in these models. In the Kaleckian models,\(^4\) however, with a variable rate of capacity utilisation in the long run, income distribution is determined by firms’ mark-up pricing and is hence mainly affected by the degree of competition in the goods market and by relative powers of firms and workers in the labour market. Firms’ investment decisions, determined by expected sales and internal profits, determine capacity utilisation, capital accumulation and growth.

In the ‘underconsumptionist’ variant of the Kaleckian model, pioneered by Rowthorn (1981), Dutt (1984, 1987, 1990) and Amadeo (1986a, 1986b, 1987), changes in distribution have unique effects on long-run growth equilibrium: Rising wage shares cause higher capacity utilisation, capital accumulation, growth and also a higher profit rate, because a strong accelerator effect in the investment function is assumed. In contrast to this view, the seminal paper by Bhaduri/Marglin (1990) has shown that in a Kaleckian framework different regimes of accumulation are possible. Taking into account the effects of redistribution between wages and profits on consumption demand, on the one hand, and on firms’ investment via costs of production and hence unit profits, on the other hand, long-run growth may be either ‘wage-led’ or ‘profit-led’, depending on the parameter values in the saving and the investment

functions. Therefore, the identification of an accumulation regime in a certain country in a certain period of time becomes a question of concrete historical and empirical analysis, and the Bhaduri/Marglin approach has increasingly inspired empirical work. The results for the long-run relationship between distribution and growth in major OECD countries, however, have not yet been conclusive. Our paper attempts to contribute to this work.

The paper is organised as follows. We develop an open-economy model without economic activity by the state based on the Bhaduri/Marglin approach in the second section, as a theoretical starting point for our analysis. In the third section the empirical literature based on the Bhaduri/Marglin model is reviewed and it is shown that the results with respect to the long-run developments in major OECD countries are not conclusive at all. Applying a single-equation estimation approach for the components of aggregate demand pioneered by Bowles/Boyer (1995), and by now widely used in empirical research on the Bhaduri/Marglin model, we estimate the effects of a change in income shares for Austria and the Netherlands as small open economies and for France, Germany, the UK, and the USA as larger and less open economies in the fourth section. Section five concludes and draws some economic policy implications.

Before we proceed, the restrictions of the empirical approach followed in this paper should be made clear right at the start. First, we estimate single equations for the components of aggregate demand (consumption, investment, net exports), but we do not take into account interactions between these components. Theses interactions might modify our results. Second, we do not explicitly address monetary factors in the determination of the components of aggregate demand. This is a serious limitation for Post-Keynesian models relying on the long-run independence of investment from saving, because these models should address the questions of investment finance, firms’ debt and finance costs. Third, our approach does not include any feedback effects of capital accumulation or growth on distribution. We simply take distribution as the exogenous variable determining growth as the endogenous variable. Third, we neither consider the productivity enhancing effects of investment in capital stock or output growth through embodied technical change or increasing returns to scale, nor the

5 For Post-Keynesian models including monetary variables see the discussion in Lavoie (1995) and in Hein (2007, chapter 3). For an attempt to include the interest rate in empirical estimations of the Bhaduri/Marglin model see Hein/Oehsen (2003).

6 See Marglin/Bhaduri (1990, 1991), Bhaduri (2006a) and Gordon (1995) for the discussion of feedback effects between economic activity and growth, on the one hand, and distribution on the other.
effects of redistribution on productivity growth. Therefore, the long-run employment effects of effective demand and distribution variations may differ from the growth effects considered in the present paper, because the former are modified by induced changes in productivity growth.

2. The theoretical model
Our theoretical model is based on the open economy analysis in Bhaduri/Marglin (1990) concerning the relationship between distribution, the real exchange rate as an indicator of international competitiveness, and growth, as well as on the analysis of the relationship between domestic redistribution and international competitiveness contained in Blecker (1989). We assume an open economy without economic activity of the state, which depends on imported inputs for production purposes and the output of which competes in international markets. We take the prices of imported inputs and of the competing foreign final output to be exogenously given and to be moving in step. The nominal exchange rate, the price of a unit of domestic currency in foreign currency, is determined by monetary policies and international financial markets and is also considered to be exogenous for our purposes.

2.1 Prices, distribution and international competitiveness
We assume the technical conditions of production and hence labour productivity (y) and the capital-potential-output-ratio (v) to be constant. There is no overhead labour and the capital stock (K) is assumed not to depreciate. Domestic prices (p) are set by firms marking up constant unit variable costs which consist of labour costs and imported material costs. The mark-up (m) is determined by the degree of price competition in the goods market and by relative powers of firms and workers in the labour market (Kalecki 1954: 11-18). Denoting the nominal wage rate with w, labour productivity with y, unit material inputs with μ, the nominal exchange rate with e and the prices of foreign goods with p_f, we get the following price equation for domestic goods:

$$p = \left(1 + m\frac{w}{y} + p_f e \mu\right), \quad m > 0. \tag{1}$$

Since the relationship between unit material costs and unit labour costs (z) is given by:

\[z = \frac{P_e e \mu}{w y}, \]

(2)

The price equation can also be written as:

\[p = (1 + m) \left(1 + \frac{P_e e \mu}{w y} \right) = (1 + m) \frac{w}{y} (1 + z). \]

(3)

The profit share \(h \) in domestic value added, consisting of domestic profits \(\Pi \) and wages \(W \), is given by:

\[h = \frac{\Pi}{\Pi + W} = \frac{m w (1 + z)}{m w (1 + z) + w y} = \frac{m(1 + z)}{1 + m(1 + z)} = \frac{1}{1 + (1 + z) m + 1}. \]

(4)

The profit share in the open economy is determined by the mark-up and by the relationship between unit material costs and unit labour costs. With the latter relationship constant, a rising (falling) mark-up implies a rising (falling) profit share. With a constant mark-up, the profit share will rise (fall), if the relationship between unit material costs and unit labour costs increases (decreases). Under the conditions of fixed production coefficients, a rising (falling) profit share may therefore be caused by falling (rising) nominal wages and/or by an increase (decrease) in the exchange rate, that is depreciation (appreciation) of the domestic currency.

Before we are able to analyse the effects of changes in distribution on aggregate demand and growth, we have to clarify the relationship between distribution and international competitiveness because the latter will affect net exports. Following Bhaduri/Marglin (1990), we choose the real exchange rate \(e_r \) as an indicator for international competitiveness:

\[e_r = \frac{e p_r}{p}. \]

(5)

An increase in the real exchange rate implies increasing international competitiveness of domestic producers. From equation (5), it follows for the respective growth rates:

\[\dot{e}_r = \dot{e} + \dot{p}_r - \dot{p}. \]

(6)
Increasing competitiveness can be caused by an increasing nominal exchange rate (nominal depreciation of the domestic currency), increasing foreign prices or declining domestic prices. The effect of changes in distribution on international competitiveness will depend on the cause of distributional change. Applying equations (1) and (5) we can consider three main cases:

First, if the change in distribution is caused by a change in the mark-up, we get an inverse relationship between the profit share and international competitiveness. A rising (falling) mark-up causes a rising (falling) profit share and falling (rising) international competitiveness of domestic producers:

$$\frac{\partial c^*_m}{\partial \mu} = -\frac{e p^*_t \left(\frac{w}{y} + p^*_t \mu \right)}{y^2} < 0.$$ (7)

Second, if a change in the nominal wage rate changes distribution via the effect on the relationship between unit material costs and unit labour costs, we obtain a positive relationship between the profit share and international competitiveness: Falling (rising) nominal wages cause a rising (falling) profit share and increasing (decreasing) international competitiveness:

$$\frac{\partial c^*_m}{\partial w} = -\frac{e p^*_t (1 + m) \frac{1}{y}}{y^2} < 0.$$ (8)

Third, if a change in the nominal exchange rate is the cause for redistribution, we also get a positive relationship between the profit share and international competitiveness: An increasing (decreasing) nominal exchange rate, that is nominal depreciation (appreciation), causes an increasing (decreasing) profit share and increasing (decreasing) international competitiveness:

$$\frac{\partial c^*_m}{\partial e} = \frac{p^*_t p - e p^*_t (1 + m) p^*_t \mu}{y^2} = \frac{p - (1 + m) me p^*_t}{y} > 0.$$ (9)

Summing up, changes in the domestic profit share may either be associated with declining or improving international competitiveness, depending on the source of the distributional change:
\[e_r = e_r(h), \quad \frac{\partial e_r}{\partial h} > 0, \text{ if } \Delta z > 0 \text{ and } \Delta m = 0, \]
\[\frac{\partial e_r}{\partial h} < 0, \text{ if } \Delta z = 0 \text{ and } \Delta m > 0. \]

(10)

2.2 Distribution and growth

In order to analyse the effects of changes in distribution on economic activity and capital accumulation, we start with the goods market equilibrium condition for an open economy without economic activity of the state: Planned saving (S) has to be equal to net investment (I) and net exports (NX), the difference between exports (X) and imports (M) of goods and services:

\[S = I + X - M = I + NX. \]

(11)

For convenience, equation (11) is normalised by the capital stock (K), and therefore, we get the following goods market equilibrium relationship between the saving rate \(\sigma = S/K \), the accumulation rate \(g = I/K \) and the net export rate \(b = NX/K \):

\[\sigma = g + b. \]

(12)

Saving consists of saving out of profits \((S_\Pi) \) and saving out of wages \((S_W) \). The propensity to save out of wages \((s_W) \) is assumed to fall short of the propensity to save out of profits \((s_\Pi) \), because the latter includes retained earnings of firms. Since the rate of capacity utilisation is the relation of output to potential output \((u = Y/Y^p) \) and the capital-potential output ratio relates the capital stock to potential output \((v = K/Y^p) \), we obtain for the saving rate:

\[\sigma = \frac{S_\Pi + S_W}{K} = \frac{s_\Pi \Pi + s_w(Y - \Pi)}{K} = \left[s_w + (s_\Pi - s_w)h\right]\frac{u}{v}, \quad 0 \leq s_w < s_\Pi \leq 1. \]

(13)

Investment is modelled according to Bhaduri/Marglin (1990): Capital accumulation is a positive function of the profit rate, which can be decomposed into the profit share, the rate of capacity utilisation and the capital-potential output ratio \((r = hu/v) \). With a constant coefficient technology, investment is therefore positively affected by the profit share and by capacity utilisation. Increasing unit profits and hence a rising profit share have a positive effect on investment because internal funds for investment finance improve, ceteris paribus. Increasing capacity utilisation has a positive effect on investment because the relation between
(expected) sales and productive capacity improves. In order for domestic capital accumulation to be positive, the expected rate of profit has to exceed a minimum rate \(r_{\text{min}} \), given by the foreign rate of profit or by the rate of interest in financial markets. Both possible minimum rates are considered to be exogenous in the present model.

\[
g = \alpha + \beta u + \tau, \quad \alpha, \beta, \tau > 0, \quad g > 0 \quad \text{only if} \quad r > r_{\text{min}}. \tag{14}
\]

The net export rate is positively affected by international competitiveness, provided that the Marshall-Lerner condition can be assumed to hold and the sum of the price elasticities of exports and imports exceeds unity. Under this condition, the real exchange rate will have a positive effect on net exports. But net exports also depend on the relative developments of foreign and domestic demand. If domestic demand grows at a faster rate than foreign demand, net exports will decline, ceteris paribus. Therefore, the domestic rate of capacity utilisation will have a negative impact on net exports.

\[
h = \psi e_x(h) - \phi u, \quad \psi, \phi > 0. \tag{15}
\]

Stability of the goods market equilibrium requires that saving responds more elastically towards a change in the endogenous variable, the rate of capacity utilisation, than investment and net exports do together:

\[
\frac{\partial \sigma_u}{\partial u} - \frac{\partial q_u}{\partial u} - \frac{\partial b}{\partial u} > 0 \quad \Rightarrow \quad \left[s_w + \left(s_n - s_w \right) h \right] \frac{1}{v} - \beta + \phi > 0. \tag{16}
\]

We shall only consider stable goods market equilibria and the effects of changes in distribution on these equilibria. The equilibrium rates (*) of capacity utilisation and capital accumulation are given by:

\[
u^* = \frac{\alpha + \tau h + \psi e_x(h)}{\left[s_w + \left(s_n - s_w \right) h \right] \frac{1}{v} - \beta + \phi}, \tag{17}
\]

\[
g^* = \alpha + \frac{\beta \left(\alpha + \tau h + \psi e_x(h) \right)}{\left[s_w + \left(s_n - s_w \right) h \right] \frac{1}{v} - \beta + \phi} + \tau h. \tag{18}
\]

Whereas equilibrium capacity utilisation indicates equilibrium activity with given productive capacities, equilibrium capital accumulation determines the development of productive
capacities or potential output. The effect of a change in the profit share on equilibrium
domestic economic activity, measured by the rates of capacity utilisation and capital
accumulation in the theoretical model, can be calculated from equations (17) and (18):

\[
\frac{\partial u}{\partial h} = \frac{\tau - (s_{\Pi} - s_w)u}{v} + \psi \frac{\partial c_r}{\partial h}, \quad (17a)
\]

\[
\frac{\partial g}{\partial h} = \frac{\tau \left(\frac{s_w + \phi}{v} \right) + (s_{\Pi} - s_w) \left(\frac{h - \beta u}{v} \right) + \beta \psi \frac{\partial c_r}{\partial h}}{v} \quad (18a)
\]

Equation (17a) shows that an increasing profit share will have no unique effect on equilibrium
capacity utilisation. From the numerator it can be seen that the total effect of redistribution in
favour of profits is composed of three effects: First, there is a positive effect via investment
demand \((\tau)\), second, a negative effect via consumption demand \([- (s_{\Pi} - s_w)u/v]\) and third, an
undetermined effect via net exports \((\psi \frac{\partial c_r}{\partial h})\). The direction of the latter depends on the source
of redistribution and can be either negative or positive, as has been derived above.

For equilibrium capital accumulation a similar result is obtained, as can be seen in equation
(18a). The total effect of an increasing profit share on equilibrium accumulation is not unique
and depends on the direction and the magnitude of three effects again. In the numerator we
have first the positive effect originating from an increase in unit profits \([\tau \left(\frac{s_w + \phi}{v} \right)]\). Then we
have the indirect effect via consumption demand and capacity utilisation
\([(s_{\Pi} - s_w) \left(\frac{h - \beta u}{v} \right)]\), which can be positive or negative. And finally there is the indirect
effect via net exports \((\beta \psi \frac{\partial c_r}{\partial h})\) which may also be positive or negative.

So far equilibrium analysis takes us. In what follows we shall confine the empirical study to
the analysis of the effects of distribution on the components of aggregate demand and hence
on GDP (growth). Before doing this, however, we shall review the empirical literature on the
Bhaduri/Marglin model in the following section.
3. Survey of the empirical literature
Since the publication of the seminal article by Bhaduri/Marglin in 1990, a number of empirical studies dealing with the relationship between distribution, aggregate demand and accumulation have been published. Regardless of the method applied or the main focus of the empirical analysis, they all tackle the question of the type of the demand-led growth regime in the countries under investigation.

Table 1 presents an overview of the main studies dealing empirically with the issue of distribution and demand: To our knowledge Bowles/Boyer (1995) present the first attempt to determine growth regimes empirically applying a single-equation approach. They estimate separate equations for the three demand aggregates consumption (saving), investment and net exports, subject to a change in the profit share in the consumption function or in the profit rate and in the employment rate, as an indicator for economic activity, in the investment and the net export function. By doing so, they can determine the growth regime supposing a closed economy and considering the effects of distribution on consumption and investment first. Then they determine the growth regime for the open economy including the effects on net exports. The domestic sectors of the five countries France, Germany, Japan, the United Kingdom and the United States are found to be wage-led. However, when including the effect of redistribution on net exports, France, Germany and Japan become profit-led, while the UK and the USA remain wage-led.

Other studies employing the single-equation approach for the demand aggregates are Gordon (1995), Naastepad (2006), Naastepad/Storm (2007), Stockhammer (2006) and Ederer/Stockhammer (2007). In contrast to the results of Bowles/Boyer, Gordon (1995) finds the USA to be profit-led. He focuses on the effect of the profit rate as distribution parameter on capacity utilisation, observing a positive relationship between the two variables for the closed economy as well as for the open economy. Naastepad (2006) and Naastepad/Storm (2007) analyse the growth regime for the Netherlands in the first paper and for a number of OECD countries in the second paper by estimating the effects of a change in the profit share on saving, investment and exports. In both papers it is assumed that imports grow in line with domestic output and that there is no direct effect of the change in the profit share on this variable. The authors find relatively weak effects of redistribution on the growth of exports. The wage-led results for the domestic sectors of the majority of the countries under investigation are therefore maintained when adding the effects on exports. Only Japan and the USA are found to be profit-led. Stockhammer (2006) as well as Ederer/Stockhammer (2007) apply two similar approaches to Austria and the Euro area in the first paper, and to France in
the second paper. They estimate a number of export and import functions and introduce the relationships between export prices, import prices and domestic prices as additional variables, compared to the other studies mentioned above. While they find that all three countries (or currency areas) are wage-led with respect to domestic demand, when including the effects of external trade, only the Euro area remains wage-led.

A different methodological approach is presented by Stockhammer/Onaran (2004) and Onaran/Stockhammer (2005) (summarised in Onaran/Stockhammer 2006), who estimate two slightly different structural VARs for France, the United States and the United Kingdom, on the one hand, and for Turkey and South Korea, on the other hand. They find no significant effects of the profit share on the accumulation rate in the industrial countries analysed. Results for the two developing countries, however, suggest a wage-led growth regime for both countries.
<table>
<thead>
<tr>
<th>Author</th>
<th>Countries in the analysis</th>
<th>Period covered</th>
<th>Estimation method</th>
<th>Consumption/Savings function</th>
<th>Investment function</th>
<th>Export & Import function</th>
<th>Total effect: closed economy</th>
<th>Total effect: open economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gordon (1995)</td>
<td>USA</td>
<td>1955:1-1988:4</td>
<td>Two-stage LS (with an ARMA adjustment)</td>
<td>$S^n = f(u, r, i)$</td>
<td>$I^n = f(u, r, i)$</td>
<td>$NX = f(u, r, i)$</td>
<td>Profit-led</td>
<td>Profit-led</td>
</tr>
<tr>
<td>Onaran/Stockhammer (2005)</td>
<td>Turkey, South Korea</td>
<td>1965-1997 (Turkey) 1970-2000 (South Korea)</td>
<td>SVAR</td>
<td>Variables: $I/Y, h, X/Y, M/Y, u, E$. Contemporaneous effects: $I/Y \rightarrow u; h \rightarrow X/Y, M/Y, u; X/Y \rightarrow u; u \rightarrow M/Y, E$. Accumulation: $g = I/K = f(u, h)$</td>
<td></td>
<td></td>
<td>Not estimated</td>
<td>Wage-led, in the short term for Turkey and in the long term for South Korea.</td>
</tr>
<tr>
<td>Study</td>
<td>Countries</td>
<td>Time Period</td>
<td>Methodology (with adjustments)</td>
<td>Equations</td>
<td>Wage-led</td>
<td>Wage-led (but only marginally)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-------------------------------</td>
<td>-----------</td>
<td>----------</td>
<td>--------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naastepad (2006)</td>
<td>The Netherlands</td>
<td>1960-2000</td>
<td>OLS (sometimes with an AR(1) adjustment)</td>
<td>(S/Y = f(h)), (\dot{I} = f(h, \dot{Y})), (\hat{X} = f(\hat{Y}{world}, ULC{relative}))</td>
<td>Wage-led</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naastepad/Storm (2007)</td>
<td>France, Germany, Italy, Japan, the Netherlands, Spain, UK, USA</td>
<td>1960-2000</td>
<td>OLS (sometimes with an AR or ARIMA adjustment)</td>
<td>(S/Y = f(h)), (I/Y = f(h, Y)), (\hat{X} = f(\hat{Y}{world}, ULC{relative}))</td>
<td>F, D, E, I, NL, UK: wage-led; J, US: profit-led.</td>
<td>F, G, E, I, NL, UK: wage-led; J, US: profit-led.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stockhammer (2006)</td>
<td>Austria, Euro area</td>
<td>1960-2004</td>
<td>OLS (sometimes with an AR(1) adjustment)</td>
<td>(C = f(W, \Pi)), (I = f(Y, \Pi, i)) (estimated as ECM)</td>
<td>All wage-led</td>
<td>Austria: profit-led; Euro area: wage-led.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- \(W \) (\(fC_{\Pi} = i, Y \)) (estimated as ECM)
- \(NX/Y = f(Ŷ, Ŷ_{trade}, e, (1-h)) \)
- Exports:
 1) \(2a) \hat{X} = f(\hat{Y}_{trade}, ė, \hat{P}_x/\hat{P}_m) \)
 2) \(2b) \hat{P}_x = f(\hat{P}_m, \hat{P}) \)
- Imports:
 3) \(3a) \hat{M} = f(Ŷ, ė, \hat{P}/\hat{P}_m) \)
 4) \(3b) \hat{p} = f(Ŷ, \hat{P}_m, (1-h)) \)
<table>
<thead>
<tr>
<th>Ederer/Stockhammer (2007)</th>
<th>France</th>
<th>1960-2004</th>
<th>OLS</th>
<th>(C = f(W, \Pi))</th>
<th>(I = f(Y, \Pi, i)) (estimated as ECM)</th>
<th>Exports:</th>
<th>Wag-led</th>
<th>Profit-led</th>
</tr>
</thead>
</table>
| | | | | | | 1.1) \(\hat{X} = f(\hat{Y}_{\text{trade}}, \)
| | | | | | \(d(p_m), d(1-h) \) | 1.2.a) \(\hat{X} = f(\hat{Y}_{\text{trade}} \)
| | | | | | \(\hat{\Pi}, \hat{P}_x/p_m \) | 1.2.b) \(p_x = f(1-h) \) | Imports: | | |
| | | | | | | 2.1) \(\hat{M} = f(\hat{M}_{t-1}, \hat{Y}, \)
| | | | | | \(\hat{p}_{mt-1}, d(1-h), i \) | 2.2.a) \(\hat{M} = f(\hat{M}_{t-1}, \)
| | | | | | \(\hat{\Pi}, \hat{P}_x/p_m \) | 2.2.b) \(p_m = f(1-h) \) | | |

Notes: \(C = \) real aggregate consumption, \(e = \) nominal exchange rate, \(E = \) level of employment, \(g = \) accumulation rate, \(h = \) profit share, \(i = \) real interest rate, \(I = \) real gross investment, \(I^p = \) real net investment, \(K = \) capital stock, \(l = \) employment share, \(M = \) real imports, \(NX = \) real net exports, \(p = \) domestic prices, \(p_m = \) import prices, \(p_x = \) export prices, \(r = \) profit rate, \(S = \) real gross saving, \(S^p = \) real net saving, \(u = \) capacity utilisation, \(ULC = \) real unit labour costs, \(ULC_{\text{relative}} = \) real unit labour costs relative to trading partners/world exports, \(\bar{W} = \) real wages, \(y = \) labour productivity, \(Y = \) real aggregate output/demand, \(Y_{\text{trade}} = \) real aggregate output of the main trading partners, \(\hat{Y}_{\text{world}} = \) growth rate of world trade, \(\hat{X} = \) real exports, \(\Pi = \) real gross profits, \(\bar{v} = \) unemployment rate, \(\hat{x} = \) growth rate of variable \(x \).
4. Empirical method and results

Following Bowles/Boyer (1995) we applied a single equations approach in order to determine the effects of a change in distribution on economic activity for some major OECD countries. In our theoretical model developed above, capacity utilisation was used as an indicator for economic activity. But reliable data for the development of capacity utilisation over longer periods of time in international comparison is difficult to obtain for empirical analysis. Therefore, we used the growth of real GDP as a proxy for capacity utilisation and hence economic activity, and estimated the direct partial effects of a change in the profit share, adjusted for the labour income of the self-employed, on the growth contribution of consumption (C), investment (I) and net exports (NX). These partial effects were finally added up to obtain the total effect of a change in the profit share on the percentage increase of real GDP:

\[
\frac{\partial Y}{\partial h} = \frac{\partial C}{\partial h} + \frac{\partial I}{\partial h} + \frac{\partial NX}{\partial h}.
\] (19)

For the reasons outlined in the theoretical model we expected the following signs of the derivatives:

\[
\frac{\partial C}{\partial h} < 0, \quad \frac{\partial I}{\partial h} > 0, \quad \frac{\partial NX}{\partial h} =?, \quad \frac{\partial Y}{\partial h} =?,
\] (19a)

The empirical analysis was carried out for the period 1960-2005 for Austria and the Netherlands as small open economies, for France, Germany, and the UK as medium-sized and less open economies, and for the USA as a large and rather closed economy. Due to problems with data availability, the consumption function for the UK could only be estimated for the period 1970-2005. All data was obtained from the AMECO database of the European Commission (2006). With the exception of the shares used in the estimations, variables are in real terms (see data definitions and data source in the appendix).

Generally, the time series contained in the different equations were first tested for unit roots applying an Augmented Dickey-Fuller Test (ADF). Since most equations contained variables that were both I(0) and I(1), we tested for the possibility to estimate an error-correction model.
applying the bounds testing approach developed by Pesaran et al. (2001). In this approach, bounds of critical values are developed for an F-test testing for the significance of all long-term equilibrium coefficients and for a t-test for the error correction term. If the test values lie outside these bounds, the null hypothesis of no significance can be rejected, regardless of the order of integration or the mutual cointegration of the variables. For the specification of the lag-structure of the error-correction models, the ‘general to specific’ approach by Granger (1997) was adopted, starting with a relatively high number of lags and successively eliminating insignificant coefficients. If the estimation of an error-correction model according to this approach was not possible, the equation was estimated using first differences of the variables in order to avoid the problem of spurious regressions. All regressions were estimated with the method of ordinary least squares.

Assuming away interactions between the demand aggregates and hence assuming that the profit share has no effect on the GDP variable as a determinant in the estimated equations, the effects of a change in the profit share on the GDP growth contributions of the demand aggregates can either be estimated directly, regressing the profit share on the share of the respective demand aggregate in GDP. Alternatively level variables in logs for profits (and wages in the consumption function) or the profit share can be regressed on the demand aggregates in logs, and then the estimated coefficients have to be corrected for by the average share of the respective aggregates in profits or in GDP in order to obtain the effect of a change in the profit share on the GDP-growth contribution of the demand aggregate (see estimation strategies in the appendix). We tried both estimation strategies and report the more significant and plausible results in the main text. Remarks on the results of the other procedures can be found in footnotes. The results can be obtained from the authors on request.

4.1 Consumption

The effect of a change in distribution on aggregate consumption was estimated according to the assumptions contained in the saving function (13):

\[C = f(\Pi, W) \].

(20)

Compensation of employees represents wages (W), and gross operating surplus adjusted for the compensation of the self-employed represents profits (\(\Pi \)) in the empirical analysis. We used gross instead of net profits to ensure that the partial effects can be added up to the total effect on the percentage change of real GDP. Private consumption and both variables
determining consumption were deflated by the price deflator for private consumption in order to obtain real values. They were then converted into logarithms, so that elasticities instead of direct partial effects were estimated. Following our theoretical model, we generally expected the elasticity of consumption with respect to wages to be significantly higher than the elasticity with respect to profits.

The time series of real consumption, real profits and real wages were found to be almost completely I(1) at the 1% significance level (Table A1 in the appendix). Since the critical values by Pesaran et al. (2001) rejected the existence of a long-run level relationship between the variables, the consumption function was estimated employing first differences:

\[
d\log(C_t) = c + a_1\log(\Pi_t) + a_2\log(W_t) + a_3\log(C_{t-1}).
\]

Equation (21) thus estimates the elasticities \(a_1 = (\partial C/C)/(\partial \Pi/\Pi)\) and \(a_2 = (\partial C/C)/(\partial W/W)\), respectively. Table 2 presents the results. For the consumption function of the Netherlands and the Euro area, a lagged endogenous variable was included in order to avoid first order autocorrelation in the residuals. In this case, long-run coefficients of \(a_1\) and \(a_2\) were calculated by dividing them by one minus the coefficient of the lagged variable \(a_3\). In the case of the Netherlands, an additional lagged variable \(d[\log(W_{t-1})]\) had to be included to correct for first order autocorrelation. The long-run coefficient of the elasticity of consumption with respect to wages was then estimated by summing up the two coefficients and correcting with the lagged endogenous variable: \((a_2+a_4)/(1-a_3)\). All corrected long-run variables were additionally tested for significance with a Wald-Test.

Estimates for the constant, as well as for the coefficients \(a_1\) and \(a_2\), were found to be highly significant at the 1% level in each of the estimations, suggesting the equations to be robust. This was confirmed by relatively high values of the adjusted R-squared. Additionally, the estimations were tested for general misspecification with the Ramsey RESET Test, for first order autocorrelation in the residuals by analysing the Durbin-Watson- and the Q-Statistics, and for heteroskedasticity applying the White Test. At the 10% level, indication of misspecification, autocorrelation or heteroskedasticity could be rejected for each of the estimations, confirming again the results. When necessary, the estimations were corrected for outliers in order to prevent heteroskedasticity.
Table 2: Estimation results for the consumption function

\[d[\log(C_t)] = c + a_1 d[\log(\Pi_t)] + a_2 d[\log(W_{t-1})] + a_3 d[\log(C_{t-1})] \]

<table>
<thead>
<tr>
<th>Country</th>
<th>c</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>Adj. R²</th>
<th>DW-Statistics</th>
<th>Ramsey RESET Test (prob.)</th>
<th>Q-Statistics (prob. for lag = 1)</th>
<th>White Test (prob.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria¹</td>
<td>0.011*** (0.003)</td>
<td>0.113*** (0.036)</td>
<td>0.460*** (0.075)</td>
<td>/</td>
<td>0.575</td>
<td>2.333</td>
<td>0.529</td>
<td>0.246</td>
<td>0.224</td>
</tr>
<tr>
<td>France</td>
<td>0.007*** (0.002)</td>
<td>0.113*** (0.027)</td>
<td>0.552*** (0.050)</td>
<td>/</td>
<td>0.783</td>
<td>2.015</td>
<td>0.209</td>
<td>0.906</td>
<td>0.357</td>
</tr>
<tr>
<td>Germany²</td>
<td>0.008*** (0.002)</td>
<td>0.117*** (0.033)</td>
<td>0.527*** (0.034)</td>
<td>/</td>
<td>0.949</td>
<td>2.140</td>
<td>0.430</td>
<td>0.612</td>
<td>0.474</td>
</tr>
<tr>
<td>Netherlands³</td>
<td>/</td>
<td>0.212*** (0.032)</td>
<td>0.774*** (0.101)</td>
<td>0.182 (0.120)</td>
<td>0.858</td>
<td>1.726</td>
<td>0.224</td>
<td>0.444</td>
<td>0.820</td>
</tr>
<tr>
<td>UK</td>
<td>0.008*** (0.003)</td>
<td>0.180*** (0.030)</td>
<td>0.631*** (0.080)</td>
<td>/</td>
<td>0.704</td>
<td>1.566</td>
<td>0.653</td>
<td>0.213</td>
<td>0.448</td>
</tr>
<tr>
<td>USA</td>
<td>0.013*** (0.002)</td>
<td>0.170*** (0.030)</td>
<td>0.472*** (0.051)</td>
<td>/</td>
<td>0.827</td>
<td>1.690</td>
<td>0.318</td>
<td>0.360</td>
<td>0.461</td>
</tr>
</tbody>
</table>

Notes: *** denotes statistical significance at the 1% level, ** significance at the 5% level, * significance at the 10% level. Standard errors are in parentheses.
¹Estimated correcting for an outlier in 1978.
²Estimated correcting for outliers in 1975 and 1991.
³Estimated correcting for outliers in 1964 and 1975 and including a lagged variable d[\log(W_{t-1})] (coefficient: -0.213** (0.096)). We report the long-run coefficients \(\frac{a_1}{1-a_3} \) and \(\frac{(a_2+a_4)}{(1-a_3)} \).
Table 3: Partial effect of a change in the profit share on the growth contribution of consumption

\[\frac{\partial C}{\partial \Pi} = a_1 \frac{C}{\Pi} - a_2 \frac{C}{W} \]

<table>
<thead>
<tr>
<th>Country</th>
<th>C/II</th>
<th>C/W</th>
<th>a_1(C/II)</th>
<th>a_2(C/W)</th>
<th>(C/Y)/\partial h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>2.441</td>
<td>1.118</td>
<td>0.276</td>
<td>0.514</td>
<td>-0.238</td>
</tr>
<tr>
<td>France</td>
<td>2.338</td>
<td>1.112</td>
<td>0.264</td>
<td>0.614</td>
<td>-0.350</td>
</tr>
<tr>
<td>Germany</td>
<td>2.075</td>
<td>1.062</td>
<td>0.243</td>
<td>0.560</td>
<td>-0.317</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1.764</td>
<td>0.984</td>
<td>0.457</td>
<td>0.675</td>
<td>-0.218</td>
</tr>
<tr>
<td>UK</td>
<td>2.781</td>
<td>1.089</td>
<td>0.501</td>
<td>0.687</td>
<td>-0.186</td>
</tr>
<tr>
<td>USA</td>
<td>2.292</td>
<td>1.124</td>
<td>0.390</td>
<td>0.531</td>
<td>-0.141</td>
</tr>
</tbody>
</table>
Estimates of the elasticity of consumption with respect to wages were significantly higher than those with respect to profits. In order to calculate the direct partial effects of a change in the profit share on the change in the consumption share in GDP, the elasticities were converted according to equation (22), using average values over the whole period for \(\frac{C}{\Pi} \) and \(\frac{C}{W} \):

\[
\frac{\partial C}{\partial h} = a_1 \frac{C}{\Pi} - a_2 \frac{C}{W}.
\]

As expected, the overall effect of an increase in the profit share on consumption was significantly negative in the seven countries/currency areas analysed (Table 3). The strongest negative impact on consumption was found in the case of France and Germany, where a one-percentage-point rise in the profit share, according to our results, reduces private consumption by 0.350 percentage points of GDP and 0.317 percentage points, respectively. The findings for Austria and the Netherlands suggest a slightly less negative influence of the profit share on consumption (-0.238 and -0.218 percentage points). Both the estimations for the UK and the USA yielded significantly smaller effects on the consumption share than those found in the continental European countries (-0.186 and -0.141 percentage points).

In accordance with the studies surveyed in section 3, and also in accordance with Marglin/Bhaduri (1991), our results confirm the hypothesis of a lower propensity to consume out of profits than out of wages and hence a negative effect of an increase in the profit share on aggregate consumption. Comparing the countries under investigation, however, the relative magnitudes of redistribution in our study differs from some of the other findings which may be due to different time periods and/or data sources. In Bowles/Boyer (1995), for instance, the effect of redistribution on consumption in the UK and the USA are equal as, or even higher than, in France and Germany. Gordon’s (1995) estimates for the USA yield roughly the same result as Bowles/Boyer. Naastepad/Storm (2007) also report higher effects of a change in the profit share on consumption in the Anglo-Saxon countries. Although they generally find higher effects on consumption than we do, their results for Germany, France and the Netherlands confirm our finding that these countries show quite similar effects of a change in the profit share on consumption. Ederer/Stockhammer (2007) find a relatively small

8 An additional function relating the profit share to the saving ratio was estimated to test the robustness of our results. Generally, results from the alternative estimation were similar to those obtained from equation (21) and, in the case of different results, did not change the overall effect.
effect of redistribution on consumption in France, in contrast to a high estimate of the effect in Austria in comparison with our results in Stockhammer (2006).

4.2 Investment

The rate of capital accumulation in our theoretical model was determined by capacity utilisation and the profit share (equation (14)). For the estimation of the investment function, we used the log of real GDP as a proxy for capacity utilisation. We also included the real long-term interest rate (deflated by the private consumption deflator), as in Hein/Ochsen (2003), in order to control for the influence of monetary factors on investment.

\[I = f(Y, h, i). \]

(23)

For the reasons given in the model presented above, we generally expect a positive influence of both an increase in the profit share and in real GDP on investment. The real long-term interest rate is supposed to have a negative impact on accumulation decisions because, on the one hand, it represents the opportunity costs of real investment compared to financial investment. On the other hand, a higher interest rate diminishes retained profits and internal funds, and also the access to external funds in incomplete financial markets (Kalecki 1954: 91-108). However, coefficients of the interest rate were not significant, so that the variable was omitted from equation (23).

Stationarity could not be confirmed for all the variables contained in equation (23) (Table A2 in the appendix), so that the bounds-testing approach by Pesaran et al. (2001) was again employed to test for the existence of a long-run level relationship between the variables in an error correction model. This was confirmed only for the Netherlands. Consequently, we estimated the following error correction model for this country (Table 4):

\[d[\log(I_t)] = c + a_1 \log(I_{t-1}) + a_2 \log(Y_{t-1}) + a_3 h_{t-1} + \sum_{i=0}^{n} b_i d[\log(Y_{t-i})] + \sum_{i=0}^{n} c_i d(h_{t-i}) + \sum_{i=1}^{n} d_i d[\log(I_{t-i})] \]

(24a)

All coefficients in the error correction models where highly significant and rejected both the F-test for overall non-significance of the long-run coefficients and the t-test for non-significance of the error correction term at the 1% level. As expected, the long-run elasticity of investment with respect to the profit share was found to be positive. A high value of R-
squared and the test results indicated a good specification of the equation. For the remaining countries, equation (23) was estimated in first differences (Table 5):

\[
\begin{align*}
\text{d}[\log(I_t)] &= c + b_1 \text{d}[\log(Y_{t-1})] + b_2 \text{d}(h_t) + b_3 \text{d}[\log(I_{t-1})] \\
\end{align*}
\] (24b)

Generally, coefficients of the GDP-variable were highly significant at the 1% level, while coefficients for the profit share were significant only for the UK, but with a negative sign. In the estimations for France and the USA, lagged variables had to be included to account for first order autocorrelation. In these cases, we report the long-run coefficients. In some equations, the coefficient \(b_1 \) was very high. However, this only poses a problem in the case of the UK, since in the other estimations the coefficients have to be corrected for the effect of lagged coefficients. The effect of the profit share on the logarithm of investment in equation (25) could not be determined consistently. While the elasticities estimated for Austria and France where positive but insignificant, in the other countries we found negative elasticities which in most cases were also insignificant. For the UK, the estimation yielded a significant but negative elasticity of investment with respect to the profit share. This result seems implausible from a theoretical point of view. Insignificant or negative elasticities of investment were thus not included in the calculation of the effect of a change in the profit share on the growth contribution of investment.\(^9\)

Because results from equation (24b) were unsatisfactory, we also estimated an additional investment function relating investment to output and profits in an error correction model:

\[
\begin{align*}
\text{d}[\log(I_t)] &= c + c_1 \log(I_{t-1}) + c_2 \log(Y_{t-1}) + c_3 \log(\Pi_{t-1}) \\
&\quad + \sum_{i=0}^{\infty} d_i \text{d}[\log(Y_{t-i})] + \sum_{i=0}^{\infty} e_i \text{d}[\log(\Pi_{t-i})] + \sum_{i=1}^{\infty} f_i \text{d}[\log(I_{t-i})] \\
\end{align*}
\] (24c)

However, only the estimation for France yielded significant and plausible coefficients, so that we do not report the results for the other countries in the sample here. To obtain the partial effect of a change in distribution on the growth contribution of investment, the estimates of the long-run elasticity of investment with respect to the profit share were multiplied by the average investment share in GDP over the whole period covered in the analysis:

\(^9\) We additionally estimated the relationship between the profit share and the investment share in order to directly obtain the partial effect of the profit share on the growth contribution of investment. Partial effects for all the countries under investigation were negative, and insignificant in some cases. This result is both implausible and surprising and suggests that the relationship between the profit share and investment is not a very robust one.
\begin{equation}
\frac{\partial I}{\partial Y} = \frac{a_3}{\partial h} \frac{I_h}{-a_1 Y_n},
\tag{25a}
\end{equation}

Alternatively, the estimates of the long-run elasticity of investment with respect to profits had to be corrected with the average share of investment in profits:

\begin{equation}
\frac{\partial I}{\partial Y} = \frac{c_3}{\partial h} \frac{I}{-c_1 \Pi},
\tag{25b}
\end{equation}

The ratio of the coefficients a_3 and a_1, i.e. c_3 and c_1, was again tested for significance with a Wald Test. They were found to be significant at least at the 10% level and were thus included in the further calculations. Changes in the profit share seem to have a rather large impact on the growth contribution of investment in the Netherlands (0.340 percentage points). The effect is larger than those on consumption, resulting in a profit-led nature of the domestic part of the economy when disregarding the effects on net exports. In France, we find a smaller positive effect of the profit share on investment (0.221 percentage points), so that the domestic sector on the whole has a wage-led nature. In the other countries under investigation, there are insignificant and/or negative effects of the profit share on investment. This suggests a wage-led growth regime in the domestic sectors of these countries.
Table 4: Estimation results for the investment function as ECM

\[
eq a_1 \log(I_{t-1}) + a_2 \log(Y_{t-1}) + a_3 h_{t-1} + \sum_{i=0}^{n} b_i \log(Y_{t-i}) + \sum_{i=0}^{n} c_i d_{t-i} + \sum_{i=0}^{n} d_i \log(I_{t-i})
\]

country & a_1 & a_2 & a_3 & Adj. R2 & DW-Statistics & Wald-Test (F-Stat.)a & Ramsey RESET Test (prob.) & Q-Statistics (prob. for lag = 1) & White Test (prob.)
--- & --- & --- & --- & --- & --- & --- & --- & --- & ---
Netherlands† & -0.335*** (0.063) [−5.323***] & 0.255*** (0.057) & 0.485** (0.210) & 0.673 & 2.234 & 11.265*** & 0.783 & 0.359 & 0.343

Notes: *** denotes statistical significance at the 1% level, ** significance at the 5% level, * significance at the 10% level. Standard errors are in parentheses, t-Statistics in square brackets.

a Bounds testing for $H_0: a_1=a_2=a_3=0$ to test for the existence of a long-run relationship between the variables. We assume an unrestricted constant and use special critical values from Pesaran et al. (2000).

† Estimated correcting for an outlier in 1963.
Table 5: Estimation results for the investment function in differences

\[d[\log(I_t)] = c + b_1 d[\log(Y_t)] + b_2 d(h_t) + b_3 d[\log(I_{t-1})] \]

<table>
<thead>
<tr>
<th>Country</th>
<th>(c)</th>
<th>(b_1)</th>
<th>(b_2)</th>
<th>(b_3)</th>
<th>Adj. (R^2)</th>
<th>DW-Statistics</th>
<th>Ramsey RESET Test (prob.)</th>
<th>Q-Statistics (prob. for lag = 1)</th>
<th>White Test (prob.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria¹</td>
<td>-0.021** (0.009)</td>
<td>1.789*** (0.273)</td>
<td>0.198 (0.429) [+ prob. 0.647]</td>
<td>/</td>
<td>0.622</td>
<td>2.056</td>
<td>0.783</td>
<td>0.674</td>
<td>0.540</td>
</tr>
<tr>
<td>France²</td>
<td>/</td>
<td>1.605*** (0.265)</td>
<td>0.583 (0.446) [+ prob. 0.198]</td>
<td>0.565*** (0.121)</td>
<td>0.729</td>
<td>2.047</td>
<td>0.144</td>
<td>0.702</td>
<td>0.135</td>
</tr>
<tr>
<td>Germany³</td>
<td>-0.023*** (0.005)</td>
<td>1.613*** (0.130)</td>
<td>-0.176 (0.463) [+ prob. 0.705]</td>
<td>/</td>
<td>0.809</td>
<td>1.717</td>
<td>0.181</td>
<td>0.342</td>
<td>0.897</td>
</tr>
<tr>
<td>UK⁴</td>
<td>-0.028*** (0.009)</td>
<td>2.560*** (0.313)</td>
<td>-0.887** (0.410)</td>
<td>/</td>
<td>0.601</td>
<td>1.912</td>
<td>0.078</td>
<td>0.893</td>
<td>0.317</td>
</tr>
<tr>
<td>USA⁵</td>
<td>-0.018* (0.010)</td>
<td>2.423*** (0.184)</td>
<td>-0.553 (0.636) [+ prob. 0.390]</td>
<td>0.528*** (0.143)</td>
<td>0.848</td>
<td>1.811</td>
<td>0.017</td>
<td>0.622</td>
<td>0.765</td>
</tr>
</tbody>
</table>

Notes: *** denotes statistical significance at the 1% level, ** significance at the 5% level, * significance at the 10% level. Standard errors are in parentheses.
¹ Estimated correcting for an outlier in 1982.
² Estimated including a lagged variable \(d[\log(Y_{t-1})]\) (coefficient: -1.102*** (0.304)) to correct for first order autocorrelation. We report long-run coefficients.
³ Estimated correcting for an outlier in 1974.
⁵ Estimated including a lagged variable \(d[\log(Y_{t-1})]\) (coefficient: -1.279*** (0.419)) to correct for first order autocorrelation. We report long-run coefficients.
Table 6: Estimation results for the investment function, effect of profits on investment in ECM

Table 7: Partial effect of the profit share on the growth contribution of investment

Notes: *** denotes statistical significance at the 1% level, ** significance at the 5% level, * significance at the 10% level. Standard errors are in parentheses, t-Statistics in square brackets.

Notes: *** denotes statistical significance at the 1% level, ** significance at the 5% level, * significance at the 10% level. Results of a Wald Test for overall significance of the effect.
Our results largely contradict those by Bowles/Boyer (1995), Gordon (1995), Stockhammer (2006), Ederer/Stockhammer (2007) and Naastepad/Storm (2007) who find positive effects of the profit share on investment for the countries they are examining respectively. However, there seem to be major problems with the specifications of the investment function and the significance of the estimated effects in these papers. Bowles/Boyer (1995) use the profit rate and the employment rate as determinants in their investment function which raises two problems. First, the profit rate is also affected by capacity utilisation and the capital-potential output-ratio. Changes in the profit rate may hence not adequately reflect changes in distribution. Second, the employment rate may be a rather weak indicator for changes in economic activity because it is also affected by changes in productivity growth and in working hours per employee. Naastepad/Storm (2007) explain the log of the ratio of gross fixed investment to GDP by the lagged log of the profit share and the lagged log of real GDP. In this unusual specification they find a significantly positive effect of the profit share, but real GDP as an indicator of demand has no significantly positive effect in most of the countries, in France the effect is even significantly negative. These findings contradict conventional wisdom with respect to the estimation of investment functions, saying that the demand variable has strong and significantly positive effects on investment, whereas profitability has rather weak and hardly significant effects. Stockhammer (2006) and Ederer/Stockhammer (2007) have major problems with statistical significance of the profit variable and general misspecification in their estimated investment equations for France. Although their specifications are almost identical to our equation (24c), they find significantly smaller effects of the profit share on investment.

4.3 Net exports

Net exports in our model are positively affected by the real exchange rate as a measure of international competitiveness, and negatively by domestic activity, taking foreign activity as a constant (equation (15)). The real exchange rate, in turn, is dependent on the profit share. As described in detail in section 2, this effect is ambiguous and depends on the cause of the change in the profit share. Therefore, the sign of the effect of a change in the profit share on net exports is not clear in advance. For the estimation of the share of net exports in GDP, we

10 See the surveys by Jorgensen (1971) and Chirinko (1993), and the more recent empirical studies by Ford/Poret (1991), Bhaskar/Glyn (1995) and Ndikumana (1999), for example.
thus included the profit share, domestic real GDP as well as real GDP of the main trading partners \((Y^{\text{foreign}})\), as indicators of domestic and foreign demand, as exogenous variables.\(^{11}\)

\[
\frac{NX}{Y} = f(h, Y, Y^{\text{foreign}}).
\] (26)

While the sign of the effect of a change in the profit share on net exports is not clear in advance, we expect domestic GDP to have a negative influence on the share of net exports, since higher domestic demand will result in higher imports and, thus, decrease the share of net exports. In contrast, a higher GDP in trading partner countries will cause an increase of exports and will thus increase the share of net exports.

We converted domestic and foreign GDP into logarithms and for simplicity reasons generally assumed the Euro area and/or the USA to be the main trading partner. We tested both possibilities for each country and eliminated the coefficient that was not significant. Thus, for Austria, Germany, the UK and the USA we assumed the Euro area to be the main trading partner. For France the USA was taken to be the main trading partner. In the case of the Netherlands, neither the GDP of the Euro area, nor that of the USA was found to be significant, so that the variable was omitted from the equation.

Stationarity for most of the time series contained in equation (27) was rejected by the ADF Test (Table A3 in the appendix). Estimation in an error-correction model was not possible according to the special critical values by Pesaran et al. (2001). Although the share of net exports as well as the profit share was not stationary in some of the countries analysed, we did not estimate them in first differences, but instead included lagged variables to account for first order autocorrelation:

\[
\frac{NX_{it}}{Y_{it}} = c + a_1 \Delta \log(Y_{it}) + a_2 \Delta \log(Y^{\text{foreign}}_{it}) + a_3 h_{it} + a_4 \frac{NX_{it-1}}{Y_{it-1}} + a_5 h_{i,t-1}. \] (27)

Results of the estimation of equation (27) are shown in Table 8. The estimations were corrected for outliers when necessary in order to avoid heteroskedasticity. Significance of the coefficients was found at least at the 5% level, with relatively high values of R-squared and no indication of misspecification.

As expected, the coefficients of domestic GDP had negative signs and those of foreign GDP showed positive signs for all countries, confirming our theoretical assumptions with respect to

\(^{11}\) We also estimated an equation relating the logarithm of net exports to domestic and foreign GDP and the profit share, but found no significant and plausible results.
the direction of influence of domestic and foreign demand on net exports. The long-run partial effect of a change in the profit share on the share of net exports in GDP is given by the sum of the coefficients \(a_3 \) and \(a_5 \) in equation (28), corrected for the long-run effect, which is summarised in Table 9:

\[
\frac{\partial NX}{\partial h} = \frac{a_3 + a_5}{1 - a_4}. \tag{28}
\]

Again, we tested for the significance of the long-run effect of the profit share on the growth contribution of net exports in GDP with a Wald Test. In the estimation for France, where the coefficient of the lagged profit share was insignificant, the effect of the profit share on the share of net exports in GDP was insignificant and even estimated to be zero. In the cases of Germany, the UK and the USA, the coefficients of the profit share and of the lagged endogenous variable were significant, but the Wald Test rejected the significance of the long-run effect of the change in the profit share on the share of net exports. This can be explained by the fact that the sum of the coefficients of the profit share was close to zero. In addition to the zero effect in France, effects of the profit share on net exports also seem to be zero in these three countries. In contrast, estimations for Austria and the Netherlands yielded significantly higher partial effects of the change in the profit share on the share of net exports (0.344 and 0.202 percentage points). As expected, the small open economies of Austria and the Netherlands show significantly stronger effects of a change in distribution on the growth contribution of net exports. The larger and less open economies of France, Germany, the UK and the USA, all display zero effects of a change in the profit share on net exports.
Table 8: Estimation results for the net export function

\[
\frac{\text{NX}_{\text{net}}}{Y_{\text{net}}} = c + a_1 \log(Y_i) + a_2 \log(Y_{\text{foreign}}) + a_3 h_i + a_4 \frac{\text{NX}_{\text{net}-1}}{Y_{\text{net}-1}} + a_5 h_{i-1}
\]

<table>
<thead>
<tr>
<th>Country</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(a_4)</th>
<th>(a_5)</th>
<th>Adj. R²</th>
<th>DW- Statistics</th>
<th>Ramsey RESET Test (prob.)</th>
<th>Q-Statistics (prob. for lag = 1)</th>
<th>White Test (prob.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria¹</td>
<td>-0.332**</td>
<td>0.229*</td>
<td>0.115**</td>
<td>0.666***</td>
<td>/</td>
<td>0.679</td>
<td>1.931</td>
<td>0.185</td>
<td>0.916</td>
<td>0.792</td>
</tr>
<tr>
<td>France²</td>
<td>-0.139*</td>
<td>0.121*</td>
<td>0.000</td>
<td>0.734***</td>
<td>/</td>
<td>0.619</td>
<td>1.721</td>
<td>0.641</td>
<td>0.574</td>
<td>0.634</td>
</tr>
<tr>
<td>Germany³</td>
<td>-0.502***</td>
<td>0.425***</td>
<td>0.368**</td>
<td>0.882***</td>
<td>-0.358**</td>
<td>0.761</td>
<td>1.842</td>
<td>0.530</td>
<td>0.595</td>
<td>0.123</td>
</tr>
<tr>
<td>Netherlands⁴</td>
<td>-0.256***</td>
<td>/</td>
<td>0.513***</td>
<td>0.822***</td>
<td>-0.477***</td>
<td>0.888</td>
<td>1.876</td>
<td>0.299</td>
<td>0.762</td>
<td>0.356</td>
</tr>
<tr>
<td>UK²</td>
<td>-0.444***</td>
<td>0.178**</td>
<td>0.345***</td>
<td>0.832***</td>
<td>-0.334***</td>
<td>0.806</td>
<td>2.321</td>
<td>0.518</td>
<td>0.174</td>
<td>0.934</td>
</tr>
<tr>
<td>USA⁶</td>
<td>-0.166***</td>
<td>0.143***</td>
<td>0.265**</td>
<td>0.991***</td>
<td>-0.267**</td>
<td>0.936</td>
<td>1.622</td>
<td>0.159</td>
<td>0.222</td>
<td>0.639</td>
</tr>
</tbody>
</table>

Notes: ***) denotes statistical significance at the 1% level, **) significance at the 5% level, * significance at the 10% level. Standard errors are in parentheses.

¹The growth of GDP of the Euro area is taken as \(Y_{\text{foreign}}\).
²Estimated correcting for an outlier in 1975. The growth of GDP of the US is taken as \(Y_{\text{foreign}}\). An additional lagged variable \(d[\log(Y_{t-1})]\) (coefficient: 0.274*** (0.100)) was found significant.
³Estimated correcting for an outlier in 1972. Since neither the GDP of the Euro Area, nor that of the US was found significant, the variable was omitted from the equation.
⁴Estimated correcting for an outlier in 1974 and 1975. The growth of GDP of the Euro area is taken as \(Y_{\text{foreign}}\).
⁵The growth of GDP of the Euro area is taken as \(Y_{\text{foreign}}\).
Table 9: Partial effect of a change in the profit share on the share of net exports

\[
\frac{\partial NX}{\partial h} = \frac{a_3 + a_5}{Y(1-a_4)}
\]

<table>
<thead>
<tr>
<th>Country</th>
<th>((\partial NX/Y)/\partial h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>0.344***</td>
</tr>
<tr>
<td>France</td>
<td>/</td>
</tr>
<tr>
<td>Germany</td>
<td>/</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.202***</td>
</tr>
<tr>
<td>UK</td>
<td>/</td>
</tr>
<tr>
<td>USA</td>
<td>/</td>
</tr>
</tbody>
</table>

Notes: *** denotes statistical significance at the 1% level, ** significance at the 5% level, * significance at the 10% level. Results of a Wald Test for overall significance of the effect.
Table 10: Total effect of a change in the profit share on the percentage change of real GDP

\[
\frac{\partial Y}{\partial h} = \frac{\partial Y}{\partial h} + \frac{\partial Y}{\partial h} + \frac{\partial Y}{\partial h}
\]
equation (19)

<table>
<thead>
<tr>
<th></th>
<th>Austria</th>
<th>France</th>
<th>Germany</th>
<th>Netherlands</th>
<th>UK</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\partial C}{\partial h})</td>
<td>-0.238</td>
<td>-0.350</td>
<td>-0.317</td>
<td>-0.218</td>
<td>-0.186</td>
<td>-0.141</td>
</tr>
<tr>
<td>(\frac{\partial I}{\partial h})</td>
<td>/</td>
<td>0.221</td>
<td>/</td>
<td>0.340</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>(\frac{\partial NX}{\partial h})</td>
<td>0.344</td>
<td>/</td>
<td>/</td>
<td>0.202</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>(\frac{\partial Y}{\partial h})</td>
<td>0.106</td>
<td>-0.129</td>
<td>-0.317</td>
<td>0.324</td>
<td>-0.186</td>
<td>-0.141</td>
</tr>
</tbody>
</table>
Our results in some case differ substantially from those of the studies summarised in Table 1. Naastepad (2006) and Naastepad/Storm (2007) generally find relatively small effects of redistribution on exports. In contrast to our results, they find small positive partial effects in Germany, the UK and in France but also a zero effect in the USA. They find no effect of the profit share on exports in the Netherlands, contradicting our results. However, Naastepad (2006) and Naastepad/Storm (2007) only consider the effect of redistribution on export growth assuming the growth of imports to be proportional to domestic GDP. Therefore, they omit to take into account the effects of redistribution on imports. Stockhammer (2006) as well as Ederer/Stockhammer (2007) estimate various approaches and report a slightly stronger effect of a change in distribution on the growth contribution of net exports in Austria, and a relatively strong positive effect in France. However, their export and import functions suffer from theoretical problems because they include both an equivalent of the profit share and the nominal exchange rate. But the effect of the latter on international competitiveness of domestic producers is already contained in the profit share, as we have shown above. Bowles/Boyer (1995) report relatively large effects of changes in distribution on net exports. They find positive effects for Germany, the UK and the USA, but the effect in France is close to zero. Gordon (1995), in a different framework, finds a very strong effect on net exports in his estimation for the USA which is not consistent with our results and those of the other authors.

4.4 Total effect

The total effect of a change in the profit share on aggregate demand and hence on the growth of output can be calculated by adding up the direct partial effects on the growth contributions of consumption, investment and net exports according to equation (19).

The results for the total effect are shown in Table 10. Without consideration of external trade, the overall effect of an increase in the profit share on aggregate demand and growth is negative in Austria, France, Germany, the UK and the USA. This effect is stronger in the three former countries than in the latter due to a stronger negative effect on private consumption. Regarded as closed economies, thus, all five economies are wage-led. In the Netherlands, however, the positive effect of a change in distribution on investment is stronger than the negative effect on consumption, resulting in a profit-led growth regime for the domestic sector.

When adding the effect of a change in the profit share on external trade, Austria becomes profit-led in addition to the Netherlands, while the other countries remain wage-led. In
Austria and the Netherlands, a one-percentage point increase in the profit share increases GDP by 0.106 and 0.324 percentage points, respectively. The significantly positive effects on GDP are due to a strong positive effect on net exports in the case of Austria, and to strong positive effects on investment and on net exports in the Netherlands.

In the wage-led regimes in France and Germany a one-percentage-point increase in the profit share reduces GDP by 0.129 and 0.317 percentage points, respectively. In France, the smaller negative effect on GDP is due to a significant positive partial effect on investment which reduces the strong negative effect on consumption. In Germany, the negative effect of an increase in the profit share on consumption is not reduced by any positive effects on investment or net exports, resulting in a strong negative overall effect. In the case of the UK and the USA, we also find overall wage-led regimes, but due to the smaller negative effects of redistribution on consumption they are less pronounced than in Germany: A one-percentage point increase of the profit share reduces GDP by 0.186 and 0.141 percentage points, respectively.

Although, of course, we do not take our results literally, because this would be interpreting too much into the simple estimation method used, they nevertheless indicate a tendency: Aggregate demand in the larger and less open economies, namely in France and Germany, the UK, and the USA reacts negatively to an increase in the profit share, resulting in overall wage-led regimes. These are less pronounced in the Anglo-Saxon economies of the UK and the USA due to smaller negative effects on consumption and in France due to a positive effect on investment. In the small, open economies of Austria and the Netherlands, however, an increase in the profit share has favourable effects on aggregate demand. They yield smaller negative effects on consumption than in France and Germany and strong positive effects on net exports in the case of Austria and the Netherlands, and on investment in the Netherlands.

Comparing our overall results to those of the other studies reviewed in section 3, we can summarise as follows: Our results with respect to the wage-led nature of the growth regime in France, Germany and the UK are in line with those by Naastepad/Storm (2007), but we disagree with their classification of the USA as profit-led. Our results of a wage-led regime in the UK and the USA support those by Bowles/Boyer (1995), but we disagree with respect to their finding of a profit-led regime in France and Germany. The result in our study with respect to a profit-led regime in Austria supports the result by Stockhammer (2006), but we disagree with Ederer/Stockhammer’s (2007) classification of France as profit-led. Finally, we also disagree with Gordon’s (1995) assessment of the USA as being profit-led. Apart from different time periods covered and different data sources used, these differences are mainly
caused by differences in the estimated investment and net export functions, whereas the results for the consumption functions are more or less similar.

5. Summary and conclusions
We analysed the relationship between functional income distribution and economic growth in the small open economies of Austria and the Netherlands, and of the larger and less open economies of France, Germany, the UK, and the USA from 1960 until 2005. The analysis was based on a demand-driven distribution and growth model for an open economy inspired by Bhaduri/Marglin (1990), which allows for profit- or wage-led growth. We found that growth in France, Germany, the UK, and the USA was wage-led, whereas Austria and the Netherlands were profit-led. In the case of Austria a domestically wage-led economy was turned profit-led when including the effect of distribution on external trade. The Netherlands, however, were already profit-led without external trade. Our results so far only partially confirm Bhaduri/Marglin’s (1990) theoretical conclusion that wage-led growth becomes less feasible when the effects of distribution on foreign trade are taken into account. If our results can be sustained, this is only true for small open economies, but not for larger, less open economies. However, there remain some major open questions to be answered before drawing economic policy conclusions:
First, although the studies reviewed in our paper also find that domestic demand in most of the countries under investigation has been wage-led since the early 1960s, there remain some differences with respect to the USA, the domestic sector of which is found to be profit-led in some studies, but wage-led in others. Major differences between the recent studies, however, arise when the effect of distribution on net exports is considered. These diverse results require further research and clarification, in particular with respect to the relationship between income shares and net exports, but also with respect to the effects of redistribution on investment, which show major differences in recent work.
Second, interactions between demand aggregates should be taken into account in order to overcome the limitations of the single equation estimation approach.
Third, the question arises whether there have been shifts in the growth regimes over time within the countries considered. Following their seminal theoretical contribution, Marglin/Bhaduri (1990, 1991) argued that there was a shift of demand regimes in the main OECD countries in the early 1970s, from wage-led growth to profit-led growth. Accordingly, the continued increase of the wage share during the 1970s, together with increasing energy prices, a decline in aggregate demand management policies and the collapse of the
international currency system, was responsible for low growth in this period. Hein/Krämer (1997) confirmed this view and argued that there might have been a re-shift of regimes during the 1980s, but the potentials for wage-led growth were not exploited. However, neither Marglin/Bhaduri nor Hein/Krämer applied econometric tools. Therefore, estimations for the demand regimes of sub-periods should be produced.

Fourth, further developments should be included to gain a more complete understanding of the development of distribution and growth during the recent decades. In a study on the Netherlands, Naastepad (2006) shows that low real wage growth and hence redistribution in favour of profits has caused a considerable slowdown in real wage induced productivity growth since the beginning of the 1980s. Together with a slowdown in world trade growth this has caused low Dutch growth during the last two decades. Under these conditions low growth is associated with improved employment in the short run. But in the medium to long run, low productivity growth and decreasing competitiveness feeds back negatively on net exports, growth and also employment. Naastepad’s approach to supplement the analysis of the demand regime with the analysis of the productivity regime and to take into account interactions of these regimes should therefore be applied to other countries as well.

Fifth, another route to explore is related to monetary and financial developments since the early 1980s. The tentative inclusion of the rate of interest into the estimations for the investment function has not shown any significant results for the whole period since the early 1960s in our study and in the other studies reviewed here. But the possible regime shift from a wage-led ‘golden age’ regime in the 1950s/1960s to a profit-led regime in the 1970s – and a potential re-shift towards a wage-led regime in the 1980s/1990s – was not only associated with redistribution at the expense of labour but also with major changes within the capitalist class: increasing interest rates associated with the rise of the power of the rentiers’ class and increasing shareholder-value orientation of firms associated with changes in the national and international financial system. These effects should be included into the analysis in order to gain a broader understanding of the relationship between distribution and growth, in particular since the early 1980s.\(^\text{12}\)

If further analysis confirms our preliminary conclusion with respect to the prevalence of wage-led growth in the major continental European countries, but also in the UK and the USA, the economic policy implications are quite straightforward. From our analysis it follows that pursuing a strategy of profit-led growth via the net export channel, and therefore relying

\(^{12}\) For preliminary but incomplete attempts see Hein/Ochsen (2003), Stockhammer (2004a, 2004b, 2005-6).
on a kind of ‘beggar thy neighbour’ policy, may be a successful way for small open economies. But it cannot be recommended for larger and less open economies. Such a strategy will not only be harmful for the trading partners of the respective countries and in the long run hence for the world economy as a whole, it will also lower GDP-growth in the countries pursuing such a strategy in the short run. Wage-led strategies are therefore more promising.
References

IMF (2003): International Monetary Fund, World Economic Outlook, Growth and Institutions, April, Washington.

Appendix

Data definitions and data source

C real private final consumption expenditure, obtained directly from the AMECO database.

h adjusted profit share, as percentage of GDP at current market prices, calculated as 1 minus adjusted wage share (total economy) from the AMECO database.

i real long-term interest rate (deflator private consumption), obtained directly from the AMECO database.

I real gross fixed capital formation, total economy, obtained directly from the AMECO database.

I_n nominal gross fixed capital formation, total economy, obtained directly from the AMECO database.

NX real net exports, calculated from the difference of real exports of goods and service and real imports of goods and services from the AMECO database.

NX_n nominal net exports of goods and services, obtained directly from the AMECO database.

Π real gross operating surplus, adjusted for the imputed compensation of the self-employed (total economy), deflated by the price deflator of private consumption, both obtained from the AMECO database.

W real compensation of employees (total economy), deflated by the price deflator of private consumption, both obtained from the AMECO database.

Y real GDP (at 2000 market prices), obtained directly from the AMECO database.

Y_n nominal GDP (at current market prices) obtained directly from the AMECO database.
Estimation strategy

In order to determine the effect of a change in the profit share on real GDP growth, we estimate the effects of a change in the profit share on the GDP growth contributions of the demand aggregates and sum up these partial effects:

\[
\frac{\partial Y}{\partial h} = \frac{\partial Y}{\partial h} + \frac{\partial I}{\partial h} + \frac{\partial NX}{\partial h}
\]

(A1)

For example, in order to determine the effect of a change in the profit share on the growth distribution of consumption demand, we can start from:

\[C = C_{\Pi} + C_{W} = c_{\Pi} \Pi + c_{W} (Y - \Pi) = c_{W} Y + (c_{\Pi} - c_{W}) \Pi = c_{W} Y + (c_{\Pi} - c_{W}) h Y.\]

(A2)

with \(C\) as total consumption, \(C_{\Pi}\) as consumption out of profits, \(C_{W}\) as consumption out of wages, \(c_{\Pi}\) as the propensity to consume out of profits, \(c_{W}\) the propensity to consume out of wages, \(\Pi\) as total profits, \(W\) as total wages, \(Y\) as GDP, and \(h\) as the profit share. Assuming that the effect of a change in the profit share has no further effect on GDP, hence assuming that there are no interactions between the demand aggregates, we obtain from (A2):

\[\frac{\partial C}{\partial h} = (c_{\Pi} - c_{W}) Y,\]

(A3)

and hence:

\[\frac{\partial C}{\partial h} = c_{\Pi} - c_{W} Y.\]

(A4)

Given the assumption for the derivation above and starting from (A2), this is equivalent to estimating:

\[\frac{C}{Y} = c_{W} + (c_{\Pi} - c_{W}) h.\]

(A5)

Alternatively, a saving function with \(S\) as total saving, \(s_{\Pi}\) as the saving propensity out of profits and \(s_{W}\) as the saving propensity out of wages can be estimated:
\[
\frac{S}{Y} = s_w + (s_\Pi - s_w)h.
\] \hspace{1cm} (A6)

From (A5) or (A6) we obtain:

\[
\frac{\partial (\frac{C}{Y})}{\partial h} = c_\Pi - c_w = (1 - s_\Pi) - (1 - s_w) = s_w - s_\Pi.
\] \hspace{1cm} (A7)

For investment and net export a similar strategy can be applied.
Table A1: Tests for unit roots on the variables of the consumption function. Null hypothesis: The variable has a unit root.

<table>
<thead>
<tr>
<th>Country</th>
<th>Variable</th>
<th>ADF (t-statistics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>log(C)</td>
<td>-1.128</td>
</tr>
<tr>
<td></td>
<td>∆ log(C)</td>
<td>-7.403***</td>
</tr>
<tr>
<td></td>
<td>log(Π)</td>
<td>-3.700**</td>
</tr>
<tr>
<td></td>
<td>∆ log(Π)</td>
<td>-8.916***</td>
</tr>
<tr>
<td></td>
<td>log(W)</td>
<td>-2.552</td>
</tr>
<tr>
<td></td>
<td>∆ log(W)</td>
<td>-2.403</td>
</tr>
<tr>
<td></td>
<td>∆ ∆ log(W)</td>
<td>-7.556***</td>
</tr>
<tr>
<td>France</td>
<td>log(C)</td>
<td>-4.058**</td>
</tr>
<tr>
<td></td>
<td>∆ log(C)</td>
<td>-2.997**</td>
</tr>
<tr>
<td></td>
<td>∆ ∆ log(C)</td>
<td>-7.014***</td>
</tr>
<tr>
<td></td>
<td>log(Π)</td>
<td>-2.968</td>
</tr>
<tr>
<td></td>
<td>∆ log(Π)</td>
<td>-4.703***</td>
</tr>
<tr>
<td></td>
<td>log(W)</td>
<td>-2.677*</td>
</tr>
<tr>
<td></td>
<td>∆ log(W)</td>
<td>-2.537</td>
</tr>
<tr>
<td></td>
<td>∆ ∆ log(W)</td>
<td>-8.907***</td>
</tr>
<tr>
<td>Germany</td>
<td>log(C)</td>
<td>-2.381</td>
</tr>
<tr>
<td></td>
<td>∆ log(C)</td>
<td>-4.523***</td>
</tr>
<tr>
<td></td>
<td>log(Π)</td>
<td>-1.329</td>
</tr>
<tr>
<td></td>
<td>∆ log(Π)</td>
<td>-5.347***</td>
</tr>
<tr>
<td></td>
<td>log(W)</td>
<td>-2.226</td>
</tr>
<tr>
<td></td>
<td>∆ log(W)</td>
<td>-3.634***</td>
</tr>
<tr>
<td>Netherlands</td>
<td>log(C)</td>
<td>-2.830</td>
</tr>
<tr>
<td></td>
<td>∆ log(C)</td>
<td>-2.889</td>
</tr>
<tr>
<td></td>
<td>∆ ∆ log(C)</td>
<td>-6.753***</td>
</tr>
<tr>
<td></td>
<td>log(Π)</td>
<td>-3.439*</td>
</tr>
<tr>
<td></td>
<td>∆ log(Π)</td>
<td>-6.535***</td>
</tr>
<tr>
<td></td>
<td>log(W)</td>
<td>-2.456</td>
</tr>
<tr>
<td></td>
<td>∆ log(W)</td>
<td>-1.893</td>
</tr>
<tr>
<td></td>
<td>∆ ∆ log(W)</td>
<td>-5.944***</td>
</tr>
</tbody>
</table>
Table A1 (cont’d): Tests for unit roots on the variables of the consumption function. Null hypothesis: The variable has a unit root.

<table>
<thead>
<tr>
<th>Country</th>
<th>Variable</th>
<th>ADF (t-statistics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>log(C)</td>
<td>-2.935</td>
</tr>
<tr>
<td></td>
<td>Δ log(C)</td>
<td>-4.168***</td>
</tr>
<tr>
<td></td>
<td>log(Π)</td>
<td>-4.935***</td>
</tr>
<tr>
<td></td>
<td>log(W)</td>
<td>-2.372</td>
</tr>
<tr>
<td></td>
<td>Δ log(W)</td>
<td>-4.584***</td>
</tr>
<tr>
<td>USA</td>
<td>log(C)</td>
<td>-3.742**</td>
</tr>
<tr>
<td></td>
<td>Δ log(C)</td>
<td>-4.629***</td>
</tr>
<tr>
<td></td>
<td>log(Π)</td>
<td>-3.574**</td>
</tr>
<tr>
<td></td>
<td>Δ log(Π)</td>
<td>-6.114***</td>
</tr>
<tr>
<td></td>
<td>log(W)</td>
<td>-3.384*</td>
</tr>
<tr>
<td></td>
<td>Δ log(W)</td>
<td>-4.221***</td>
</tr>
</tbody>
</table>

Notes: *** denotes statistical significance at the 1% level, ** significance at the 5% level, * significance at the 10% level
Table A2: Tests for unit roots on the variables of the investment function. Null hypothesis: The variable has a unit root.

<table>
<thead>
<tr>
<th>Country</th>
<th>Variable</th>
<th>ADF (t-statistics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>log(I)</td>
<td>-2.905*</td>
</tr>
<tr>
<td></td>
<td>Δ log(I)</td>
<td>-5.995***</td>
</tr>
<tr>
<td></td>
<td>log(Y)</td>
<td>-1.547</td>
</tr>
<tr>
<td></td>
<td>Δ log(Y)</td>
<td>-6.099***</td>
</tr>
<tr>
<td></td>
<td>h</td>
<td>0.281</td>
</tr>
<tr>
<td></td>
<td>Δ h</td>
<td>-7.241***</td>
</tr>
<tr>
<td>France</td>
<td>log(I)</td>
<td>-1.869</td>
</tr>
<tr>
<td></td>
<td>Δ log(I)</td>
<td>-3.607***</td>
</tr>
<tr>
<td></td>
<td>log(Y)</td>
<td>-3.293*</td>
</tr>
<tr>
<td></td>
<td>Δ log(Y)</td>
<td>-4.585***</td>
</tr>
<tr>
<td></td>
<td>h</td>
<td>-0.926</td>
</tr>
<tr>
<td></td>
<td>Δ h</td>
<td>-5.024***</td>
</tr>
<tr>
<td>Germany</td>
<td>log(I)</td>
<td>-1.480</td>
</tr>
<tr>
<td></td>
<td>Δ log(I)</td>
<td>-4.978***</td>
</tr>
<tr>
<td></td>
<td>log(Y)</td>
<td>-2.339</td>
</tr>
<tr>
<td></td>
<td>Δ log(Y)</td>
<td>-5.125***</td>
</tr>
<tr>
<td></td>
<td>h</td>
<td>-1.598</td>
</tr>
<tr>
<td></td>
<td>Δ h</td>
<td>-5.175***</td>
</tr>
<tr>
<td>Netherlands</td>
<td>log(I)</td>
<td>-1.594</td>
</tr>
<tr>
<td></td>
<td>Δ log(I)</td>
<td>-4.733***</td>
</tr>
<tr>
<td></td>
<td>log(Y)</td>
<td>-2.631</td>
</tr>
<tr>
<td></td>
<td>Δ log(Y)</td>
<td>-3.896***</td>
</tr>
<tr>
<td></td>
<td>h</td>
<td>-1.180</td>
</tr>
<tr>
<td></td>
<td>Δ h</td>
<td>-4.515***</td>
</tr>
<tr>
<td>UK</td>
<td>log(I)</td>
<td>-0.449</td>
</tr>
<tr>
<td></td>
<td>Δ log(I)</td>
<td>-4.859***</td>
</tr>
<tr>
<td></td>
<td>log(Y)</td>
<td>-3.287*</td>
</tr>
<tr>
<td></td>
<td>Δ log(Y)</td>
<td>-5.202***</td>
</tr>
<tr>
<td></td>
<td>h</td>
<td>-3.564***</td>
</tr>
<tr>
<td>USA</td>
<td>log(I)</td>
<td>-0.247</td>
</tr>
<tr>
<td></td>
<td>Δ log(I)</td>
<td>-5.761***</td>
</tr>
<tr>
<td></td>
<td>log(Y)</td>
<td>-4.276***</td>
</tr>
<tr>
<td></td>
<td>h</td>
<td>-2.618</td>
</tr>
<tr>
<td></td>
<td>Δ h</td>
<td>-6.802***</td>
</tr>
</tbody>
</table>

Notes: *** denotes statistical significance at the 1% confidence level, ** significance at the 5% level, * significance at the 10% level.
<table>
<thead>
<tr>
<th>Country</th>
<th>Variable</th>
<th>ADF (t-statistics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>$\Delta NX_n/Y_n$</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td>log(Y_n)</td>
<td>-1.547</td>
</tr>
<tr>
<td></td>
<td>$\Delta \log(Y_n)$</td>
<td>-6.009***</td>
</tr>
<tr>
<td></td>
<td>log($Y_{foreign}$)</td>
<td>-2.159</td>
</tr>
<tr>
<td></td>
<td>$\Delta \log(Y_{foreign})$</td>
<td>-4.736***</td>
</tr>
<tr>
<td></td>
<td>h</td>
<td>0.281</td>
</tr>
<tr>
<td></td>
<td>Δh</td>
<td>-7.241***</td>
</tr>
<tr>
<td>France</td>
<td>$\Delta NX_n/Y_n$</td>
<td>-2.813*</td>
</tr>
<tr>
<td></td>
<td>log(Y_n)</td>
<td>-3.293*</td>
</tr>
<tr>
<td></td>
<td>$\Delta \log(Y_n)$</td>
<td>-4.585***</td>
</tr>
<tr>
<td></td>
<td>log($Y_{foreign}$)</td>
<td>-4.276***</td>
</tr>
<tr>
<td></td>
<td>h</td>
<td>-0.926</td>
</tr>
<tr>
<td></td>
<td>Δh</td>
<td>-5.024***</td>
</tr>
<tr>
<td>Germany</td>
<td>$\Delta NX_n/Y_n$</td>
<td>-2.453</td>
</tr>
<tr>
<td></td>
<td>log(Y_n)</td>
<td>-2.339</td>
</tr>
<tr>
<td></td>
<td>$\Delta \log(Y_n)$</td>
<td>-5.125***</td>
</tr>
<tr>
<td></td>
<td>log($Y_{foreign}$)</td>
<td>-2.159</td>
</tr>
<tr>
<td></td>
<td>$\Delta \log(Y_{foreign})$</td>
<td>-4.736***</td>
</tr>
<tr>
<td></td>
<td>h</td>
<td>-1.598</td>
</tr>
<tr>
<td></td>
<td>Δh</td>
<td>-5.175***</td>
</tr>
<tr>
<td>Netherlands</td>
<td>$\Delta NX_n/Y_n$</td>
<td>-4.383***</td>
</tr>
<tr>
<td></td>
<td>log(Y_n)</td>
<td>-2.631</td>
</tr>
<tr>
<td></td>
<td>$\Delta \log(Y_n)$</td>
<td>-3.896***</td>
</tr>
<tr>
<td></td>
<td>log($Y_{foreign}$)</td>
<td>-4.276***</td>
</tr>
<tr>
<td></td>
<td>h</td>
<td>-1.180</td>
</tr>
<tr>
<td></td>
<td>Δh</td>
<td>-4.515***</td>
</tr>
</tbody>
</table>
Table A3 (cont’d): Tests for unit roots on the variables of the function of net exports.
Null hypothesis: The variable has a unit root.

<table>
<thead>
<tr>
<th>Country</th>
<th>Variable</th>
<th>ADF (t-statistics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>$\Delta NX_n/Y_n$</td>
<td>-2.142</td>
</tr>
<tr>
<td></td>
<td>log(Y)</td>
<td>-3.287*</td>
</tr>
<tr>
<td></td>
<td>$\Delta \log(Y)$</td>
<td>-5.202***</td>
</tr>
<tr>
<td></td>
<td>log(Y_{foreign})</td>
<td>-2.159</td>
</tr>
<tr>
<td></td>
<td>$\Delta \log(Y_{\text{foreign}})$</td>
<td>-4.736***</td>
</tr>
<tr>
<td></td>
<td>Δh</td>
<td>-3.564***</td>
</tr>
<tr>
<td>USA</td>
<td>$\Delta NX_n/Y_n$</td>
<td>-1.891</td>
</tr>
<tr>
<td></td>
<td>log(Y)</td>
<td>-4.276***</td>
</tr>
<tr>
<td></td>
<td>log(Y_{foreign})</td>
<td>-2.159</td>
</tr>
<tr>
<td></td>
<td>$\Delta \log(Y_{\text{foreign}})$</td>
<td>-4.736***</td>
</tr>
<tr>
<td></td>
<td>Δh</td>
<td>-2.618</td>
</tr>
<tr>
<td></td>
<td>Δh</td>
<td>-6.802***</td>
</tr>
</tbody>
</table>

Notes: *** denotes statistical significance at the 1% level, ** significance at the 5% level, * significance at the 10% level.