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Abstract

Networks such as ethnic credit associations, close-knit residential neigh-
borhoods, ‘old boy’networks, and ethnically linked businesses play an impor-
tant role in economic life but have been little studied by economists. These
networks are often supported by cultural distinctions between insiders and
outsiders and engage in exclusionary practices which we call parochialism.
We provide an economic analysis of parochial networks in which the losses
incurred by not trading with outsiders are offset by an enhanced ability to
enforce informal contracts by fostering trust among insiders. We first model
one-shot social interactions among self-regarding agents, demonstrating that
trust (i.e., cooperating without using information about one’s trading part-
ner) is a best response in a mixed-strategy Nash equilibrium if the quality
of information about one’s partner is sufficiently high. We show that since
larger networks have lower quality information about specific individuals and
greater trading opportunities, there may be an optimal (payoff-maximizing)
network size. We then model the growth and decline of networks, as well as
their equilibrium size and number. We show that in the absence of parochial-
ism, networks may not exist, and the appropriate level of parochialism may
implement an optimal network size. Finally, we explore the welfare implica-
tions and reasons for the evolutionary success of exclusion on parochial and
other grounds.

∗We are grateful to Katherine Baird, Roland Bénabou, Robert Boyd, Colin Camerer, Jeffrey Car-
penter, Vincent Crawford, Steven Durlauf, Marcus Feldman, Edward Glaeser, Avner Greif, David
Laibson, Michael Macy, Paul Malherbe, Jane Mansbridge, Corinna Noelke, Paul Romer, Martin
Weitzman, Peyton Young, participants in seminars at the NBER Summer Institute, the Santa Fe Insti-
tute, the University of Siena, andYale University for perceptive comments, and to the MacArthur Foun-
dation for financial support. The authors can be reached at bowles@econs.umass.edu, http://www-
unix.oit.umass.edu/ b̃owles, hgintis@mediaone.net, http://www-unix.oit.umass.edu/ g̃intis.
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1 Introduction

Formally structured nonmarket institutions, such as firms, clubs, partnerships, and
families, have been the subject of extensive study by contemporary economists.
More diffuse social affiliations, such as those arising from close-knit residential
relationships, ‘old boy’ networks, and ethnic or religious identity, have received
less attention. We will call these networks, defined as sets of agents engaged in
relatively frequent, non-anonymous interactions structured by high entry and exit
costs, but lacking centralized collective decision-making institutions.1

Networks support interpersonal interactions that promote the informal enforce-
ment of incomplete contracts. Well documented empirical examples include the
management of common pool resources such as fisheries, irrigation, and pasturage
(Ostrom, Gardner and Walker 1994, Wade 1987, Baland and Platteau 1997), the reg-
ulation of work effort in producer cooperatives (Whyte 1955, Homans 1961, Lawler
1973, Craig and Pencavel 1992, 1995), the enforcement of non-collateralized credit
contracts (Hossain 1988, Udry 1993, Banerjee, Besley and Guinnane 1994) the
promotion of neighborhood amenities in residential communities (Sampson, Rau-
denbush and Earls 1997), and the private enforcement of contracts among traders
in securities (Baker 1984) and diamond (Bernstein 1992) markets.

As these examples suggest, we view networks as governance institutions that
often provide solutions to otherwise intractable problems of contractual incomplete-
ness. This view contrasts with the more common representation of ethnic, religious,
and other groups as expressions of underlying shared values, often termed ‘partic-
ularistic,’ in contrast to the more ‘universalistic’ values underpinning market trans-
actions and liberal polities (Parsons n.d.). According to this conventional view, the
exclusionary values that often maintain group boundaries and restrict membership
typically also restrict exchange, and thus impose allocative inefficiencies on their
members. For this reason, networks and their frequently associated values of loyalty
to insiders, close personal interaction, and xenophobia are often seen as vestigial
remnants of ‘traditional’ society, whose importance will ebb under the competitive
pressures of a market economy.

While ingroup values often inhibit trade with outsiders, members of exclusion-
ary networks often do quite well economically, counter to the standard prediction.
Moreover, far from being inertial remnants of the past, groups that have prospered
for generations may disperse rapidly, while newly formed groups can be quite suc-

1The theory of social exchange, initiated in sociology by Blau (1964) and Homans (1958), and in
anthropology by Sahlins (1972) provide insights into the economics of networks. For contributions by
economists, see Ben-Porath (1980), Hollander (1990), Iannaccone (1992), Kandori (1992), Wintrobe
(1995), Greif (1994), Akerlof (1995), Pagano (1995), Bénabou (1996), Durlauf (1996), Kranton
(1996), Taylor (1997), and Glaeser (1997).
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cessful, as the flourishing informal ethnic business linkages among new immigrants
to the United States and the United Kingdom attest.2 For instance, Cambodians run
more than 80 per cent of California’s doughnut shops. They often raise startup funds
by forming credit associations of friends and family to pool resources, the member
offering to pay the highest interest rate receiving as a loan the sum of the individual
contributions (Kaufman 1995). Similarly, Indians own more than a third of the mo-
tels in the United States, frequently raising initial capital through unsecured loans
from extended family members (Woodyard 1995).

Among the problem-solving capacities of networks are the powerful contrac-
tual enforcement mechanisms made possible by small-scale interactions, notably
effective retaliation facilitated by close social ties and the availability of low cost in-
formation concerning one’s trading partners. This problem-solving capacity allows
successful networks to overcome the disabilities imposed by the restricted gains
from trade due to small size and exclusionary practices.3 Members, of course, do
not normally express their identification with groups in terms of their economic
advantages, typically invoking noninstrumental values, such as religious faith, eth-
nic purity, the natural order of things, or personal loyalty. These sentiments often
support exclusion or shunning of outsiders. We model these practices, which we
term parochialism, in Section 2.

The mechanism for the success of networks explored in this paper is their ability
to promote trust.4 We consider a large population of identical agents who take three
types of actions. First, they locate in one of a variable number of networks, or

2See Rauch (1996), Granovetter (1985) and Kotkin (1993). The current concern with a “decline of
community” typically refers to socially approved aspects of networks thought to be less prevalent in
the modern world. Perhaps Jack Hirschleifer (1994):3-4 exaggerates when he writes: “when people
cooperate it is generally a conspiracy for aggression against others…” But his remark is a useful
reminder that networks as we have defined them often engage in practices that others find offensive.
See also Hardin (1995).

3The advantages of trade with outsiders is a common explanation of the permeability of group
boundaries in small scale societies (Adams 1974) and of the extinction of very restrictive groups in
favor of more inclusive entities (Gellner 1985, Weber 1976). A particularly well-documented example
of this tension is Greif’s (1994) account of how the competitive advantages stemming from the
superior within-group contractual enforcement capabilities of the tight-knit 13th century community
of Maghribi merchants was eventually offset by their lesser ability to engage in successful exchange
with outsiders, resulting in their inability to compete with the more individualistic Genovese traders.
Yoram Ben-Porath (1980) develops similar reasoning concerning the economic capabilities of families
and other face to face groups:

The transactional advantages of the family cannot compensate for the fact that within
its confines the returns from impersonal exchange and the division of labor are not
fully realizable. (p. 14).

4Our model develops insights provided by a number of contributions to the sociology of groups.
Granovetter (1985) writes:
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remain outside any network in what we will call the ‘anonymous pool’ of traders.
Second, they choose strategies that govern their behavior with trading partners.
Third, they update these strategies in light of their relative payoff compared to other
available trading strategies. Network size and the number of networks are governed
by a gravity model in which individuals move both spontaneously and according
to payoff differentials. We explore the evolution and equilibrium frequency of
behaviors within networks, the distribution of population between networks and
the anonymous pool, and the size and number of networks, under the influence of
parochial practices.

In Section 3 we develop a model with incomplete contracts among self-regarding
agents. We use this model to analyze the conditions under which trust may represent
an equilibrium strategy. We formalize the effects of variations in network size on
such an equilibrium in Section 4. We analyze optimal network size in Section 5.

The size and number of networks in equilibrium is then determined by the de-
gree of openness of networks to new members, as well as the rate of creation and
dissolution of networks. We show in Section 6 that parochial practices resulting in
excluding people from networks may implement an optimal network size. We then
investigate the conditions under which parochialism remains viable in a competi-
tive economic system, and we conclude by considering the likely future economic
importance of networks in light of our results.

2 Parochialism

The desire to associate with others who are similar to oneself in some salient re-
spect is a robust behavioral regularity (Homans 1961, Thibaut and Kelly 1959).
Homophily, the principle that likes attract, has been documented in a variety of ex-
perimental and natural settings (Lazarsfeld and Merton 1954). Among the salient
characteristics on which homophily operates are race and ethnic identification, per-
sonality characteristics, political orientation, drug use and other forms of deviant
behavior, religion and even experimentally induced trivial similarities (Berscheid
and Walster 1969, Cohen 1977, Kandel 1978, Tajfel, Billig, Bundy and Flament
1971, Obot 1988). Conversely, people seek to avoid interactions with those who
are different from themselves.

Individuals implement their desires to limit social distance in their interactions
with friends, neighbors, co-workers, and business associates by means of what we

…social relations, rather than institutionalized arrangements or generalized morality
are mainly responsible for the production of trust in economic life. (pp. 490-491)

For additional ways in which groups solve coordination problems stemming from incomplete con-
tracts, see Bowles and Gintis (1998).
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term parochial practices. These practices may take the form of shunning, refusal
to trade or to extend friendship, verbal or physical assaults or other behaviors that
preclude ongoing interaction. Members of networks often adopt parochial practices
with the result that networks are more homogeneous and/or smaller than they would
otherwise be.

The restrictions on matching for purposes of trade or production imposed by
these exclusionary practices foster allocational distortions that, ceteris paribus,
lower the returns to members of parochial networks. McMillan and Woodruff’s
study of trust among businesses in Vietnam suggests the salience of this tradeoff:

Trading relations in Vietnam’s emerging private sector are shaped by
two market frictions: the difficulty of locating trading partners and the
absence of formal third party enforcement of contracts.…firms able
to resolve the difficulties of more specialized production and/or more
distant trade grow more rapidly. By contrast, buying from suppli-
ers managed by family members or friends involves fewer contracting
problems. (p. 23)

Thus, in some cases, small size or homogeneity may offer advantages offsetting
the gains from trade forgone by close-knit groups. Highly exclusive communi-
ties such as the Pennsylvania Amish and the Canadian Hutterites have expanded
their numbers and thrived economically.5 Among the Amish, for example, distinc-
tive dress, dialect, and technology construct a “cultural moat” around the group
and, acting as “armaments of defense, they draw boundary lines between church
and world [to] announce Amish identity to insider and outsider alike.” (Kraybill
1989:50,68). Yet the boundaries erected around Amish culture have not prevented
economic success and population growth. Further, the record of successful ethnic
business affiliations suggests that parochialism may not only foreclose opportuni-
ties, but also contribute to the success of groups.

What might these gains be? Suppose, for instance, that individuals with differing
ascriptive traits embody complementary productive inputs so that group heterogene-
ity is favored by the production function, but these positive effects of heterogeneity
are partially offset by the increased cost of enforcing incomplete contracts among
heterogeneous agents, perhaps due to the lack of a common normative framework,
less accurate information transfer, or the reduced sanctioning power of social os-
tracism. By promoting group homogeneity, parochial exclusion might then enhance

5See Wilson and Sober (1994) and Kraybill (1989). Hechter (1990) found that two indicators of
group homogeneity—common ethnic background and uniform style of dress—were among the few
robust predictors of survival of utopian communes established in the late 18th and early 19th century
in the United States. He interprets this finding as in part reflecting variable information costs. See
also Longhofer (1996) for a model of the relationship between cultural affinity and monitoring costs.
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the return to group members, despite the losses associated with forgone trade op-
portunities. Here the key variable would be heterogeneity rather than size, which
will play the central role in the model we develop below.

We model parochialism as a filter on given ascriptive traits of those with whom
one might interact, a particular form of parochialism excluding those with ‘objec-
tionable’ traits.6 Individuals who do not exclude those with ‘objectionable’ traits
are themselves objectionable, even if their traits per se are not objectionable.7 Thus
any parochialism filter different from one’s own is assumed to be ‘objectionable’ so
networks will made up of individuals with the same type of parochialism; however
different they are in other respects (for example, pursuing different strategies in
economic interactions, or differing in a trait not covered by the parochialism filter)
they will agree on the common traits for which their parochialism selects.

Suppose in pairwise strategic interactions, agents can condition their actions
on whether the other player is an ‘insider’ or an ‘outsider.’ Each individual has a
certain set of traits (ethnicity, language, physical attributes, cultural or demographic
characteristics, and the like), which we take to be fixed. We label these ‘traits’
j = 1, . . . , n, each individual being characterized by a trait profile a = a1 . . . an,
where each aj = 1 or aj = 0 according as the individual does or does not possess
trait j . Let A be the set of all possible trait profiles. An individual with traits a ∈ A

may have a ‘parochialism filter,’ defined as a vector b ∈ A such that b ≤ a; i.e., the
individual has all the traits indicated by b. We say the individual with parochialism
filter b is b-parochial if the individual treats another agent as an outsider if the
other agent either (i) lacks one or more traits in the filter b, or (ii) trades with other
agents who lack one or more of these traits. Otherwise the individual considers
the other agent to be an insider. In effect, b-parochial agents choose a subset of
the traits they possesses (the unit-entries in b that are also unit-entries in a), and
consider as insiders exactly those agents who have these traits and are ‘like-minded’
in the sense that they have the same criteria for distinguishing between insiders and
outsiders. We assume throughout that the property of being b-parochial is common
knowledge.

This formalization reflects our view that the immense variety of noticeable
individual differences and similarities is the raw material on which parochialism
works. A particular b-parochialism makes some subset of these differences be-
haviorally salient while ignoring others. For instance, suppose the array of traits

6Iannaccone (1992) analyzes a more active form of parochialism, in which membership in a
network subject to participatory crowding is restricted to those who are willing to accept “stigma,
self-sacrifice, and bizarre behavioral restrictions.”

7Lazarsfeld and Merton (1954:26ff) term this second order exclusiveness “value homophily” and
present evidence for it with respect to racial attitudes: white ‘racial liberals’ prefer not to associate
with white ‘racial illiberals’ and conversely.
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are (‘female’,‘French speaking’). An agent with characteristics a = 11 is a female
Francophone. Such an individual could be b-parochial for b = 11 (insiders are like-
minded female Francophones), b = 01 (insiders are like-minded Francophones),
b = 10 (insiders are like-minded females), or b = 00 (insiders are like-minded—i.e.
they treat all others as insiders).

We use this representation to model the effects of parochialism on the central
problem a group faces: how to solve coordination problems under conditions of
contractual incompleteness. We turn now to this problem.

3 Trust in Networks

To model the population of traders, consider a game G where many agents are ran-
domly paired to play a one-shot prisoner’s dilemma in which each receives c if they
both defect, each receives b if they both cooperate, and a defector receives a when
playing against a cooperator, who receives d. The assumptions of the prisoner’s
dilemma then require a > b > c > d and 2b > a+d (the latter inequality ensuring
that mutual cooperation yields higher average payoffs than defect/cooperate pairs).
The coordination failure underpinning the prisoner’s dilemma structure of this in-
teraction arises because some aspects of the goods or services being exchanged are
not subject to costlessly enforceable contracts. The Defect strategy, for example
could represent supplying shoddy goods where product quality is not subject to
contract.

We assume each agent precommits to following one of three available ‘norms.’
The first, which we call Defect, is to defect unconditionally against all partners. The
second, which we call Trust, is to cooperate unconditionally with all partners. The
third, which we call Inspect, is to monitor an imperfect signal based on information
provided by other members of the network indicating whether or not one’s current
partner defects against cooperators. We assume the signal correctly identifies a
Defector with probability p > 1/2 and correctly identifies a non-Defector with
the same probability p. The Inspector then refuses to trade with a partner who is
signalled as a Defector, and otherwise plays the cooperate strategy. We assume
that an agent who does not trade within the network has access to the anonymous
market, with a payoff that we set arbitrarily to 0. Thus when either partner to a
within-network exchange refuses to trade, each receives payoff 0, which is assumed
better than the mutual defect payoff c; i.e., we assume throughout that c < 0.8 We
assume that the signal is costlessly observed. Assuming a (not excessively large)

8It is easy to show that other actions available to an Inspector who receives a signal indicating a
defecting partner involve either mimicking the behavior of Trusters or Defectors, or else are strictly
dominated by playing as indicated above. We thus lose nothing by ignoring such alternatives.
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positive cost of inspecting changes our results in an intuitively expected way, so we
abstract from such costs in the interests of simplicity. The payoff matrix for a pair
of agents has the normal form shown in Figure 1. We write G(p) for the game with
signal accuracy p.

bp2, bp2 bp, bp d(1 − p), a(1 − p)

bp, bp b, b d, a

a(1 − p), d(1 − p) a, d c, c

Inspect Trust Defect

Inspect

Trust

Defect

Figure 1: The Inspect-Trust-Defect Game

Let αt , βt , and δt be the fraction of the population playing Inspect and Trust at
time t , respectively. We assume these are continuous variables. Let πt

I , πt
T , and

πt
D be the payoffs to the strategies Inspect, Trust, and Defect at time t , respectively,

against the mixed strategy given by (αt ,βt ,δt ). We find that

πt
I = bp(pαt + βt) + d(1 − p)δt (1)

πt
T = b(pαt + βt) + dδt (2)

πt
D = a(αt(1 − p) + βt) + cδt (3)

πt = αtπ
t
I + βtπ

t
T + δtπ

t
D. (4)

where πt is the average payoff in the game. Equating the payoffs to the three pure
strategies, we find that the Nash equilibrium frequencies (α∗, β∗, δ∗) satisfy

α∗ = (−adp + b(d(2p − 1) + c(1 − p)))/D (5)

β∗ = p(ad(1 − p) − b(d(2p − 1) + c(1 − p)))/D (6)

δ∗ = ab(1 − p)(2p − 1)/D, (7)

where

D = a(b(1 − p)(2p − 1) − dp2) + b(1 − p)(d(2p − 1) + c(1 − p)).

We have

Theorem 1. A Trust Equilibrium. There is a p∗ < 1 such that for p∗ < p < 1,
G(p) has a unique Nash equilibrium (α∗, β∗, δ∗). In this equilibrium all three types
of players occur as strictly positive fractions of the population. The payoff π∗(p)

in this equilibrium is positive and an increasing function of p, and the fraction of
Defectors δ∗(p) is a decreasing function of p.

8



To prove the theorem, choose p < 1 such that

d(1 − p) > c and bp2 > a(1 − p). (8)

Since d < c < 0 and a > b > 0, clearly such a p exists. Moreover, if (8) holds for
some p, it holds for all p′ such that p < p′ < 1. So let p∗ be the greatest lower
bound of the set of p for which (8) holds, and let p be any probability satisfying
p∗ < p < 1. A routine check then indicates that there are no Nash equilibria
involving fewer than all three strategies. Hence by Nash’s existence theorem, there
is an equilibrium of G(p) involving all three strategies. This proves that p∗ has the
asserted property. Equations (5)-(6) This imply

π∗ = −abd(2p − 1)2/D, (9)

so π∗/δ∗ = −d(2p− 1)/(1 −p) > 0, showing that payoffs are positive. A tedious
calculation verifies that

dπ∗

dp
= δ∗2(−d)

b(d(2p − 1) + 2c(1 − p)) + a(b(2p − 1) − 2dp)

ab(1 − p)2(2p − 1)
.

The denominator in the fraction is positive and the numerator can be written as

2(b(a − c) − d(a − b))

(
p − 1

2

)
+ bc − da,

which is clearly positive. To prove the final assertion, we calculate

dδ∗

dp
= δ∗2ab(2p − 1)2(1 − p)2

bc(1 − p)2 + adp(3p − 2)
.

The denominator in this expression is less than bc(2p − 1)2 < 0, from which the
assertion follows.

The intuition behind Theorem 1 is simple. Consider the simplex

T = {(α, β)|α, β, α + β ∈ [0, 1]}.
By Nash’s Existence Theorem there is an equilibrium within T . However Trust
is strictly dominated by Defect, and Inspect is strictly dominated by Trust (since
Inspectors refuse some profitable trades, while Trusters do not). When the two
inequalities (8) hold, Defect is also strictly dominated by Inspect. Therefore all
Nash equilibria must be confined to the interior of T . But it is easy to check that
there is only one possible candidate, which thus exists and is unique. A phase
diagram for the model is presented in Figure 2.9

9



Trust

Defect Inspect

✉

T

�

�

�

δ

β

α

� �

�

Figure 2: A Simplex Phase Diagram for G(p) when p∗ < p < 1. The frequency of
Inspect, Trust, and Defect are α, β and δ respectively. The trust equilibrium is at T . Note
that there are no equilibria along the two-dimensional boundary of the simplex, since
each pure strategy can be invaded by another.

The replicator equations are then given by

dαt

dt
= αt(π

t
I − πt) (10)

dβt

dt
= βt(π

t
T − πt), (11)

reflecting our assumption that norms are implicated in the response to relative pay-
offs.

We then have

Theorem 2. Stability of the Trust Equilibrium For p > p∗, the unique equilibrium
P = (α∗, β∗, δ∗) of G(p) is either stable or paths starting sufficiently near P

converge to a periodic orbit of the replicator dynamic. In the latter case, the time

9We must also check on the dynamic properties of the interior Nash equilibrium. There is no
guarantee that this equilibrium is evolutionarily stable. Indeed, the reader can check that for a = 2,
b = 1, c = −1 and d = −2 the equilibrium is not evolutionarily stable for p ≥ 0.78, while if we
change a to a = 3, it is evolutionarily stable. However, evolutionary stability is a sufficient, though by
no means necessary, condition for dynamic stability (Gintis 2000):Ch. 10. Therefore we must inspect
a plausible dynamic, which we take to be the replicator dynamic (Friedman 1991, Gintis 2000).
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averages of the payoffs along the periodic orbit for the three strategy types are all
equal to π∗(p). Thus in either the stable or limit cycle case, the long-run expected
payoff to an agent is π∗(p), which is an increasing function of the signal quality p.

The first assertion follows directly from the Poincaré-Bendixson Theorem (Perko
1991):227, and the second from an ergodic theorem—Theorem 7.6.4 (p. 79) in
Hofbauer and Sigmund (1998). By virtue of this theorem, we will therefore refer
to either the stable or limit cycle case as a stable equilibrium of G(p).

It is easy to check that when p < p∗, there are onlyAll Defect, or Defect/Inspect
equilibria, both of which yield negative expected payoff. The first is stable and the
second unstable in the replicator dynamic. We assume the network disbands in such
cases, so we take π∗(p) = 0 for p < p∗.

4 The Benefits and Costs of Networks

Theorem 2 illustrates an important attribute of the network as a structure of eco-
nomic governance: the personal information available in networks may facilitate
the informal enforcement of contracts. Yet the small-group interactions that per-
mit agents to address problems of contractual incompleteness may limit access to
gains from trade that are possible when exchanges are not confined within network
boundaries. Members of parochial groups may fail to find trading partners with
whom mutually beneficial exchange can occur. We model this tradeoff between the
enforcement benefits and foregone gains from trade in this section, extending the
results of Theorems 1 and 2 by exploring the effect of the size x on the equilibrium
payoff structure.

To do this we consider one (of many) networks in a large population, some
members of which belong to no network and trade in the anonymous pool. Agents
trading in the anonymous pool have no means of informal enforcement and hence
receive the market payoff, which we have arbitrarily set to 0. For agents trading
within a network, however, the quality of the signal p(x) is decreasing in net-
work size x, and the probability q(x) of meeting a partner for mutually beneficial
trade is increasing in network size. Signal quality p(x) is decreasing in x because
larger networks possess less information concerning each individual, while q(x)

is increasing because a larger number of participants increases the probability of
meeting a potentially mutually beneficial trading partner.

We define a network information structure I (x, κ, po) with the following prop-
erties. Each member of a network of x individuals knows the type of κ other
members. An Inspector who seeks the type of a specific member j of the network
receives informant messages randomly from members of the network, until a mes-
sage arrives from an informant who claims to know j ’s type. An informant who
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knows j ’s type reports this fact and correctly identifies j ’s type with probability
one. An informant who does not know j ’s type reports this fact correctly with
probability po, and when incorrectly claiming to know j ’s type (with probability
po), declares j to be a defector with probability one half.

Theorem 3. Network Size and Signal Quality. Consider a network with x members
and network information structure I (x, κ, po), po < 1, and let p(x) be the quality
of the resulting signal concerning a network member. Then p(x) is a decreasing
and convex function of x, asymptotic to p = 1/2 as x → ∞.

To prove the theorem, we note that p(x) satisfies the recursion equation

p(x) = κ

κ + x
+ x

κ + x

(
1 − p0

2
+ pop(x)

)
.

This has solution

p(x) = 2κ + (1 − p0)x

2κ + 2(1 − p0)x
, (12)

which is easily seen to be decreasing and convex in x.10

To specify the shape of q(x), suppose agents produce goods for trade in the
morning, and take them to market for trade in the afternoon. Goods are perishable,
and cannot be stored. Suppose there are x agents in the network, and there are goods
1, . . . , k, corresponding to which there are ‘marketplaces’ that have exogenously
given relative sizes f1, . . . , fk (

∑
i fi = 1). Marketplace i thus has absolute size

xi = fix for i = 1, . . . , k. The members who are to compose this xi are assigned
randomly at the start of the trading period. Each agent decides with equal probability
to be a buyer or a seller that period. Buyers and sellers in the same marketplace are
randomly paired, and if the number of buyers and sellers differ, a random selection
of agents will make no trade at all, and as a result trades on the anonymous market,
receiving a payoff of zero.

At the marketplace for good i, the number ξi of buyers and the number χi of
sellers are independently distributed binomial random variables with mean xi/2 and
variance xi/8. The expected number of agents not finding a trade is thusE[|xi−χi |],
where the expectation is with respect to the product distribution. We have

Theorem 4. Gains to Network Size. Let q(x) be the probability of making a trade
when network size is x. Then q(x) is increasing, concave, and approaches unity
for large x.

10It might be more reasonable to assume that i receives at most one message from any other member
of the network. In this case the expression for p(x) has no obvious closed form, but simulations show
that this expression differs from (12) by less than one part in a thousand for all x and over plausible
ranges of κ and po.
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The proof is in the Appendix.
Consider the game G′(x), where x is the number of agents in the network, that

differs from the game G in two ways. First, the payoff to the prisoner’s dilemma
stage game is the payoff in G multiplied by q(x), which is a nonnegative, strictly
concave, strictly increasing, bounded, differentiable function of network size x. We
will assume, as per Theorem 4, that q(∞) = 1, and there is a minimum network size,
xmin > 0, with p(xmin) > p∗, below which q(x) = 0, while q(xmin) = qmin > 0.
To avoid corner solutions in the analysis below, we assume also that π ′(xmin)xmin >

π(xmin). Second, we assume the quality of the signal p(x) is satisfies p(x) > 1/2
and is a nonnegative, convex, strictly decreasing, differentiable function of network
size (see Theorem 3). We call the game G′(x) the variable size network game.

The payoff in equilibrium in a network of size x is now simply

π(x) = q(x)π∗(p(x)), (13)

and the equilibrium frequencies of Inspectors andTrusters can be written asα∗(p(x))

and β∗(p(x)), respectively. There must then exist an ‘optimal’ network size x∗ >

xmin that maximizes the per-agent payoff, supporting an equilibrium of G′(x∗). This
is because for x = xmin, p(x) > p∗, so we have π∗(p(x)) > 0. But for sufficiently
great x, we have p(x) < p∗, so π∗(p(x)) = 0.

5 The Demographics of Network Size and Market Size

To this point we have explained the effects of exogenous variations in network
size. But as agents may ‘migrate’ in response to differential payoffs, we must
now let variations in network size reflect the resulting migration flows.11 To avoid
unnecessary complications, we assume the same informational assumptions apply
equally to old and new network members. In particular, immigrants know the types
of others, and their types are known by others, with the same frequency as less
recently arrived network members.

Suppose we have a number of networks, of sizes x1, . . . , xn (n may be variable
over time), each in a locally stable trust equilibrium,12 so the members of a network
have payoffs given by (13). All agents not in a network fall into the anonymous

11Here ‘migration’ refers to movement between networks and the pool of anonymous traders, and
need not entail geographic relocation.

12There is a plausible alternative to the assumption that networks are locally stable at their equilib-
rium size, in which networks that become too large disintegrate into universal defection because the
conditions for local stability of the trust equilibrium fail when the quality of the signal p(x) becomes
too low. We shall not deal with this case here. Modeling migration dynamics as we do below, we
expect that this case will give rise to cycles of growth and dissolution of networks that may be of
theoretical and practical interest.
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pool of size z. We assume z is sufficiently large that traders in the pool secure
transactions with certainty, so all anonymous traders receive the payoff zero in
each period. However agents may migrate from the pool to the various networks
according to a demographic dynamic in which the net movement is a function of the
pre-migration size of the two populations and the difference between the payoffs to
their members. Migration is proportional to the size of the anonymous pool. Thus
net immigration into network i is given by13

mi(xi) = γ zπ(xi). (14)

The parameter γ > 0, which we call the immigration coefficient, reflects the sensi-
tivity of immigration to the gains of network membership.14 We also assume that
network members have a constant probability ν > 0 of migrating spontaneously to
the anonymous pool for reasons unconnected with the gains from network mem-
bership.15 For the remainder of this section, we analyze a single network, so we
suppress the subscript i in (14) and related expressions.

The equation governing the expected size of a network is dx/dt = m − νx, or

dx

dt
= γ zπ(x) − νx. (15)

Equilibrium expected network size is that for which immigration and emigration
are just offsetting, or dx/dt = 0, giving

γ zπ(x) = νx, (16)

and the condition for stability of a network size equilibrium is that

∂

∂x

(
dx

dt

)∣∣∣∣
dx
dt

=0

< 0, (17)

which requires that
ν > π ′(x)γ z. (18)

The point x̂ in Figure 3 satisfies (16) and (18), and represents such a stable equi-
librium. Over the interval x ∈ (x ′, x̂) we have dx/dt > 0, with dx/dt < 0 for

13Our analysis remains valid, it can be shown, if migration varies with the size of the destination
network; that is, if (14) is replaced by the more general equation m(x) = γ xλzπ(x) for 0 ≤ λ < 1.

14We ignore the possibility that agents may migrate from one network to another. In equilibrium,
all networks will have the same payoffs, so no such migration will take place. This is in contrast to
flows between the anonymous pool and networks, which remain positive even in equilibrium.

15Spontaneous departures from a network may be occasioned by conflicts within the group, as is
amply documented among the historically longest running type of network, the hunter-gather foraging
band (Boehm 1993).
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x < x ′ or x > x̂. Note that networks smaller than x ′ will lose population until they
reach xmin, and then will disappear (because of our assumption that q(x) = 0 for
x < xmin). Also xmin is the point where p(x) = p∗, so the trust equilibrium is un-
stable for x > xmax. We have assumed in the figure that the payoff to network mem-
bership at xmax is strictly positive. To see that this is the case, note that the second
inequality in (8), together with a > b > 0, imply p∗ > (

√
5−1)/2 ≈ 0.618 > 1/2,

so (9) implies π(xmax) > 0. We have

Network Size

νx

γ zπ(x)

�

�

�

xmin x ′ x̂ xmax

�

x∗

A
B

�

Migration
Rate

Figure 3: Optimal and Equilibrium Network Size. A is the right-hand side of (16),
and B is the left-hand side. Equilibrium network size is x̂, which is stable because A is
steeper than B at x̂. Also x′ is endpoint of the basin of attraction of x̂, and xmax is the
network size beyond which the trust equilibrium is unstable.

The next theorem says that for any anonymous pool size z, there is an interval of
immigration coefficients within which the trust equilibrium is stable for high quality
signals, the immigration coefficient that implements optimal network size lies in
this interval, and the interval shifts to the left when the anonymous pool increases
in size.

Theorem 5. Equilibrium Network Size. For any anonymous pool size z ∈ (0, 1),
there is a minimum immigration coefficientγ (z), a maximum immigration coefficient
γ (z), and an optimal immigration rate γ ∗(z) with the following properties:

a. There is no trust equilibrium with γ < γ (z) or γ > γ (z).

b. For any γ ∈ (γ (z), γ (z)), and for a sufficiently high quality signal p(·), there is
a trust equilibrium that is stable in the replicator dynamic and in the migration
dynamic for network size.

c. For γ = γ ∗ ∈ (γ (z), γ (z)), equilibrium network size is optimal; i.e., we have
γ ∗zπ(x∗) = νx∗.
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d. There is are constant gmin and gmax such that zγ (z) = gmin and zγ (z) = gmax

for all z ∈ (0, 1).

To prove the theorem, choose x+ to maximize π(x)/x. Since by assumption we
have π ′(xmin)xmin > π(xmin), we know that x+ > xmin, and clearly x+ < x∗,
so the solution is interior. Now choose gmin = νx+/π(x+), so the two curves in
Figure 3 are tangent at x+ when γ z = gmin. Also, define γ (z) = gmin/z. By
construction there is no network size equilibrium for γ < γ (z). If we define
gmax = νxmax/π(xmax), then gmax satisfies the conditions of (a), which proves (a).
For γ ∈ (γ (z), γ (z)), there is at least one solution of (16), and this equilibrium is
stable for a sufficiently high quality signal, by Theorem 2. To see that this is stable
in network size if the equilibrium size x̂ satisfies x̂ ≥ x∗, note that

∂

∂x
(γ zπ(x) − νx)|x=x̂

is strictly negative. This proves (c). The rest of the theorem is straightforward.
Intuitively, γ (z) occurs in Figure 3 by shifting down curve B until it is tangent

to curve A, and γ (z) occurs by shifting up B until its right endpoint hits A. For γ <

γ (z) there is no intersection of A and B and hence emigration exceeds immigration
for all network sizes, which precludes the existence of networks. Increasing γ from
γ (z), curve B crosses curve A at x∗. At that point and for γ greater that this but
less than γ (z), curve A has a greater slope than the curve B, which means that
(17) holds, so the equilibrium is stable in the migration dynamic. For γ > γ net
immigration is positive for all x > x ′, so the network will grow to size xmax and
then disband, since p(x) then falls below p∗.

To model the dynamics and equilibrium conditions for the size of the anonymous
pool, we now treat the number n of networks as a continuous variable. For a typical
network, we assume there is a probability p̃(x) > 0 that an individual in the network
will return to the pool because the network disbanded, perhaps because the network
fell below size x ′ through a series of adverse random shocks.16 We assume p̃(x) is
u-shaped, with a minimum at x∗, reflecting the fact that a higher expected payoff
makes the equilibrium more robust in the face of a given series of shocks. We
assume also that random shocks within the anonymous pool lead to the flow of
individuals into newly-formed of networks at the rate pz > 0. Then the equation
governing the expected size of the pool is

dz

dt
=

n∑
k=1

[(νk + p̃(xk))xk − γ zπ(xk)] − pzz,

16For models of this type, based on the theory of random perturbations of dynamical systems
(Freidlin and Wentzell 1984), see Kandori, Mailath and Rob (1993) and Samuelson (1997).
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where the first term in the summation represents the migration from networks to
the anonymous pool (by individual emigration and network dissolution), the second
term in the summation represents the immigration to networks, and the final term
represents new network formation.17 In demographic equilibrium all networks are
at equilibrium size, so from equation (16), this expression can be simplified to

dz

dt
=

n∑
k=1

p̃(xk)xk − pzz. (19)

The equilibrium size of the anonymous pool, setting dz/dt = 0, is thus given by

z∗ = 1

pz

n∑
k=1

p̃(xk)xk. (20)

We then have

Theorem 6. Demographic Equilibrium. There is a demographic equilibrium in
which z = z∗ as defined in (20). For any γ > γ (z∗), there is a network trust
equilibrium x(γ ) that is stable in the replicator dynamic and the migration dynamic
for network size for a sufficiently high quality signal p(x(γ )).

6 Optimal Parochialism

Theorems 5 and 6 show that there is a close relationship between the viability of
networks and the payoff to network membership, on the one hand, and the rate of
immigration γ into the network, on the other. In an economy with low transportation
and communication costs, it is plausible to take γ to be so large that γ > γ (z∗), so
stable networks cannot exist in equilibrium. This reasoning expresses the view that
networks are vestigial remnants of traditional society doomed to long-run extinction.

Networks could form, however, if membership could be limited to a certain
fraction ρ of potential immigrants. We formalize this by defining the degree of
exclusiveness of a network as the fraction ρ ∈ (0, 1) of potential immigrants who
will be excluded. We first assume exclusion is random across character traits, taking
up parochial exclusion later. Hence if γ o is the immigration coefficient assuming
no exclusiveness, and if the degree of exclusiveness is ρ, then the immigration
coefficient in (14) is given by

γ = γ o(1 − ρ), (21)
17We have assumed that networks are sufficiently numerous that the number of networks that appear

and disappear in each period can be replaced by their expected values.
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and (14) becomes
m(x) = γ o(1 − ρ)zπ(x). (22)

We then have

Theorem 7. Optimal Exclusiveness. There is a degree of exclusiveness ρ∗ that
maximizes the payoff to network members in a stable trust equilibrium. We call ρ∗
the optimal degree of exclusiveness.

To see this, we define ρ∗ by

ρ∗ = 1 − νx∗

γ oz
∗π(x∗)

. (23)

then the network is in equilibrium at size x = x∗. Because π ′(x) = 0 at x∗, (18)
shows that the optimally exclusive equilibrium is stable.

Figure 4 depicts network size equilibrium as the equality of the two schedules
(1 − ρ)γ ozπ(x) and νx, the two terms in (16). An increase in exclusiveness shifts
the first curve down proportionately, and the optimally exclusive solution occurs at
x∗, so that net migration is negative to the right of x∗ and positive to the left of x∗,
and the condition for stability (17) is satisfied.

Network Size

νx

(1 − ρ)γ ozπ(x)

�

�

xmin x̂

�

x∗

�

�

x∗

ρ < ρmax

ρ > ρmax
ρ = ρmax

xmax

Migration
Rate

✠

✸
�

Figure 4: Exclusiveness and Optimal Network Size. As the degree of exclusiveness
increases from ρ to ρ∗, equilibrium network size falls from x̂ to x∗. When the degree of
exclusiveness reaches ρmax, the network is no longer of a sustainable size.

The welfare properties of a demographic equilibrium for the entire population
are explored in:

18



Theorem 8. Welfare in Demographic Equilibrium. Suppose networks are identical
and they exhibit the same degree of exclusiveness ρ sufficient to sustain a stable
trust equilibrium. Then in demographic equilibrium the following hold:

a. The number z∗ of agents in the anonymous pool is strictly positive.

b. For ρ < ρ∗, an increase in exclusiveness increases the payoff to network mem-
bers, decreases equilibrium network size, and increases the fraction of agents
in the population who are in networks.

c. The condition ρ = ρ∗ is Pareto efficient in the sense that it jointly maximizes
the payoff to network membership and the fraction of the population receiving
the trust equilibrium payoff.

Proof: Part (a) follows directly from (19), given that p̃(xk) > 0 for all k. For part
(b), note first that by (16), equilibrium network size requires (dropping subscripts,
since networks are identical),

(1 − ρ)γ ozπ(x) = νx.

Totally differentiating this equation with respect to ρ shows that dx/dρ < 0 for
x > x∗. This proves the first two assertions in (b). To prove the third assertion, no-
tice that given exogenous variations in ρ and consequent changes in x, stationarity
of z is achieved by the entry or exit of networks—that is, by varying n. Increased
exclusiveness reduces network size and raise returns to members of networks, thus
increasing the attractiveness of networks, while also rendering migration into net-
works more difficult. The net effect on the fraction of the population in networks
is determined as follows.

To obtain an expression for n, we set dz/dt = 0 in (19), and we see that in
equilibrium new entrants to the anonymous pool must be just offset by those exiting,
or

n(p̃(x) + pz)x = pzz. (24)

Totally differentiating this expression with respect to ρ, we find

dn

dρ
(p̃(x) + pz)x + n[(p̃(x) + pz) + p̃′(x)x]dx

dρ
= 0.

Since p̃′(x) > 0 and dx/dρ < 0, this equation shows that dn/dρ > 0. Also,
from (24) we know that the number of agents in networks is

nx = pzz

p̃(x) + pz

,
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so
d(nx)

dρ
= − pzz

(p̃(x) + pz)2
p̃′(x)

dx

dρ

which is positive under the assumptions of the theorem. This proves part (b), from
which part (c) is obvious.

It follows that barriers to entry may enhance welfare in the population as a whole,
and that members of networks erecting barriers to entry may enjoy higher levels of
well-being than those not in exclusive networks, thus supporting the persistence of
exclusion even in highly competitive environments.18

These conclusions assume, of course, that exclusion is random rather than
parochial. By contrast, let us suppose that the exclusiveness of a network derives
from parochialism, so all newly created networks consist of b-parochial agents for
some b ∈ A. The Trust and Inspect strategies analyzed in Section 3 now become
“trust (resp. inspect) insiders (i.e., agents who are b-parochial) and defect on any-
one else.” It is clear that the analysis of Section 3 applies to this new situation
without change. Moreover only b-parochial agents can gain by migrating to a b-
parochial network. Hence a b-parochial network will remain uniformly b-parochial
throughout its existence.

Consider a b-type who is unselective, say the b = 00 of the “female/French-
speaking” example above, who excludes nobody as long as they are similarly non-
exclusive. Suppose that most members of the population were of this type; then the
implied degree of parochialism ρb would be insufficient to implement the optimal
network size, while a more restrictive filter, say b′ = 01 (only like-minded Fran-
cophones welcome) might do so. The existence of some approximately optimally
parochial b is assured if we expand the trait space sufficiently.19 To show this, we
can write the immigration coefficient for a b-parochial network as

γb = (1 − ρb)γ o, (25)

where γ o is immigration coefficient that would obtain in the absence of exclusive-
ness, and the degree of parochialism ρb remains to be determined.

Because b-parochial networks exclude all who are not b-parochial, we have

ρb = 1 − zb,

where zb is the frequency of b-parochial agents in the anonymous pool. Let xT be
the size of the population, so µz = z/xT is the fraction of the population in the

18Where x̂ < x∗, of course, inducements to entry will have the same effect, though we think this
case less likely and have not explored it here.

19If there are multiple parochialisms which are mutually exclusive in the sense that members of
one group are always excluded from the others, this analysis can be readily extended. We have not
explored more complicated cases.
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anonymous pool. Also let µb be the fraction of the population consisting of agents
in b-parochial networks, and the fb be the fraction of b-parochial agents in the
population. We then have µbxT = fbxT −zbz = (fb−zbµz)xT , so µb = fb−zbµz.
This gives zb = (fb − µb)/µz, so we have

ρb = 1 − zb = 1 − fb − µb

µz

. (26)

Since the degree of b-parochialism depends not only on the exogenously given
fraction fb of b-parochial agents in the population, but also the distribution of
agents between b-parochial networks (µb) and the anonymous pool (µz), which are
endogenously determined, we must now analyze the population level equilibrium
of the system.

We have

Theorem 9. Optimal Parochialism. Suppose that there is but a single type of
parochialism, b. Then Theorem 8 holds, where ρ = ρb is given by (26). Moreover,
if the frequency of b-types in the population satisfies

fb = pz

p̃(x) + pz

+ νx∗

xT γ oπ(x∗)
(27)

then b-parochialism supports optimal network size. We say that b is optimally
parochial in this case.

Proof: The condition for equilibrium network size (16) can be rewritten

(1 − ρb)γ oz

ν
= x

π(x)
,

which, using the definition of ρb, now becomes
zbγ oz

ν
= x

π(x)
.

But zbz = (fb − µb)xT , so this becomes

(fb − µb)xT γ o

ν
= x

π(x)
. (28)

Now in equilibrium, from (24) we have
nx

xT

= pz

p̃(x) + pz

, (29)

where n is the number of b-parochial networks.
Equations (28) and (29) yield the equilibrium condition

xT γ o

ν

[
fb − pz

p̃(x) + pz

]
= x

π(x)
. (30)

The conclusion follows directly from this equation.
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7 Conclusion

The fact that the exclusionary practices we have called ‘parochial’may implement a
group size or, by extension, a degree of group homogeneity, that maximizes network
members’ benefits does not imply that these practices—often motivated by racial
and ethnic hatred and religious intolerance—are socially desirable, of course. But it
may help explain why groups and group identity remains such salient features even
of societies whose competitive economies and liberal polities are widely thought to
be hostile to parochial sentiment.

We have argued that networks have properties that allow them to persist in a
market economy despite their relative inability to exploit economies of scale and
the other efficiency-enhancing properties of markets. Among these properties, and
the one explored in this paper, is the capacity of networks to support enforcement
of prosocial behavior among network members. Networks have this capacity by
virtue of their ability to reduce information costs, thus permitting the emergence of
‘trusting’ Nash equilibria that do not exist, or are unstable, when information costs
are high. Our particular model of these relationships could readily be extended to
capture other salient aspects of the determinants of network formation, parochial
exclusion, and network extinction. For example, because parochialism makes net-
works not only smaller, but more homogeneous as well, corresponding efficiency
enhancing effects of similarity or social affinity with parochial networks may be
important.

The value of the informal contractual enforcement capacities of networks, the
viability of networks, the optimal network size, and the optimal degree of parochial-
ism all depend importantly on the nature of the goods and services that make up
economic exchanges. Kollock (1994:341) investigated “the structural origins of
trust in a system of exchange” using an experimental design based on the exchange
of goods of variable quality. He found that trust in and commitment to trading
partners as well as a concern for ones own and others’ reputations emerges when
product quality is variable and non-contractible but not when it is contractible.
These experimental results appear to capture some of the structure of actual ex-
changes. Siamwalla’s (1978) study of marketing structures in Thailand contrasts
the impersonal structure of the wholesale rice market, where the quality of the prod-
uct is readily assayed by the buyer, with the personalized exchange based on trust
in the raw rubber market, where quality is impossible to determine at the point of
purchase. Thus, were technologies to evolve such that quality and quantity of the
goods being transacted are readily subject to complete contracting, preferential trad-
ing within networks would be of little benefit and would likely be extinguished due
to the implied foregone gains from trade. Conversely, were the economy to evolve
in ways that heighten the problem of incomplete contracting we would expect to

22



see growing economic importance of networks.
Applying this reasoning to our model, we consider the latter more likely. As

production shifts from goods to services, and within services to information-related
services (Quah 1996), and as team-based production methods increase in impor-
tance, the gains from cooperation will increase as well, because such activities
involve relatively high monitoring costs and are subject to costly forms of oppor-
tunism. If this is the case the benefits associated with the mutual defect payoff
relative to the mutual cooperate outcome will decline over time and a wider range
of exchanges will be available.20 This in turn will support more extensive use of
network based trust equilibria as a means of addressing contractual incompleteness.

Further, advances in communications technology arguably increase the number
(κ) of acquaintances from whom we can gather information at limited cost, thus
by Theorem 3, increasing the quality of the signal p(x). The following are conse-
quences: (i) the range of payoff structures for which trust a equilibrium exists is
expanded, (ii) the basin of attraction of a trust equilibrium is expanded, and (iii)
the average payoffs to members of a network of given size in a trust equilibrium
increase compared with the payoffs obtained by traders in the anonymous pool, and
(iv) there is an increase in equilibrium network size (cf. Figure 3).

On the other hand the kinds of social exclusion motivating network-based
parochialism often violate strongly held universalistic norms and may motivate ei-
ther legal prohibition or other evolutionary disabilities not considered in this model.

A study of the evolution of parochial sentiments, which could be accomplished
by endogenizing the parochialism filter, might yield useful insights, but is beyond
the scope of this paper.

20An increase in the cooperative payoff b does not make the standard prisoner’s dilemma interaction
any ‘easier to solve’ of course, but it may enhance evolutionary pressures for the emergence of new
rules of interaction that effectively mitigate the dilemma. Wade (1987:774-5) describes such a process:

…a significant number of the villages (in one small part of Upland South India) have
institutions for the provision of public goods and services, which are autonomous of
outside agencies in origin and operation. …Only a few miles may separate a village
with a substantial amount of corporate organization from others with none…Why the
differences between villages? It is not because of differences in norms or values, for
the villages are located within a small enough area for the culture to be uniform. It is
rather because of differences in net collective benefit.
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8 Appendix: Proofs (Not for Publication)

Proof in Theorem 3 that rn = 1 + n/(κ + 1). If there are κ + n members of
the network, the first queried will know the type of a particular individual with
probability κ/(κ +n), and if not, members of a network of size κ +n−1, of whom
κ know the individual in question, must be queried. Notice that the relationship
rn = 1 + n/(κ + 1) is trivially true for n = 0. Suppose it is true for some value
n − 1 ≥ 0. Then

rn = 1 + n

κ + n
rn−1

= 1 + n

κ + n

(
1 + n − 1

κ + 1

)

= 1 + n

κ + 1
.

The assertion follows by induction on n.
Proof of Theorem 4: We assume x large enough relative to k that the normal

approximation to the binomial is sufficiently accurate (x > 10k is enough to ensure
this). The difference between the number of buyers and sellers in a marketplace
is a random variable ψi that is normally distributed with mean zero and variance
σ 2
i = xi/4. Then E[|ψi |] = E[ψi |ψi ≥ 0] is then given by

1√
2π

∫ ∞

0
ψie

− ψ2
i

2σi dψi = 1√
2π

(−σi)e
− ψ2

i
2σi dψi

∣∣∣∣∣
∞

0

= σi√
2π

=
√
xi

2
√

2π

Thus the probability pi of finding a trading partner in marketplace i is pi = 1 −
E[|ψi |]/xi = 1 − 1/2

√
2πfix. Hence

q(x) =
k∑

i=1

fipi = 1 −
(

n∑
i=1

√
fi

2
√

2π

)
x− 1

2 .

Clearly q(x) has the asserted properties.
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