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Abstract

The persistent nature of equity volatility is investigated by means of a multi-factor
stochastic volatility model with time varying parameters. The parameters are estimated by
means of a sequential matching procedure which adopts as auxiliary model a time-varying
generalization of the HAR model for the realized volatility series. It emerges that during
the recent financial crisis the relative weight of the daily component dominates over the
monthly term. The estimates of the two factor stochastic volatility model suggest that the
change in the dynamic structure of the realized volatility during the financial crisis is due to
the increase in the volatility of the persistent volatility term. A set of Monte Carlo simula-
tions highlights th correctness of the methodology adopted to extract the variability in the
parameters.
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1 Introduction

The aim of this paper is to evaluate whether the observed changes in the dynamic behavior of

the realized volatility (RV) series, in correspondence to the financial crises, are linked to changes

in the structural parameters governing the stochastic volatility (SV) dynamics. In other words

the observed changes in the dynamic pattern of RV series during the financial crises may be seen

as the outcome of structural breaks in the parameters governing the dynamics of the continuous-

time SV process. The volatility dynamics are assumed to be driven by a two factors SV model

(TFSV), which as noted by Gallant et al. (1999) and Meddahi (2002, 2003), successfully accounts

for the long range dependence of the volatility process. Given the difficulty of a direct estimation

of breaks in the TFSV parameters, we adapt the indirect inference procedure suggested by Corsi

and Reno (2012) to the case in which the SV parameters are allowed to be recursively updated.

A sequential matching of the parameters is therefore adopted. The proposed method exploits

a flexible specification for the auxiliary model, built on an ex-post measure of the integrated

variance. The auxiliary model is a time varying extension of the well-known HAR model of Corsi

(2009), and it represents a tool to evaluate to what extent the parameters governing the dynamic

structure of the RV process vary over time. The time-varying HAR (TV-HAR) is interesting

per se as it constitutes a tool to evaluate the evolution of the relative weight of each volatility

component to the overall volatility persistence. Following Raftery et al. (2010) and Koop and

Korobilis (2012), we use a fast on-line method to extract the TV-HAR parameters, allowing for

a rapid update of the estimates as each new piece of information arrives. The advantage of the

proposed estimation method is that it does not require to identify the number of change points

and avoids the use of computationally intensive algorithms, such as MCMC. Interestingly, the

model selection procedure, based on the predictive likelihood, excludes that breaks in the long-

run mean during the financial crises are responsible for the increase in the observed persistence

of the volatility series.

The empirical analysis is carried out on the volatility series of 15 assets traded on the NYSE,

that are representative of the main sectors of the US economy. The estimates of the TFSV

model clearly indicate the instability of the TFSV parameters. The main finding is that the

parameters governing the speed of mean reversion and the volatility of volatility of the persistent

factor display a significant dynamic behavior. Specifically, the speed of mean reversion drops

during the financial crisis, while the volatility of volatility increases, especially for the assets
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belonging to the bank and financial sector. As a consequence, the change in persistence in the

volatility series can be attributed to the increase of the relative weight of the persistent volatility

component. The relative increase of the persistent volatility factor generates trajectories that

deviate for longer periods from the unconditional mean, hence producing the impression of level

shifts in the observed realized series. Moreover, the higher volatility of the persistent volatility

factor increases the degree of dispersion of the volatility around its long-run value, and thus

the volatility of RV (see Corsi et al., 2008). Interestingly, the growth of the volatility of the

persistent factor is reflected in an increase of the relative weight of the daily volatility component

in the auxiliary TV-HAR model. In particular, the daily term becomes the main factor during

the financial crisis. On the other hand, the monthly component has a larger role during the low

volatility period which characterizes the years 2004-2007.

The paper is organized as follows. First, Section 2 introduces the auxiliary TV-HAR model.

Section 3 sets the notation of the TFSV model and proposes a dynamic matching method

for the TFSV model using the TV-HAR as auxiliary model. Section 4 presents the results of

the empirical analysis based on 15 stocks traded on NYSE. Section 5 provides Monte Carlo

simulations to evaluate the robustness of the empirical results presented in Section 4 and the

possible presence of leverage effects. Section 6 concludes.

2 Auxiliary model: the TV-HAR

Strong empirical evidence, dating back to the seminal papers of Engle (1982) and Bollerslev

(1986), supports the idea that the volatility of financial returns is time varying, stationary

and long-range dependent. This evidence is confirmed by the statistical analysis of the ex-post

volatility measures, such as RV, which are precise estimates of latent integrated variance and are

obtained from intradaily returns, see Andersen and Bollerslev (1998), Andersen et al. (2001) and

Barndorff-Nielsen and Shephard (2002) among many others. In the last decade, particular effort

has been spent in developing discrete time series models for ex-post volatility measures, which

are able to capture the persistence of the observed volatility series.1 Reduced form time series

models for RV have been extensively studied during the last decade. For instance, Andersen

et al. (2003), Giot and Laurent (2004), Lieberman and Phillips (2008) and Martens et al. (2009)

report evidence of long memory and model RV as a fractionally integrated process. As noted by

1Recent papers by McAleer and Medeiros (2011) and Asai et al. (2012) present detailed surveys of alternative
models for RV.
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Ghysels et al. (2006) and Forsberg and Ghysels (2007) mixed data sampling approaches are also

empirically successful in accounting for the observed strong serial dependence. In particular,

Corsi (2009) approximates the long range dependence by means of a long lagged autoregressive

process, called heterogeneous-autoregressive model (HAR). The main feature of the HAR model

is its interpretation as a volatility cascade, where each volatility component is generated by the

actions of different types of market participants with different investment horizons. HAR type

parameterizations are also suggested by Corsi et al. (2008), Andersen et al. (2007) and Andersen

et al. (2011).

In its simplest version, the HAR model of Corsi (2009) is defined as

Xt = α+ φdXt−1 + φwXw
t−1 + φmXm

t−1 + εt, εt ∼ N(0, σ2
ε ), (1)

where Xt = log(RVt), X
w
t = 1

5

∑4
j=0Xt−j , X

m
t = 1

22

∑21
j=0Xt−j , and θ =

[

φd, φw, φm
]

. It is

clear that the HAR model is a AR(22) with linear restrictions on the autoregressive parameters.

In particular, there are three free parameters with an autoregressive equation with 22 lags.

Corsi et al. (2008) and Corsi (2009) show that the HAR model is able to reproduce the long-

range dependence typical of RV series. However, as noted by Maheu and McCurdy (2002) and

McAleer and Medeiros (2008), the dynamic pattern of RV is subject to structural breaks and

could potentially vary over time. This evidence is also confirmed by Liu and Maheu (2008),

Choi et al. (2010) and Bordignon and Raggi (2012) who find that structural breaks in the mean

are partly responsible for the persistence of RV.

In light of the recent global financial crisis, and the different behavior of the RV series

during periods of high and low trading activity, a time-varying coefficients model may lead to a

better understanding of the volatility dynamics. For example, in the GARCH framework, time-

varying parameter models are found to be empirically successful by Dahlhaus and Rao (2007a,b),

Engle and Rangel (2008), Bauwens and Storti (2009) and Frijns et al. (2011), among others.

Since the underlying data-generating process of a time varying coefficient model is unknown, a

flexible and simple model structure is assumed. Primiceri (2005), Cogley and Sargent (2005) and

Koop et al. (2009) among others, testify the empirical success of such models in characterizing

macroeconomic series. In contrast to Liu and Maheu (2008) and McAleer and Medeiros (2008),

the proposed discrete-time model allows for a potentially large number of changing points of the

HAR parameters, if the parameters φd, φw and φm are assumed to follow pure random walk
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dynamics. In this setup, the parameters φd
t , φ

w
t and φm

t measure the proportion of the total

variance that is captured by each volatility component at time t and are interpreted as time

varying weights for each volatility component. The TV-HAR model is given by

Xt = αt + φd
tXt−1 + φw

t X
w
t−1 + φm

t Xm
t−1 + εt, εt ∼ N(0,Ht),

αt = αt−1 + ηαt , φd
t = φd

t−1 + ηφ
d

t ,

φw
t = φw

t−1 + ηφ
w

t , φm
t = φm

t−1 + ηφ
m

t .

(2)

where Ht is a scalar and ηt ≡ [ηαt , η
φd

t , ηφ
w

t , ηφ
m

t ] ∼ N(0,Qt) and Qt is a 4× 4 covariance matrix.

Alternatively, assuming that the unconditional mean of Xt is constant, it is possible to work

on the centered log-volatility series,

yt = φd
t yt−1 + φw

t y
w
t−1 + φm

t ymt−1 + εt, εt ∼ N(0, σ2
ε ), (3)

where yt = Xt − X̄t with X̄t
p
→ µ ≡ E(Xt), so that both sides of equation (3) have zero mean.

Both models in equations (2) and (3) can be easily extended to include other covariates, such

as price jumps, past negative returns, or other financial variables. Excluding the intercept from

model (2) rules out the possible presence of level shifts in the mean of the process. In this case,

changes in the persistence of the process can only be generated by changes in its autoregressive

structure. This parameterization avoids the lack of identification of the unconditional mean

when the roots of the autoregressive polynomial of the TV-HAR are such that the process is in

the non-stationarity region. This issue will be further discussed in Section 4.

The models in equations (2) and (3) present a flexible structure, that depends not only on

the autoregressive behavior of Xt and yt, but also on the dynamics of the HAR parameters. At

each point in time, a different set of parameters must be estimated. The adopted estimation

algorithm for the TV-HAR model follows the methodology proposed by Raftery et al. (2010) and

Koop and Korobilis (2012), and extracts the time-varying parameters by means of a modified

Kalman filter routine based on the so called forgetting parameter, λ. We propose a selection

method for the forgetting parameter, such that λ is calibrated in order to minimize the mean

squared one-step-ahead forecasting error. Given λ, the Koop and Korobilis (2012) estimation

method allows for a fast update of the estimates as each new piece of information becomes

available, from which the name on-line method. The details on the on-line estimation method

and the selection of the forgetting parameter are presented in Appendix A.
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3 The two-factor stochastic volatility model

A deeper understanding of the volatility dynamics can be achieved from a structural point

of view, exploiting the TV-HAR as an auxiliary model for the estimation of the parameters

of a TFSV model. From this point of view, the TV-HAR is considered as a flexible reduced

form model, that allows to summarize the dynamic features of the RV series and to provide

informations regarding possible breaks in the parameters of the structural model. Finding a

link between the HAR and the TFSV parameters is thus necessary to interpret the origin of the

observed structural changes of the RV dynamics as generated by breaks in the parameters of

the latent SV model.

In order to find a link between the TV-HAR and the continuous time SVmodel, we implement

a sequential estimation of the SV parameters, based on the matching of the parameters of

the time-varying auxiliary model. Similarly to the indirect inference method of Gourieroux

et al. (1993), the sequential matching involves the simulation of the trajectories of RV from the

structural model. We assume that the structural model for the spot volatility follows a TFSV:

dp(t) = γ(t)dW p
1 (t) + ζ(t)dW p

2 (t),

dγ2(t) = κ[ω − γ2(t)]dt+ ηγ(t)dW γ(t),

dζ2(t) = δ[ω − ζ2(t)]dt+ νζ(t)dW ζ(t),

(4)

where dp(t) is the log price, W p
1 (t), W p

2 (t), W γ(t) and W ζ(t) are Brownian motions. The

parameters κ and δ govern the speed of mean reversion, while η and ν determine the volatility

of the volatility innovations. The parameter ω is the long-run mean of each volatility component

and, as in Corsi and Reno (2012), it is assumed to be the same for both γ2(t) and ζ2(t), in order

to guarantee the identification. Corsi and Reno (2012) provide estimates of the parameters of

the TFSV model based on the estimates of the HAR-RV model.2

We follow a similar approach as Corsi and Reno (2012), by exploiting the TV-HAR as aux-

iliary model for the estimation of the TFSV parameters. However, given that the estimates of

the TV-HAR change at each point in time, then the matching of the parameters must be carried

out sequentially, thus resulting in a sequence of values for the parameters of the TFSV model.

In particular, at each point in time, the estimation algorithm returns the set of TFSVparame-

ters that minimizes the distance between the estimates of the auxiliary model obtained on the

2In the RV context, the simulation-based inference methods have been already employed by Bollerslev and
Zhou (2002), Andersen et al. (2002).
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observed data and on the simulated series.

The estimation algorithm proceeds as follow. Denote by Ψt the parameter vector of the

TFSV model at time t:

i. Estimate the auxiliary model on the observed data and denote the estimated parameter

vector by Θ̂t, for t = 1, . . . , T .

ii. At time t, generate S = 100 trajectories of M̄ = 78 intradaily returns (Euler discretization)

for N̄ = 1500 days from the TFSV with parameter vector Ψt. Each return trajectory is

denoted by rN̄,M̄ .

iii. For each simulated trajectory, compute the daily RV series, RV ∗
n =

∑M̄
i=1 r

2
n,i for n =

1, . . . , N̄ .

iv. Estimate the HAR model on each logRV ∗
n series. The estimates are denoted by Θ∗

j(Ψt)

with j = 1, . . . , S.

v. The parameters of the TFSV model at time t are estimated by Ψ̂t = argmin
Ψt

Ξt with

Ξt =





S
∑

j=1

[

Θ̂t −Θ∗
j(Ψt)

]





′

W̄t





S
∑

j=1

[

Θ̂t −Θ∗
j(Ψt)

]



 (5)

where the W̄t is a suitable weight matrix. Following Corsi and Reno (2012), W̄t is chosen

as the inverse of the covariance matrix of the auxiliary parameters in each period t, W̄t =

Q−1
t .3

vi. Finally, iterating ii) - v) for t = 1, . . . , T , produces a sequence of estimates of Ψt.

The model in equation (4) can be extended by assuming that the log-price, p(t), follows a

jump-diffusion process. Since the main interest of the present paper is on the volatility dynamics,

the daily volatility is measured by a non-parametric estimator robust to price jumps. Therefore,

the empirical analysis is carried out on the bi-power variation (BPV), which is a precise ex-post

measure of volatility robust to jump in prices, see Barndorff-Nielsen and Shephard (2006). In

this way, the estimates of the TFSV are robust to the nuisance parameters governing the jump

prices.4

3Note that, when the number of structural parameters is equal to the number of auxiliary parameters (exactly
identified case), then the weighting matrix could be set equal to the identity matrix.

4For a detailed study of the impact of nuisance parameters on the indirect inference estimates see Guay and
Scaillet (2003) and Dridi et al. (2007).
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4 Empirical results

The empirical analysis is based on daily series of logBPV for 15 assets traded on the NYSE. The

sample covers the period from January 2, 2004 to December 31, 2009 for a total of 1510 days.

The stocks are selected in order to be representative of the main sectors of the US economy, see

Table 1. Due to the inclusion of the sub-prime financial crisis in the sample, 8 out of the 15

stocks are selected from the banking and financial sectors. The selected stocks from this sector

are: American Express, AXP , Bank of America, BAC, Citygroup, C, Goldman-Sachs, GS,

JP-Morgan, JPM , Met-Life, MET , Morgan-Stanley, MS, Wells-Fargo, WFC. Other included

companies are Boeing, BA, General Electrics, GE, International Business Machines, IBM , Mc

Donalds, MCD, Procter & Gamble, PG, AT&T, T , Exxon, XOM .

Our primary dataset consists of tick-by-tick transaction prices, which are sampled once every

5 minutes, according to the previous-tick method. The daily BPV series is then computed using

5 minutes logarithmic returns. During the period 2004-2007 the log-volatilities are rather stable

and low, whereas during the financial crisis period the level of volatility increases significantly.5

Even though the log-volatility series is found to be stationary using standard unit-root tests, it

is interesting to evaluate if the peculiar patterns of the series in the period 2008-2009 is reflected

in a change in the TV-HAR parameters.

The on-line estimation method, described in Appendix A, requires a prior on the initial

states. Following Koop and Korobilis (2012), we set θ0 ∼ N(0, 100), so that the learning algo-

rithm is rather unstable for the initial observations, which are not plotted. Figure 1 reports the

estimated parameters of the TV-HAR model for the period 2006-2009 for three volatility series.6

From all figures, an interesting stylized fact emerges: the daily volatility component becomes

more relevant during the period 2008-2009, i.e. during the financial crisis. On the other hand,

the weight of the weekly component does not present a clear trend, while the monthly compo-

nent drops after August 2007 and becomes insignificant in the last period. The extent of the

variation with respect to the OLS estimates (blue dashed line) is notable especially for φd and

φm. In particular, the on-line estimates of φd lie below the 90% OLS confidence interval at the

beginning of the sample, while they lie above at the end of the sample. The opposite behavior

characterizes the on-line estimates of φm.

Table 2 reports some sample statistics pertaining to the TV-HAR parameters. It is interest-

5Due to space constraints, some graphs are reported in the Web Appendix. A plot of the daily logBPV for
three assets is reported in Figure 1 in the Web Appendix.

6The results for AXP, GE and IBM are only reported. Graphs for all stocks are available upon request.
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ing to note the extent of the variation of φd and φm, such that the contribution of each volatility

component to the overall market activity decreases with the horizon of aggregation during the

period 2008-2009. The period 2006-2007 is characterized by the weekly and monthly volatility

components while, at the end of the sample, the daily volatility becomes the relevant term. The

estimation of the TV-HAR parameters has also been performed on the logBPV series including

the intercept as in model (2).

In order to evaluate if the assumption of constant unconditional mean is coherent with the

data, the out-of-sample performances of models (2) and (3) are compared following the approach

suggested in Eklund and Karlsson (2007). Hence, the log predictive likelihood, log(PL), is

computed for each model as a measure of predictive accuracy. The use of predictive measures

of fit offers protection against in-sample over-fitting. A solution to the in-sample over-fitting is

indeed to consider explicitly the out-of-sample (predictive) performance of each model. First

it is necessary to split the sample YT = (y1, . . . , yT )
′

into two parts with s and t observations

respectively, with T = s + t. The first part of the sample, Ys = (y1, . . . , ys)
′

, is used in the

model estimation and the second part, Yt = (ys+1, . . . , yT )
′

, is used for evaluating the model

performance. Given the information set Ys = (y1, . . . , ys)
′

, the predictive likelihood, for model

Mk is defined for the data ys, . . . , yt as

p(ys, . . . , yt | Ys−1,Mk) =

∫

p(ys, . . . , yt | θk, Ys−1,Mk)p(θk|Ys−1,Mk)dθk (6)

where p(ys, . . . , yt | θk, Ys−1,Mk) is the conditional density given Ys−1, see Geweke (2005). The

predictive likelihood contains the out-of-sample prediction record of a model. Equation (6) is

simply the product of the individual predictive likelihood:

p (ys, . . . , yt | Ys−1,Mn) =

T
∏

j=s

p (yj | Yj−1,Mn)

=
T
∏

j=s

N
(

Z
(n)
t θ

(n)
t|t−1,H

(n)
t + Z

(n)
t Σ

(n)
t|t−1Z

(n)′

t

)

,

(7)

where each element on the right hand side is automatically obtained by the on-line Kalman

filter routine.

Table 3 reports a comparison in terms of out-of-sample forecasting ability between models

(2) and (3). The out-of-sample period starts on August 1, 2007, as suggested in Covitz et al.

(2012), such that the out-of-sample period includes the sub-prime financial crisis, where it is
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expected to observe shifts in the long-run mean of the volatility series. The RMSFE and the

log(PL) indicate that the model based on the centered series outperforms in most cases the

model with time varying intercept. This evidence confirms that the model in equation (2) is

not superior in describing the data than the model based on the centered series. This result

implies that the variability of the HAR parameters is not necessarily the spurious outcome of a

neglected time-varying intercept. Indeed, the variations in the dynamic pattern of volatility can

be better thought of as mainly due to changes in its autoregressive structure, and not as shifts

in the long-run mean.

An explanation for this result emerges from Figures 2-4 in the Web-Appendix, the estimates

of φd
t , φ

w
t and φm

t are almost identical to those obtained on the centered series, since the variation

of µt = αt/(1 − φd
t − φw

t − φm
t ) is generally negligible when compared to the variation of the

HAR parameters. The main difference is in the estimates of φm
t , as a consequence of the lack

of identification of µt during the year 2007, see Figure 5 in the Web-Appendix. It emerges that,

when the largest eigenvalue of the TV-HAR characteristic polynomial is above 1, the estimated

unconditional mean, µt, is no longer identified.

The impulse response functions (IRF) calculated with two different sets of parameters, ob-

tained at different points in time, are plotted in Figure 2. The main evidence is the large increase

in persistence during the crisis. For example, the impact of an innovation on the one-step-ahead

volatility is approximately 30% larger during the financial crisis than during previous periods.

After one month, the gap between the two IRFs remains above 10%. This suggests that the

increasing role of the daily volatility component during the financial crisis is reflected in an

increase in the persistence of the volatility process.

Now, we turn our attention to the sequential estimates of the TFSV model, reported in

Figures 3 - 5. Consistently with the assumption that the changes in persistence are only due to

changes in the autoregressive structure of the HAR, the parameter ω, for both γ2(t) and ζ2(t), is

kept fixed and equal to half the sample average of BPV . This is consistent with Corsi and Reno

(2012) and it ensures identification of the unconditional mean of the TFSV process. Figure 3

plots the estimated objective function value, Ξt, for the period January 2007 - December 2009.

There is a notable difference between the dynamic behavior of Ξt for the stocks belonging to the

financial sector and the others. On average Ξt is higher for the banking sector, and it increases

sharply during the period of the financial crisis. This indicates that the TFSV model may be

not flexible enough to capture the extent of variation in the volatility dynamics of the financial
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stocks during the crisis. On the other hand, the criterion function, Ξt, has lower values for the

companies not belonging to the banking and finance sector. Moreover, it remains more stable

throughout the whole sample, with the only exception of the GE, which experienced a serious

financial distress during the period January 2008 - March 2009.

The structural parameters governing the speed of mean reversion display an interesting

dynamic pattern. The parameter κ, the speed of mean reversion of the fast moving factor,

ranges between 5 and 55 as shown in Figure 4 and increases sharply at the end of the sample.

This means that the fast volatility factor, γ2(t), reverts much faster to the long run mean during

the period 2008-2009. Hence, γ2(t) is less persistent and it has noisy dynamics during the

financial crisis. The parameter δ, see Figure 4, which governs the speed of mean reversion of

the persistent factor is characterized in all cases by large structural breaks. For the bank sector,

there is a common evidence that the value of δ drops to approximately 0.001 in the second part

of the sample, meaning that a shock to the persistent volatility factor, ζ2(t), produces effects

for many periods in the future. In particular, in all cases the estimates are very close to 0 after

January 2008, meaning that ζ2(t) is a close-to-unit-root process, introducing high persistence in

the volatility series. On average, the estimated parameter is close to those found by Corsi and

Reno (2012).

The extent of the time variation of the TFSV parameters emerges also clearly from Figure

5, which reports the estimates of the parameters governing the volatility of the volatility. The

parameter ν, which represents the volatility of the persistent factor, has an upward trend,

especially for stocks belonging to the banking and financial sector. Also η has a upward trend

pattern, but it is less evident compared to that of ν. For most of the stocks, η assumes values

in the range between 0.02 and 0.15. On the other hand, ν increases from 0.01 to 0.15 for the

banking sector and from 0.005 to 0.05 for most of the other stocks. As a consequence, during the

financial crisis, the relative weight of the persistent volatility component increases with respect

to the noisy factor (also due to the reduction of the mean-reversion parameter δ). Hence, the

resulting volatility process, σ2(t), becomes more persistent and more volatile at the same time.

This is particularly evident for the banking sector. The increase of the volatility of the persistent

factor during the financial crisis not only induces the observed growth of the volatility levels,

but also increases the degree of uncertainty around its long-run level. Therefore, the persistent

volatility component, which mainly affects the size of the return variance and the investor’s

consumption in the long-run, plays an important role in the pricing of options and becomes more

11



and more relevant as the the crisis approaches. Hence, the variations in the parameter ν, which

summarizes the uncertainty of the investors toward the long-run investments, are responsible

not only for the observed changes in persistence but also for the increase of the volatility of

volatility. Finally, the evidence presented in this section indicates that, in performing option

pricing under stochastic volatility, an important source of randomness, that cannot be neglected,

is given by the variability in the SV parameters. A careful investigation of the consequence of

breaks in SV on option pricing is left to future research.

5 Robustness Checks

The results of the simulations presented in this section are intended to verify that the empirical

results outlined in Section 4 are not spuriously induced by the adopted estimation method. In

particular, the estimation procedure outlined in Appendix A does not allow to test whether

the variation of the parameters is statistically significant. Therefore this set of Monte Carlo

simulations evaluates the ability of the on-line method to correctly estimate the time variation in

the parameters and to show the robustness of the selection method for the forgetting parameter,

λ.

Firstly, we verify whether the on-line method does not induce spurious variation in the TV-

HAR estimates. Therefore, the first set of Monte Carlo simulations is carried out according to

the following setup. We simulate S = 1000 times series of T = 1200 observations from a HAR

model with constant parameters, φd = 0.4, φw = 0.4 and φm = 0.15. In order to control for

possible heteroskedastic effects in the data, the variance of εt is assumed to follow a GARCH(1,1)

σ2
ε,t = ω + αǫ2t−1 + βσ2

ε,t−1, (8)

with ω = 0.01, α = 0.05 and β = 0.90. For each Monte Carlo replication, the TV-HAR

is estimated with a different choice of λ, where the latter is defined on the grid of values

[0.95, 0.955, . . . , 0.995, 1]. As in the empirical application, the optimal λ is each Monte Carlo

replication in correspondence of the lowest mean squared one-step-ahead prediction error. In-

terestingly, the optimal value of λ is found to be equal to 1 in 89% of cases. When λ = 1,

the variability of the parameters is almost zero and the estimates are well centered on the true

values. Panels a)-c) in Figure 6 show the estimated TV-HAR parameters when the DGP is

the constant HAR. The estimated parameters are extremely smooth and display small variation
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around the constant parameters. This means that when the parameters are constant, the on-line

estimation method does not induce spurious variability, but the extent of time-variation in the

estimates is negligible.

Secondly, we verify whether the parameter estimates obtained with the on-line method follow

the true variation of the TV-HAR parameters. Therefore, in the second Monte Carlo setup, we

simulate S = 1000 times a series of T = 1200 observations from model (3) where, in each Monte

Carlo replication, the TV-HAR parameters are those estimated on the log-BPV series of AXP ,

see Section 4. The only sources of randomness are therefore the TV-HAR innovations, εt, which,

as before, are assumed to be Gaussian with conditional variance evolving as in equation (8). In

76.5% of the cases, the value of λ is chosen to be equal to 0.995, while in 18% of cases it is

chosen to be equal to 0.99%. Panels d)-f) in Figure 6 report the data-generating parameters

with the 90% confidence intervals obtained from the Monte Carlo estimates. The 90% confidence

intervals contain the true values in all cases, suggesting that the methodology is able to capture

the variation in the parameters. Due to the recursive nature of the estimation algorithm, the

confidence intervals are particularly wide at the beginning of the sample, while they become

narrower as the information set becomes larger. We can conclude that, the on-line approach

yields reliable estimates of the TV-HAR parameters and the proposed method for the choice of

λ provides a robust selection method for the updating mechanism of the new information.

Thirdly, we verify whether the observed variation in the TV-HAR cannot be generated by

a structural model with constant parameters. In particular, our goal is to evaluate whether

the variation in the TV-HAR estimates is not spuriously induced by the on-line estimation

algorithm, while the parameters of the TFSV model are constant. We therefore simulate S =

1000 daily BPV series from model (4), holding the structural parameters constant. Consistently

with the findings presented in Section 4, the structural parameters are: κ = 5, δ = 0.001,

η = 0.05 and ν = 0.01. In particular, each RV series is generated with M̄ = 78 intradaily

returns for T = 1500 days. Panels a)-c) in Figure 7 report the estimation results. The on-line

estimates are generally close to the OLS estimates, which are based on the full sample, and they

always lie inside the OLS 90% confidence bands. This confirms that the observed variation in

the TV-HAR estimates is not induced by the adopted on-line estimation method, but it reflects

the presence of changes in the structural parameters.

Finally, we evaluate whether an increase in the volatility of the persistent volatility factor in

the TFSV induces the TV-HAR parameters to follow the trajectories obtained with the on-line
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estimation method. Therefore, in the final Monte Carlo simulations, we let the parameter ν

in the TFSV model to be time-varying, with a dynamic behavior as in Figure 5. The other

structural parameters are kept constant at the values κ = 5, δ = 0.001, η = 0.05. Panels d)-f) in

Figure 7 show strong variation in the estimated TV-HAR parameters, which is consistent with

the findings presented in the empirical analysis. In particular, the weight of the daily volatility

component sharply increases, while the weekly and monthly volatility terms become less and less

relevant at the end of the sample. Compared to the OLS estimates, based on the full sample,

the TV-HAR parameters have clear trends, similar to those obtained with the observed realized

volatility series, and they generally lie outside the 90% confidence bands. These results confirm

the reliability of the inference methods adopted and the robustness of the empirical analysis.

5.1 Leverage effect

An important stylized fact in the empirical financial literature is the negative and significant cor-

relation between volatility and returns, the so called leverage effect. Model (4) can be easily ex-

tended to include leverage effect, i.e. ρp,γ = Corr(W p
1 (t),W

γ) 6= 0 and ρp,ζ = Corr(W p
2 (t),W

ζ) 6=

0. In this case ρp,γ and ρp,ζ need to be estimated, such that the auxiliary model must include

at least two additional parameters in order to be able to identify all the structural parame-

ters. Similarly to Corsi and Reno (2012), past negative returns can be included as explanatory

variables in TV-HAR model. Hence, the TV-HAR model (3) would be modified as

yt = φd
t yt−1 + φw

t y
w
t−1 + φm

t ymt−1 + δdt r
−
t−1 + δwt r

w,−
t−1 + δmt rm,−

t−1 + εt, εt ∼ N(0, σ2
ε ), (9)

where r−t−1 is the past negative return and rw,−
t = 1

5

∑4
j=0 r

−
t−j and rw,−

t = 1
22

∑21
j=0 r

−
t−j . This

auxiliary model is named TV-HAR-L. It should be noted that in the TFSV, the parameters ρp,γ

and ρp,ζ cannot be interpreted automatically as the correlation between volatility and prices,

since in presence of two factors, the interpretation of the leverage effect is not trivial as explained

in Chernov et al. (2003).

The sequential estimation of the TFSV model has been repeated allowing for the possibility

of leverage effect, using the TV-HAR-L model in equation (9) as auxiliary model. The estimates

of ρp,γ and ρp,ζ are in line with those reported by Corsi and Reno (2012). However, an interesting

clue emerges when investigating the identification condition of the TFSV with leverage when

the HAR-L is adopted as auxiliary model. The identification condition is verified by computing
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the determinant of the matrix of partial derivatives ∆ = ∂Θ(Ψ)
∂Ψ

∣

∣

∣

Ψ̂
.7 As shown in Figure 8, the

value of the determinant of the matrix ∆ based on the estimates of the TFSV model without

leverage is always far from zero. This means that the parameters of the TFSV model, when

the leverage is absent, are well identified since the matrix ∆ is far to be singular. On the other

hand, the determinant of the matrix ∆ for the TFSV with leverage is always very close to zero,

thus implying a not bijective binding function. In other words, a variation in the structural

parameter is not reflected in variation of all the auxiliary parameters, so that the matrix of

partial derivatives ∆ is singular. As a consequence, the indirect inference estimates of the

TFSV model with leverage are not consistent. A possible reason for this lack of identification

is that in the TFSV model the correlation between the innovations in returns and volatility is

contemporaneous, while in the auxiliary model the negative return enters with a lag. Given

that the autocorrelation in the returns is almost absent, this induces the past negative returns

to be weak instruments to capture the leverage effect in the TFSV model. Due to this lack of

identification, the results of the recursive estimates of the TFSV model with leverage are not

further discussed. Future research will study an alternative auxiliary model that is not affected

by this problem of identification.

6 Conclusions

The persistent nature of equity volatility as a mixture of processes at different frequencies is

investigated by means of a TFSV model. The parameters are estimated using a novel and fast

algorithm based on the state-space representation of the TV-HAR. From the TV-HAR estimates

it emerges an increasing role of the daily volatility component during the financial crisis, whereas

the monthly term becomes insignificant. The main finding that arise from the estimates of the

TFSV model is the crucial role played by the persistent volatility factor during the financial

crisis. In particular, the speed of mean reversion drops and the volatility of volatility increases,

thus inducing the observed realized process to diverge from the long run mean and to become

extremely volatile. The evidence arising from the descriptive analysis of the present paper could

provide a guidance for refined option pricing models, accounting for parameter instability in the

SV process.

7The evaluation of ∆ is carried out based on the estimates of the HAR model with leverage and with constant
parameters.
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Appendix A: Estimation Method

The estimation methodology requires a state-space specification of the TV-HAR model in equa-

tion (3),

yt = Ztθt + εt εt ∼ N(0,Ht),

θt = θt−1 + ηt ηt ∼ N(0,Qt),

(10)

where yt is the observed variable, Zt = [ydt−1, y
w
t−1, y

m
t−1] is a 1 × 3 vector containing the HAR

lag structure, and θt = [φd
t , φ

w
t , φ

m
t ]′ is a 3 × 1 vector of time varying parameters, which are

assumed to follow random-walk dynamics. In this setup, the HAR parameters are considered as

state variables, while the past values of yt are the explanatory variables. The errors εt and ηt

are assumed to be mutually independent at all leads and lags.

Once model (3) is casted in the state space form (10) , the parameter vector θt can be easily

estimated with a standard Kalman filtering technique. The prediction step for given values of

Ht and Qt is:

θt|t−1 = θt−1|t−1

Σt|t−1 = Σt−1|t−1 +Qt

ǫt|t−1 = yt − Ztθt|t−1.

(11)

where Σt|t−1 is the covariance matrix of θt|t−1. However, the estimation of Qt requires computa-

tionally intensive algorithms, such as MCMC methods. Therefore Raftery et al. (2010) suggest

to substitute the prediction equation of Σt|t−1 in equation (11) with

Σt|t−1 =
1

λ
Σt−1|t−1, (12)

so that Qt = (λ−1 − 1)Σt−1|t−1 where 0 < λ < 1. This approach has been introduced in

the state space literature by Fagin (1964) and Jazwinsky (1970), to reduce the computational

burden of the traditional Kalman filter. Raftery et al. (2010) provide a detailed discussion of this

approximation, especially regarding the tuning parameter λ. The parameter λ can be considered

as a forgetting factor, since the specification in equation (12) implies that the weight associated

to the observations j periods in the past is equal to λj . Following Raftery et al. (2010) and
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Koop and Korobilis (2012), the parameter λ must be chosen large enough in order to guarantee

a sufficient degree of smoothness. For quarterly data, Koop and Korobilis (2012) suggest that λ

should be chosen between 0.95 and 0.99. In this paper, the choice of λ is such that it minimizes

the mean squared one-step-ahead prediction error. With daily data, we find that the optimal

λ is equal to 0.995. This value for λ is consistent with a fairly stable model where changes of

the coefficients are gradual. For example, observations 22 days ago receive approximately 90%

of the weight given to the last observation, whereas with λ = 0.95 they receive approximately

33%.

It is interesting to note that the simplification used by Raftery et al. (2010) implies that Qt

does not need to be estimated. However, a method to estimate Ht, which is the variance of the

irregular component, is still required. Raftery et al. (2010) recommend a simple plug-in method

where an estimate of Ht is given by

Ht|t−1 =
1

t

t
∑

j=1

[

(yj + Zjθj−1|j−1)
2 − ZjΣj|j−1Z

′

j

]

. (13)

Since RV is shown to be heteroskedastic, see Corsi et al. (2008), so that the error variance is likely

to change over time, we adopt an alternative method to compute the variance Ht. Following

Koop and Korobilis (2012), Ht follows an exponentially weighted moving average,

Ht|t−1 = κHt−1|t−1 + (1− κ)(yt − Ztθt|t−1)
2, (14)

with κ = 0.94, so that the variance of the error term is allowed to vary over time and the

estimates of the TV-HAR parameters are robust to heteroskedastic effects, especially during the

financial crisis.

Finally, equations (15) and (16), conditional on Ht|t−1, are all analytical expressions and thus

no simulation-based methods are required. In particular, given Ht|t−1 and Σt|t−1, the updating

recursions for the parameters of the model are given by:

θt|t = θt|t−1 +Σt|t−1Zt(Ht|t−1 + ZtΣt|t−1Z
′

t)
−1(yt − Ztθt|t−1) (15)

and

Σt|t = Σt|t−1 −Σt|t−1Zt(Ht|t−1 + ZtΣt|t−1Z
′

t)
−1ZtΣt|t−1. (16)

21



Clearly different estimation approaches, based on Bayesian and maximum likelihood meth-

ods, can be applied. In principle, maximum likelihood estimation with the Kalman filter routine

could be an alternative, see Durbin and Koopman (2001) for an introduction. However, the

on-line method avoids the empirical drawbacks of standard likelihood methods such as multiple

maxima, instability and lack of identification of the state vector parameters. Alternatively, in

the Bayesian framework, an interesting approach has been proposed by Groen et al. (2012), who

suggest to draw posteriors using an extension of the mixture sampling of Gerlach et al. (2000).

This approach, although reliable, is computationally intensive and requires a proper choice of

the priors. On the other hand the on-line estimation method allows for a fast updating of the

parameters and does not require to select optimal priors for the initial states. The sequential

method is also particularly appealing for real-time financial decisions, where the trader needs to

update the parameters as new observations arrive. Indeed, the updating of the parameters only

requires to run equations (12), (14), (15) and (16) once a new observation is available. This

explains why this class of methods is often called on-line.

Appendix B: Figures and Tables
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Sector Ticker Company

BANKING AND FINANCE AXP American Express
BAC Bank of America
C Citygroup
GS Goldman & Sachs
JPM JP Morgan
MET Met Life
MS Morgan Stanley
WFC Wells Fargo

OIL, GAS AND BASIC MATERIALS XOM Exxon

FOOD, BEVERAGE AND LEISURE MCD Mc Donalds

HEALTH CARE AND CHEMICAL PG Procter & Gamble

INDUSTRIAL GOODS BA Boeing

RETAIL AND TELECOMMUNICATIONS T AT&T

SERVICES GE General Electric

TECHNOLOGY IBM International Business Machines

Table 1: Sector, Companies and Ticker
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φd φw φm

Min Date Max Date Range Min Date Max Date Range Min Date Max Date Range
AXP 0.2032 2006-10-06 0.5257 2009-02-06 0.3225 0.1086 2007-05-14 0.5927 2008-07-15 0.4841 -0.0233 2008-09-19 0.5877 2006-11-10 0.6110
BA 0.1803 2006-10-24 0.5349 2009-02-04 0.3546 0.2353 2009-10-16 0.5649 2006-02-21 0.3297 0.0201 2008-07-22 0.3670 2007-03-19 0.3469
BAC 0.2784 2006-04-12 0.6157 2008-09-16 0.3373 0.1002 2007-07-17 0.5047 2006-04-12 0.4045 -0.0062 2008-09-18 0.4213 2007-08-14 0.4275
C 0.2372 2006-08-08 0.6167 2009-05-13 0.3795 0.2150 2007-07-13 0.5233 2008-08-28 0.3083 -0.0099 2008-08-21 0.4054 2006-08-11 0.4153
GE 0.0390 2006-04-13 0.6064 2009-06-18 0.5674 0.2768 2009-06-18 0.7438 2006-04-18 0.4669 0.0298 2009-06-18 0.7438 2006-04-18 0.4669
GS 0.2681 2006-04-07 0.6321 2009-01-29 0.3640 0.2171 2007-03-21 0.5208 2007-12-10 0.3037 -0.0042 2008-09-18 0.3993 2006-05-11 0.4034
IBM 0.0819 2006-10-05 0.5109 2009-01-29 0.4290 0.3802 2007-07-23 0.7263 2006-10-05 0.3461 -0.0158 2008-12-31 0.2358 2007-01-26 0.2516
JPM 0.2409 2006-04-12 0.6948 2009-01-27 0.4539 0.1949 2007-06-26 0.5517 2008-07-15 0.3568 -0.0356 2008-09-19 0.3749 2007-06-21 0.4105
MCD 0.1139 2006-10-03 0.4275 2009-02-12 0.3136 0.2284 2006-05-10 0.5595 2008-12-30 0.3312 0.0104 2008-12-30 0.5100 2007-01-26 0.4996
MET 0.1804 2006-02-24 0.5533 2009-02-20 0.3729 0.2476 2007-03-20 0.6042 2007-12-10 0.3565 -0.0125 2008-09-19 0.4783 2007-06-04 0.4908
MS 0.2275 2006-12-26 0.6344 2009-01-27 0.4070 0.2544 2007-07-13 0.5187 2007-11-09 0.2643 -0.0091 2008-09-18 0.3781 2007-02-22 0.3872
PG 0.1071 2006-03-24 0.4004 2009-02-09 0.2933 0.2533 2007-03-20 0.6889 2006-03-24 0.4356 -0.0027 2008-07-28 0.3116 2007-07-16 0.3143
T 0.0261 2006-04-13 0.4263 2008-12-02 0.4002 0.3437 2007-03-15 0.7239 2006-02-21 0.3802 0.0133 2008-12-16 0.3321 2007-01-23 0.3188
WFC 0.0971 2006-04-17 0.5727 2009-01-26 0.4756 0.1045 2007-04-30 0.5725 2008-09-18 0.4680 -0.0108 2008-09-18 0.5363 2007-02-22 0.5471
XOM 0.2299 2006-10-11 0.5840 2009-01-15 0.3541 0.3220 2009-11-13 0.6519 2006-10-11 0.3299 -0.0460 2007-12-10 0.1068 2007-07-11 0.1528

Table 2: Summary statistics of the TV-HAR parameters. Table reports the minimum and the maximum of the observed values of the TV-HAR
parameters with the corresponding dates. The column reports the range of variation of the parameters, calculated as MAX −MIN .
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RMSEr RMSEu log(PL)r log(PL)u

AXP 0.4763 0.4786 -421.9994 -424.9833
BA 0.5073 0.5070 -468.7136 -466.9602

BAC 0.5469 0.5506 -513.9557 -516.8078
C 0.6154 0.6176 -578.2686 -580.6340
GE 0.5578 0.5613 -525.0722 -526.7052
GS 0.4835 0.4850 -399.1553 -399.1658
IBM 0.4672 0.4705 -394.3845 -394.5168
JPM 0.4545 0.4583 -390.1873 -394.0390
MCD 0.5139 0.5146 -452.3584 -451.1535

MET 0.4948 0.4961 -450.8025 -451.1418
MS 0.5131 0.5150 -426.0185 -427.4654
PG 0.4987 0.5006 -424.8467 -422.7409

T 0.5157 0.5161 -458.1966 -456.0033

WFC 0.4888 0.4912 -430.6668 -433.5275
XOM 0.4394 0.4407 -345.3549 -344.0124

Table 3: Out-of-sample forecast comparison. Table reports the RMSE and the log predictive
likelihood (log(PL)) for the model with (u) and without (r) the intercept. The out of sample
period starts from August 1, 2007 to December 31, 2009.
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Figure 1: On-line estimates of the TV-HAR parameters, φd
t , φ

w
t and φw

t , of AXP, GE and IBM.
The solid red line is the on-line estimate, while the blue dotted line is the OLS estimate based
on the full sample. The dashed green lines correspond to the 90% confidence band.
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Figure 2: Impulse response functions based on two different sets of parameters. The dates, t1
and t2, are chosen such that the difference |φd

t1
− φd

t2
| is maximized, see Table 2.
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Figure 3: Ξt criterion for the two-factors model. Panel (a) reports Ξt for the stocks belonging
to the bank-financial sector, while Panel (b) reports the Ξt distance for the stocks belonging to
the other sectors of US economy.
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Figure 4: Estimated parameters κ and δ of the two-factors model. Panel (a) and (c) report the
estimates of the parameter κ for the stocks belonging to the bank-financial sector and the other
sectors of US economy respectively. Panel (b) and (d) report the estimates of the parameter
δ for the stocks belonging to the bank-financial sector and the other sectors of US economy
respectively.
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Figure 5: Estimated parameters ν and η of the two-factors model. Panel (a) and (c) report the
estimates of the parameter η for the stocks belonging to the bank-financial sector and the other
sectors of US economy respectively. Panel (b) and (d) report the estimates of the parameter
ν for the stocks belonging to the bank-financial sector and the other sectors of US economy
respectively.
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Figure 6: Estimates of the TV-HAR parameters with the on-line method. Panels a)-c) report
the TV-HAR estimates when the DGP is a constant HAR model. The dashed blue line is the
true parameter, while the solid red line is the on-line estimate. Panels d)-f) report the true
parameter (solid black line), and the 90% Monte Carlo confidence band (dashed red lines) when
the DGP is a TV-HAR with time-varying parameters.
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Figure 7: Estimates of the TV-HAR parameters with the on-line method. Panels a)-c) report
the estimates of the TV-HAR parameters when the volatility series is generated from a TFSV
model with constant parameters. The red solid line is the average for each t ∈ [1 : T ] of the
on-line estimates, while the dotted blue line is the average of the OLS estimates based on the full
sample. The green dashed lines correspond to the 90% confidence bands of the OLS estimates.
Panels d)-f) report the estimates of the TV-HAR parameters when the RV is generated from a
TFSV model with time-varying parameters. The red solid line is the average for each t ∈ [1 : T ]
of the on-line estimates. The dotted blue line is the average of the OLS estimates based on the
full sample, while the green dashed lines correspond to the 90% confidence bands of the OLS
estimates..
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Figure 8: Determinants of the matrix ∆ = ∂Θ(Ψ)
∂Ψ

∣
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Ψ̂
for the TFSV model with and without

leverage, when the auxiliary models are the HAR-L and the HAR respectively. The blue dots
represent the absolute value of the determinant of the matrix ∆ for the TFSV model with
leverage and HAR-L as auxiliary model. The red stars represent the absolute value of the
determinant of the matrix ∆ with the TFSV model without leverage effect and the baseline HAR
model as auxiliary. The matrix ∆ is obtained evaluating the partial derivative in correspondence
of the estimates of the parameters obtained with OLS based on the full sample.
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